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ABSTRACT Coverage path planning is an important research direction for unmanned aerial vehicles (UAV),
which are primarily used in ground search or mapping scenarios. Although there have been a large number of
studies on UAV coverage path planning, there are still some problems in the cooperative work of multi-UAV
in complex environments under the constraints of energy consumption and work efficiency requirements of
UAV. To solve unnecessary energy loss when multiple UAVs jointly execute complex area coverage tasks
and improve the overall work efficiency of the UAV swarm. In this study, we simulated the situation of
multiple UAVs performing the mission of area coverage under the constraints of the corresponding energy
consumption in a work environment with no-fly zones. We propose the use of multiple UAV base stations
to provide takeoff and landing services for UAVs that perform missions. We proposed two algorithms. One
is the multi-base station multi-UAV cooperative coverage path planning algorithm with flexible obstacle
avoidance ability (MBS-MUCCPPAFOA), which performs coverage route planning from an entire area
using multiple base stations to perform multi-UAV area coverage tasks. The other algorithm is a multi-UAV
cooperative coverage path planning algorithm with flexible obstacle avoidance capability based on area
segmentation (MUAV-CCPPAFOA-AS), which divides the entire work area and performs coverage path
planning for each sub-area to perform multi-UAV area coverage tasks. We compared the proposed algorithm
with the common scanning coverage path planning algorithm, and proved the robustness of the proposed
MBS-MUCCPPAFOA and MUAV-CCPPAFOA-AS algorithms.

INDEX TERMS Cooperative unmanned aerial vehicle teams, coverage path planning problems, CPP,
path planning, multiple traveling salesmen problems, MTSP, predictive task assignment, task allocation,
unmanned aerial vehicles, UAV.

I. INTRODUCTION
With the development of artificial intelligence and remote
sensing technology, UAV technology is becoming increas-
ingly mature, and its reliability, convenience, and practicality
are greatly enhanced. With the gradual opening of low-
altitude airspace, UAVs can play more roles and become
increasingly critical. UAVs play an increasingly important
role in ground surveillance and have been widely used
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in multiple scenarios [1], such as cargo delivery [2],
damage assessment [3], [4], mapping [5], [6], crop growth
collection [7], [8], and personnel search and rescue [9].
When the UAV completes the aforementioned tasks,

it must fly along a specific path, which involves a path
planning issue. Route planning of UAV can be separated
into two groups based on various planning requirements
and objectives: path planning to accomplish the beginning
point to the endpoint [10] and path planning to achieve
regional coverage [11]. Path planning from the starting point
to the endpoint is mostly applied to UAV delivery, UAV
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FIGURE 1. Unobstructed area coverage path.

FIGURE 2. Example of domain decomposition (cell decomposition).

near-ground strikes, and route modification of civil aviation
aircraft [12]. In these problems, the UAV has a definite
starting point and ending point and only needs to consider the
obstacles between the two points and adopt certain methods
to generate the path, and its technology is relatively mature.
In contrast to path planning from the starting point to the
endpoint, path planning aimed at regional reconnaissance
coverage must consider more constraints and deal with global
information. In the case of zone accessibility, simple actions
are usually required to meet the coverage needs. One of the
most common coverage methods is the reciprocating path
method, as shown in Fig. 1(a), which is simple and guarantees
complete coverage. Another common method is the spiral
path [13], as shown in Fig. 1(b), which starts from the central
point of the region and extends outwards along the spiral line.

When there are obstacles or no-fly zones in the target area
in addition to the barrier-free area, it is necessary to divide
it from the barrier-free area, that is, area decomposition.
Reference [14] first proposed a grid-based method for
decomposing the working domain into a uniform set of grid
cells. Each grid cell uses a value that indicates whether
an obstacle exists at the corresponding location. This value
can be binary or probabilistic. Each grid cell can be
square, triangular, or hexagonal. Methods such as grid
partitioning are also classified as cell decomposition methods
because they are spatially uniform. Fig. 2 shows an example
of a cell decomposition. Domain decomposition decom-
poses the entire working area into simple, non-overlapping

sub-regions. The union of all sub-regions fills the available
space. These sub-regions without obstacles can be covered
by UAV with simple actions. Areas with obstacles must
be bypassed. Methods involving domain decomposition
generate the covering paths in two steps. First, the space
is decomposed, and the result is organized in the form
of an adjacency graph. The most important method for
domain decomposition is to determine the covering order of
the domain. Coverage path planning requires avoiding all
obstacles in a given target area and planning a continuous
and uninterrupted UAV flight path covering all points in the
environment [15]. After the UAV completes the flight by the
planned path, it can traverse the target area and complete
related tasks such as regional target reconnaissance, hazard
monitoring, and map construction [16], [17], [18].

Path planning and task cooperation are two key issues for a
UAV swarm to perform coverage path planning (CPP) tasks.
UAV swarm path planning is usually defined as a function
optimization problem under complex constraints. By solving
the optimal solution or sub-optimal solution of the objective
function, an optimal or sub-optimal path from the starting
point to the goal point is found for each UAV. The path
needs to satisfy the characteristics of high computational
efficiency and low cost of UAV flight. Task cooperation is
the basis for ensuring that the UAV swarm completes a task.
Usually, an overall task is decomposed into multiple sub-
tasks, which are then assigned to each UAV. Task cooperation
requires that each UAV can work together to complete the
specified overall task while satisfying complex conditions
and the shortest flight distance. In previous studies, the task
allocation problem of a UAV swarm was usually transformed
into integer programming and assignment problems, multiple
traveling salesman problems, and vehicle routing problems.
These problem transformation schemes can provide certain
references and inspiration for our CPP task in Multi-UAV.
In a real scene, it is often necessary to search and scan
multiple discrete areas distributed over a wide range of
areas, and it is not feasible to rely solely on drones with
limited endurance. The vehicle is used as the loading base
station for multiple UAVs, and the mode of cooperation
between the vehicle and multiple UAVs can significantly
expand the effective scanning radius. The collaborative mode
of vehicle-mounted UAV was first proposed in [19]. In the
area scanning task, the vehicle needs to carry multiple UAVs
close to the target area and select a suitable parking point to
release and recover the UAV. This approach can significantly
reduce the drone’s working time and improve the efficiency
of the mission. In this study, we plan the deployment location
of the base stations for UAVs to improve their overall
efficiency.

OUR CONTRIBUTION
In this study, we focus on the path planning problem for
multiple UAV coverage in a working area with a no-fly area
and the corresponding solution algorithm. The main results
of this study can be summarized as follows:
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• The simulation environment was clearly defined, and
the UAV swarm coverage path planning problem was
transformed into a function optimization problem under
complex constraints. Aiming at the proposed work
area coverage search problem with a no-fly zone,
the previously proposed Multi-UAV cooperative search
algorithm was improved.

• We propose a new coverage path optimization method,
that adds multiple UAV departure base stations to the
work area, uses different base stations as the main
departure base stations, plans the coverage path of the
work area, and selects the optimal coverage path.

• We propose two heuristics to satisfy the full coverage
search of the working area from the overall and regional
segmentation perspectives.

The remainder of the paper is organized as follows: In
Section II, we describe the research background of this study
and related research work on Multi-UAVs. In Section III,
we propose several heuristic multi-UAV cooperative search
algorithms that are mainly used to improve the collaborative
work efficiency of multiple UAVs. In Section IV we present
the results of our evaluation and analysis of the proposed
algorithm. Section V concludes the paper.

II. LITERATURE REVIEW
In this section, we discuss the related advantages of
Multi-UAV coverage path planning review the existing
techniques on UAV coverage path planning, and discuss the
remaining problems.

Because the entire effort is dispersed, deploying many
UAVs can considerably shorten task completion. Many UAVs
studies offer advantages in coverage path planning [20].
The use of multiple UAVs can improve the robustness of
the entire UAV system, and the failure of some UAVs can
be compensated for by other UAVs. Cluster intelligence
algorithms have been widely used in multi-coverage path
planning problems; for example, [21] improves the dis-
tributed ant colony algorithm and proposed an intelligent
self-organization algorithm for the collaborative search task
of multiple UAVs. Each UAV is given the ability to make
autonomous decisions, and the algorithm is highly real-time,
flexible, and reliable; however, it has too many limitations in
practical applications. A swarm of UAVs was used in [22]
to conduct an online search in an uncharted area. This
method can guarantee the broadest possible coverage in
an emergency; however, it cannot ensure total coverage.
Therefore, academics focus more on work allocation-based
methodologies. These techniques expand the coverage route
planning method for a single UAV to several UAVs by
employing specific tactics to distribute duty burden. Thework
area can be divided into several sub-areas according to the
initial position of the UAVor the percentage of the search area
for each UAV, which allows each UAV to search its sub-area
and select the appropriate route to reduce the redundancy
of the search path. This method focuses on the coverage of

the UAV in a single cell and the allocation method of the
UAV among cells. Task allocation can provide ideas for our
research.

Many researchers have studied cooperative search cov-
erage algorithms for UAVs. Some existing approaches for
UAV environment coverage and partition optimization are
summarized below. The planning algorithm based on the
spiral spanning tree proposed in [23] reduced the traversal
overlap, but the number of planned path turns increased,
resulting in a longer path distance. Reference [15] proposed
that a full coverage path can be obtained by cell decomposi-
tion [24], which reduces the difficulty of planning. However,
the decomposition method, establishment of the adjacency
graph, and selection of full coverage of sub-regions need to
be further considered. Aiming at the low coverage rate of
the sub-regions, [25] proposes full coverage planning based
on the backtracking method, which has the advantages of
high operation efficiency and low repetition rate, but it is
difficult to establish this backtracking mechanism. In [26],
an improved potential field grid algorithm was proposed
by combining the grid method and the distance conversion
method, which solved the problem of the high computational
complexity of the path; however, the effect of the planned path
in the large working area was poor and the coverage rate was
low. Reference [27] proposed a full coverage path planning
method based on the grid method, which can prevent the
robot from falling into a dead zone and can effectively avoid
obstacles; however, the algorithm is complex and requires a
large amount of calculation.

Scanning and spiral routes are the two primary types of
routes used in the conventional full-coverage path planning
method. Although the route is straightforward and quick
to execute, there are issues such as path redundancy and
poor coverage. Therefore, the Multi-UAV cooperative search
coverage path planning algorithm proposed in this paper is
based on the MUCS-BSAE (Multi-UAV Cooperative Search
Algorithm Based on Binary Search Algorithm with Energy)
algorithm [28]. By confirming the unit position of the no-fly
area in the work area where the original planned route
is located, and then using the four-domain A* algorithm
sub-region for secondary planning, the coverage path of the
sub-region is obtained, and the adjacent path is established,
to complete the planning path of the entire work area.

III. MULTI-UAV COVERAGE PATH PLANNING PROBLEMS
AND ALGORITHMS
In this section, we define the environment of the coverage
path planning problem. We specify the goal of our algorithm,
which is to satisfy the requirement of covering the entire
working area and minimizing the work time, and then detail
the heuristics we propose separately.

TASK SCENARIO DESCRIPTION
In a previous study [28], we used the ‘‘square wave signal’’
path to perform distributed scanning of the open working area
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for multiple UAV groups. However, in real situations, there
are often no-fly areas for obstacles in the scanning area, and
the UAV must avoid them according to the actual situation.
Furthermore, in an actual UAV search-coverage mission, the
environment is very complex. To establish a quantifiable
mathematical model, it is necessary to abstract and simplify
an environmental model. We ignored the flying altitude of
the UAV and used an onboard camera sensor to search and
detect the environment and targets. The camera sensor detects
the ground, as shown in Fig. 3. Therefore, the search area
in this study does not consider the height information, and it
is assumed to be a two-dimensional planar graph. Therefore,
based on our previous research, we simulated a target area
with obstacles or no-fly areas. The working area is typically
rectangular in practical UAV search coverage operations;
therefore, we define the working area as a rectangular area
with length L andwidthW . Different UAVs are equippedwith
different onboard camera sensors, so the radius of the area
that can be detected by the camera sensor is also different.
We define the radius that the camera sensor can detect as
R, and the area that the camera sensor can see is a square
with side length D = 2R. We used the unit area that the
camera sensor can detect as a grid to decompose the entire
working area into cells. To maximize the coverage of the
entire rectangular working area, when the length L and width
W of the area cannot be divided by D integers, they are
assigned according to the following formula:

m =

{
L//D, X mod D = 0
L//D+ 1, otherwise

n =

{
W//D, X mod D = 0
W//D+ 1, otherwise

(1)

The work area can be divided into a grid of m ∗ n
dimensions. The cell in the grid row i and column j is
designated as (i, j). Consequently, the center position of cell
(i, j) is Ci,j = (i×D+ R, j×D+ R). We define the working
region as SPACE and use one-hot encoding to represent the
state of the cell region in SPACE . We use numerical mapping
for different cell states: when a cell is not the UAV is explored
and when there are no obstacles within the cell, the cell state
Cstateis identified as 0. When there is an obstacle in the cell,
the current cell-cell state Cstateis identified as 2. If a cell
identified as 0 is explored by the drone, the cell state Cstateof
that cell is converted to 1. The rest of the aircraft does not
scan the cell again when it passes through the cell. We can
express the state of every cell in this target region as an m×n
dimensional matrix as follows:

SPACE(x, y)→
Cstate (0,n−1) Cstate (1,n−1) · · · Cstate (m−1,n−1)

...
...

...

Cstate (0,1) Cstate (1,1) · · · Cstate (m−1,1)

Cstate (0,0) C state (1,0) · · · Cstate (m−1,0)

 (2)

FIGURE 3. Illustration of the UAV search.

In SPACES, the number 1 represents the cell that has
been explored and the number 2 represents the cell with an
obstacle, and the number 0 represents a cell that has not yet
been scanned. Here’s an example:

SPACES →

1, 1, 1, 1, 1, 1, 1, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 2, 2, 2, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0


(3)

THE BASIC PATH OF COVERAGE PATH PLANNING
In our previous study [28], we designed fiveUAVflight paths:
(1) Snake curve path, (2) ‘‘Square wave signal’’ curve path,
(3) Piano curve path, (4) Hilbert curve path, and (5) Moore
curve path. By comparing the simulation results, we found
that the ‘square wave signal’’ curve path is a near-optimal
path to the other flight paths.
So in this study, we adopt the ‘‘Square wave signal’’ curve

path as our basic path. Here, we briefly introduce the ‘‘Square
wave signal’’ curve path. The work area is divided by the cell
area, which can appear as odd or even numbered columns
in two cases. When divided into even columns, the UAV
enters the nearest cell region from starting position S. It first
moves to the leftmost cell area of the spatial area, moves in
the form of a ‘‘square wave signal’’, and then completes the
cell area coverage search task in the row closest to the UAV
departure base station and returns to the starting position S.
When dividing the odd sequence, the procedure is the same as
the even column, but when the UAV reaches the penultimate
column opposite to the starting position, the UAV will make
a ‘‘square wave signal’’ shape move to the side close to the
starting position. The unmanned vehicle reaches the cell area
in the row closest to the departure base station of the UAV
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TABLE 1. Simulation parameters.

with a step length D, completes the detection task in the
last part, and returns to the starting position S, as shown in
Fig. 4. The ‘‘square wave signal’’ curve path planning path is
denoted as P = [P0,P1, . . . ,Pmn−1], and the ith cell under
the ‘‘square wave signal’’ path rule is Pi.
Because several UAVs cover a work area, they work

together to jointly complete the task of covering it. UAVs
are all information collectors because they perform the
same functions. The entire environment can be divided,
and each UAV is given a responsibility area, to make the
work of each UAV more apparent and to limit the behavior
dependence between the aircraft. Each aircraft conducts
the partition coverage task and plans the coverage path
for its defined partition. Controlling this situation depends
on how effectively the entire area can perform a coverage
task. If the assigned workload is unbalanced (the size of
the division is varied) for a set of aircrafts with the same
capability, the coverage period of various partitions will vary.
Therefore, temporal consistency, which is merely used as
a trajectory constraint for the flight path of our proposed
Multi-UAV cooperative coverage path planning algorithm is
not necessary. It is possible that the working time is not
synchronized when the UAVs in the formation work together
to fulfill the coverage task in a particular area. The operating
time of the last drone returning to the base station is used as
the operating time of the swarm. We define some parameter
values in Tab 1.

OBSTACLE AVOIDANCE RULES FOR PATH
We adopt the ‘‘Square Wave Signal’’ curve path as our base
path. The UAV carries out coverage search work in the work

area where there is a no-fly zone or obstacle. The UAV flight
roadbed needs to make the UAV avoid the obstacle or no-fly
zone and bypass the obstacle or no-fly zone to the next cell
area that can be reachedwith in the shortest possible time. The
traditional four-domain A* algorithm was used. Four-domain
A* can avoid obstacles more effectively than eight-domain
A*. In Fig. 5, the black solid line represents the path, the blue
arrow solid lines represent the planned path, the black arrow
dotted line represents the shortest path of obstacle avoidance,
and the red areas are unable to reach areas.

In UAV path planning, if the original path cannot reach
the next cell area in Pcurrent , the original path searches
for the Ptarget that can be reached. The shortest path from
Pcurrent to Ptarget was calculated as a new path according to
the A* algorithm. The shortest path from Pcurrent to Ptarget is
calculated according to the A* algorithm as a new path to
replace the no-fly area or cell area where the obstacle is
located.

Therefore, the flight path P̂ of the UAV in the working area
with obstacles or no-fly areas is different from the number
of cell areas passed by the original flight path P of the UAV
based on the ‘‘SquareWave Signal’’ curve path planning. The
path of the UAV is denoted as P̂ = [P̂0, P̂1, P̂2, . . . , P̂x]. P̂i
denotes the it̂h cell on the path, and dist(P̂i − P̂i+1) denotes
the Euclidean distance between the two points.

We set the overall maximum working time Maxtime as
the time when one UAV can completely explore all the cell
areas in the coverage area without an energy consumption
limitation. We define the moving speed of the UAV as V ,
the UAV starts the scanning task from the starting point with
the speed V , and every time it reaches a cell region with
state 0, it hovers for HT seconds to scan the cell region and
take photos. We define T1 is defined as the time required for
the UAV to move from starting point S to the first target cell
area. If the P̂0 cell state is 1, the UAV moves to the P̂0 cell
area but does not hover to scan and capture photos. The time
consumed by the UAV was dist(P̂0−S)

v . If the state of P̂0 cell
is 0, the UAV needs to hover for HT seconds to capture a
picture and scan the cell. The consumed time dist(P̂0−S)

v + t ,
from cell i to cell i+ 1 is expressed as follows:

Ti,i+1 =


HT +

dist(P̂i+1 − P̂i)
v

if P̂i+1 cell state is 0

dist(P̂i+1 − P̂i)
v

if P̂i+1 cell state is 1

(4)

The time taken to return from the last cell to the starting
point is represented by Tback =

dist(P̂x−S)
v . Therefore, the

following is the expression of the time consumed by the UAV
to complete all cell scanning tasks:

Maxtime = T1 +
x−2∑
i=1

Ti,i+1 + Tback (5)

When assigning a working path to each UAV using path
P̂ generated by the obstacle avoidance rule as its working
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FIGURE 4. ‘‘Square wave signal’’ curve path.

FIGURE 5. A* Algorithm strategies for avoiding obstacles.

path, the previous UAV returns to the starting point S at
P̂i−1. According to the planning of the working path, the next
UAV continues the allocation from P̂i which causes UAV to
carry out unnecessary energy consumption tests. Therefore,
to reduce unnecessary energy consumption, the next UAV
flies to P̂target from starting point S as shown in Fig 6.

When the UAV avoids obstacles, if the new path contains
the cell area inside the working area, the UAV will scan the
cell area; if it contains the cell area outside the working area,
the UAV will not scan the cell area outside the working area.
The process of obstacle avoidance flight allows the cell areas
with lower coverage order in the original path P to be covered
and searched in advance. To reduce the unnecessary energy
loss caused by repeated scanning of the UAV, the UAV will
not hover to search these cell areas again. Because the work
areas have obstacles, the UAV cannot return to the position
of base station S, therefore every cell in the subsequent scans
of the area before the UAV was calculated based on the A *
algorithm from the next cell area the energy for the position
back to base station S.

A. MULTI-UAV COOPERATIVE COVERAGE PATH PLANNING
ALGORITHM WITH FLEXIBLE OBSTACLE AVOIDANCE
ABILITY
In this section, based on the MUCS-BSAE Algorithm [28],
we propose a Multi-UAV cooperative coverage path planning
algorithm with flexible obstacle avoidance ability, called
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FIGURE 6. Obstacle avoidance strategy.

MUAV-CCPPAFOA. We set the starting position S of the
UAV to be directly below the Cstate ((m−1)//2,0) cell on one side
of the overall work area, as shown in Fig. 4. We define the
number of UAV as N , the initial energy of the UAV as E ,
the moving speed of the UAV as V , the energy consumed per
second at the current speed V is SEL, the hovering scanning
time of the UAV is HT , the energy consumed per second
during the hovering scanning is HTEL, and the UAV must
return to the base station S position when its own energy is
insufficient.

Because of the existence of obstacles or no-fly areas in the
work area, returning directly from P̂i to starting position S
in a straight line or reaching P̂i from starting position S in
a straight line may pass through the no-fly area or collide
with obstacles. Therefore, the UAV must find the path from
position P̂i to starting position S through the A* algorithm to
avoid accidents during the return process and stray into the
no-fly area. First, we assign each drone work time T , when
UAVs from position P̂i moved to P̂i+1, need to be calculated
and deducted from P̂i to P̂i+1 moves needed to consume time.
Then, according to P̂i+1 position state determines whether
to hover scan, if P̂i+1 position status to 0 to deduct in the
position of P̂i+1 the time required to hover the scan, if P̂i+1
position state to 1 is not required. The time required to
return to starting position S from P̂i+1 must be calculated
and deduced according to the A* algorithm. If the current
remaining working time T of the UAV cannot satisfy the
above conditions, the UAV immediately returns to starting
position S from P̂i. If the rest of the work time satisfies
the above conditions, the UAV from P̂i moved to P̂i+1, and
deducted from the P̂i moved to P̂i+1 consumed time, and
based on the P̂i+1 position state, choose whether to deduct the
time of the hover scan. We use the binary search algorithm as
the basis, and takeMaxtime as the overall maximum working
time of the UAV to assign an appropriate working time T to
each UAV and assign an appropriate flight sequence of the
cell area. Simultaneously, we calculate whether each UAV

FIGURE 7. MUAV-CCPPAFOA algorithm UAV coverage path assignment
example diagram.

can complete the assigned task at a given time T according
to the energy consumption. If a UAV has not completed the
task, it indicates that the current working time T is too high.
The UAV cannot complete the task based on the current
energy consumption, and the assigned working time must
be reduced. If all the UAVs have been assigned tasks and
the UAVs can successfully complete the tasks under the
current energy consumption, it proves that the UAVs can
successfully complete the assigned tasks under the current
energy consumption to ensure that the UAVs can achieve
the purpose of the shortest working time of the entire UAV
group under the energy consumption. TheUAV coverage path
assignments are shown in Fig. 7. Pseudocode as in Algo. 1.

B. MULTI-BASE STATION MULTI-UAV COOPERATIVE
COVERAGE PATH PLANNING ALGORITHM WITH FLEXIBLE
OBSTACLE AVOIDANCE ABILITY
In the study in Section III-A, the UAV flies from the base
station location S to a location with a long distance or returns
to the base station location S from a location with a long
distance, which consumes a lot of energy and time. In view
of this situation, we propose a Multi-base station Multi-UAV
cooperative coverage path planning algorithm with a flexible
obstacle avoidance ability, called MBS-MUCCPPAFOA.
This algorithm uses multiple base stations to provide a path
assignment scheme for UAVs.We set four fixed base stations,
S = S0, S1, S2, S3around the target area to support UAV
take-off and return. The four base stations were located at the
center of the edge of the target working area. When the UAV
performs the search coverage task, it calculates the nearest
base station assigned to the current position as the departure
and return base stations of the UAV. Let dist(a, b) be the
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Algorithm 1MUAV-CCPPAFOA

Input:Maxtim, P̂, SPACE , V , E , HT , S, SEL, HTEL, N
Output: PDrones, t
1: L← 0
2: U← Maxtime
3: LPDrones← []
4: while True do
5: t← L+U

2
6: PDrones← []
7: for i = 1 to N do
8: Tu← t
9: LP← S
10: Pu← []
11: j← 0
12: while True do
13: C← P̂[j]
14: Cstate Find the state of C in SPACE
15: tc←

dist(LP,C)
V

16: if Cstate is 0 then
17: tc←

dist(LP,C)
V +HT

18: tb, Listb //time and path coordinates of C back
to S

19: if Tu ≥ tc + tr then
20: tu← tu − tc
21: Cstate← 1
22: C append to Pu
23: LP← C
24: else
25: Add the path coordinates of LP back to S

to Pu
26: break
27: j← j+ 1
28: Remove the travelled point from P̂
29: P̂[: 1]← path coordinates of S move to C
30: if 0̸∈ SPACE ′ and LPu ≥ Pu then
31: U← t
32: LPu← Pu
33: if 0 ̸∈ SPACE ′ and LPu = Pu then

34: if ∀i ∈ {1, 2, . . . ,N },
n∑
j=1

Eij ≤ E then

35: break
36: U← t
37: if 0 ∈ SPACE ′ then
38: L← t

return PDrones, t

path distance between two points a and b based on the A*
algorithm. The base station closest to the current location can
be found as follows:

n∗ = argmin dist (Sn,Pcurrent) (6)

Similar to the MUAV-CCPPAFOA algorithm, this algorithm
must allocate the flight sequence of each UAV’s cell area
according to the assigned working time T . When assigning

a path to the first drone, the drone flies from the starting
position S to P̂0, and when the drone needs to move from
P̂i to P̂i+1, it is necessary to calculate the time consumed to
move from P̂i to P̂i+1 and the time consumed to move to P̂i+1
based on the P̂i+1 position state to choose whether to deduct
the time needed to hover and scan, and to calculate the time
consumed to each base station S = S0, S1, S2, S3 while in
position P̂i+1, and to choose a base station to return with
the least amount of time needed to be consumed. If the
current remaining working time of the UAV satisfies the
above conditions, the UAVmoves from P̂i to P̂i+1and deducts
the corresponding time, and deducts the time needed to hover
and scan according to the position state of P̂i+1. If the current
residual energy or working time of the UAV cannot meet
the above conditions, the UAV returns from P̂ito the nearest
base station from P̂i. The second UAV then starts from the
base station returned by the previous UAV and continues
to allocate the remaining exploration tasks, the rest of the
UAV, etc. In addition to the MUAV-CCPPAFOA algorithm,
binary search technology is used to calculate whether each
UAV could complete the assigned task at a given time
T according to the energy consumption. If the assigned
task cannot be completed, the allocated time T is further
reduced. Ensure that the UAV can successfully complete the
assigned task under the energy consumption. The different
locations of obstacles or no-fly areas in the target area
increase the overall path complexity, resulting in a change in
the overall working time of the UAV. So in this algorithm,
we respectively use the ‘‘square wave signal’’ curve for
path planning at different base stations S = S0, S1, S2, S3
and calculate the overall working time of the UAV group
by MBS-MUCCPPAFOA algorithm. The scheme with the
shortest overall time consumption was selected as the final
execution scheme for the MBS-MUCCPPAFOA algorithm.
The UAV coverage path assignments are shown in Fig. 8.
Pseudocode as in Algo. 2.

C. MULTI-UAV COOPERATIVE COVERAGE PATH PLANNING
ALGORITHM WITH FLEXIBLE OBSTACLE AVOIDANCE
CAPABILITY BASED ON AREA SEGMENTATION
In Section III-B, we take the work area as a whole to
carry out path planning, and set up four fixed base stations
S = S0, S1, S2, S3 to support the UAV group to complete
the scanning coverage work cooperatively. In this section,
we propose a Multi-UAV cooperative coverage path planning
algorithm with flexible obstacle avoidance capability based
on area segmentation called MUAV-CCPPAFOA-AS. The
work area is divided into four regions: Areaslist = {a, b, c, d}
by region division, path planning is carried out for each
region, and each base station corresponds to a single region
for path planning and coverage search.

The work area was divided according to the following
rules. The first area consists of all cells in column 1 through
columnmid and all cells in row 1 through rowmid . The second
region consists of all cells in the columns columnmid +
1 through m and all cells in row 1 through rowmid . The third
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Algorithm 2MBS-MUCCPPAFOA

Input: Maxtim, P̂, SPACE , V , E , HT , S, Listsrc, SEL, HTEL, N
Output: PDrones, t
1: L← 0
2: U← Maxtime
3: LPDrones ← []
4: while True do
5: t← L+U

2
6: PDrones ← []
7: for i = 1 to N do
8: Tu ← t
9: LP← S

10: Pu ← []
11: j← 0
12: while True do
13: C← P̂[j]
14: Cstate Find the state of C in SPACE
15: tc ←

dist(LP,C)
V

16: if Cstate is 0 then
17: tc ←

dist(LP,C)
V +HT

18: Select the nearest to the C from Listsrc as S
19: tb, Listb //time and path coordinates of C back

to S
20: if Tu ≥ tc + tr then
21: tu ← tu − tc
22: Cstate ← 1
23: C append to Pu
24: LP← C
25: else
26: Add the path coordinates of LP back to S

to Pu
27: break
28: j← j+ 1
29: Remove the travelled point from P̂
30: P̂[: 1]← path coordinates of S move to C
31: if 0̸∈ SPACE ′ and LPu ≥ Pu then
32: U← t
33: LPu ← Pu
34: if 0 ̸∈ SPACE ′ and LPu = Pu then

35: if ∀i ∈ {1, 2, . . . ,N },
n∑
j=1

Eij ≤ E then

36: break
37: U← t
38: if 0 ∈ SPACE ′ then
39: L← t

return PDrones, t

region consists of all cells in column 1 through columnmid and
in row rowmid + 1 through n, and the remaining cells are the
fourth region. columnmid and rowmid can be obtained by:

columnmid =

{
m/2 m is even number
m//2 m is odd number

rowmid =

{
n/2 n is even number
n//2 n is odd number

(7)

We set two base stations in advance in the outer center
position of each divided area belonging to the edge of the
overall working area BSlist = {a : {a1, a2}, . . . , d :
{d1, d2}}, and use the ‘‘square wave signal’’ curve for path
planning based on each area of the two base stations to

FIGURE 8. MBS-MUCCPPAFOA algorithm UAV coverage path assignment
example diagram.

generate two working paths AreasP̂: {a : {a1 : P̂a1 , a2 :
P̂a2}, . . . , d : {d1 : P̂d1 , d2 : P̂d2}}. The different locations
of the obstacles or no-fly areas in each divided area may
affect the working time of the entire working area. To find
an unmanned path allocation scheme that reduces the overall
working time of the UAV, similar to the working scheme of
the overall target area, this study compared the path planning
through the ‘‘square wave signal’’ curve algorithm at different
base stations and the work allocation for each UAV through
the MUAV-CCPPAFOA algorithm, and selected a group of
schemes with the least overall time consumption as the final
execution scheme of the UAV group. The UAV coverage path
assignments are shown in Fig. 9. Pseudocode as in Algo. 3.

IV. PERFORMANCE EVALUATION
In this section we compare the performances of the proposed
algorithm in detail. First, we describe the parameters and
settings of the simulation scheme and then analyze the
comparison results and evaluate the performance of the
algorithm.

A. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS
UNDER DIFFERENT WORK AREA SIZES
To more clearly demonstrate the robustness of our proposed
algorithm, we used the most common scanning coverage path
planning algorithm with only one UAV base station as the
baseline algorithm for comparison (as shown in Fig. 1(a)),
and also provided the same obstacle avoidance ability. In this
paper, we call this the Multi-UAV scanning coverage path
planning algorithm (MUSCPP). In our research, the path
based on the proposed Multi-UAV coverage path allocation
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FIGURE 9. MUAV-CCPPAFOA-AS algorithm UAV coverage path assignment
example diagram.

algorithm is the ‘‘Square Wave Signal’’ curve path, and
the ‘‘Square Wave Signal’’ curve path has four cases.
To demonstrate the performance of the algorithm more
comprehensively, we will show the four cases.

The working area size was set according to Table. 2. We set
the number N of UAVS as 8, the initial energy E of UAVS
as 100%, the flying speed V of UAUs as 5m/s, the energy
consumption SEL as 0.110% per second when the speed is
5m/s, the coverage radius R of the camera sensor of UAVS
as 25m, the hovering time HT of C area of each cell in the
working area was set 1 second and the HTEL of hovering
time was 0.0757%. The number of areas with obstacles in
the working area was defined as 10. We set the positions
of obstacles in the work area to be randomly generated,
simulated and tested 10 times for each work area size, and
averaged the time for the UAV to complete the coverage of
the entire work area.

Fig. 10, Fig. 11, Fig. 12 and Fig. 13 show the results
of the simulation experiments. It can be easily found
from the four figures that MBS-MUCCPPAFOA algorithm
and MUAV-CCPPAFOA-AS algorithm with multiple base
stations can significantly improve the robustness of multiple
UAVS to perform coverage tasks. Fig. 11 and Fig. 12 show
the test results for a working area with the same area but
different aspect ratios. From the results, the performance
of the MUSCPP and MUAV-CCPPAFOA algorithms with
only one base station is significantly affected by the change
in the division of the cell area in the working area,
whereas the performance of the MBS-MUCCPPAFOA and
MUAV-CCPPAFOA-AS algorithms is less affected. Fig. 10,

Algorithm 3MUAV-CCPPAFOA-AS

Input: AreasP̂, SPACE , V , E , HT , SEL, HTEL, N
Output: AllBestP, T
1: AreasP̂: {a : {a1 : P̂a1 , a2 : P̂a2}, . . . , d : {d1 : P̂d1 , d2 :
P̂d2}}

2: tmax ← 0
3: PDrones← []
4: for AreaP̂ ∈ AreasP̂.values() do
5: tmin←∞
6: for S, P̂ ∈ AreaP̂.items() do
7: Maxtime← Equation (5)
8: DronesP, Time← Algo.1(Maxtime, P̂, SPACE ,
V , E , HT , S, SEL, HTEL, N )

9: if Time < tmin then
10: tmin← Time
11: BestP← DronesP
12: if tmin ≥ tmax then
13: tmax ← tmin
14: BestP append to PDrones
15:

return PDrones, tmax

Fig. 11 and Fig. 12, it is not difficult to find that the
performance of MUAV-CCPPAFOA-AS algorithm is always
stronger than that of MBS-MUCCPPAFOA algorithm.
In Fig. 13, we can see that the performance of algorithm B
is still better than that of algorithm A when the working area
is 750m × 750m and 850m × 850m, but the performance of
algorithm B is slightly inferior to that of algorithm A when
the working area is 650m× 650m and 950m × 950m. When
the working area was 950m× 950m, the MUSCPP algorithm
could not complete the coverage task of the working area
under the same parameters as the other algorithms.

B. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS
OF DIFFERENT ENVIRONMENTAL COMPLEXITY IN THE
WORKING AREA
To evaluate the performance of the algorithm for different
complexities of the working environment, we set the number
of obstacles in the working area to 5, 10, 15 and 20,
respectively. The working area is set to meet the four cases
of the square wave signal curve path: 800m× 800m, 800m×
850m, 850m×800m, and 850m×850m.We let the positions of
the obstacles be randomly generated and simulated 10 times
for different numbers of obstacles. The other parameters were
consistent with those in SectionIV-A.

In view of Fig. 13, we observed the results of ten simulation
experiments in detail. Because the MUAV-CCPPAFOA-AS
algorithm divided the area into four sub-areas, and then
carried out UAV coverage search work, and the position
of obstacles was randomly generated, it was possible that
obstacles were concentrated in a certain sub-area, resulting
in a much higher environmental complexity in this area than
in other sub-areas, resulting in a longer overall work.
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FIGURE 10. Work area divided into even rows and columns.

FIGURE 11. Work area divided into even columns and odd rows.

FIGURE 12. Work area divided into odd columns and even rows.

To accurately and stably show the discrete distribution of
experimental results in different complexity working areas,
we used box plots to show the results of the simulation
experiments. Fig. 14, Fig. 15, Fig. 16 and Fig. 17 show the
results of simulation experiments.

The upper quartile of the box plots in our figure was
set to 90% and the lower quartile was set to 5%. It is
evident from the four figures that the path of the UAV
in the region is somewhat impacted by the number of
obstacles present, and that all algorithms experience a
slight increase in working time. The MBS-MUCCPPAFOA
algorithm exhibited the least amount of performance

TABLE 2. Area size.

FIGURE 13. Work area divided into odd columns and rows.

FIGURE 14. Work area divided into even rows and columns(800 × 800).

variation; however, the obstacle position factor had an impact
on the MUAV-CCPPAFOA and MUAV-CCPPAFOA-AS
algorithms. In addition, there was a noticeable variance in the
time required to cover the entire work area. The overall per-
formance of the MUAV-CCPPAFOA-AS algorithm is much
stronger than that of the MBS-MUCCPPAFOA algorithm,
despite the noticeable oscillations in the time it takes to
cover the entire work area. In additionally, we observed
that the MUAV-CCPPAFOA-AS algorithm outperformed the
MBS-MUCCPPAFOA method, which in turn outperformed
the MUAV-CCPPAFOA algorithm in terms of algorithm
performance.

In the simulation test, we find that when the work area
to be detected is small and the obstacles (no-fly area) are
more and more concentrated, the overall working time of
MUAV-CCPPAFOA-AS algorithmwill be longer because the
work complexity of a certain division area is much higher
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FIGURE 15. Work area divided into even columns and odd
rows(800 × 850).

FIGURE 16. Work area divided into odd columns and even
rows(850 × 800).

FIGURE 17. Work area divided into odd columns and rows(850 × 850).

than that of other division areas, and the performance of
MUAV-CCPPAFOA-AS algorithmwill be longer It is slightly
lower than MBS-MUCCPPAFOA algorithm. However, this
situation will gradually reduce the impact on the performance
of the MUAV-CCPPAFOA-AS algorithm with an increase
in the working area. In other cases, MUAV-CCPPAFOA-AS
performed better than MBS-MUCCPPAFOA.

V. CONCLUSION
In this study, for the regional coverage path planning
problem, we propose two cooperative coverage path planning

algorithms for multiple UAVs with multiple base stations,
namely theMBS-MUCCPPAFOAandMUAV-CCPPAFOA-AS
algorithms. The aim is to reduce the amount of energy and
time wasted by the UAV in the process of moving to the
area where the task is assigned. The MBS-MUCCPPAFOA
algorithm plans the path of the work area as a whole,
and then covers the entire area through the cooperation of
multiple UAVs. In theMUAV-CCPPAFOA-AS algorithm, the
work area is divided into four regions, and path planning is
performed for each sub-region. Multiple UAVs cooperate to
cover and search each sub-region to achieve the purpose of
cover and search the entire region.

Through extensive simulations, we demonstrate that mul-
tiple base stations can significantly improve the performance
of the Multi-UAV cooperative coverage path planning
algorithm. Through detailed a evaluation, we demonstrate
that the MUAV-CCPPAFOA-AS algorithm can reduce the
time required to complete the coverage search of the entire
work area.
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