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ABSTRACT The Objectives of this study is to extend the concept of g-rung linear Diophantine fuzzy sets
(q-RLDFSs), followed by the Near-Earth Asteroids (NEAs) deflection detector. The q-RLDEFS is more
superior than linear Diophantine fuzzy sets (LDFSs) because of the qth power of reference parameters
(RPs). In the present work, first we have recall the g-RLDFS and named it Non-linear Diophantine Fuzzy
set (N-LDFS) further, introduce some operational rules on N-LDFS under Hamacher sum and Hamacher
product. Hamacher Norms were commonly referred to as Hamacher operations, but their applications might
be better expressed if they are presented with a new level of flexibility within the general parameter.
Hamacher operations have not yet been applied for N-LDFS in a suitable form. Therefore we have
apply the Hamacher operators for N-LDFS and develop a new area of research in decision making
problems. We have apply the Hamacher operators to develop Non-linear Diophantine fuzzy aggregation
operators from geometric point of view such as non-linear Diophantine fuzzy Hamacher weighted geometric
(N-LDFHWG), non-linear Diophantine fuzzy Hamacher ordered weighted geometric (N-LDFHOWG) and
non-linear Diophantine fuzzy Hamacher hybrid weighted geometric (N-LDFHHWG) aggregation operators.
We will also establish commutativity, idempotency and monotonicity properties which are the most desirable
properties for proposed operators. Ultimately, we have implement a case study regarding the decision support
method to pick the best NEA deflection detector. We construct an algorithm to solve the problem of multi-
attribute decision-making (MADM) problem, followed by a fun of application using the N-LDFHWG
operator. A comparison between the proposed and existing methods is perform from the geometric point
of view. Finally, the comparisons demonstrate the effectiveness and superiority of the proposed method.

INDEX TERMS Hamacher norms, g-rung linear diophantine fuzzy set (q-RLDFS), non-linear diophantine
fuzzy Hamacher weighted geometric (N-LDFHWG) operators, near-earth asteroid (NEA), MADM.

I. INTRODUCTION are also referred to as planetoids or minor planets. Asteroids
A steroids are rocky worlds that are too small, revolving were leftovers from the emergence of our solar system about
around the sun, to be considered planets. Sometimes, they 4.6 billion years ago [1]. Early on, in the distance between
Mars and Jupiter, the birth of Jupiter stopped any planetary

The associate editor coordinating the review of this manuscript and bodies from developing, causing the little objects that were
approving it for publication was Yu-Da Lin "~ . there to intersect with each other and fragment into the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
VOLUME 12, 2024 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 32111


https://orcid.org/0000-0003-0713-6368
https://orcid.org/0000-0002-7474-5115
https://orcid.org/0000-0002-8391-6203
https://orcid.org/0000-0001-5104-6832
https://orcid.org/0000-0001-5100-6072

IEEE Access

M. Shams et al.: Fuzzy Decision Support Systems for Selection of NEA Detection Technologies

asteroids found nowadays [2]. Meteoroids are small rocks and
fragile aggregates that form as asteroids and comets decay
and fall to Earth. As a result, the microscopic dust that hits the
planet every day amounts to roughly 100 tons [3] on average.
Larger objects are indeed unlikely to enter the Earth’s orbit,
and a possible impactor could have a dramatic impact on the
planet’s life and atmosphere. The break-up of the object at
an altitude of 30 km caused more than 1500 injuries [4], [5],
[6]. Asteroids whose perihelion length is less than 1.3 AU are
Near Earth Objects (NEOs) (about 195 million km). In this
way, the ultimate aim of the researchers is on detecting near-
Earth asteroids (NEAs) [4], [7].

The study of NEAs is sponsored by three main factors,
namely planetary defense, scientific awareness (e.g. deepen-
ing our origins in the Solar System), and mining. The current
article is dedicated to planetary defense in this regard. It is
known that several thousands of asteroids large enough to sur-
vive the Earth’s atmosphere and hit the surface of the planet
are within 0.05AU (about 7.5 million kilometers) of Earth’s
orbit as they orbit around the sun [8]. These Near-Earth
Asteroids (NEAs) are known as ‘“Potentially Hazardous
Objects” because of the perceived threat of colliding with
our planet one day [9]. George E. Brown, Jr. was conducted
by a research team organized by NASA’s Office of Program
and Evaluation in reaction to a Congressional mandate [10].
The NEO Survey Program aims to provide guidelines for
a survey of Near-Earth Objects (NEOs, i.e. asteroids and
comets within 1.3 AU of Earth) and to examine potential ways
of diverting an object to Earth on a probable collision course,
in 2007 they issued a report [9].

A study sent to Congress at the beginning of March
2007 was the result of this directive. This was a review of
the Analysis of Alternatives (AoA) guided by the Program
Analysis and Evaluation (PA&E) office of NASA with the
help of external consultants, the Aerospace Corporation, the
Langley Research Center (LaRC) of NASA, and the SAIC
Research Center (LaRC) (amongst others) [9]. The Double
Asteroid Redirection Test (DART) is a planned space probe
that visits the Double Asteroid Didymos and shows the
kinetic effects for planetary defense purposes of crashing an
impactor spacecraft into an asteroid moon [11]. The mission
is conducted to examine whether the impact of a spacecraft
on a collision course with Earth will successfully deflect an
asteroid. An asteroid deflection demonstration is a hugely
important test that NASA and other agencies want to conduct
until there is an actual need for planetary protection. DART is
a NASA-Johns Hopkins Applied Physics Laboratory (APL)
joint project and is being established under the auspices of
the Planetary Defense Coordination Office of NASA. NASA
approved the project in August 2018 to start the final phase
of design and assembly [12].

The principal objective of this study is to test five deflec-
tion technologies namely, kinetic impactor KI), enhanced
gravity tractor (EGT), ion beam deflection (IBD), laser abla-
tion (LA), and conventional rocket engine (CRE) concerning
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the following list of criteria: NEA deflection technology
maturity level, the structure of asteroid, composition of the
asteroid, shape of the asteroid, and mission risk [13]. With
this aim, we shall apply a novel combination of MADM with
the N-LDF approach to the context of Hamacher operators.
Many researchers have recently made interesting case study
related to their work which improved the research field and
give us rich knowledge some of them is cited as [14], [15],
[16], [17], and [18].

Literature Review:

In 1965, Zadeh [19] introduced the fuzzy set (FS) notion
with membership grade (MG), which is a helpful tool
for handling ambiguous and uncertain information in daily
life. Apart from FSs, he also presented a significant term
called linguistic variables (LVs) [20]. Using LVs, we can
convert verbal information into mathematical expressions
and solve MADM problems with various mathematical
approaches. Hamacher-norms [21], which extend algebraic
and Einstein-norms [22], [23], are more general and ver-
satile. Hamacher operations [24], namely Hamacher sum
and product, are strong alternatives respectively to the
algebraic product and sum. A lot of researchers have been
researching the Hamacher aggregation operators and their
implementations to multiple attribute group decision-making
problems (MAGDMPs) in recent years [21], [25]. In 2021,
Wang et al. [26] developed an interactive Hamacher operation
for Pythagorean fuzzy set (PyFS). Akram et al. [27] described
the complex IF Hamacher. Garg et al. presented [28] for
Hamacher Norms. Various notions of Fermatean FSs with
Hamacher operators were introduced by Hadi et al. [29].

A meaningful work is how to generalize the Hamacher
operations to develop the Non-linear Diophantine fuzzy
(N-LDF) information, which is the primary subject of this
paper.

An extension of FS called intuitionistic FS (IFS) [30]
specifies the MG and non-membership grade (NMG) with
the restriction that the sum of MG and NMG bound between
[0, 1]. IFS defines the human perspective as yes or no.
Atanassov also describes the geometric representation for
IF objects [31]. Several scholars have used the idea of
IFS, including [32], [33], [34] such as interval-valued IFS
(IVIFS) and Einstein Norms. Aside from this, it is probable
that IFS worked the past thirty years and collecting the
particular attention of the researchers [35], [36], [37], and
[38]. Yang et al. [39] proposed Belief and Plausibility
Measures for IFSs, Ali et al. [40] proposed Hausdroff
distance for single-valued neutrosophic sets (SVNSs) and
Alietal. [41] presented the idea of Correlation Coefficient for
T-Spherical FS. Yager [42], [43] introduced the Pythagorean
fuzzy set (PyFS), which is the generalized version of IFS
that satisfies the restrictions that the square’s sum of MG and
NMG bound between 0 and 1. Yager and Abbasov studied
[44] for PyFNs. Furthermore, Yager [43] presented some
aggregation operators (AOs) based on PyFS. Some advanced
forms of PyFNs are described in [45] and [46]. The concept
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of correlation and correlation coefficients of PyFSs were
defined by Garg [47]. Zeng provided [48] and Garg pre-
sented [49], [50] on the based of PyF information. Different
PyF Dombi operators were proposed by Akram et al. [51],
who also investigated how they may be used in MCDM.
In decision-making, Shahzadi et al. [52] presented PyF
Yager operators. In a complex PyF environment, Akram
and Naz [53], [54] suggested Dombi aggregating operators.
The Hamacher aggregation operator (AO) were established
by Mahmood et al. [55] using bipolar complex fuzzy
(BCF) data. The Dombi AO for BCF information were also
provided by Mahmood and Ur Rehman [56]. Additionally,
Mahmood et al. [57] derived the Aczel-Alsina AO under the
BCFS model. Rehman et al. [58] looked up an AHP technique
for BCFS depending on Frank AO.

Yager [59] and other scholars [60], [61] proposed another
concept named g-rung orthopair fuzzy set (q-ROFS), which
is a more powerful method for defining the data vagueness
and extending the space for IFS and PyFS. q-ROFS is also
defined by MG and NMG, but with qth power restriction,
ie. 0 < MG? + NMG? < 1, q > 1. It is clear that
g-ROFS is more generalized than IFS and PyFS, and that
by fixing ¢ = 1 and ¢ = 2 reduces the corresponding set
to IFSs and PyFSs. Many types of research have been done
on q-ROFSs recently, few of them are cited as [62] and [63]
which is based on the basic operational laws of q-ROFNs.
On the base of aggregation operators (AOs) q-ROFNs has
also a rich contribution described in [64] and [65]. Many
researchers have applied the traditional methods for the
ranking of alternatives, such as [66], distance measures [67],
similarity measures [68], and in MAGDM problems [69],
[70]. Similarly the weighted Heronian mean (HM) [71],
the weighted partitioned HM [72], the weighted Maclaurin
symmetric mean (MSM) [73], the weighted power partitioned
MSM [74] and the weighted point operators [65].

Riaz and Hashmi [75] developed the Linear Diophantine
Fuzzy Set (LDFS), which solves the limitation of existing
methods by adding the reference parameters (RPs) to MG and
NMG. The model of LDFS is more accurate and effective
than other fuzzy models due to the presence of RPs. The
sum of RPs with product to MG and NMG, respectively,
is bounded between 0 and 1 in LDFSs. However, in some
real-life problems, the sum of the RPs that an alternative
satisfies the criteria achieved by DM is often greater than one,
so LDFS has restricted itself to achieving its RPs target.

The concept of g-rung linear Diophantine fuzzy set
(q-RLDFS) were proposed by Almagrabi et al. [76]. They
performed it by adding the qth power to reference parameters
(RPs) that covered the space of the existing structure of MG
and NMG related to RPs. The concept of q-RLDEFS is also
described by the MG, NMG, and the RPs, whose sum of the
qth power to RPs related to MG and NMG is bound between
zero and one. In the case of LDFS, the sum of RPs given by
DM may be greater than one, i.e. @ + 8 > 1, which violates
the LDFS restriction and limits the MADM problem. The
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concept of g-RLDFS is capable of dealing with this condition
to eradicate the LDFS contradiction. Note that as the qth
increases, the space of acceptable Diophantine increases,
and more Diophantine satisfy the boundary constraint. The
key benefit of the q-RLDF approach is that it takes into
account the gth power of RPs, indicating that it is suitable
for dealing with real-world DM problems. The concept
of Complex LDFSs (CLDFSs) were presented by [77] in
2022. The idea of LDFSs has been employed by many
scholars in a range of domains, including [78], [79], [80],
[81], [82]. In LDFS, the RPs have their own restrictions.
Almagrabi et al. [76] suggested a novel LDF extension known
as the g-rung linear Diophantine fuzzy set (q-RLDFS) and
examined its key characteristics. An innovative method for
describing uncertainty in decision-making is the idea of g-
RLDEFSs. The q-RLDFS is more flexible and reliable than
existing g-ROFSs, and LDFSs because it combines the qth
power of RFs with MG and NMG also presented in [83]. Later
in [84] give it the name as Non-Linear Diophantine fuzzy set
(N-LDFS). Shams et al. [84] offered the theory of CN-LDFS
with complex valued-qth power of RPs (CV-RPs) related with
there exponential, to overcome the restrictions of complex
LDEFS. The concept of CN-LDFS eliminates the limits for
MG/NMG and RPs, and the expert makers are freely select
the desired grades with CV-RPs. Further in 2023, Shams and
Abdullah [85] extended the concept of CN-LDFS [84] to
Dombi Norms and developed the CN-LDF Dombi operators
for decision making problems. So we motivated from the
said literature review and applied the Hamacher operators
on N-LDFNs and extend it to N-LDF Hamacher weighted
operators.

Review of Non-linear Diophantine fuzzy set:

Recall that the framework presented by [76] is identical
to the well-known LD equation ax + by = c¢ in number
theory, and the addition of the qth power of RPs gives it
the name q-RLDFS, which is the most suitable name for
the developed framework, further this name is extended to
N-LDFS.

A question arises why we needed the N-LDFS or what
are the boundaries of LDFSs that leads us to N-LDFSs.?
The limitation of LDFSs is its restriction, ie. 0 <
aupry + BRApmry < 1 because this condition does not
support decision-makers to give their consent to MG and
NMG values. In a specific domain, the decision-makers are
somehow bound so the need of N-LDFS is developed. We will
use the Hamacher operators for N-LDF data as a result of the
above discussion’s motivation and inspiration, so a new series
of aggregation N-LDF data is developed in this study. Based
on Hamacher Norms, novel Non-linear Diophantine fuzzy
Hamacher aggregation operators are established. We note that
there are no Hamacher aggregation operators in the literature
for dealing with ambiguity in practical problems using novel
N-LDFSs, so we are going to present this. Three objectives
associated with our presented approach are to clarify the
concept of N-LDFSs:
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(1) With the latest N-LDFS method, our first objective
is to address this information gap. This approach, which
is influenced by RPs, can cover the limitation of existing
methods. Suppose an example that explains the concept of
the N-LDFS, (0.85)(0.6) 4 (0.95)(0.7) > 1 which limited the
LDF concept, by putting ¢ = 2 to the RPs (e.g (0.85)(0.6)> +
(0.95)(0.7)2 < 1), where (0.6, 0.7) is RPs, for MG and
NMG respectively, which fulfill and handle the lack of qth
power. Let us consider another example that explains N-
LDFS, (1)(0.75) 4 (0.87)(0.9) > 1 which contradicts the
condition of LDFS, by setting ¢ = 4 on the RPs (e.g
(1)(0.75)* + (0.87)(0.9)* < 1), where (0.75,0.9) is RPs,
for MG and NMG respectively which fulfill the lack of qth
power. That’s why we need N-LDFS, which can handle the
limitation of LDFS with the help of the qth power of RPs.
(2) The implementation of the qth power of RPs in N-LDFS
is the second objective. If we take ¢ = 1, then N-LDFS
will reduced to LDFS. Furthermore, as the rung g increases,
the diophantine space expands, provide the boundary limits a
larger search space to express a wider range of fuzzy data.

(3) The third goal is to establish a strong link between the
current research and MADM problems. We have developed
algorithm to deal with multi-attribute complexities in a
parametric way. Surprisingly, all N-LDFHWG aggregation
operators by applying the suggested algorithm have the same
outcome.

Objectives of study:

The following are the summarized objectives of this work:

(i) To construct a new notion of Non-Linear Diophantine
fuzzy sets (N-LDFSs) based on Hamacher Norms and to
construct their operational laws.

(i) To create a list of aggregation operators from geometric
point of view based on Hamacher norms, as well as explain
the associated properties.

(iii)) To develop a decision-making (DM) methodology
using proposed aggregation operators to aggregate the
uncertain information in DM real-world problems.

(iv) To show the effectiveness and flexibility of the
proposed method, a numerical case study of a real-life
problem regarding to the selection of the best NEA deflection
detector technologies is addressed.

Contribution of the study: It can be concluded from the
aforementioned literature study that there are no specific
implementations of N-LDFS based on the Hamacher t-norm
and t-conorm to rocky world decision support models for
choosing the best NEA deflection detector. To address
ambiguity and uncertainty in N-LDFS contexts, this research
aims to improve N-LDFS aggregation operators using
Hamacher norms. There are three primary phases in MADM
problem, where the decision-making process determines the
best alternative. The decision model’s structure, which is
used to collect data information for each alternative based on
defined criteria by each decision expert, is the first step in the
MADM process. The second process then starts with the data
information of all alternatives based on predetermined criteria
provided by each expert’s decision matrix, and this will be
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normalized if necessary. Making a final decision regarding
the best alternative is the last phase in the decision-making
process. The following are the paper’s key contributions:

(1) The fundamental operations of Non-Linear Diophan-
tine fuzzy numbers (N-LDFNs) are taken into account, and
they are improved from the earlier Hamacher T-norm and T-
conorm to the modified Hamacher for N-LDFNs.

(2) In addition, the suggested Hamacher operational
laws-based aggregation operators for N-LDFNs are pro-
vided and establish Non-linear Diophantine fuzzy Hamacher
weighted geometric aggregation operators.

(3) To determine the result for decision-makers as well
as for alternatives, the score, quadratic, and expectation
functions are developed.

(4) The N-LDFNs is used to evaluate the multi-attribute
decision-making (MADM) problem assuming weight infor-
mation is known.

(5) We create MADM problems which are automated
decision-making processes based on input data.

(6) Based on the defined alternatives, the N-LDEF-
Hamacher aggregation operator is taken into account and
choose the best NEA deflection detector technology.

Novelties of the study: We have extended the concept
of N-LDFS by using Hamacher norms, which become a
more generalized concept because Hamacher operations have
not yet been applied for non-linear Diophantine fuzzy sets
(N-LDFSs) in a suitable form. Therefore we applied the
Hamacher operators for N-LDFS and developed a new area
of research in decision-making problems. The above study
and discussion make it abundantly evident that Hamacher
operations have a built-in capacity for modification and
resilience, enabling them to more successfully illustrate both
the data and ambiguous real-life challenges. In Hamacher
operations, the behavior of the standard operational param-
eter gamma’s is more significant in expressing the decision
maker’s mind. When using the proposed technique, different
values are employed for the operational parameter to
evaluate the professional experts’ ranking results. To the
best of our collective understanding, no implementation
of Hamacher operators with the hybrid study of N-LDFS
by using N-LDF geometric aggregation operators (AOs)
has been established in an N-LDF environment. Through
MADM, the effectiveness of the created N-LDF Hamacher
geometric operators is demonstrated. The combination of
Hamacher Norms and N-LDFS distinguishes the proposed
technique from others. In light of this, the current study
was motivated to analyze geometric operators, such as the
N-LDFHWG, N-LDFHOWG, and N-LDFHHWG AOs, and
to thoroughly examine their desired qualities. The suggested
aggregation operators (AOs) successfully capture the link
between multiple attributes by adding extra qth power to
reference parameters alongside with parameter gamma in
Hamacher t-norm and t-conorm procedures. The suggested
AOs’ adaptability comes from their capacity to set the
parameters q and gamma to certain values, offering DMs
a variety of alternatives. The N-LDF Hamacher operator
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when combined with AOs is a concept that is introduced
in the article. To express data complexity, N-LDFH is used
as a combination of N-LDF and Hamacher, the qth power
increasing the dominance of the N-LDFS and this concept
extended the research area in fuzzy modeling because in FS
there is a lack of non-membership, similarly IFS, PyFS and
g-ROFS have no reference parameter. So the development
of LDFES cover all the limitation of existing methods which
introduced the reference parameters, but LDFS is also limited
to the RPs, therefore q-RLDFS were developed in which
the introduction of qth power increased the Diophantine
space. Thus we have extend the concept of g-RLDFS to
Hamacher Norms and named it N-LDF Hamacher operators.
To evaluate the usefulness of the proposed N-LDFH model,
a numerical analysis is presented as a case study for selecting
the best detection technology for Near-Earth Asteroids
(NEA). Furthermore, a comparative analysis of the existing
methods with proposed operators and a sensitivity analysis is
conducted to investigate their superiority and flexibility.

The layout is structured for this paper as; Extension
of FS (PyFS, q-ROFS, LDFS and g-RLDEFS) are offers
in Section II. “Section III”” is about the concept of N-
LDFS, and we also developed N-LDFS operations based on
Hamacher Norms. “Section IV provides” N-LDF Hamacher
aggregation operators such as N-LDFHWG, N-LDFHOWG,
and N-LDFHHWG operators and some desirable properties
of the proposed operators. “Section V presents” the novel
algorithm for N-LDF data based on Hamacher operators.
“Section VI addressed’ the decision frames and a case study
related to the assessment of the NEA deflection detectors
technology problem. And there is also a numerical example
which demonstrate the application of the proposed method by
using the proposed algorithm based on Hamacher operators
under the N-LDF environment. “Section VII describes™ an
overview comparison of the proposed approach with some
existing method. “Section VIII”” discusses the conclusion
and future directions. Following Table 1(a) represented the
detailed description of acronym used in this work. Similarly,
Table 1(b) summarized the representation of all the variables
and parameters used in this paper.

Following Table 1(b) represented the variables/parameters
and their representation and symbols in this work.

Il. PRELIMINARIES

The extensions of fuzzy sets i.e. (PyFS, g-ROFS, LDFS and

g-RLDEFS or N-LDFS) are offer in the current section.
Definition 1 [42], [43]: A PyFS Sp over a fixed set Z is

defined as:

Sp =1{, Asp), Nsp)Il € Z}, (D

where Agp(¢) and Rgp(r) are MG and NMG respectively. Z :—
[0, 1]i.e.

(Asp@)? + Nsp)* < 1.
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TABLE 1. (a) Description of acronyms used in this work.
(b) Representation of variable/parameters used in this work.

(2)

Acronym H Description
NEAs Near-Earth Asteroids
MADM Multi attribute decision making
DM Decision-maker
ES Fuzzy Set
MG Membership grade
NMG Non-membership grade
AOs Aggregation operators
IFS Intuitionistic fuzzy set
IVIFS Interval-valued IFS
PyFS Pythagorean fuzzy set
BCFS Biopolar complex fuzzy set
g-ROFS g-rung orthopair fuzzy set
g-ROFN g-rung orthopair fuzzy number
HM Heronian mean
MSM Maclaurin symmetric mean
LDFS Linear Diophantine fuzzy set
q-RLDFS g-rung linear Diophantine fuzzy set
N-LDFS N-linear Diophantine fuzzy set
N-LDFHAOs N-LDF Hamacher AOs
N-LDFHWG N-LDF Hamacher weighted geometric
N-LDFHOWG N-LDF Hamacher ordered weighted geometric
N-LDFHHWG N-LDF Hamacher hybrid weighted geometric
LDFWG LDF weighted geometric
LDFOWG LDF ordered weighted geometric
LDFHWG LDF hybrid weighted geometric
S.F/AF Score function/Accuracy function
Q.S.F/QAF Quadratic score F/Quadratic accuracy F
ES.F Expectation score function
RPs Reference parameters
()
Variables/parameters H Representation
Z Fixed non-empty Set
l leZ
Sp/B PyFS/q-ROFS
0 Membership grade
§R(g) Non-membership grade
N Natural numbers
Gy LDFS
a, B Reference Parameters (RPs)
Yaq g-rung linear Diophantine FS
T Non-linear Diophantine FN
q, K,¢,AeN Positive scalar
«a RP related to membership grade
B RP related to non-membership grade
Ky /0r S.F/AF
wy/XT Q.S.FIQAF
Fy ES.F
Ry Hamacher t-norm
R Hamacher t-conorm
YA >0 Positive scalar number
Q weight vector
Te Complement of N-LDF numbers
u,N Union, Intersection
B, Addition, Multiplication
Dy, Decision matrix
T;, Gy Alternatives, Criteria
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Definition 2 [59]: A q-ROFS B over a fixed set Z is defined
as:

= {(£, Ageey, Nyee)) : L € Z} (2)

where A,y and Ny ) are MG and NMG respectively. Z :—
[0, 1] i.e.

0= @A)+ Mge)? =l;g=1

Definition 3 [75]: A LDFS G, over a fixed non-empty
reference set Z is defined as:

Ga = {, {Aaw), Raw)) . (@, B)) : L € Z} 3

where the MG, NMG and RPs are represented by
Adcey, Naqey, a, B respectively and € [0, 1], which satisfy
the condition that 0 < (xAd(g) + ﬂ?)’{d(@ < 1V¢ € Z with
O<a+pB =<1

Ill. NON-LINEAR DIOPHANTINE FUZZY SET
Under certain actual problems, the sum of RPs for which
an alternative fulfills DM’s criteria may be greater than one,
so LDFS did not meet the RPs target. To overcome this
inconsistency, [76] proposed the idea of N-LDFS, which has
the ability to deal with such conditions.

Definition 4 [76]: A g-rung linear Diophantine fuzzy set
(g-RLDFS) Yy, over a fixed non-empty reference set Z is
defined as:

Yag = {(€. (Adgey, Rago)) - (. B)) : £ € Z} 4

where Agye), Nageey, @, B € [0, 1] are MG, NMG and RPs
respectively, which fulfill the restriction;

0 < (@)Adggey + (B)Nagy < 1VL € Z, g =1, (5)

with 0 < o? + B7 < 1,q > 1. These RPs can be useful
in describing or classifying a particular model. The degree of
hesitation is defined as follows:

Iy = Y1 — (@)7Adqe) + (B)Nag(e))- (6)

where ' represents the RPs related with the degree of
hesitation. The RPs identify and characterize a specific
system, and they also affect the physical nature of the
system. They enlarge the q-RLDFS grade space and remove
restrictions. They generalized the LDFS to q-RLDFS by
extending the RPs and describing them as: a9 + g7 € [0, 1].
By assigning different types of values to RPs («, B), this
structure explains the decision problem. Because of the qth
power of RPs, the proposed q-RLDF (N-LDF) method is
more efficient and versatile than other methods.

Definition 5 [76]: A collection of g-rung linear Diophan-
tine fuzzy number (q-RLDFN) is defined as:

T = {{Adg, Nag), (. B)} )

where T denote the q-RLDFN which satisfy the following
restriction;

DO=<(@?+PB)T=<l,g=1,
(i) 0 < ()?Adgey + (B)Rage) < 1
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TABLE 2. (a) Difference between LDFS and N-LDFS. (b) Tabular form of
N-LDF parameters.

(a)
LDFS N — LDFS
a+p8<1 a+B<lora+p>1
0<a+pB<1 0< (@)7+(B)?<1
(a)A+(B)R<1 () A+ (B)R<lor(a)A+ (B)R>1
0< @A+ (BR<T 0<(@A+(HR<1

0<,ABR<L1 0<a,ApBR<1
T=1-()A-(B)R T =¢1-((a)iA+ (B)R)
+(@A+B)R=1 D)1+ (a)?4A+ (B)R=1

(b)

Ist group N-LDFS,q=4 |2nd group N-LDFS, q=4

Yag = ((A,R) (@, B)) [ Yag = (A, R) , (o, B))

(L 1), (9,.7) ((1,.87), {.75,.9))
((:87,.9),(.75,.9)) | (L, 1), {7,.9)

(1, 1),(8,.8)) ((:87,1),(.9,.75))
((.95,1),(.75,.85)) ((.9,.9),(.85,.8))
((:8,.9),(.85,.8)) (1, 1),(8,.8))
((:9,1),(.9,.75)) ((:8,.9),(.85,.8))

(iii) 0 < (@), Adgeey (B), Ragey < 1 (8)

Example 1: Let A € N — LDFS(Z). Suppose As(x) =
0.85,Ma(x) = 095, ¢ = 0.6 and B = 0.7 for Z = {x}.
Clearly, (0.85)(0.6) + (0.95)(0.7) % 1, and also (0.6)*> +
0.7 £ 1, but (0.85)(0.6)*> + (0.95)(0.7)*> < 1. and
(0.6)> + (0.7)> < 1. Thus for ¢ = 2, N — LDFS become
quadratic Diophantine FS.

Table. 2(a) explain the difference between LDFS and N —

LDFS with conditions.

A. DIAGNOSIS OF DEPRESSION

Depression is a disease that affects millions of people across
the globe. More than 300 million human beings of all ages
suffer from depression worldwide. Depression is an epidemic
of the 21st century. Depression’s causes are ambiguous and
not well known. It is believed to occur as a result of a mixture
of brain chemical imbalances, biology and personal issues.
There are so many communities in this contemporary world
that believe depression is not a mental illness. Depression,
that is the worst form of this disorder, can proceed to
suicide Popular questions arise, what exactly is depression?
“Depression is a common and extreme psychiatric disorder
that negatively affects how you feel how you think, and
how you behave” [86]. In diagnosis, we use the concept of
N-LDFSs.

Suppose that Z is the of group of depressed patients
and is the universe of discourse. More extreme symptoms,
reduced quality of life, and a high risk of revictimization
are linked with the victimization of depression. Let Z =
{x1,x2, x3, x4, x5, X6} be a patient gender category where
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x1: female, xp: male, x3: young, x4 : mature, xs5: old
and x¢: unemployed people. And due to depression, i.e.,
all patients reported physical change or behavioral change
Hopeless, no longer going out, loss of interest, no pleasant
hobbies, sleep issues, stressful, feeling down, lonely, loss
or change of unexpected weight problem, guilty, asking
for support in all matters, lack of trust, dissatisfied. Let
three psychiatrists (decision makers) evaluate the patient
groups based on associated criteria Since psychiatrists are
qualified medical doctors, they can recommend medicine
and as a course of treatment, they spend most of their
time with patients on medication administration. Patients
suffering from depression are diagnosed by a team of three
psychiatrists.

We represent this evaluation using N-LDFS whose tabular
representation is given in Table 2(b). For N-LDFS structure
first consider RPs («, B). Let (o, B) represent the treatments
for reported depressed physical or behavioral change. we can
consider « = methods of treatment, analytical testing,
problem-solving techniques, and 8 = psychological theory,
and behavioral therapy. For ““q = 4° Table 2(b) Ist group lists
the numerical form of such N-LDFS parameter. For the 2nd
group, let o = psychological theory, behavioral therapy, and
B = methods of treatment, analytical testing, and problem-
solving techniques. The RPs play an important role in the
diagnosis of depression. They represent some special and
particular treatments and suitable medicine for the patient
about his depression. Also Table 2(b) lists the numerical
form of N-LDFS for the 2nd group RPs. The functions A,(e)
and NRyye) denoted the patient’s depressive symptoms and
gender, which demonstrates how many symptoms are present
in them, whereas RPs demonstrate how a patient should
be treated in a best and suitable way and ¢ € N. The
decision-maker will choose the parameters, while attribute
grades are determined from the data collected. On the same
reference set Z, we can easily describe different N-LDFS
for different sets of parameters. Our mathematical model
becomes more spatial as a result of these parameters.

B. SCORE AND ACCURACY FUNCTION
Next is about certain score function (S.F) and accuracy
function (A.F) which is presented by [88] and [89], hence this
concept of different S.F and A.F is updated by [76] with the
qth power of RPs.

Definition 6 [76]: Consider Y = {{A,N), («, B)} € N —
LDFN, then score function (S.F) x : N — LDFN(Z) —
[—1, 1] with g > 1 is defined as;

[(A—fR)+(aq —,Bq)i|
Ky = 5 .

©))

Definition 7 [76]: The accuracy function (A.F) § : N —
LDFN (Z) —> [0, 1] is defined as;

o= [(57)(55)]
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Definition 8 [76]: Let Y1 and Y5 be two N — LDFNs, then
the two N — LDFNs can be easily compared by using the S.F
and A F:

(1) if kv, < Kk, then T < Ty,

(ii) if kv, > kv, then Ty > Ty,

(iii) if kv, = k-, then,

(a) if 8y, < v, then T| < Yy,

(b) if v, > 8, then T > Ty,

(c)if 5'{1 = 8T2 then Y| =~ 3.

Next definition is about quadratic score function (Q.S.F).

Definition 9 [76]: The quadratic score function (Q.S.F)
w : N —LDFN(Z) — [—1, 1] for N — LDFN is defined
as;

2 _ g2 2 _ (g2
oy = ((A ") + (@D = (B9 )). (11

2

Definition 10 [76]: The quadratic accuracy function
(QAAF) x : N—LDFN(Z) — [0,1] for N — LDFN is
defined as;

A2+ R (@) + (B9)?
Xt = |:( 7 )+ ( > )} .

Definition 11 [76]: Let Y1 and Y, be two N — LDFNs,
then the two N — LDFNs can be easily compared by using
the Q.S.F and Q.A.F:

() if oy, < @y, then 1| < Yy,

(ii) if @y, > @y, then T > Ty,

(iii) if @y, = @, then,

(@) if xv, < X1, then 11 < Y,

(b) if xr, > xr, then Y| > Y»,

(©)if xy; = X1, then T ~ Y.

Definition 12 [76]: Suppose T = {(A,N), (o, B)} €
N — LDFN, then expectation score function (E.S.F) F :
N — LDFN(Z) — [0, 1] can be defined as;

[(A —R+1) (f—pi+ 1)}
Fy = .

(12)

13
1 ) (13)

The value of E.S.F belong to [0, 1] rather than [—1, 1].
We have no need of expectation accuracy function (E.A.F).

Definition 13 [76]: Let Y1 and Y» be two N — LDFNs then
the two N —LDFNs can be easily compared by using the E.S.F
as:

(1) if Fy, < F, then T1 < Yy,

>i1) if FYI > FTZ then Ty > T3,

(iii) if Fy, = Fr, then Y| = Y».

C. HAMACHER T-NORM AND T-CONORM

In FS theory, Triangular-norms are an important notion used
to defined universal union and intersection of FSs [89].
In 1998, Roychowdhury and Wang presented [90] and
Deschrijver and Kerre presented [91]. Further, generalized
t-norms is presented by Hamacher [24]. The product
Hamacher is t-norm and the sum Hamacher is t-conorm with
condition that y > 0;

gr
y+A—y)g+r—gr)

Ry(g.r)=g®r= (14)
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« _ _(g+r—gr)—(—y)gr
R (g.r)=g&r= e . (15

Especially, when y = 1, then Hamacher-norms will reduce
to Algebraic-norms as follow;

R(g,r)=¢gQ@r=gr
R'(g,r)=g®r=g+r—gr

when y = 2, then Hamacher-norms will reduce to Einstein-
norms [92].

gr
R(g,r)=gQr =
& =g I+ —gd-n
g+r
R* = =
Y& r=g&r T e

D. HAMACHER OPERATIONS OF N-LDFNS
The operational rules based on Hamacher-norms:
We define the Hamacher product and sum for N-LDFNss.
Definition 14: Let Y1 = (('A,' %), ('e,! B)) and 1, =
((A.%29), (*a,% B)) be any two N-LDFNs, with y > 0, A >
0 and g > 1, then we have define basic Hamacher operations
for N-LDFNss as follow;

@7 = (4], 1)

(RTEERY)

i ('A) + (A) — (1A)(A)— T
(1 —)(1A)CA)

1-(1=y)(LA)A) ’
AR ’

y + (1 —y)()+
CR) — (RN
(o) + Ca)? — (a)1Ca)i—
(1 —y)(ta)?Ca)
1-(1—y)(()?(a)?) ’
(1)
J v+ A=y B+
B — (B

(iii)_Tl ® T2
B (ACA 7
y + 1=y

(A) — (1A)CA)
R + ) — - |7
(1 = (MR
I=(1=y)(I M)
= (0)Ca) ,
J v+ A=)+
Ca)? — ()1Ca)?)
\ (B + By — (1 BYICBYI—
(1= BYCB)
L 1-(1-y) B)1(2B)¢ -
(iv) A
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(+y—=D'A—a-lay
I+ — DAY+
(y — D -1 A)*
]/(lm))‘ )
(I+(y — D1 ="+
= (y — DR
\(% (4 —(')0) —(1—( )y

I+ =D+ —DU—(a)i)y*’
Yy g
J A+ @ =D =B+
i (v = D' B

OR&

y@A*
(1+y—-DA=LA +(y DA
1+ =D —a=Top* ’
(=D +(y DA =TI
W(la))»
= Ja+@ -0 -lon)+"
(y — D((a)?*
A+ =D BN*—(1=( B)N*
4 A+ —DEBD*+
(y — A = (B9

Definition 15: Let Ty = ((VAag,” Nag), (Va,V B)) for
¥ € A be an assembling of N-LDFNs, then the following
properties can be easily satisfied based on Hamacher-norms;

1 Yy =((sup¥Ay,, inf YRy, (sup Ve, inf ¥ B));
M U Ty ((MIZ dq» Inf dg) (WEIZ nfl B))

veA
(2) N Ty = ((nfYAgq. sup¥Rgy). (inf Ve, sup¥ B)).
YeA YeA YeA YeA YeA

Definition 16: Let Y1 = (('Agg.' Mag), ('e.' B)) and
Ty = ([PAdg.> Nag). *e.? B)) be any two N-LDFNs, with
y > 0 and A > 0, then

MY =T &= A4 =2 Agy,' By =2 Nag,' @ =2
al B =B

Q) Y1 € T2 = Ay < Aug,' Rag =% Rag' a0 <2
o' g =2 B

Proposition 1: Let Y1 and Y, belong to N-LDFNs with
real numbers A > 0 and y > 0; then Y and Y, are
still N-LDFENG after applying the operation that is Yy, Y11 U
Yo, Y1 N Yo, Y1 @ Y2, Y1 ® Yo, ATy and Y{ are also
N-LDFNs.

Proof The above Definition 14, 15, and 16 can easily be
used to prove this result.

Proposition 2: Consider three N-LDFNs; 7Y =
(g ). (' ). T2 = (a2 ). P2 B)) ana
Y3 = ((*A4g.> Rag), Pa.® ) with y > 0 and A > 0, then
the following cases are satisfied;

(Dif Y1 € YTy and Y C Y3 then T) C Y3

Q)TIUYT,=TUTy

BTN, =N,

BHTTUMUT3) =1 UT)UT;3

BTN NT3) =1 NYT)NT3

6) T1U(M2NY3) = ("1 UT2) N UT3)

(M1 NMUT3) =11 NY2) U NT3)

@) (T U = Tlc N Ts

(TN = Tlc U Tg
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FIGURE 1. Framework of proposed method.

Proof: Proof of the above statements are obvious.
Following Fig 1. represented the framework of proposed
N-LDFHWG aggregation operators, which also explained
the difference between the existing method and proposed
method.

IV. N-LDF HAMACHER AGGREGATION OPERATORS
In the current section, with the help of the Hamacher
operations, we develop the N-LDF aggregation operators.

A. N-LDF HAMACHER WEIGHTED GEOMETRIC

AGGREGATION (N-LDFHWGA) OPERATOR

In this subsection we have define N-LDF Hamacher

weighted geometric aggregation operators i.e. N-LDFHWG,

N-LDFHOWG and N-LDFHHWG aggregation operators.
Definition 17: Let Yaqy = {(VAdq.” Nag), (Va.V B)) :

¥ € N} be afamily of N-LDFNs over the fixed setZand Q =

(Q1, 2, ..., 2,7 are the weights with Z Qy =1,9 >

Y=
1; then we define the N-LDF Hamacher welghted geometric
(N-LDFHWG) operator as follows and let the transformation
0 :N —LDFN(Z) — N — LDFN(Z)

N— LDFHWG(qu 1 Tagae - Yagn)
= e Y& S 16
®( i) =Yg QT Q- Qi (16)

In N-LDFHWG operator, A denote MG and 9 denote
NMG, «, B denote the RPs and ¢ > 1. Weights are denoted
by 2, Y4y are the N-LDFNs, where ¢ € N and N-LDFN(Z)
combines all N-LDFNs.
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Based on Hamacher product operations rules for
N-LDFNSs, we have capture the result displayed in theorem 1.
Theorem 1: Let Yagy = {((VAdq.” Nag). (V. ¥ B) : ¥ €
N } be an assembling of N-LDFNs over the fixed set Z and

= (Q1,Q, ..., Q)7 are the weights with Z Qy =1,

and g > 1,y > O0; then by applying the lf\l LDFHWG
operator their aggregated value is also an N-LDFN, and the
transformation 6 : N — LDFN(Z) — N — LDFN(Z)
is called N-LDF Hamacher weighted geometric operator
(N-LDFHWG) and define as follow;

N — LDFHWG(Yaq1, Yag, - - - Yagn) =

n
®(qu1//)9‘”
y=1

u Q
y I1 (VAa)™
v=1

1/,1:[1(1 + (= DA =Y A+

-1 wﬁ (Y Aap)®

TT (1 —1)Y )™ — H(l VRV
Y=1 Y=

H (1+(y = DYy +
y=1

=1 [1TA =Y R
Y=1

= 97 1 V)™ a7

y=1

3

ﬁ I+ =D = Yy +
y=1

=D T ()
V=1

[T (=1 Bn2 — [T (=¥ pro) ¥
y=1 v=1

wﬁl(l + @y — DY BDH +
=1 (10 = pn%
=1

=

Proof By induction method we want to prove this
theorem. We put n = 2 in Eq. (17). So for N-LDFNs based
on Hamacher product, we obtained the associated result.

(i) Let Tig1 = {("Adqg." Nag). ('er.) B) and Yyp =
{((PAdg.> Rag). P2 B)) be two N-LDFNs then built on
Hamacher product. The left side of Eq. (17) become

N — LDFHWG(Y 441, Yagn) = TZH X ijfz
The right side of Eq. (17) become,

B y(lAg)™
(I+(y —D(1=1Ag) 1 +(y =) (1Agg) 41
(14+(y = D' —(1="94)%1
14+ =D)L +(y = D(1 =194 ®

= E/?(IQ)QI
Y+ =D0=Ca) )1+ -D((a)n?1’
q U+ =DBDU —(1-( B
I+ -D( DU +(y —D(1-( B)9)*
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yCAa)™2
(14 —D1—2Ag) 2 +(y —1)(Agy)*2°
(14+(y = 1R g2 —(1-294,) 2
(14 =122 +(y — (1 =20 gg)$2
9y Ca)®
YA+ =D =—Ca) )2+ —D(Ca))?2’
\(% (I+(y—DERHR —(1-(1)*®2
(I+(y — DB R2+(y —1)(1-CB)1)*2

2 Q
y I1 VAg)™
y=1

2 Q
[T A+ —DY %)™V —

2 Q 2 Q ’
[T A+ =DA=YAg))™V +(y=1) [ (VAgg)™"
=1 y=1

2 Q
[T A=Y9g)™v
y=1 V=1

=1

2
97 1 V™
Y=l

2 Q 2 Q
[T A+ —DYRag)™V +(y—=1) [T 1=V Rg)™ ¥
v=1

2 Q 2 Q ’
{’/H U+ =DU=(a) )V +(y=1) [ (Ya)9)™v
y=I1 =1

q

2 o 7 Q
I/j]:[l(lJr(V*1)("’/3)‘1) “’*wljl(lf(‘”ﬁ)‘l) v

Hence Eq. (17) is true when we put n = 2.
(ii): Assume that Eq. (17) holds forn = K,

N — LDFHWG(Y g1, Yag, - - - » Yagk) =

LS Q
y I1 (VAa)™
Y=l

2 Q 2 Q
wH I+ =DV BNV +(y—1) Hl(l—(“’ﬁ)q) v
=1 =

L3 Q k Q
[T A+ —DY %)™ — TT 1=Y %)™V
¥=1 =1

k
[T+ = DY %a)®
v=1

k
+(r =) [T A =Y %g))™
Y=l

k
g7 11 Vo)V
v=1

’

k
1//l__ll(l + (=D = Pyt

k
+@r =D Ipl_ll((‘/’a)q)g“’

k o, + Q
l[/]:II(H()/*1)(‘”/3)‘1) v *wl:[l(lf(“’ﬁ)q) v

k
; Hl(l +(y — DY pyHr
Y=

k
+(v — l)wl__ll(l — (Vg1

k Q L Q ’
le(lJr(V—l)(l—“’Adq)) VHy-1) Hl(‘/’Adq) v
= Y=

(iii): Now we prove that Eq. (17) holds forn = K + 1,
Let

N — LDFHWG(Yaq1, Yag2, - - - » Yagk+1)

k
_ Qy Qp41
] - H qux// quk+l
y=1

L Q
v I1 VAa)™
y=1

k ’

1+ =D =Y Agg) ™ +
Y=l

k
(y =D [] VAzp)*
v=1

k o k o s
I+ =D Rg)™ — [T A=Y Rg)™¥

4 q
=1 y=1

k
[T+ — DY%RgPr
Y=1

k
i +y =1 [T A=Y Ry
P=1

k
97 1 V™ ®
y=1

p :
JL+ G == (V)T

k
+(y = D [T (Vo)D)
Y=I

k o, t Q
I//]]l(lJr(V*l)(’”ﬂ)q) v *wljl(lf(‘”ﬁ)q) v

k
S LA+ =DEpnHPy
Y=1

k
+(y — 1)¢H1(1 — (VB

y("“Adq)ﬂkH a

I+ (r = DA Agg)) e+

(y — DEHLA )t
(I = DR 19 1 — (1=K F 191y )Wt

(T4 (y = DFF g e 4

(r = DA =K+ gy P
g/?(k‘*'la)gk-H
(L+(r = DA = )

q

(y — D(EH )P+
(I =D DA T —(1—(k+1 gy 1
(14 (y — DEH gy 4

i (y — D — (FH )1y
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k+1
v 11 YAg)™?
=1

K+l o k+1 o’
l//]_[1(1+(V*1)(1*‘”1‘\@)) ‘/”r(}/*l)wl_[l("’Adq) v

k+1 k+1
a2 NN 9}
[T A+ —1Y D)™ — T] 1=V %gg)¥
1

=1 y=

k+1 o ket o
[T A4+ =DY %)V +(y—D [T A=Y Rgp)™¥
y=1 y=1

k+1 Q
v MM )™
=1

’

k+1 o k+1 o
quI(H(V—l)(l—(‘”a)q)) “’+(V—1)wH1((‘”a)‘1) v

k+1 o, kil o
[1 A+ =DV BD™V — [] A= 1™V
q y=1 y=1

k+1 o k+1 o
[T A4+=D BV +(y=1) ] 1=V )9V
Y=1 y=1

Hence Eq. (17) is true for n = K + 1. Which proved the
theorem.

Theorem 2 (Idempotency): If

Yigy = {(VAdg.” Nag). (Ye,V B)) : ¥ € N} be a family
of N-LDFNs which are all same, i.e., Yggy = Y44 V¥, then

N — LDFHWGQ(qul, quz, e, qun) = qu

Theorem 3 (Boundedness):. Let

Yigy = {(VAdg." Nag), (Yr,V B)) : ¥ € N}be a family
of N-LDFNs, and consider

Td_q = miny Yygy, T;; = maxy Yigy -

Then

Yy, <N — LDFHWGQ(Yagt, Yaga: - - - » Yagn) < T;J

Theorem 4 (Monotonicity): Let Yy (¥ € N) and
tE}‘W(I// € N) belong to N-LDFNs, if Y4y < T;W, v .
en

N — LDFHWGq(Yaq1, Yaq, - - > Yagn)
<N — LDFHWGQ(T;(II, quz, ey T;‘qn)
Further, we develop the N-LDF Hamacher ordered
weighted geometric (N-LDFHOWG) operator.

Definition 18: Consider a family of N-LDFNs Y4,y =
{(<wAdqaw mdq) , (‘pa,‘” ,3)) : ¥ € N} over the reference set Z

n
and Q = (Q1, Qa, ..., Q)X are the weights with > Qy =
=1
1, g > 1; then N-LDF Hamacher ordered weighted geometric

(N-LDFHOWG) operator is define as follows and let the
transformation 6 : N — LDFN(Z) — N — LDFN(Z)

N — LDFHOWG(X4g1, Yaga: - - - » Yagn)

n
= Q) Yagar)™
Y=1
Q Q Qn
= Yigion @ Yoy & -+ & Vagiom:
where the arrangement of (¢ € N) is (5(1), 6(2), ..., é(n)),
for which Yygsy=1) = Yagsp)V(¥ € N).
Theorem 5: Consider a family of N-LDFNs Y,y =
{(('/’Adq,‘/’ iﬁdq) , <‘/’a,‘/’ ,3)) : ¢ € N} over the fixed set Z
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n
and Q2 = (21, 27, ..., Qn)T are the weights with > Qy =

=1
1, and y > 0, g > 1; by applying the N-L]%FHOWG
operator their aggregated value is also N-LDFN, and the
transformation 6 : N — LDFN(Z) — N — LDFN(Z)
is known as N-LDF Hamacher ordered weighted geometric
operator (N-LDFHOWG) and define as follow;

N — LDFHOWG(Y 441, Yag2, - - - » Yagn)

n
= Q) Yagsy)™
=1

a Q
v I (VAgge)™
y=l

I[TA+ @ =D =Y Agysy)) +
Y=1

n
(r =D [T (VAggs)®"
y=1
n

(1 + (r = DY Nages)) ™ —
y=1

n

[T =Y Rags)™
v=1

n
[T+ (v = DY Ry +
v=1

n
(y =D [T =Y Ry
y=1

7 11 Ca@)v
v=1

tl

I:[l(l +(r = D1 = Ca@))® +

a ¥

(v - 1>¢ﬁ1((¢a<8>)q)“w

1[f[l(l + (o — D BE)D —

[T (1= (¥ B(8)n2s
V=1

ﬁ1<1 F O — DO BEYH+
Y=

(v = 1) [ (1= (Y B(&)n2s
L A\ y=1

_(18)

where the arrangement of (¢ € N) is (§(1), 8(2), ..., 8(n)),
for which Yygsy=1) = Yagsp)V(¥ € N).
Theorem 6 (Idempotency): If
Yagy = {(VAgg.V Rag). (Va.V B) : ¥ =1,2,...n} bea
family of N-LDFNs which are all same, i.e., Tgpy = Ty
VY, then
N — LDFHOWGQ(TDq] R 77 TR qun) = Ty4

Theorem 7 (Boundedness): Let
Yagy = {(VAgg.V Rag), (V¥ B) : ¥ =1,2,...n} bea
family of N-LDFNs, and consider

32121



IEEE Access

M. Shams et al.: Fuzzy Decision Support Systems for Selection of NEA Detection Technologies

T‘Z] = miny Yygy, Tj; = maxy Y44y, then

Y, <N — LDFHOWGQ(Yag1, Yag2, - - - Yag) < Y,

Theorem 8 (Monotonicity): Let Yypy(¥ = 1,2,...n)

and T;,“W(w = 1,2,...n) belong to N-LDENSs, if T4y <
T;W, Y . then

N — LDFHOWGo(Xag1, Yag2, - - - » Yagn)
< N — LDFHOWGQ( X}, T -+ Yo

We defined the N-LDFHWG and N-LDFHOWG operators
in the previous paragraph. Now the N-LDF Hamacher
hybrid weighted geometric (N-LDFHHWG) operator is
being presented.

Definition 19: Let Yaqy = {(VAag.V Nag), (Va.V B)) :

Y = 1,2,...n} be an assembling of N-LDFNs over the
fixed set Zand Q = (Q1,Q,...,Q,)" are the weights
with ZQ¢ = 1,and y > 0, ¢ > 1; then we

defme the N-LDF Hamacher hybrid weighted geometric (N-
LDFHHWG) operator as follows and let the mapping 6 :
N — LDFN(Z) — N — LDFN(Z)

N — LDFHHWG(qul, quz, e qun)

n
* Q
= Q5™
Y=l

* Q * Q * Q.
= (Csyag)™ Q) 5ya)™ Q) - - - Q) syaqn)

19)

where Ta ’ (1//) is the Yth largest weighted N-LDF values
dq(l)( dgy) = (qu(¢))” v,¢% € N) and the weights of

quom are Q = (Q, 2, ..., ;)" by mean of @ > 0 with

Z Qy = 1.

Theorem 9: Consider a family of N-LDFNs Yg,y =
{(VAdg.V Rag). (Yo,V B) : ¢ € N} over the reference
set Z and Q = (1, Qa, ...,Q,,)T are the weight with

n
> Qy = 1, also ¢ > 1; by applying the N-LDFHHWG

y=1
operator their aggregated value is also an N-LDFN, and the

transformation 6 : N — LDFN(Z) — N — LDFN(Z)
are known as N-LDF Hamacher hybrid weighted geometric
operator (N-LDFHHWG) and define as follow;

n
* Q
@ sy ™
y=1

N — LDFHHWG(Y g1, Yag2: - - - » Yagn) =
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— n —

H (S)dq i

10+ & =07 A%

+y -1 H (WA((s)d )QV/
H 1+ - I)W%zé)dq)gw
=1

n
— [T =¥ %% )
g (8)dg

n

[T A+ = DY,
Y=1
+y — 1>wH1(1 Y R

- ur Jlﬁ”a*@)%

’

[T+ = DA = ar @)

q V=1

+(y —1) l[/r_[l«‘/’oe*(&)‘f)“w

T+ = e e

- ﬁ (1 — (VB8
q v=1

T+ = e e

- 1) ﬁl(l (BN
¢=

(20)

where ngq(l//) is the ith biggest weighted N-LDF values
Y0 (Y2, dgy) = (Yag))*, ¥ € N) and be the weights

of Td o) is Q = (Q1, 2, ..., Q)T with condition > 0,
S Q=1
v=l1

IfQ = (4, & ... .%) then N-LDFHWG and

N-LDFHOWG operators are supposed to be a particular case
N-LDFHHWG. So from this it obtained that N-LDFHHWG
operator is the generalized version of N-LDFHWG and
N-LDFHOWG operators.

V. MADM MODEL USING N-LDF INFORMATION
Throughout this section, a novel approach to MADM is
introduced, which is based on Hamacher operators and is
called N-LDFHWG, N-LDFHOWG, and N-LDFHHWG.
As a result, we proposed a methodology for numerical
modeling and applying different S.F and A.F and also
construct and describes a case study related to the assessment
of the NEA deflection technologies.
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A. ALGORITHM BASED ON N-LDFHWG AGGREGATION
OPERATOR

We have develop an algorithm based on N-LDFHWG
aggregation operators throughout this subsection. Multi-
attribute decision making (MADM) problem is applied to
identify and select the best NEA detector technologies
for N-LDF data based on Hamacher operators. Consider
a set of alternatives T = {T1,T>,7T3,...,T,} and
G = {61, ég,é3,...én} be a set of criteria. Suppose
the weight of criteria Qu(Yy = 1,2,...,n) are Q =

n

(Q1, Q. ..., 2" with Qy >0, > Qy = 1. Suppose the
y=1
N-LDF

8V Ak is the MG, Y 0yyk is the NMG and 8V o, 8% B are the
RPs for which the alternative (T',) fulfill the criteria (éw),
where g‘/’Adq,g’/’ Eﬁdq,g‘/’ a,8¥ B c [0, 1] such that 0 <8V
() Agq) +8V (B4 Nag) < 1,(g =1,2,...,m). Based on
above information we solve MADM problem with N-LDFNs
based on Hamacher operators by mean of N-LDFHWG,

N-LDFHOWG and N-LDFHHWG aggregation
operators.

Input:

Step 1: For an acceptable number of alternatives and

criteria, construct a DMs group of N-LDF information.
Here the decision maker group are represented by DM =
{DM, DM>, ..., DM,, DM,;} with weight vector 2. Each
DMs are evaluated by N-LDFNs based on Hamacher
operators.

Step 2: Normalization of N-LDF input information

To obtain the most accurate results, it is necessary to
normalize the input data before starting the calculations. As a
result, the N-LDF analysis can be standardized by using the
following formula:

(" Adgr .Y Ragr )

Same data
R _ (Va.V B
Dav = (" Ragr .V Adgr, ),
Different data
(V8.Y a)y

Here we have the same input data for all criteria so there is
no need to apply this step.

Step 3: Select the weights for each decision-maker’s
opinion.

Calculations:

Step 4: By applying Eq 21 of N-LDF Hamacher aggre-
gation operators with weights Q. (¥ = 1,2, 3) of criteria
éj to combine the decision information presented in matrix
DM (k = 1, 2, 3) into the collective N-LDF DM .

1 2 n —
N — LDFHWG(X jy(gy)» Yagigyy: - - > Yaa(ew)) =
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n
Q
v ﬂl(“%) v

T Q1+ — 1)1 =V A5 )R
y=1
+Hy =D T (VA5H
y=1
o+ - DOV REY e

s gY\Q
) wl__[1(1 - mdq) v

n

IS D REY )P

n
Hy =D [ =Y wEH%
y=1 !
97 11 (Vas?)®
v=1

’

ﬁ I+ =D = Vas¥)a)Sv 4
Y=1

<

(v — 1) [T Vet )02
=1

TT(1+ (v — DBV
y=1

1= (e gev Ry
q y=1

T (1 + (y — DV eV )12
y=1

=) [0 - gty
y=1

21

Similarly, apply the N-LDFHOWG and N-LDFHHWG
operator. Thus for G = 1,2,3,...,¢;¢ = 1,2,3,...,m;
v =1,2,3,...,n, we get the aggregated decision matrix.
Also for order and hybrid AOs.

Step 5: By applying the above equation of N-LDF
Hamacher operators, calculate the collective aggregated
value for each criteria with weights Qy (¥ = 1,2, 3,4, 5).

Step 6: Determine the scores of each alternatives by
applying above definition of S.F, Q.S.F and E.S.F.

Output:

Step 7: Based on the values of S.F, Q.S.F, and E.S.F, rank
the alternatives.

Step 8: The alternative with the greatest score has the
highest rank and must be chosen for the final decision. End.

Figure 2. show the proposed algorithm steps for N-LDF
data based on Hamacher operators.

VI. NEA DEFLECTION DETECTORS

TECHNOLOGY PROBLEM

The aim of this research is to conduct a fuzzy MADM
analysis in order to evaluate the NEA deflection detectors
technology: KI, EGT, IBD, CRE and LA. With respect to
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FIGURE 2. Flow chart for proposed N-LDFS algorithm based on Hamacher
operators.

the 5 criteria the alternatives will be determined. In addition,
using the data offered by various experts, we will be able to
measure the aggregate relative value of a given alternative for
each criteria in terms of Hamacher operators associated with
N-LDFNs in order to deal with that task. With some previous
methods, we relate our findings.

A. PROBLEM DESCRIPTION: A CASE STUDY RELATED TO
THE ASSESSMENT OF THE NEA DEFLECTION
TECHNOLOGIES

An asteroid’s deflection consists of accelerating the object
just enough to reach the Earth’s orbit by a minimal distance
from the point it would have been crossed by the NEA,
providing it was not deflected. Our study’s assumptions,
which were revealed to the team of experts, were as described.
In the 2013 Congress of the United States, NASA will need
at least five years of planning before an asteroid intercept
mission could be launched [93], [94]. Before deciding which
strategy is sufficient, it is also useful to find out the material
composition of the object. Valuable guidance about what to
expect has been provided by missions like the 2005 Deep
Impact probe. We therefore briefly provide a summary of
each alternative.

B. DESCRIPTION OF THE ALTERNATIVES FOR NEA
DEFLECTION

1) CONVENTIONAL ROCKET ENGINE (CRE) (T;)

It will have a similar effect of giving a push to attach some
spacecraft propulsion device, possibly pushing the asteroid
into a trajectory that leads it away from Earth. An in-space
rocket engine able to produce a pulse of 106 N- s (e.g. adding
1 km/s to a spacecraft weighing 1000 kg) would have a
relatively small impact on a relatively small asteroid weighing
approximately a million times as much. In [95], deflections
are determined using the latest chemical rockets supplied to
the asteroid. The use of highly-efficient electrically driven

32124

spacecraft propulsion, such as ion thrusters or VASIMR,
is usually suggested for such direct force rocket engines.

2) ION BEAM DEFLECTION (IBD) (T3)

The IBD technology consists primarily of an ion thruster
on board a spacecraft (called the ‘“‘shepherd”) that at
the NEA points to a strongly collimated high-speed ion
beam. Simultaneously, to preserve a uniform distance from
the asteroid, a secondary thruster points in the opposite
direction [1], [96]. In this way, a hovering distance of twice
the diameter of the target asteroid makes it possible to neglect
the NEA gravitational force [97]. Interestingly, the IBD
rendezvous spacecraft can be sent to the NEA in advance,
thereby reducing the uncertainty about the asteroid’s orbit.
In comparison to the KI technique, this might be seen as
an advantage of the IBD. Furthermore, the IBD allows for
accurate targeting of the asteroid’s impact position, which is
especially important for massive asteroids that may only be
deflected by a few Earth radii [98].

3) ENHANCED GRAVITY TRACTOR (EGT) (T)

The Gravity Tractor (GT) is a spacecraft that hovers over
a target NEA and uses the gravitational force between the
asteroid and the spacecraft to change its trajectory. It’s worth
noting that the GT is an observer strategy in and of itself.
The EGT builds its mass by removing rocks or regolith from
the NEA it is targeting. That mass is estimated in such a way
that when the spaceship’s engines are turned on full power
and pointed in the general direction of the NEA, the asteroid
and the spaceship distance do not increase. The thrusters must
slowly impulse the entire system to reduce the NEA’s velocity
or to improve its velocity, to maintain a uniform distance
between the spacecraft and the targeted asteroid [1], [99].

4) LASER ABLATION (LA) (T4)

The energy from a set of phase-locked laser amplifiers is
continually impinged on the NEA, ejecting some material
away from its surface and altering the velocity of the targeted
asteroid [1], [97], [100].

5) KINETIC IMPACTOR (K1) (Ts)

The Kinetic Impactor (KI) is a spacecraft that is sent on
a collision course with an NEA. This would change the
asteroid’s momentum and velocity [1], [97], [100]. It’s worth
noting that, as NASA’s Deep Impact mission reported in
2005, it’s already possible to crash into an asteroid at a
high velocity. One of the advantages of the KI deflection
technology, according to the space science community, is its
quick effect, as well as the high degree of momentum that can
be supplied to the targeted asteroid [98].

C. SELECTED CRITERIA
All of the criteria listed below will be examined in this
research using N-LDFN-based significance scales. It is
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TABLE 3. N-LDF decision matrix 1.

g=4 G4 G Gs e Gs
noo(anon ) (wsn e ) (s ) (89,0858 ) ((1LD,07.9 )
o (89,09 ) (angne ) (sny.em ) (wyaen ) (8.7 )
oo (nss) ) (snnm) ) (99,0858 ) (s ) ((wn.ene))
T ((95,1),(75,.85) ) ( (9..9).(85.8) ) ((8.9),(85.8) ) ( (87,.1),09,.75) ) ( (87..9),(75..9) )
o (sn 9 ) (@) (s.mss) ) (wnses) ) ((87.9),(75,.9) )

TABLE 4. N-LDF decision matrix 2.

g=4 G4 Go Gs e Gs

o (sn s ) (o ) (s s ) (s ) ((87.9),(75,.9) )
T ((9.9),(85.8 ) (950,075,859 ) (((87,1),09,75) ) ((87,.9.(75,.9) ) ( (8.9).(85.8) )

noo (e ) (wenme ) (89,858 ) (w79 ) ((95.1),075.85 )
T ((sn1),09,.75) ) (81,9075, ) (wu.oon ) (sna, e ) (187, (75,.9) )
o (99,097 ) (@o.es.e ) (w9 ) (@659 ) ( (99,0858 )

utilized the information offered by our group of experts to
achieve the goal.

1) COMPOSITION OF ASTEROID (G;)

Note that this criterion can strongly focus on the efficiency
of many NEA deflection approaches. For example, when
applied to metallic surfaces, LA can not function properly
because the heat produced can be carried away.

2) STRUCTURE OF ASTEROID (62)

Rather than the asteroid’s surface material structure or
friability, this is associated with the object’s porosity and
interior structure. It’s worth noting that KI is affected by the
object’s internal structure and porosity, both of which might
affect momentum transmission. EGT’s ability to collect
material from the NEA’s surface may be affected as well.

3) SHAPE OF ASTEROID (Gs)
In targeted NEAs a large variety of irregular contours may
appear.

4) TECHNOLOGICAL READINESS LEVEL (TRL) (Gy)

NASA recommended this standardized scale about the target
maturity level for that method to assess the current level of
progress of the technology. Targeted maturity in this article
means a redirection technology for asteroids that is ready

to be proven at the next stage in space, which is similar to
TRL [97].
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5) MISSION RISK (Gs)

It takes into account the probability of a technical failure
concerning the asteroid deflection mission or an unsuccessful
outcome. To define certain unique risks that can occur when
applying each NEA deflection technique, this is quantified
separately from the TRL. It is worth noting that to resolve the
risk evaluation, a scale based on the Goddard risk matrix has
been suggested [97].

D. GROUP OF EXPERTS

The questionnaires sent by the authors were completed by
a group of three (3) researchers whose areas of expertise
include NEA deflection technologies, thus providing some
useful information for the alternatives and parameters are
involved in our analysis. As follows, their affiliations
were: Department of Physics (one expert), Department of
Mathematics (one researcher), and Laboratory of Applied
Physics (one scientist).

Assume that there are five deflection technologies 7 =
{T1, Ty, T3, Ty, T5} for the evaluat1on of NEA. The decision
criteria set are G = {G1 Gz, G3, G4, G5} Consider that the
expert’s weight is: Q@ = (21, 22, 23) = (0.4, 0.35,0.25).
The NEA deflection technology evaluations are performed by
the expert and Table 3 to Table 5 represented the Non-linear
Diophantine fuzzy matrix in tabular form. We apply the
above algorithm to select the best technology for active NEA
deflection under N-LDF data based on Hamacher operators.

Solution By Using Above Algorithm
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TABLE 5. N-LDF decision matrix 3.

g=4 Gi G G le Gs
o (o0 ) (snnaes) ) (e ) ((87,.9,075.9) ) (89,0858 )
o (@sn e ) (anen ) (wsnmess) ) (s ) (@)
oo (au.en ) (asnme ) (89,0858 ) (o) (. es. )
o (99,09, ) (.0 ) (w.on ) (819,079 ) (08,0759 )
o (@u.ss) ) (st 0. ) ((87,.9),075,.9) ) (951,758 ) (11,097
TABLE 6. The collective N-LDFHWG Decision matrix.

g=4,v=1 el Go Gs

T ((0.974,1) , (0.0528, 0.1098)) ({0.966,1) , (0.0523,0.115))  ({0.962, 1) , (0.045, 0.1399))

T ((0.9116,0.893) , (0.049,0.1461))  ({0.982, 1), (0.0477,0.132))  ((0.889, 1), (0.054, 0.0937))

s ({1,1), (0.0537,0.0783)) ({0.946, 1, (0.0504,0.137))  ((0.839,0.9), (0.053,0.1024))

Ty ({0.9088, 1), (0.0523,0.1019))  ((0.889, 1), (0.0516,0.123))  ((0.915, 1), (0.055,0.0783))

Ts ({0.9638, 1, (0.0508, 0.1248)) ({0.966, 1), (0.0502,0.11))  ((0.946, 1), (0.046,0.1519))

g=4 G Gs

T ({0.883, 1), (0.0504, 0.121)) ({0.901, 1), (0.047,0.152))

T ({0.952, 1), (0.0512, 0.115)) ({0.875, 1), (0.0518,0.113))

Ts ((1,1), (0.0473,0.137)) ((0.982,1) , (0.044, 0.154))

T ((0.87,1), (0.0537, 0.106)) ((0.946,0.883) , (0.0469, 0.164))

Ts ((0.987, 1), (0.0458, 0.134)) ((0.912, 1), (0.0513, 0.123))

Step-1: Here we are going to apply the above algorithm on
the given input data. Three NEA experts have been assigned
to rate the five NEA detector T;(i = 1, 2, 3, 4) alternatives in
terms of five criteria é,(j = 1,2,...,5), and the decision
matrices Dig(k = 1,2,3) have been listed in Table 3 to
Table 5.

Step-2: First, we have finalize the input data by assigning
weights to each expert. At this point, every NEA expert’s
viewpoint is important in making a final decision. Q =
(21, 22, Q23) = (0.4, 0.35, 0.25)7 are the weights for N-LDF
input data.

Step-3: In this step we applied N-LDFHWG,
N-LDFHOWG, and N-LDFHHWG operators by using Eq.
21 on input N-LDF- data as shown in Table 3, Table 4
and Table 5. We aggregated the individual decision matrix
DMy (k = 1,2, 3) via Eq 21 into the collective N-LDFHWG
matrix as given in Table 6.

Step-4: Now for Table 6 we choose different five weights,
consider 2 = (0.35, 0.25,0.2, 0.1, O.l)T are the five weights
for Table 6 of N-LDFHWG data.

Step-5: To aggregate Table 6 alternative wise we repeat
above step-3 by applying Eq 21 with weights £ =
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TABLE 7. Aggregated N-LDFHWG.

v =1 Aggregated Alternatives

11 0.9527,1),(0.0515, 0.00024

1> .9244,1 .0490, 0.00028

I

(« S )
((0 ), (0 )
Ts  ((0.9504,1), (0.0502,0.00021))
T, ((0.9047,1),(0.0542,0.00019))
Ts  ((0.9577,1),(0.0511,0.00028))

(0.35,0.25,0.2,0.1, O.I)T. As a result we obtained the
aggregated N-LDFHWG, N-LDFHOWG and N-LDFHHWG
listed in Table 7.

Step-6: By applying S.F, Q.S.F and E.S.F via above
definition we calculated the score values, so we get Table 8;

For y = 1, we have obtained Table 8 as follows; Table 9
represent the ranking of N-LDFHWG operator. From Table 9,
we concluded that 73 which is Enhanced Gravity Tractor
(EGT) selected the best overall NEA deflection detector
obtained from N-LDFHWG operator.

VOLUME 12, 2024



M. Shams et al.: Fuzzy Decision Support Systems for Selection of NEA Detection Technologies

IEEE Access

TABLE 8. Score values of N-LDFHWG.

v=1 SF(k) Q.S.F(w) ES.F(F)

T1 —.0236 —.0462  .4882
T> —.0377 —.0727 4811
T3 —.0211 —.0413 .4885
Ty —.0476 —.0907  .4762
Ts —.0264 —.0414 4884

TABLE 9. Ranking of N-LDFHWG.

¢ =4 =1 N-LDFHWG

SF(I—C) T3 >T1 >T5 >T5 > Ty
QSFlw) T3>Ts>Ti>T>>Ty
ESFF) T3>T5>Ti>T>>Ty

TABLE 10. Aggregated N-LDFHOWG.

vy=1 Aggregated Alternatives

Ty

0.9414, 1), (0.00319, 0.0002))

T 0.9295,1) , (0.00317,0.00025))

(« (
(« )5
Ts  ({0.9501,1), (0.0032,0.0002))
T, ((0.9109,1),(0.00332,0.00016))
(« )5

Ts 0.9512, 1), (0.0031,0.00024))

TABLE 11. Score values of N-LDFHOWG.

v =1 SF(k) QSF(w) ESE(F)

11 —.0293 —.0569 .4854
T> —.0353 —.0680 .4824
T3 —.0242 —.0466  .4878
Ty —.0446 —.0851 4777
Ts —.0243 —.0476  .4878

Step-7: For N-LDFHOWG, first of all we calculate the
order of the three experts individually by applying E.S.F
which is given in the form of Table 3 to Table S. The
reordering phase is the most important part of the Order
weighted operator; it reorders all the input data in descending
number. We continue the steps of the aforementioned
Algorithm to obtain the following N-LDFHOWG results,
as shown in Table 10. Table 11 represent the different
score values of N-LDFHOWG operator. Table 12 shows the
ranking Table of N-LDFHOWG operator for y = 1. From
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TABLE 12. Ranking of N-LDFHOWG.

q =4,y =1 N-LDFHOWG

S.F(fi) T3 >Ts >T1 >To > Ty
QSF(W) T3 >Ts >T1 >T5 > Ty
ESF(F) T3 =Ts >T1 >T5 > Ty

TABLE 13. Aggregated N-LDFHHWG.

v =1 Aggregated Alternatives

11 0.95449, 1) , (0.0023, 0.00026))

T 0.94555,1) , (0.00334, 0.00023

Ty

(« ). (
(« ). (

Ts  ((0.97398,1), (0.00352,0.00013
((0.92132, 1), (0.00504, 0.23579
(« ), (

)
)
)
)

T5 0.96588, 1), (0.00427,0.00016

Table 12, we conclude that 73 which is Enhanced Gravity
Tractor (EGT) selected the best overall NEA deflection
detector technology obtained from N-LDFHOWG operator.

Step-8: We also applied the same steps of above
Hamacher-N-LDFNs algorithm for N-LDFHHWG operator
but in hybrid case one more step is added in the above
algorithm that is, we first aggregate three decision makers
tables by means of N-LDFHWG operator, as same as
we aggregate in step-3 of N-LDFHWG after this we
apply N-LDFHWG operator individually in each number of
N-LDF aggregated table as we obtained from step-3 for this
aggregation table we choose another five weights for five
criteria whichis (0.3, 0.25, 0.2, 0.15, 0.1) and every weight is
multiply by 5, so for N-LDFHhybridWG operator the weight
vector is (1.5,1.25,1,0.75,0.5). We get N-LDFH hybrid
weighted geometric table after this we apply S.F on this table
and reorder the criteria to get hybrid aggregated table, this
whole process is considered in step-3. Then moving to the
next steps and use the same steps of above algorithm after
step-3, so we get N-LDFHHWG table as given below in
Table 13 for y = 1. Table 14 represent the score values
of N-LDFHHWG operator for y = 1. Table 15 is the
ranking Table of N-LDFHHWG operator for y = 1; Overall
ranking of N-LDFHWG, N-LDFHOWG and N-LDFHHWG
operators for ¢ = 4 and y = 1 are follow as in Table 16.

From Table 16, we concluded that 73 which is Enhanced
Gravity Tractor (EGT) selected the best overall NEA deflec-
tion detector obtained from N-LDFHWG, N-LDFHOWG
and N-LDFHHWG operators. It is important to keep in
mind that the final result obtained from proposed algorithm
is identical for all score functions. Following Figure 3.
shows the graphical ranking of N-LDFHWG operator for
NEA deflection technologies in which the Enhanced Gravity
Tractor become at the top of all alternatives.
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TABLE 14. Score values of N-LDFHHWG.

v=1 S.F(k) QS.F(w) E.S.F(F)

T1 —.023 —.045 489
15 —.027 —.053 .486
T3 —.013 —.026 494
Ty —.041 —.076 479
Ts —.017 —.034 492

TABLE 15. Ranking of N-LDFHHWG.

q =4,y =1 N-LDFHHWG

S.F(Ii) Ty >Ts >T1 >To > Ty
QSF(w) Ty >Ts >T1 >To > Ty
ESF(F) Ty >Ts >T1 >To >Ty

TABLE 16. Overall ranking of N-LDFHWG operators.

g=4y=1

S.F(k)

Q.S.F(w)

N-LDFHWG
N-LDFHOWG
N-LDFHHWG

T3 >T) >Ts
T3 >T5 >Th
T5>15 >T

> Ty
> T

> T

>Ty T3>T5 >Ty >To > Ty
>Ty T3>T5 >Ty > T > Ty
STy T3>T5 >T1 >To > Ty

q:4,7:1

E.S.F(F)

N-LDFHWG
N-LDFHOWG
N-LDFHHWG

T3 >T5 > T
T3:T5>T1
T3>T5>T

> T
> Ty

> 1T,

> Ty
> Ty

> Ty

Graphically Ranking of N-LDFHWG for y=1

Score Values

Proposed Operators

T, ET; Ts T. ET,

FIGURE 3. Graphical Ranking of N-LDFHWG operator.

Similarly we give different values to y’s for proposed
operators and got a little bit different in values but the top
one alternative is same in all method. The score values and
ranking are shown in the following Table 17 to Table 21.

Following Table 17 listed the score values for
y = 2 Thus, Table 18 presented the ranking result for
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Graphically Ranking of N-LDFHWG for y=2

Score Values
o
2

o | o F & &
o s
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Proposed Operators
BT, BT, w7, =T, T,

FIGURE 4. Graphical Ranking of N-LDFHWG operator.

Graphically Ranking of N-LDFHWG for y=3

Score Values

&
Proposed Operators

T, uT; T2 =T: mTs

FIGURE 5. Graphical Ranking of N-LDFHWG operator.

y = 2 Following Figure 4. shows the graphical ranking of
N-LDFHWG operator for NEA deflection technologies in
which the Enhanced Gravity Tractor become at the top of
all alternatives.

For y = 3, we get Table 19 as follows;

Table-20 listed the ranking results for y = 3 as
follow. Following Figure 5. shows the graphical ranking of
N-LDFHWG operator for NEA deflection technologies in
which the Enhanced Gravity Tractor become at the top of all
alternatives.

Step-9: The alternatives of N-LDFHWG, N-LDFHOWG,
and N-LDFHHWG were then rated, so we obtained the final
result displayed in Table 21.

Step-10: From this we conclude that; 73 Enhanced Gravity
Tractor (EGT) is chose the best NEA deflection alternative
other deflection alternatives were ranked near close to each
other but far away from EGT. It is important to keep in
mind that the final result obtained from proposed algorithm
is identical for all score functions.

VII. DISCUSSION AND COMPARISON ANALYSIS

We compare the proposed three N-LDF Hamacher aggre-
gation operators to the existing method [75], [76] in this
section, demonstrating their ability to manage daily life
DMPs. Because of the qth power of RPs, this method is
impressive because it provides the valuation spaces of IFSs,
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TABLE 17. Different score values of N-LDFHWG.

v =2 S.F(k)

q=4 Koy Koy

Rog Roy Ko

N —-LDFHW(G

—0.0239 —0.0381 —0.0217 —0.0479 —0.0218

N - LDFHOWG —-0.0293 —0.0355 —0.0248 —0.0449 —0.0249

N —-LDFHHWG —0.0307 —0.0348 —0.0204 —0.0464 —0.0248

y=2 E.S.F(F)

qg=41 Fsi Fyo Fy, ., Fs,, Fs,
N —-LDFHWG  0.4880 0.4809 0.4897 0.4760 0.4892
N —-LDFHOWG 0.4853 0.4822 0.4876 0.4776 0.4876
N —-LDFHHWG 0.4846 0.4826 0.4897 0.4768 0.4875
y=2 Q.S.F(w)

q=14 Wey W2 Wos Wy Wos

N—-LDFHWG

—0.0444 —-0.0711 —0.0401 —0.0894 —0.0405

N - LDFHOWG —-0.0549 —0.0664 —0.0461 —0.0838 —0.0462

N —-LDFHHWG —0.0434 —0.0514 —0.0243 —0.0736 —0.0325

TABLE 18. Ranking of N-LDFHWG operator.

g=47v=2 SF(k)

Q.S.F(w)

N-LDFHWG

N-LDFHOWG T3 > T5 > T1 > T
N-LDFHHWG T35 > T5 > T} > T

Ts >Ts >T1 > T5

>Ty T3 >T5 >T > 15 > 1Ty
>STy T35 >T5 >Ty >1T5 > 1Ty
>STy T3 >T5 >T > 1T > 1Ty

g=4y=2 ESF(F)

N-LDFHWG

N-LDFHOWG 13 =15 > T1 > 1»
N-LDFHHWG 13 > 15 > 11 > 13

T3 >Ts > Ty > Ts

> Ty
> Ty

> Ty

PyFSs, q-ROFSs, and LDFSs. Table 26 represented the
general comparison of suggested and existing concept.

A. COMPARISON WITH LDFS

In this subsection we compare the proposed method with
existing LDF method [75] namely LDFWG, LDFOWG
and LDFHWG aggregation operators. The different score
function values for LDF is given in following Table 22, and
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Table 23 represented the ranking result which is similar to
proposed ranking method.
Table 23 listed the ranking of LDFWG operators.

B. COMPARISON WITH Q-RLDFS

In this subsection we compare the proposed work with
existing q-RLDF [76] method namely q-RLDFWG, g-
RLDFOWG and q-RLDFHWG aggregation operators. The
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TABLE 19. Different score values of N-LDFHWG.

v=3 S.F(k)

q=41 Koy Koo Kog Koy Kos

N —LDFHWG  -0.0435 -0.0606 -0.0419 -0.0648 -0.0443
N — LDFHOWG -0.0467 -0.0553 -0.0415 -0.0598 -0.0447
N — LDFHHWG -0.0306 -0.0346 -0.0205 -0.0465 -0.0245
v=3 E.S.F(F)

q=4 Foi Fyo Fy, F,, Fo.

N —-LDFHWG 04783 0.4697 0.4790 0.4676 0.4779
N —LDFHOWG 04767 04724 0.4792 0.47009 0.4777
N —-LDFHHWG 0.4847 0.4827 0.4898 0.4767 0.4877
v=3 Q.S.F(w)

q=4 Woy Wo2 Wog Woy Wos

N - LDFHWG  -0.0438 -0.0709 -0.0401 -0.0889 -0.0403
N — LDFHOWG -0.0540 -0.0659 -0.0449 -0.0832 -0.0460
N - LDFHHWG -0.0434 -0.0514 -0.0243 -0.0736 -0.0325

TABLE 20. Ranking of N-LDFHWG operator.

g=4v=3 SF(k)

Q.S.F(w)

N-LDFHWG

N-LDFHOWG 13 > T5 > T > 1>
N-LDFHHWG 13 > T5 > T > 1>

Ts >1T1 > Ts > Tb

>Ty T3 >Ts >T >Ts > Ty
STy T3 >Ts >T >T5 > Ty
STy T3 >Ts >T >T5 > Ty

g=47=3 ESF(F)

N-LDFHWG

N-LDFHOWG 13 > T5 > T > 1>
N-LDFHHWG 13 > T5 > T > 1>

Ts >1Th > Ts > Tb

> Ty
> Ty

> Ty

different score function values of q-RLDF is given in the
following Table 24 and Table 25 represented the ranking
result which is similar to proposed ranking method.
Table 25 listed the ranking result of ¢-RLDFWG operators.
“In Tables 27 and Table 28” we can see the ranking
results of five alternatives of proposed model and existing
approaches. Table 28 listed the decision maker’s opinion
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for the selection of NEA deflection detector based on
N-LDFHWG operators, calculated rankings by the proposed
and previous method is same, which is approachable and
validates the reliability and viability of the recommended
work, demonstrating that NEA deflection detector process
is very particularly considerable to support companies. The
ranking results obtained from the suggested methodology
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TABLE 21. Overall ranking of N-LDFHWG operators for different values of operational parameter.

q=4

Operators

S.F(k)

Q.S.F(w)

E.S.F(F)

N-LDFHWG
N-LDFHOWG
N-LDFHHWG

Ts>T) >Ts >T5 > Ty
T3 >T5 >Ty > T > 1Ty

T3 >T5 >Ty > T > Ty

T3>T5>T1>T2>T4
T3 >T5 >Ty > Ty >Ty

T3 >T5 >T) > Ty > Ty

T3>T5>T1>T2>T4
Ts=Ts>T1 >Tp > 1T,

T3 >T5 >Ty > T > 1Ty

N-LDFHWG
N-LDFHOWG
N-LDFHHWG

T3 >T5 >Ty > T > 1Ty
T3 >T5 >Ty > T > 1Ty
T3 >Ts >T >T > 1T,

T3 >T5 >Ty > Ty > 1Ty
T3 >T5 >T) > Ty > Ty
T3>Ts >Th >T2 > Ty

T3 >T5 >Ty >Ts > Ty
T35 =T5 >T1 > T2 > Ty
Ts >1T5 >T1 >T5 > Ty

N-LDFHWG
N-LDFHOWG
N-LDFHHWG

T3 >Ty >T5 > T > Ty
T3 >T5 >T1 > T2 > Ty

T3>T5>T1>T2>T4

T3 >T5 >T) > Ty > Ty
T3 >Ts >Th >T2 > Ty
T3>T5>T1>T2>T4

Ts >Ty >T5 > T > Ty
T35 >T5>T1 >To > Ty
T3 >T5>T1 > T > Ty

TABLE 22. Different score values of existing LDFWG.

S.F(k)
Existing method Ko, Koy Ko Koy Kos
LDFW(G -0.03786 -0.05728 -0.02459 -0.03592 -0.04883
LDFOWG -0.03094 -0.04569 -0.01987 -0.01958 -0.03923
LDFHWG -0.01208 0.00279 0.00671 -0.00067 -0.00934

E.S.F(F)

For Fos Fo, Fo, Foy
LDFW(G 0.48107 0.47136 0.48770 0.48204 0.47559
LDFOWG 0.48453 0.47716 0.49006 0.49021 0.48039
LDFHWG 0.49396 0.49967 0.50335 0.50139 0.49533

Q.S.F(w)

Woy We2 Wog Woy Wog
LDFW(G -0.06943 -0.10472 -0.04804 -0.07143 -0.08644
LDFOWG -0.05957 -0.08516 -0.04036 -0.04396 -0.07174
LDFHWG -0.02873 -0.00893 -0.00107 -0.00663 -0.02175

and the existing methodology differ slightly, but in terms
of overall methodology, the best and first choices are the
same. The comparison’s ranking results are shown in Table 28
below.

Superiority and comparison between suggested and
existing methods: LDFSs [75] have some restrictions
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on RPs and are unable to handle qth parameterizations.
Almagrabi et al. [76] modified the idea of LDFSs and
developed g-RLDFSs to cover this research gap, and we
applied the Hamacher operators on q-RLDFSs to obtain
a more generalized idea which named is N-LDFHWG
aggregation operators. There is a close link between the
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TABLE 23. Ranking of LDFWG.

Existing method S.F(k)

Q.S.F(w)

LDFWG
LDFOWG
LDFHWG

T3 >Ty >T1 >T5 >Ts T3 >Th1 > Ty > 15 > 15

T3 >Tu>T1 >Ts5>Ts T3 >Ty >T > T5 > 1o

T3 >To >Ty >T5 >Ty T3 >Ty >To >Ts > 11

E.S.F(F)

LDFWG
LDFOWG
LDFHWG

T3 >Ty >T1 > T5 > T
T3 >Ty >T1 >T5 > T
T3 >Ty >To >T5 > T4

TABLE 24. Different score values of q-RLDFWG.

S.F(k)
q=4 Koy Koo Ko Ko, Kos
q— RLDFWG  -0.0609 -0.09625 -0.0261 -0.0359 -0.0888
q— RLDFOWG(G -0.0467 -0.0533 -0.0153 -0.02594 -0.0474
q— RLDFHWG -0.0466 -0.3562 -0.0355 -0.0434 -0.0542
E.S.F(F)
q=14 Fyy Fyo Fs, Fs, Fs,
qg— RLDFWG 04695 04519 0.4869 0.4821 0.4556
q— RLDFOWG 04775 0.4424 0.4927 0.4819 0.4677
q— RLDFHWG 04475 0.4267 0.4889 0.4836 0.4767
Q.S.F(w)
q=4 Woy We2 Wy Woy Wos
q— RLDFWG  -0.0758 -0.1241 -0.0496 -0.0803 -0.1039
q— RLDFOWG -0.0594 -0.0683 -0.0532 -0.0854 -0.0760
q— RLDFHWG -0.0334 -0.5462 -0.0143 -0.0752 -0.0775

proposed approach and MADM problems. As a result, when
compared to other methods, our N-LDFS-based on Hamacher
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Norms provides more accurate results because of extended
values.
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TABLE 25. Ranking of q-RLDFWG.

g=14 S.F(k)

Q.S.F(w)

q—RLDFWG Ts>Ty>Ty >T5 >T5 T3 >T1 > Ty >1T5 > Th

q—RLDFOWG Ts>Ty>Ty >Ts >Ts T3 >T1 > T >T5 > 1Ty

g-RLDFHWG T3 > Ty > Ty >To > T5 T35 >T1 > T > Ty > T5

g=4 E.S.F(F)

q—RLDFWG Ts >Ty >Ty >T5 > T

q-RLDFOWG Ts >Ty >Ty >T5 > Th

q—RLDFHWG Ts >Ty >T5 >T1 >1Ts
TABLE 26. The comparison study of N-LDFs with previous methods.
Collections Remarks Parameterizations
FS [19] non-membership () not satisfies NO
IFS [30] cannot deal, A(g) + 3%(5) >1 NO
PyFS [42], [43] cannot deal, A7) + R7,) > 1 NO
Al R4 1
g-ROFS [59] CREOhe NO
and A(g) = 1,%([) =1
LDEFS covers this situation
LDFS [75 ’ YES
751 0 < (a)Ageey) + (B)Rg0y < 1,
q-RLDFS/N-LDFS cover LDFS limitation,
q-RLDFS/N-LDFS [76] 0 < (a)?Agqy+ YES
(B)1Rgq0) < 1,q > 1.

Graphically ranking of existing LDF method
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FIGURE 6. Graphical Ranking of existing LDFWG operator.

Following Figure 6. shows the graphical ranking of
existing LDFWG, LDFOWG and LDFHWG operators on
the base of different score function for NEA deflection
technologies in which T3 is selected again the optimal
alternatives and is similar to the ranking of proposed method
which showed the superiority of propose method.

Following Figure 7. shows the graphical ranking of exist-
ing -RLDFWG, q-RLDFOWG and q-RLDFHWG operators
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Graphically ranking of existing -RLDF method
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FIGURE 7. Graphical Ranking of existing q-RLDFWG operator.

on the base of different score function for NEA deflection
technologies in which again the Enhanced Gravity Tractor
become at the top of all alternatives and is similar to the
ranking of proposed method which showed the superiority of
propose method.

From “Table 28" we concluded that; 73 which represent
the Enhanced Gravity Tractor (EGT) is chose the best
NEA deflection alternative other deflection alternatives were
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TABLE 27. Different Score values of proposed and existing method.

g=4,v=1 S.F(k)

Proposed Method | Koy Koy Koy Koy Ras
N-LDFHWG —.0236 —.0377 —.0211 | —.0476 —.0264
N-LDFHOWG —.0293 —.0353 —.0242 | —.0446 —.0243
N-LDFHHWG —.023 —.027 —.013 —.041 —.017
Existing Method Koy Koo Kog Koy Kos
LDFWG [75] —0.0379 | —0.0573 | —0.0246 | —0.0359 | —0.0488
q-RLDFWG [76] —0.0609 | —0.09625 | —0.0261 | —0.0359 | —0.0888
LDFOWG [75] —0.0309 | —0.0457 | —0.0196 | —0.0199 | —0.0392
q-RLDFOWG [76] | —0.0467 | —0.0533 | —0.0153 | —0.02594 | —0.0474

LDFHWG [75] —0.01208 | 0.0028 0.0067 —0.00067 | —0.0094

q-RLDFHWG [76] | —0.0466 | —0.3562 | —0.0355 | —0.0434 | —0.0542
g=4,7=1 Q.S.F(w)

Proposed Method | @, Wo2 Woy Woq Was
N-LDFHWG —.0462 —.0727 —.0413 —.0907 —.0414
N-LDFHOWG —0.0569 | —0.0680 |—0.0466 |—0.0851 |—0.0476
N-LDFHHWG —0.045 —0.053 —0.026 |—0.076 —0.034
Existing Method Wa,y Wo2 Way Woy Wos
LDFWG [75] —0.0694 —0.1047 —0.0480 | —0.0714 —0.0864
q-RLDFWG [76] —0.0758 —0.1241 —0.0496 | —0.0803 —0.1039
LDFOWG [75] —0.0596 —0.0852 —0.0404 | —0.0439 —0.0717
q-RLDFOWG [76] | —0.0594 | —0.0683 | —0.0532 | —0.0854 | —0.0760
LDFHWG [75] —0.0287 | —0.00672 | —0.0059 | —0.0067 | —0.0218
q-RLDFHWG [76] | —0.0334 | —0.5462 | —0.0143 | —0.0752 | —0.0775
g=4,7=1 ESF(F)

Proposed Method | Fipy Foo Foy Fo, Foy
N-LDFHWG .4882 4811 4885 4762 4884
N-LDFHOWG 0.4854 0.4824 0.4878 0.4777 0.4878
N-LDFHHWG 0.489 0.486 0.494 0.479 0.492
Existing Method Fq Fyo Fo, Fy, Foy
LDFWG [75] 0.4810 0.4714 0.4877 0.4820 0.4756

q-RLDFWG [76] 0.4695 0.4519 0.4869 0.4821 0.4556

LDFOWG [75] 0.4845 0.4772 0.4903 0.4902 0.4804
q-RLDFOWG [76] | 0.4775 0.4424 0.4927 0.4819 0.4677

LDFHWG [75] 0.4939 0.5014 0.5504 0.5034 0.4953

q-RLDFHWG [76] | 0.4475 0.4267 0.4889 0.4836 0.4767

ranked near close to each other but far away from EGT.
It is important to keep in mind that the final result obtained
from proposed algorithm and existing method is identical
for all types of score functions. Following Figure 8. shows
the systematics ranking diagram of five NEA deflection
technologies in which the Enhanced Gravity Tractor become
at the top of all alternatives, 2nd one is the Kinetic Impactor,
3rd ranked alternatives for NEA deflection technologies is
conventional rocket engine, 4th one is Ion Bean deflection
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FIGURE 8. Systematics ranking diagram of NEA deflection technologies.

Laser
Ablation

and the last and Sth alternative is laser ablation which ranked
at the bottom of list.

C. COMPARISON WITH SPEARMAN’S AND WS
COEFFICIENTS OF RANKINGS SIMILARITY

Comparing the accuracy of the two rankings’ order is an
essential decision. Checking if the ranks are constant or
inconsistent is the easiest way to do this. One of the coef-
ficients of monotonous dependency of two variables is used
in the largely accepted method, where our variables are the
rankings which are obtained for a group of alternatives that
are under consideration. The Spearman’s coefficient [101] is
the most often used symmetrical coefficient of this kind of
relationship and may be written as follows in Eq (22):

6.> d?

n.m?—1)
where n is the number of objects in the ranking and d; is
defined as the difference between the ranks d; = Ry — Ry;.
As a percentage of the rank variation of one variable that is
explained by the other variable, the Spearman’s coefficient is
recognized [101].

Given the differences between two ranks in certain
locations, we expected the WS indicator to be substantially
correlated with the rankings. There’s also the supposition that
the top of the ranking influences similarity more than the
bottom. These presumptions led to the development of a new
indicator caused by [102], which is shown by Eq (23):

n

rg=1

(22)

Ry —Ryi
WS =1-> (27" R = Ryl . (23)
max {|1 — Ryl. IN — Ryil}

i=1

where N is the ranking length, WS is the similarity coefficient
value, and Ry; and Ry; denote the ranking position of the i —th
element in rankings x and y, correspondingly.

Table 29, shows five rankings T;, including one reference
(Ry) and three test rankings such that S.F is represented by
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TABLE 28. Ranking of proposed and existing method for different gamma, s.

vy=1,q=4

Proposed Method | S.F(k) Q.S.F(w) E.SF(F)

N-LDFHWG Ts>Ti >Ts>To>Ty|T3>Ts >Th >To >Ty|T3>Ts >T1 > T > Ty
N-LDFHOWG T3>T5>T >To>Ty|Ts>Ts >Th >To >Ty|Ts5=Ts >T1 >To > T}
N-LDFHHWG T3>T5>T1>To>Ty|T3>T5 >T1 >To > Ty |T3>T5 >T1 > T2 > Ty
y=2 S.F(k) Q.S.F(w) E.S.F(F)

N-LDFHWG T3>T5>T1>To>Ty|Ts>Ts >T1 >To >Ty|T3>Ts >Ty > T > Ty
N-LDFHOWG T3>T5>T >To>Ty|T3>Ts >Th >To >Tu|T3=T5s >T1 >To > T}
N-LDFHHWG T3>Ts5>T >To>Ty|T3>Ts >Th >To >Ty|T3>Ts >T1 > T > T,
v=3 S.F(k) Q.S.F(w) E.S.F(F)

N-LDFHWG T3>T >Ts>To>Ty|T3>T5 >T1 >To > Ty |T5>T1 >Ts >To > Ty
N-LDFHOWG Ts>Ts5>Ti>T>Tu|T35>Ts >Ti >To >Ty|T3>Ts >Th > T > T,
N-LDFHHWG T3>Ts>Ti > >Ty|Ts>Ts >Th >To>Tu|T5>T5>Ti >Te > Ty
Existing Method | S.F(k) Q.S.F(w) ESF(F)

LDFWG [75] T3>Ty>T >Ts5>To T3 >T1 >Ty >T5 >To |T3>Ty >T1 >T5 > 1h
LDFOWG [75] T3>Ty>T >Ts >Th|T3>Tyu>T >Ts >To T3 >Ty >T1 >T5 >1h
LDFHWG [75] T3>To>Tu>Ts >T T3 >Ty >To >Ts >T1|T5>Ts > T >T5 > 11
q-RLDFWG [76] |T5>Ty>Ti >Ts > T |T3>Th > Ty >Ts > To|T3 > Ty > T > T5 > T
q-RLDFOWG [76] |13 > Ty >T1 > Ts > To|T3 > T > To > T5 > Ty |13 > Ty > T1 > T5 > T
q-RLDFHWG [76]|T5 > Ty > Th > T > T5 | T3 >Ti > T > Ty > Ts (T3 > Ty > T5 > T > Tn

Ry1, Q.S.F is represented by Ry, and E.S.F is represented
by Ry3. The test rankings were created based on Table 21
of three different ranking score function values of five
alternatives. We want to remind that we have already
determined the ranking of proposed operators by choosing
different operational parameters y = 1, 2, 3 and have applied
different score functions. The ranking results of proposed
operator is listed in above Table 21, but here we want to
find out the similarity of these ranking by applying the
Spearman’s and WS Coefficients of Rankings Similarity
listed in Eq (22) and Eq (23) to choose the best possible
solution, and with each place in the ranking, the preferences
lose value. An error at the bottom of the ranking should
not have the same significance as the difference at the top.
Compared to the shifting of the third and fourth positions,
the alternative placements from the second and third positions
represent a more significant inaccuracy. But according to
the coefficient values, there is similarity in the test sets’
resemblance between the test ranks and the reference ranking.
Following Table 29 listed the WS and r, coefficients ranking
for N-LDFHWG operators with y 1. Similarly we
calculated the Spearman’s and WS Coefficients raking for
N-LDFHOWG and N-LDFHHWG including y = 1,2, 3.
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TABLE 29. Spearmans and WS coefficients ranking.

y=1 N-LDFHWG
T; Rsi Ry1(SF) Ry 2(Q.S.F) Rys3(E.S.F)
Ty 1 3 3 3
T 2 1 5 5
T3 3 5 1 1
Ty 4 2 2 2
Ts 5 4 4 4
Coefficients | W.S [ 0.49 0.33 0.33
rs 0.3 -0.1 -0.1

In short we calculated the WS and r, Coefficients for whole
Table 21 listed above, as a result we obtained following
Table 30 and Table 31.

Similarly for r; Coefficient ranking, we obtained following
Table 31;
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TABLE 30. WS coefficient ranking.

vy=1 Ry1(SF) Ry2(Q.S.F) Ry3(E.S.F)
N-LDFHWG |0.49 0.33 0.33
N-LDFHOWG | 0.33 0.33 0.33
N-LDFHHWG | 0.33 0.33 0.33
vy=2 Ry Ry Rys
N-LDFHWG |0.33 0.33 0.33
N-LDFHOWG |0.33 0.33 0.33
N-LDFHHWG | 0.33 0.33 0.33
y=3 Ry Ry2 Rys
N-LDFHWG |0.49 0.33 0.49
N-LDFHOWG |0.33 0.33 0.33
N-LDFHHWG | 0.33 0.33 0.33

TABLE 31. rs coefficient ranking.

y=1 Ry Ry Ry
N-LDFHWG 0.3 -0.1 -0.1
N-LDFHOWG | -0.1 -0.1 -0.1
N-LDFHHWG | -0.1 -0.1 -0.1
Y= 2 Ryl Ry2 RyB
N-LDFHWG -0.1 -0.1 -0.1
N-LDFHOWG | -0.1 -0.1 -0.1
N-LDFHHWG | -0.1 -0.1 -0.1
y=3 Ry Ry Ry
N-LDFHWG 0.3 -0.1 03

N-LDFHOWG | -0.1 -0.1 -0.1
N-LDFHHWG | -0.1 -0.1 -0.1

D. THREE CRITERIA BASED ASSESSMENT FOR MADM
PROBLEM

The Multiple Attribute Decision Making (MADM) scheme’s
validity and feasibility have been verified through assess-
ments based on three criteria. The effectiveness and accuracy
of the MADM system may be assessed with the use of
these evaluation tests. We have supposed the following
three criteria while designing evaluation reviews for MADM
scheme:

1. Accuracy: We have evaluated the accuracy of the
MADM scheme by considering the same numerical data and
comparing it with some existing methods which show that
the MADM scheme gives the best solution using test cases
or examples with predefined results, Table 28 represented the
ranking accuracy of proposed and existing method.

2. Consistency: To demonstrate the consistency of the
MADM scheme we conduct multiple tests with the same

32136

input data based on different score functions which shows
that the ranking results are similar obtained by S.F, Q.S.F and
E.S.F by applying the proposed and existing method. This
can help assess the reliability and stability of the MADM
scheme in different situations, Table 27 and Table 28 listed
the consistency of MADM problem.

3. Sensitivity: We have applied various operational
parameters to test the sensitivity of the MADM scheme and
observed how the scheme responds to different decision-
making scenarios, in order to improve the robustness
and adaptability of the MADM scheme. We have select
gamma =1,2 and 3 as different operational parameters
for sensitivity analysis, Table 21 represented the proposed
sensitive analysis ranking and Table 28 represented the
proposed and existing method combined sensitive analysis
for MADM problem.

VIIl. CONCLUSION

We applied Hamacher operators for -RLDF concept and we
get amore generalized version of FS called N-LDF Hamacher
operators. Remind that in N-LDF concept the qth power of
RPs play an important role in decision-making problem and
also provide a more effective and flexible framework. The
geometric aspects of N-LDFS have been proposed, and the
concept of N-LDFS has been generalized to N-LDFHWG
aggregation operator, which further includes N-LDFHOWG
and N-LDFHHWG. We offered an implementation of the
suggested MADM problem approaches with the help of
a case study for the selection of the best NEA detectors
technologies. We conclude that the current decision making
method is appropriate and stable, and can be effectively
implemented for decision-making problems with multi-
attribut/criteria group. For the remainder, Enhanced Gravity
Tractor (EGT) has been selected the best overall NEA
deflection detector, rankings can be illustrated to understand
their shortcomings and follow the logical trend for future
intentions. Then we likened the current method to some of
previous approaches. The obtained results, demonstrated the
advantages and validity of the recommended methodology.
We also calculated the Spearman’s and WS coefficients of
rankings similarity for the validation of proposed method.
This study provides several interesting topics for future
research. More Non-linear Diophantine fuzzy decision-
making techniques can be used in this study, including
N-LDF CODAS, N-LDF VIKOR, N-LDF TOPSIS, N-LDF
EDAS, N-LDF GRA and their hybrid methods. Future
research will develop on the suggested methodology by
using complex numbers which will further extend to complex
non-linear Diophantine fuzzy numbers and will develop
different decision operators for Dombi, Bonferroni, Aczel-
Alsina, Hamacher, and for Einstein aggregation operators.
The proposed MADM problem can also be used for other
complicated problems like risk evaluation, risk aversion,
emerging technology, project installation, and also for
medical diagnosis.
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