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ABSTRACT In the era of digital communication, social media platforms have experienced exponential
growth, becoming primary channels for information exchange. However, this surge has also amplified the
rapid spread of hate speech, prompting extensive research efforts for effective mitigation. These efforts
have prominently featured advanced natural language processing techniques, particularly emphasizing deep
learning methods that have shown promising outcomes. This article presents a novel approach to address
this pressing issue, combining a comprehensive dataset of 18 sources. It includes 0.45 million comments
sourced from various digital platforms spanning different time frames. There were two models utilized to
address the diversity in the data and leverage distinct strengths found within deep learning frameworks:
CNN and BiLSTM with an attention mechanism. These models were tailored to handle specific subsets
of the data, allowing for a more targeted approach. The unique outputs from both models were then fused
into a unified model. This methodology outperformed recent models, showcasing enhanced generalization
capabilities even when tested on the largest and most diverse dataset. Our model achieved an impressive
accuracy of 89%, while maintaining a high precision of 0.88 and recall of 0.91.

INDEX TERMS Hate speech detection, deep learning, natural language processing, CNN, BiLSTM, model
fusion.

I. INTRODUCTION

Hate speech refers to language or expression that attacks
an individual or community based on characteristics such
as race, caste, ethnicity, religion, gender, sexual orientation,
nationality, etc., [1], [2], [3], is a growing concern in our
increasingly digital world. Social media platforms, such
as Twitter and Facebook, have become a breeding ground
for its proliferation. These platforms enable individuals to
express their opinions and engage in discussions, leveraging
their extensive and diverse user base. However, they have
also transformed into spaces where hate speech can spread
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rapidly, causing harm to society. Hate speech on social
media platforms can manifest in various forms, such as
posts, comments, and messages intended to intimidate,
harass, or humiliate others. It’s worth noting that these
platforms have implemented significant measures to combat
hate speech, including enforcing policies and utilizing
machine learning algorithms to detect and remove abusive
content. Nevertheless, the problem of hate speech on social
media remains a significant challenge that requires ongoing
attention and action.

Detecting hate speech manually on social media presents
an enormous challenge due to the sheer volume of content
generated. Hate speech can take subtle and diverse forms,
making human detection without advanced algorithms excep-
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tionally difficult. Relying solely on human moderators for
precise and timely identification of hate speech is imprac-
tical, necessitating the use of advanced natural language
processing (NLP) algorithms and machine learning models.
The NLP community has recently made significant progress
in developing hate speech identification systems, with
machine learning and particularly deep learning techniques
demonstrating superior effectiveness [1], [4], [5], [6], [7], [8]-
Deep learning is particularly valuable in swiftly identifying
hate speech, as it analyzes language and behavioral patterns
linked to hate speech. Moreover, deep learning continuously
improves over time by integrating new data, offering a
sustainable solution.

Utilizing NLP techniques to identify hate speech on social
media presents a crucial yet technically complex challenge.
This complexity arises due to the nuances inherent in
language, where hate speech may not always be expressed
through explicit aggressive, offensive, profane, or derogatory
terms. Conversely, the absence of such terms does not
guarantee the absence of hate speech [9]. The task is further
compounded by the diverse language use and contexts across
different platforms, making the development of effective
detection models a formidable task. The ever-evolving
landscape of language and slang on social media adds
layers of complexity to hate speech detection. Moreover,
social media text often demonstrates high sparsity, featuring
numerous elements with limited occurrences, including noisy
components lacking useful information. This sparsity can
impede the creation of precise models and lead to overfitting.
Additionally, those propagating hate speech constantly seek
new ways to evade detection, increasing the complexity
of automatic detection [10]. Further complicating matters
is the limited availability of data on social media due to
the enforcement of hate speech codes of conduct [11].
This scarcity poses a significant hurdle for deep learning
techniques, which rely on extensive labeled data for accurate
model training.

The challenges inherent in detecting hate speech across
social media platforms underscore the critical need for a
robust and adaptable deep learning model. Traditionally,
hate speech detection relied on limited datasets from
specific platforms and time periods. Our innovative approach
encompasses diverse data sources, enabling our model to
learn language nuances and contextual variations adeptly.
Leveraging extensive labeled data from multiple sources, this
deep learning model confronts the intricacies of hate speech
detection, effectively handling subtleties, variations, sparsity,
and the adaptability of hate speech propagators.

This study tackles substantial challenges and makes
significant contributions. A key contribution is a comprehen-
sive dataset consolidating 18 diverse datasets, representing
various social media platforms and different time spans,
including platforms with varying word limits. With this
model, our aim is to pioneer a more comprehensive and
effective solution in combating hate speech, thereby fostering
safer and more inclusive online communities.
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Additionally, our study introduces a pioneering deep-learning
model designed for high generalizability. This model
effectively handles the diverse dataset, resulting in marked
improvements in hate speech detection across multiple social
media platforms.

Il. LITERATURE REVIEW

In recent years, detecting hate speech in online text has
become a significant focus in NLP research. Initially, studies
relied on conventional machine learning algorithms like
SVM, KNN, Random Forest, and Decision Tree, using
various feature types (for example, syntactic, semantic,
sentiment, and lexicon) to identify hate speech [2]. However,
the rise of deep neural networks has prompted extensive
exploration into their effectiveness for NLP-related prob-
lems [12]. Notably, Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs) have emerged as
prominent options and are frequently assessed for hate speech
detection.

Researchers often choose different deep learning models
tailored to the text’s characteristics. For shorter texts where
capturing detailed context matters less, CNNs have become
popular due to their adeptness at grasping local patterns
across various text classification tasks [13], [14], [15]. On the
other hand, when dealing with longer text sequences that
demand a better grasp of semantic features and context,
RNNs like Long Short-Term Memory (LSTM) networks
and Bidirectional LSTMs (BiLSTMs) shine [16], [17], [18].
These models efficiently capture contextual information
and word dependencies, proving advantageous in tasks like
sentiment analysis and document classification.

In the realm of hate speech detection, Warner et al. [19]
conducted a seminal study concentrating on identifying
anti-Semitic language as a form of hate speech. Alshalan
and Al-Khalifa [20] delved into classifying Arabic hate
tweets using CNNs, RNNs, and bidirectional encoder repre-
sentations from transformers (BERT). Employing word2vec
as embedding layers via the Continuous Bag of Words
(CBOW) method, their findings revealed that BERT didn’t
perform well for this task, resulting in an approximate
10% drop in performance, while the CNN achieved an
f-score of 0.79. Another notable exploration by Waseem
and Hovey [21] targeted hate speech on Twitter, particularly
racism and sexism. They investigated features, including
user demographics, lexical usage, geographic information,
and character n-grams. Their study emphasized that using
character n-grams with a maximum length of four proved
to be the most effective approach. Furthermore, integrating
gender as an additional feature led to a slight improvement in
the obtained results.

Vashistha and Zubiaga [7] examined six publicly available
datasets to identify hate speech in English and Hindi text.
They constructed a logistic regression-based model, incor-
porating Term Frequency - Inverse Document Frequency
(TF-IDF) and Part-of-Speech (POS) features. This base
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model’s performance was compared with a hierarchical
neural network, which utilized several CNN filters and the
BiLSTM model. The base model achieved an accuracy rate
of 85%, while the neural network attained an accuracy
rate of 83%. In Khan et al. [22], a proposed neural
network architecture called BICHAT combines BERT-based
embedding, BiLSTM, and deep CNN with a hierarchical
attention mechanism. The attention layers will apply on word
and sentence levels, allowing focus on the most important
words and phrases in the text while ignoring irrelevant
information. The proposed approach was evaluated on several
popular Twitter hate speech datasets and performed better
than the base model.

Modha et al. [23] proposed a real-time model to identify
and visualize hate comments from Facebook and Twitter.
This model can be used as a plugin tool in web browsers to
monitor online hate speech effectively. Initially, the authors
used traditional machine learning algorithms such as SVM
and logistic regression as a baseline model. Subsequently,
they experimented with more advanced models such as
CNN, BiLSTM, and BERT transformers. The experimental
results showed that the proposed models achieved an
Fl-score of 0.64 on the Facebook dataset and 0.58 on
the Twitter dataset. Kapil and Ekbal [24] introduced a
multi-task learning framework designed to identify multiple
interconnected categories of hate speech, including offensive
language, racism, and sexism. Multiple neural networks
were developed, encompassing architectures such as CNNss,
LSTM networks, and a combination of CNN and GRU.
These networks were trained for both single-task and multi-
task learning scenarios. The initial training of the models
was carried out for individual classes, and subsequently,
a shared neural network was developed to perform the
combined classification task. Rodriguez-Sanchez et al. [25]
conducted an experimental study to assess the effectiveness
of deep learning, machine learning, and transformer learning
approaches in detecting hate speech specifically in Spanish
language text. The results indicated that the transformer
approach outperformed the other methods, achieving the
highest F1-score of 0.75 for hate classification.

Mossie and Wang [26] introduced a method targeting
the recognition of vulnerable communities through hate
speech detection techniques. They utilized word2vec word
embedding and n-grams for feature extraction, followed
by classification using machine learning and deep learning
algorithms. Moreover, they expanded the hate word lexicon
by integrating co-occurring word vectors with the highest
similarity, enabling the identification of the target ethnic
community based on matched hate words. Ameur et al. [27]
presented a dataset of 10,828 Arabic tweets addressing hate
speech related to COVID-19. They performed fundamental
analyses using pre-trained models, highlighting the efficacy
of these models in detecting hate speech and false informa-
tion in the complex Arabic language context. Meanwhile,
Khanday et al. [28] investigated hate speech detection on
Twitter during the COVID-19 pandemic, employing various
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feature extraction methods such as TF/IDF, bag of words, and
word length. Decision tree classifiers notably emerged as the
most effective, achieving a remarkable 97% accuracy in hate
speech detection.

Del et al. [29] introduced SocialHaterBert, a model tailored
for hate speech identification in English and Spanish tweets,
showcasing improvements over the earlier HaterBert model.
Employing BertForSequenceClassification and ‘BERT’ for
hate speech classification, the model demonstrated perfor-
mance gains ranging from 3% to 27% compared to HaterBert.
Additionally, the authors proposed a method to construct
a hate speech user graph using user profile attributes,
potentially enhancing hate speech detection in multilingual
social media discussions. Furthermore, Fortuna et al. [30]
conducted an extensive study using a dataset for hate speech,
toxicity, abusive language, and offensive content classifi-
cation. They experimented with various models, including
BERT, ALBERT, fasttext, and SVM, trained on nine publicly
available datasets, evaluating both intra-dataset and inter-
dataset model performance to gauge their generalizability
across different hate speech categories and datasets.

Overall, while progress has been made in detecting hate
speech, many studies have mainly used small datasets from
single platforms like Twitter, Facebook. Relying on these
limited sources might affect how well these methods work
in the real world, especially across different languages or
platforms. To make these methods more reliable, future
research should consider using more diverse and larger
datasets from various sources.

Ill. DATASET DESCRIPTION

The dataset utilized in this study incorporates 18 distinct
datasets sourced from various publications spanning recent
years. The curation of this dataset was conducted by a
team of researchers, primarily selecting datasets based on
their relevance to the study of hate speech prevalent on
the web [31]. Notably, this combined dataset represents a
pioneering effort, as no prior research, to the best of our
knowledge, has employed such an extensive compilation for
hate speech classification tasks.

This comprehensive dataset integrates diverse sources,
encompassing various digital media platforms like Twitter,
Facebook and Stormfront. Capturing data from multiple
social media platforms and across varying time periods,
the dataset offers a rich spectrum of content. Rigorous
preprocessing measures were implemented to maintain
coherence and compatibility across this merged collection.
Nonetheless, including data from various sources and tempo-
ral spans inherently poses challenges in any text classification
endeavor.

These challenges manifest in the form of linguistic varia-
tions, tonal disparities, and contextual nuances, posing obsta-
cles in creating classification models capable of effectively
capturing and generalizing patterns across different sources
and time frames. While enriching the dataset, this diversity
also introduces complexities that demand sophisticated
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TABLE 1. Description of datasets employed in this study.

Data Source ‘Web Forum Sample Size Hate Type
Waseem & Hovy (2016) [21] Twitter 136,052 Sexist & Racist
Davidson et al. (2017) [9] Twitter 25000 Hate & Offensive comments
Gibert et al. (2018) [32] Stormfront 9,916 Racist

Zampieri et al. (2019) [33] Twitter 14,100 Offensive comments
Frenk (2019) [34] Facebook 21,936 Immigrants & LGBT

Basile et al. (2019) [35] SemEval-2019 Task 5 13,000 Immigrants & Woman

Ousidhoum (2019) [36] Twitter 5,647 Hate Comments
HASOC (2019) [37] Twitter & Facebook 5,852 Hate & Offensive comments
HASOC (2020) [38] Twitter & Facebook 4,522 Hate & Offensive comments
Gautam et al. (2020) [39] Twitter 9,973 Hate comments
Kaggle (2018) [40] Twitter 49,159 Sexist & Racist
Kaggle (2021) [41] Twitter 18,208 Cyberbullying
Kaggle (2020) [42] - 153,000 Hate comments
Kaggle (2021) [43] Twitter 32,000 Hate comments
Kaggle (2020) [44] - 40,624 Hate comments
Kaggle (2020) [45] Twitter 25,296 Hate & Offensive comments
Edwards et al. (2020) [46] - 170,019 Cyberbullying
Mendlay (2020) [47] Twitter 16848 Racism & Sexism

approaches to modeling and analysis. In Table 1, detailed
descriptions of several representative subsets within the
complete dataset, elucidating their significance as integral
components of this expansive collection.

As observed from Table 1, the curated dataset represents
a subset where various types of hate are targeted and may
be categorized into multiple labels to distinguish different
forms of hate. However, when these diverse datasets are
combined into a unified collection, the labels are standardized
so that any form of hate is classified as ‘hate comment’ while
non-hate comments constitute the alternative category within
this dataset.

The dataset, initially comprising 451,709 English-
language samples, was categorized into hate speech
(371, 452) and non-hate speech (80, 257), reflecting an inher-
ent class imbalance. To address this, the dataset underwent
meticulous preprocessing, including tokenization, removal
of stop words and symbols, and lemmatization. Following
this, augmentation techniques were employed to rectify the
class imbalance issue. Through these augmentation efforts,
the final dataset expanded to 726,120 samples, achieving an
equal class ratio and ensuring a more balanced representation
of hate and non-hate speech categories for subsequent
analysis.

During exploratory data analysis, it was noted that the
dataset comprised sentences of varying lengths, reflecting
the distinct writing styles associated with different web
sources. This observation prompted the examination of the
distribution of data based on the number of words per sample.
As a result, two distinct sub-samples emerged: the Short
Sequence Dataset (SSD), encompassing text up to 20 words,
and the Long Sequence Dataset (LSD), containing longer text
up to 300 words (depicted in Fig. 1). However, this division
resulted in imbalanced subsets (Fig. 2), with the SSD skewed

27228

nnnnnn

300000

250000

ooooo 200000

150000

100000

50000

(100, 200}
(200, 300)

(20,300]

range |

FIGURE 1. (a) Overall distribution of data (b) SSD vs LSD distribution of
data.
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FIGURE 2. (a) SSD class distribution (b) LSD class distribution.

towards hate content and the LSD biased towards non-hate
content. To rectify this imbalance, strategic application of the
Synthetic Minority Over-sampling Technique (SMOTE) was
performed on both sub-samples [48]. Through oversampling
the minority class within each sub-sample, SMOTE effec-
tively harmonized the class distributions, ensuring a more
equitable representation of hate and non-hate content without
relying on additional specific transformations.

Additionally, a word-ontology approach was utilized to
manage the extensive vocabulary generated during the
preprocessing stages. The dataset contained 127, 546 distinct
words after preprocessing, presenting a challenge due to
its substantial size and potential computational complexity
in subsequent analyses. In this study, the WordNet ontol-
ogy [49], [50] technique was employed to hierarchically
organize words based on their semantic relationships and
contextual meanings. This method categorized words into
clusters or groups according to their similarities in meaning or
usage, effectively consolidating redundant or closely related
terms. Ultimately, the word-ontology technique significantly
reduced the vocabulary size by up to 10.88%.

IV. MODEL FUSION FRAMEWORK

This section presents a detailed description of the model
architecture proposed in this manuscript(see Fig. 3). The
model includes word embedding layers, multiple CNN
layers, a BILSTM with attention mechanism layers, network
merging layers, and a classification layer. Since our dataset
contains sequences of varying lengths, short text sequences
feed to the CNN model and long text sequences to the
BiLSTM model followed by an attention layer. After
reviewing the results of the proposed methodology, it was
observe that the CNN model is particularly effective at
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FIGURE 3. Block diagram of proposed study.

capturing targeted keywords. To a certain extent, these
keywords directly determine the polarity of short text [51].
However, the CNN model may not be as effective with
long text sequences because its convolutional layers operate
over fixed-sized windows. As the text sequence grows
longer, the fixed-sized window may not capture all relevant
information [52], [53]. In such cases, the BiLSTM comes
into play as it is better suited to handle longer sequences
by being able to learn from the entire sequence and capture
long-range dependencies between the words. Furthermore,
an exploration was undertaken to utilize word ontology
for reducing the feature/word count. Subsequently, detailed
descriptions of the model’s component structure are provided
in the following sections.

A. EMBEDDING LAYER

Firstly, a word embedding layer is used to learn a dense vector
representation of words from the preprocessed data. This
layer takes the tokenized text as input and maps each word
to a fixed-sized dense vector. During training, the vectors are
learned, capturing the semantic relationships between words
in the vocabulary. The input tokenized text can be represented
as a sequence of n words: wi, wa, w3, - - - , w,, where each
word w; is represented as a one-hot vector of vocabulary
size v. The one-hot vector for a word has a value of 1 in
the position corresponding to the index of the word in the
vocabulary and 0 elsewhere.

The embedding layer has a matrix E of size v x d where d
is the dimension of the dense word vectors to be learned. Each
row of E contains the vector representation of a word in the
vocabulary. To obtain the dense vector e; for each word w;,
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the word embedding layer performs a matrix multiplication:
e; = w; x E. This results in a sequence of dense vectors
E =e1,ep,e3, -+ ,e, of size n x d. The word embedding
matrix E is updated during training by minimizing a loss
function with respect to the parameters of the model. This
way, the word embedding layer learns to capture the semantic
relationships between words in the vocabulary.

The embedding matrix £ can then be fed as input to
the subsequent layers of the neural network for further
processing and classification. This work has created two
distinct embedding layers: one for generating vectors for
short text sequences of length 20, and the other for generating
vectors for long text sequences of length 300.

Additionally, a pre-trained embedding layer using Global
Vectors for Word Representation (GloVe) [54] with 50 dimen-
sions has been included for comparison. This layer aims
to offer word vector representations derived from existing
knowledge, presenting an alternative perspective on word
relationships within the text data. Both embedding layers,
pre-train and trainable, contribute diverse perspectives in
capturing and representing the underlying semantics within
the text data, providing nuanced approaches for subsequent
analysis and classification.

B. CNN ARCHITECTURE

Our CNN model integrates two convolutional layers and
pooling layers to extract local features, with the objective
of obtaining more informative keywords that enhance the
overall performance of the model. The CNN architecture is
described below.

1) FIRST CONVOLUTIONAL LAYER

This layer applies 128 filters of size 3 to the input sequence,
producing 128 feature maps as output. Each filter slides over
the input sequence, computing a dot product between the
filter weights and the input at each position. The output of
the convolution operation is then passed through a ReLU
activation function (Eq. 1).

k—1

Hi, jy =fOQ_ WiXitjk1 +B) )]
k=0

where i and j denote the position of the output feature map,
k denotes the filter index, f is the activation function, and K
is the kernel size. The filter weights W are learned during
training to capture meaningful patterns in the input data. The
bias term B is added to each output feature map to introduce
a shift in the activation function. The resulting output feature
map contains a set of activation values representing the
presence of different patterns in the input data.

2) FIRST POOLING LAYER

This layer performs max pooling on the output of the previous
convolutional layer, reducing the spatial dimension by a
factor of 2. Max pooling computes the maximum value within
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each pooling window, which in this case has size 2(Eq. 2).
vij = Max {H 2, Hioj+1)} 2

Here, y(; j is the jth output of the ith feature map after
max pooling and H;»j and H; ;1) are the outputs of
the previous convolutional layer at positions 2j and 2j + 1,
respectively.

3) SECOND CONVOLUTIONAL LAYER

This layer applies 64 filters of size 3 to the output of the first
pooling layer and producing 64 feature maps as output similar
to the Eq. 1.

4) SECOND POOLING LAYER

iv. Second Pooling Layer: This layer performs max pooling
over the entire spatial dimension of the output of the previous
convolutional layer, resulting in a scalar value for each feature
map.

Zy = max{y1j, y2j, Y3j,.---.. V) (3)

5) CNN OUTPUT LAYER

A fully connected dense layer with the ReLU activation
function. It returns the maximum of O and the input value,
which means that any negative values are set to 0.

y=f (WTX + b) @

where y and X is the output and input layer, W is a matrix
of weights, b is a vector of biases and f is the activation
function(ReLLUX’), defined as f (x) = max (0, x).

C. BiLSTM WITH ATTENTION LAYER ARCHITECTURE

The BiLSTM model allows learning representations from
both the forward and backward directions. The attention
mechanism then weights the learned representations based on
their importance in the context of the input sequence. Finally,
the weighted representations are fed to the output layer for
prediction.

1) BIiLSTM LAYER

The BiLSTM model concatenates the output of the forward
and backward LSTM cells at each time step, producing a
sequence of hidden states & = {hy, ha, ..., hr} where
T is the length of the input sequence. The forward LSTM
computes the hidden state sequence I:If for each time step ¢
using the input sequence (X;), the previous cell state H;_1 and
the hidden state H;.

Hy (X;) = LSTMy (Hy, H;—1) 3)

Similarly, the backward LSTM computes the hidden state
sequence h, for each time step 7 using the input sequence (X;)
and the next cell state Hy, 4+ expressed in Eq.6.

Hy (X;) = LSTM (X; — Hpr +1) ©)

Finally, the concatenated output of the forward and backward
LSTM layers is given by Eq. 7, where Hy and H) are
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the hidden state sequences computed by the forward and
backward LSTMs, respectively.

h=[H H) ™

2) ATTENTION LAYER

The objective of using attention layers is to enable the model
to focus on the most important parts of the input sequence
while ignoring the irrelevant parts. The architecture of the
proposed model incorporates an additive attention layer,
which takes input as the output from the previous BiLSTM
layer, which is a sequence of hidden states. The attention
layer then computes a set of attention weights for each hidden
state in the sequence. These weights indicate the importance
of each hidden state with respect to the current context and
are computed using a dense layer with a sigmoid activation
function, followed by a dot product operation between the
resulting attention probabilities and the hidden states.

More specifically, a dense layer with a sigmoid activation
function generates attention probabilities for each hidden
state in the BILSTM layer. These probabilities are then multi-
plied with their corresponding hidden states and summed up
to get the context vector, representing the input sequence’s
most important parts.

hi = tanh(W ,[hi_1 ; hiz1] + ba) (®)

Here, h; is the hidden state of the BiLSTM at time step i, W,
is the weight matrix of the attention layer, and b, is the bias
vector of the attention layer. The concatenation of the hidden
states of the BILSTM at time step i — 1 and i+ 1 is represented
as hi_1; hiy.

The energy score (e;) of the attention layer for time step i
is represented as e;, which is computed as the dot product of
the weight vector v, and the hidden state 4;.

ei=vl . h 9)

a

The attention weight (probabilities) assigned to the hidden
state at time step i is given by a;, which is computed as
SoftMax (e;).

a; = softmax (e;) (10)

Lastly, the final context vector ¢ uses the attention weights
a; to combine the hidden states 4; selectively. This context
vector ¢ encapsulates information from the input sequence
elements based on their relevance or importance determined
by the attention mechanism.

c= Zaixhi (11)

i=1

D. MODEL FUSION LAYER

The merging network layer in our proposed model takes
advantage of both CNNs and BiLSTM networks by com-
bining their outputs to create a new, more powerful model.
The output of each neural network is a vector representation
of the input text. To combine information from two models,

VOLUME 12, 2024



W. Sharif et al.: Enhancing Hate Speech Detection in the Digital Age

IEEE Access

TABLE 2. Hyper-parameters configurations.

Hyper-parameter Value
Embedding dimension (CNN & BiLSTM) 50
CNN layer 1 filter size 128
CNN number of filters 3
CNN layer 2 filter size 64
CNN number of filters 2
BiLSTM number of neurons 32
Dropout 0.5
Batch size 512
Learning rate 0.01
Optimizer Adam

an element-wise addition operation is performed between
the output tensors of the models. Let’s assume that the
output tensor from the CNN model is denoted as ycyy
and the output tensor from the BiLSTM model is denoted
as ypirstm- The element-wise addition operation between
can be represented as M = ycyy D YpiLstmy Where @
denotes the element-wise addition operation. This operation
involves adding the corresponding elements of both models to
obtain the corresponding elements in M. The resulting tensor
M represents the combined information from both models,
which is then fed into a final classification layer. This layer
is a dense layer with a sigmoid activation function, which
maps the input tensor to a probability distribution over the
hate speech or not.

V. EXPERIMENTAL CONFIGURATIONS

The experiments conducted in this study were executed on
Google Colab, utilizing a standard GPU and the Python
programming language. The SSD and LSD datasets were
partitioned into three subsets - for training, testing, and
validation by employing the 'train_test_split’ method. The
training dataset comprised 80% of the total data, while the
remaining 20% was equally divided between testing and
validation. Both models were equipped with an embedding
layer with an output dimension of 50 and multiple dropout
layers implemented to prevent overfitting. Additionally, early
stopping with patience of 5 was employed to mitigate
overfitting risks. The models were trained for 50 epochs
using the Adam optimizer [55], featuring a learning rate set
at 0.01 and a batch size of 512. Throughout the training
process, binary cross-entropy was utilized to compute the
validation loss of our models. These parameter settings were
chosen based on empirical experimentation, resulting in
high accuracy for our classification task. Detailed parameter
information is provided in Table 2.

To assess the performance of the models, accuracy,
precision, recall, and f-score were employed as the evaluation
metrics. The accuracy 12 is the ratio of the correctly classified
samples to the total number of samples. Accuracy alone
may not be sufficient to evaluate the model’s performance,
especially when the focus is on a particular target class.
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Therefore, precision 13, recall 14, and f-score 15 are
important metrics to consider as they provide insight into
how well the model can correctly identify hate content.
Precision measures the frequency of correct identification of
hate content by the model, while recall measures how well the
model can detect hate speech. F-score combines precision and
recall to give a balanced measure of the model’s performance.

TP + IN
Accuracy = (12)
TP + TN + FP + FN
. TP
Percision = —— (13)
TP + FP
TP
Recall = ——— (14)
TP + FN

2 X (Percision x Recall)
F — score = — (15)
Percision + Recall

VI. RESULTS AND DISCUSSIONS

After establishing the experimental configurations for CNN
and BiLSTM models across varying data lengths and
settings, the subsequent focus shifted to analyzing the results
obtained from these comprehensive evaluations. Each model
(CNN and BiLSTM) was tested under four distinct settings,
encompassing combinations of pre-trained and trainable
embedding layers, with and without the integration of word
ontology. Initially, both the CNN and BiLSTM models
underwent testing on the complete dataset, followed by
subsequent evaluations where the CNN model processed SSD
and the BILSTM model handled LSD. This process produced
four distinct outcomes for each dataset type, providing a
comprehensive understanding of the models’ performance
variations. Finally, a fusion model emerged, integrating short
sequence data into the CNN and employing long sequence
data within the BiLSTM model alongside an attention
mechanism. The results of the evaluation metrics, including
accuracy, precision and recall, are presented in the following
Table 3, providing insight into the effectiveness of our model
in identifying instances of hate speech.

As one can observe from the presented results, there are
notable variations in performance among the models and
their respective configurations. When CNN and BiLSTM
operated independently on the complete dataset (LSD +
SSD), their accuracies ranged moderately between 80 —
88%. Specifically, in terms of identifying hate speech, CNN
achieved precision rates between 75 — 87%, while BILSTM
exhibited precision rates from 77 — 87% for the hate class.

However, a significant shift occurred when these models
were separately trained on SSD and LSD. The precision for
hate speech notably improved by around 5 — 6% for both
CNN and BiLSTM when tailored to their respective sequence
lengths. This showcased the effectiveness of a data-driven
strategy, highlighting CNN’s suitability for shorter texts and
BiLSTM effectiveness for longer ones. These findings led
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TABLE 3. Performance evaluation of different model combinations of the proposed study.
Model Ontology Embedding | Accuracy Precision Precision Recall Recall
(hate) (not-hate) (hate) (not-hate)
CNNGssp+LSD v Pre-train 80 0.75 0.87 0.90 0.71
CNNssD+1L.SD X Pre-train 81 0.81 0.82 0.82 0.80
CNNGgsp+LSD v trainable 87 0.84 0.92 0.93 0.82
CNNGssp+LSD X trainable 84 0.86 0.82 0.87 0.81
CNNssp v Pre-train 80 0.81 0.77 0.82 0.76
CNNssp X Pre-train 79 0.80 0.78 0.85 0.71
CNNssp v trainable 84 0.85 0.82 0.87 0.80
CNNssp X trainable 88 0.85 0.92 0.92 0.83
BiLSTM + Attentionssp+L.Sp v pre-train 80 0.77 0.83 0.85 0.74
BiLSTM + Attentionssp1.sp X pre-train 83 0.80 0.87 0.89 0.77
BiLSTM + Attentiongsp+LsD v trainable 87 0.85 0.90 0.91 0.84
BiLSTM + Attention ssp+1.sD X trainable 88 0.87 0.89 0.89 0.87
BiLSTM + Attentiony sp v pre-train 86 0.84 0.88 0.84 0.87
BiLSTM + Attentiony sp X pre-train 86 0.84 0.88 0.84 0.84
BiLSTM + Attentiony sp v trainable 90 0.87 0.93 0.91 0.90
BiLSTM + Attentiony sp X trainable 92 0.90 0.94 0.94 0.90
Model Fusion (CNN, BiLSTM + Attention)sspsrsp | v pre-train 81 0.80 0.83 0.84 0.79
Model Fusion (CNN, BiLSTM + Attention)ssp+rsp | X pre-train 81 0.80 0.83 0.84 0.79
Model Fusion (CNN, BiLSTM + Attention)sspsrsp | v trainable 88 0.86 0.90 0.91 0.85
Model Fusion (CNN, BiLSTM + Attention)ssp+rsp | X trainable 89 0.88 0.90 091 0.88
CNN (SSD + LSD) CNN (SDD)
,: mmm Pre-Train Embedding (GloVE)
L

7 8 91011 1213 141516 17 18 1
epochs

/\

BILSTM (SDD+LSD)

——CNN 15D150D

CNN S5 e BLSTM LSD e Merge Model

FIGURE 4. Validation and training loss over different epochs.
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FIGURE 5. Performance comparison of embedding techniques.

to adopting a combined approach, leveraging CNN and
BiLSTM into a unified architecture.

The resultant unified model not only maintained a high
accuracy of 88 — 89% but also showcased an improvement in
precision for identifying hate speech by approximately 6—8%
compared to the individual performances on complete data.
This underlines the synergy achieved by integrating their
strengths, demonstrating a more comprehensive understand-
ing and adeptness in identifying hate speech content. Figure 4
displays the training and validation loss graphs for the
selected models and their comparative analysis. In Figure 4
(f), the validation loss comparison among CNN, BiLSTM,
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and the merged model reveals that CNN’s validation loss is
higher than BiLSTM. The merged model’s validation loss
falls between the two, aligning with expectations due to their
differing input sequence lengths.

Moreover, when comparing different ontology and
pre-trained embedding capacity settings, it was observed
that using trainable embedding led to a decrease in model
accuracy by 6 to 7%. Figure 5 illustrate the comparison
of both embedding capacity settings. On the other hand,
employing word ontology had a minor effect, decreasing
accuracy by only 1 to 2%.

The performance of the CNN model was also evaluated
with different text lengths, including 10, 20, and 30 words,
to determine the optimal length for the specific task. The
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TABLE 4. Performance comparison with state-of-the-art techniques using a subset of our employed datasets.

Paper Data Source DataSet References Performance
[56] Twitter SemEval-2019 task 5 [35] Accuracy 75.30, F-Score 0.70
[57] Stormfront, Twitter Gamback & Skider [58], Alatawi [57] Accuracy 84.00, F-Score 0.84
[59] Twitter Founta [60], Khan [59] Accuracy 80.00, F-Score 0.76
[61] Twitter, Web Forum Davidson [9], SemEval-2019 task 5 [35], [62] Accuracy 82.00, F-Score 0.78
[63] Twitter Gaikwad [63] F-Score 0.72
[64] Twitter Davidson [9], SemEval-2019 task 5 [35], Waseem & Hovy [21], Waseem [65], | Accuracy 89.00, F-Score 0.87
Ousidhoum [36]
[7] Twitter HASOC2019 - EN [37], Davidson [9], SemEval-2019 task 5 [35], ElSherif [66], | Accuracy 83.00
Ousidhoum [36], PMathur [67]
[51] Twitter Davidson [9] Accuracy 91.00, F-Score 0.80
[68] Twitter Waseem & Hovy [21] F-Score 0.88
[69] Twitter Waseem & Hovy [21] F-Score 0.74
[35] Twitter SemEval-2019 task 5 [35] F-Score 0.65
Proposed | Curated Dataset (Twitter, See table 1 Accuracy 89.00, F-Score 0.89
FaceBook, Stormfront)

= Length 10

80 = Length 20

= Length 30
60 1
40
204
0

F-Score

Precision Recall

Accuracy

FIGURE 6. Comparison of CNN model performance with different word
sequences.

model’s performance was similar for all three lengths,
as shown in Figure 6. However, splitting the data by 20 words
resulted in a balanced data distribution into two halves.

Further, for exploring the effectiveness of the proposed
approach, a comparison was made with an existing state-of-
the-art method. Table 4 compares the proposed fusion model
with earlier research studies that utilized any subset of the
dataset used in the current study. The comparison is made
in terms of accuracy and F-score. Researchers sometimes
presented their results separately for each dataset instead
of combining them. For such cases, the average of their
results was compared with our study. Moreover, in the case
of multilingual data usage by an author, only the results for
the English dataset were considered.

The comparative study presented highlights the superior
performance of the proposed merged model over previous

VOLUME 12, 2024

0.8900

0.8875

I 0.8850

F0.8825

[ 0.8800

Batch Size
Accuracy

F0.8775

F0.8750

0.8725

0.8700

Learning Rate

FIGURE 7. Impact of changing batch size and learning rate on the
accuracy.

studies, even when using the largest dataset. These results
suggest that the proposed model serves as a global model
that can train on a large, diverse dataset and provide better
predictions for the hate class.

In addition to the comparative study, further experiments
were conducted to test the performance of the proposed
model under different conditions. We also investigated the
impact of different hyper-parameters, such as batch size
and learning rate 1, on the accuracy and training time of
our model. We experimented with three values for each
hyper-parameter (128, 256, and 512 for batch size and
0.01, 0.001, and 0.0001 for learning rate), resulting in nine
combinations in total. These experiments aimed to assess the
robustness and versatility of the proposed model in different
settings.
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Figure 7 shows that the accuracy was almost invariant
to the changes in these hyper-parameters, indicating that
our model was robust and insensitive to them. However,
significant variability in training time based on the batch
size and learning rate was noted. Specifically, a decrease in
batch size or an increase in learning rate resulted in longer
training times (refer to Figure 8). This trade-off between time
and stability was observed, yet it did not impact the model’s
performance. Furthermore, the selected embedding technique
outperformed a pre-trained embedding

VIl. CONCLUSION

The unprecedented growth of social media platforms in
the digital age has introduced an alarming opportunity for
the swift dissemination of hate speech, posing a signifi-
cant threat to online discourse and community well-being.
To address this pressing issue, our research presents a novel
approach leveraging a comprehensive dataset comprising
over 0.45 million comments from 18 diverse sources, encom-
passing various digital platforms across different time frames.
Following thorough data preprocessing and balancing (by
employment data augmentation), a comprehensive analysis
revealed the presence of sentences ranging from 3 to
300 words in length. Recognizing the challenge of handling
such variable-length text, the dataset divided into two distinct
subsets based on sentence length—short sequence data (SSD)
and long sequence data (LSD). Our approach leveraged
previous research findings indicating that CNN performs
exceptionally well in classifying short sequence text, and
capturing local features effectively, while BiLSTM excels
in understanding the context of long sentences. To harness
these strengths, CNN models were trained for SSD and
BiLSTM models for LSD. Acknowledging the potential
for very long sequences in the LSD subset, an attention
mechanism was introduced to focus on the most relevant
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areas within sentences, thereby enhancing the BiLSTM’s
performance. After training each model individually, a model
fusion approach was employed to combine their outputs,
resulting in a unified model.

Notably, the effectiveness of proposed ensemble approach
is underscored by the results. Employing CNN for the entire
dataset yielded an accuracy of 81% with an F-score of
0.82 for hate class detection. However, when CNN was
exclusively applied to short text samples, the accuracy
soared to 88% with an F-score of 0.88. Similarly, the
exclusive use of BiLSTM for the entire dataset resulted in
an accuracy of 88% with an F-score of 0.88, while for
longer text, the accuracy reached an impressive 92% with
an F-score of 0.92. These findings vividly illustrate the
inadequacy of a single model for handling the diversity of
this problem effectively. By combining both models into a
unified framework, our approach achieved an outstanding
accuracy of 89%, showcasing the potential of model fusion in
addressing the hate speech detection challenge in the dynamic
digital landscape.

Furthermore, it is important to note that the success of our
approach extends beyond the specific task of hate speech
detection. The principles of leveraging diverse datasets
from various digital platforms and accommodating varying
post lengths, combined with model fusion, can be further
explored and applied to a wide range of text classification
tasks. Whether it’s sentiment analysis, topic categoriza-
tion, or content moderation, the methodology presented in
this study offers a promising avenue for enhancing the
efficiency and accuracy of text classification across the
digital landscape. Our research contributes to creating a
safer and more inclusive online environment and paves the
way for innovative solutions in addressing text classification
challenges that span different digital platforms with varying
post structures.
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