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ABSTRACT Dynamic proactive secret sharing (DPSS) allows a client to share a secret s among a committee
of n participants and allows the committee to reshare the secret among a new committee of n participants such
that the secret s can be reconstructed by any authorized subset of the new committee but an adversary that
corrupts both members from the old committee and members from the new committee learns no information
about s. The existing DPSS schemes only allow the old committee to reshare the same secret s to the new
committee. In this paper, we consider dynamic proactive functional secret sharing (DPFSS), a newmodel for
DPSS that allows the old committee to reshare functions of the original secret s among the new committee,
and construct a DPFSS scheme for resharing the evaluation results of quadratic functions on the original
secret. We discuss the applications of our DPFSS scheme in distributed systems such as those for health data
sharing and smart meter billing. Our scheme is efficient and achieves a communication complexity ofO(n2)
and a time complexity of O(n). Our experimental results show that for a committee of size n = 100, the
communication cost is ≈1.166 MB and the time cost is ≈10.72 s.

INDEX TERMS Secret sharing, dynamic committee, function handoff, proactive security.

I. INTRODUCTION
Secret sharing (SS) allows a client to share a secret s among
a group of participants C = {P1, . . . ,Pn} by distributing
a share of the secret to every participant such that any
authorized subset of C can recover s from their shares but
any unauthorized subset of C learn no information about
s. The family 0 of all the authorized subsets is called
an access structure and satisfy the monotone property: if
A ∈ 0 and A ⊆ B, then B ∈ 0. Shamir [1] and
Blakley [2] introduced the notion of secret sharing and
constructed the first SS schemes. The access structure 0 of
their schemes consists of all subsets of C of cardinality > t ,
i.e., 0 = {A ⊆ C : |A| > t}, and the resulting
schemes have been called threshold SS schemes (TSSS).
Ito et al. [3] considered arbitrary access structures that
satisfy the monotone property and proposed several general
constructions. Since [1], [2], [3], secret sharing has received
widespread attention and found numerous applications in
the design of many cryptographic protocols such as secure
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multiparty computations (MPC) [4], [5], private information
retrieval (PIR) [6], threshold cryptosystems [7], identity-
based encryption [8].

Dynamic proactive secret sharing schemes allow the
group of participants to dynamically change and achieve
the following security guarantee: even if a limited number
of participants from both the old group and the new group
collude with each other, they still learn no information about
the shared secret. Both the properties of ‘‘proactive’’ and
‘‘dynamic’’ have a long history. Ostrovsky and Yung [9]
considered a proactive security model for secret sharing
where the lifetime of a secret s is divided into phases and
the shares are periodically refreshed at the beginning of every
phase. In this model, there may be a mobile adversary that
corrupts a number of parties in every phase, accumulate the
shares of the corrupted parties and then compute information
of the secret s. Schemes in this model have been called
proactive secret sharing (PSS) schemes. The security of PSS
schemes requires that the mobile adversary cannot learn any
information about the secret s, provided that the number of
corrupted parties in each phase is below a threshold. There
are many standard techniques for constructing PSS schemes.
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For example, Herzeberg et al. [10] uses a set of random shares
of 0 to update the shares of s at the beginning of every phase
and obtain a PSS scheme for the threshold access structure.
Frankel et al. [11] utilized a similar resharing protocol to
update the old shares held by the parties.

In most existing PSS schemes [10], [11], [12], both the set
of participants and the access structure are never changed.
However, in many real-life scenarios [13], [14], [15], the
participants may join and leave a data management system
arbitrarily and thus result in dynamic groups of participants.
Dynamic proactive secret sharing (DPSS) [16], [17], [18]
allows a client to share a secret s among a committee C =
{P1, . . . ,Pn} of n participants such that C is able to pass s
to a new committee C̃ = {P̃1, . . . , P̃n} in the form of shares,
where the new committeemay differ from C. A DPSS scheme
may consist of three phases: share generation, handoff and
reconstruction. In the share generation phase, a client shares
a secret s among a committee C by distributing a share of s
to every participant in C. In the handoff phase, participants
in C may leave the committee and new participants may join
so that the old committee C turns into a new committee C̃.
Then the shares of s held by the participants in C are updated
and the updated shares are sent to the participants in C̃. In the
reconstruction phase, the secret s can be recovered by any
authorized subset of the participants in C̃ with their shares.
In DPSS schemes, we usually consider a mobile and active
adversary A that can corrupt ≤ t participants from C and
≤ t participants from C̃. Such schemes satisfy the property
of integrity if s can be correctly reconstructed in the presence
of A and satisfy the property of secrecy if the adversary A
learns no information about s.

Desmedt and Jajodia [16] introduced the notion of DPSS
and constructed a DPSS scheme, which may be used to
store secret data among dynamic committees. Since [16],
DPSS has gained great popularity in long-term secure
storage and various DPSS constructions have been proposed.
The existing DPSS schemes are constructed either under a
synchronous network or under an asynchronous network.
The efficiency of such schemes is mainly measured by their
communication complexity. Under a synchronous network,
Wong et al. [19] constructed the first verifiable DPSS scheme,
which enables the participants to verify the correctness
of protocol executions by using Feldman’s polynomial
commitment [20]. Their scheme satisfies the properties of
integrity and secrecy in the presence of an adversary that
corrupts ≤ t participants from C and ≤ t participants from
C̃. Their communication complexity is exponential in the
number n = |C| and thus makes the scheme impractical.
Baron et al. [21] proposed a batched DPSS scheme, which
enables one to store a batch of secrets at a time. The
scheme utilizes the Berlekamp-Welch algorithm [22] to
guarantee the correctness of reconstruction. It achieves a
total communication complexity of O(n3) for n = |C| and
the optimal amortized communication complexity of O(1).
As a drawback, their scheme must reconstruct all secrets

at one shot and cannot recover any single secret separately.
Goyal et al. [17] constructed a batched DPSS scheme, where
each secret can be individually recovered. They apply KZG
commitment [23] to verify the correctness of the shares
in their protocol executions and achieve the optimal total
communication complexity of O(n2) for n = |C|.

With a time bound for successful message deliveries,
some deviations of the corrupted parties in a DPSS scheme
can be identified efficiently under synchronous networks.
For asynchronous networks, the DPSS scheme executions
often rely on a challenge-response mechanism [24], [25]
to propose and decide on the validity of the messages,
where one or more participants propose a message to
all participants and a same decision on the message will
eventually be output by the majority. In particular, a sender
may keep retransmitting a message such that it will even-
tually be delivered with a maximum delay bounded by an
unknown variable and a receiver may respond to confirm
for having received the messages from some certain senders.
As a result, the asynchronous networks may incur a large
communication overhead, compared with the synchronous
networks. Zhou et al. [26] constructed the first DPSS
scheme under an asynchronous network. Their scheme can
tolerate Byzantine faults that may cause the participants
to behave arbitrarily badly (e.g. expose messages), but has
an exponential communication complexity exp(n) for n =
|C|. Subsequently, the communication complexity of DPSS
under asynchronous networks has be reduced to O(n4) by
Schultz et al. [25] and to O(n3) by Hu et al. [27] and
Yurek et al. [28], respectively. The schemes of [27] and [28]
are known as most efficient to date.

The existing DPSS schemes have been focusing on
securely passing the same secret s between dynamic
committees and minimizing the communication complexity.
In many real-life scenarios, instead of the secret s itself,
one may expect to pass functions of the secret s between
different committees. For examples, in glaucoma care [29],
a user of the smart soft contact lenses would like to learn
an average of the continuous 24-hour measurements of
intraocular pressure rather than obtains piles of real-time data.
In [30], secure sharing of personal health data, which includes
highly sensitive physiological information, among healthcare
institutions is quite important. One may need to restrict the
information that can be accessed by the institutions with
different trust level. The institutions with higher trust levels
may be allowed to achieve the information, which has a strong
correlation with the original data. But the institutions with
lower trust levels are restricted to do some fuzzy analyses on
the data.

To our knowledge, no existing DPSS schemes allow one
to transfer the evaluation results of more general functions
on the shared secret data between different committees. Such
schemes may help extract useful features from the secret
data, without revealing unnecessary information about the
data to the participants/users. Therefore, given the application
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scenarios, it is interesting to construct DPSS schemes that
allow an old committee C to pass functions of the secrets
shared among the members of C to a new committee C̃.

A. OUR CONTRIBUTIONS
In this paper, we propose dynamic proactive functional
secret sharing (DPFSS), a new model of DPSS that
transfers functions of the shared secrets between different
committees. Compared with the existing DPSS, the new
and more general functionality of passing functions of
the shared secrets from an old committee to a new
committee serves as the main novelty of our DPFSS model.
We construct a scheme in this new model and show its
applications.
Our Model: Our DPFSS model consists of three phases

called share generation, function handoff and reconstruction.
At a high-level, in the share generation phase, an input client
shares a set s of secrets among a committee C = {P1, . . . ,Pn}
of n parties. In the function handoff phase, N functions
{Fk}Nk=1 of s are transferred from the old committee C to a new
committee C̃ = {P̃1, . . . , P̃n}. In the reconstruction phase,
an output client reconstructs {Fk (s)}Nk=1. A DPFSS scheme is
said to be secure if no active and mobile PPT adversary with
a corruption threshold t(< n/3) can fool an honest output
client to output a value ̸= Fk (s), k ∈ [N ] (integrity) or learn
any information about s or {Fk (s)}Nk=1 other than the public
information (secrecy).
Our Construction: We construct a scheme DPFSS for

transferring quadratic functions of the shared secret data
between different committees. The scheme consists of
three algorithms or protocols DPFSS.S, DPFSS.FH and
DPFSS.R that respectively realize the three phases in our
DPFSS model.

In the share generation phase (DPFSS.S), the input client
uses Shamir’s secret sharing scheme [1] to generate a sharing
(a vector of shares) of every secret in s and distributes the
shares among the old committee C. The sharings of s are
committed by the Feldman’s polynomial commitment scheme
[20] such that the correctness of every share in one sharing
can be verified. At the end of this phase, every party in C
holds a share of each secret in s.
The function handoff phase (DPFSS.FH) includes two

sub-phases: prepare and refresh. In the prepare phase, for
all k ∈ [N ], participants in both the old committee C and
the new committee C̃ jointly compute a random coupled
sharing (RCS), which consists of two sharings of the same
value rk (= r̃k ), for transferring the evaluation result Fk (s).
The 2N sharings are committed with Feldman’s polynomial
commitments as well. In the refresh phase, for all k ∈ [N ]
parties in C jointly pass a value Fk (s)+ rk to the parties in C̃.
With the sharing of r̃k , each party in C̃ can compute a share
in the sharing of Fk (s). During the executions, the shares are
verified with the commitments.

In the reconstruction phase (DPFSS.R), every party in C̃
sends its shares to the output client. By applying the Shamir’s

secret sharing, the output client outputs N evaluation results
{Fk (s)}Nk=1.

B. APPLICATIONS
Our DPFSS scheme may be applied in many scenarios that
require privacy-preserving storage, dynamic membership and
verifiable computation of linear or quadratic functions.
Health Data Sharing: Health data management sys-

tems [30], [31], [32] allow a client to maintain personal
health data and share the data with healthcare institutions.
For example, the health data sharing system of [32] may
consist of a client, a cloud database, healthcare institutions,
and a blockchain network. In such a system, the wearable
devices of the client collect personal health data of the client,
upload the data to the cloud database, and record both the
hash value of the data and a set of access policies on the
blockchain. The blockchain plays the role of a platform that
makes both the hash value and the access policies public
and tamper resistant. Upon receiving a healthcare institution’s
request of accessing the data, the cloud database may check
the access policy on the blockchain and grant access if
that institution is really authorized. Upon receiving the data,
the healthcare institution may check its integrity with the
hash value on the blockchain. Health data such as blood
pressure and electrocardiogram (ECG) reports may include
highly sensitive physiological information and make secure
sharing a crucial requirement. While systems such as [32]
give a solution with access control, the cloud database is a
single point of failure and requires expensive maintainance.
Goyal et al. [17] proposed extractable witnesse encryption
on blockchain (eWEB), which is based on DPSS and may
avoid single of point failure using a decentralized system.
Using eWEB, the client’s wearable devices may record the
access policy (a release condition) on chain and share the
personal health data off chain among a cluster of nodes in
the blockchain network. If the healthcare institution has a
witness (i.e., permission) to the release condition, it may send
a proof of the witness to the cluster and publish the hash value
of the proof on chain. The cluster may check the validity
of both the hash value and the proof. If they are valid, the
healthcare institution is granted access. Such a system allows
nodes to leave and join dynamically, and thus requires aDPSS
to support membership changes. Whenever the institutions
are only interested in the results of certain analysis on the
data, the DPSS-based system of [17] may leak too much
information to the institutions. By applying our DPFSS (See
Fig. 1), the old committee of nodes can directly transfer the
results of requested analysis to a new committee of nodes
such that the institutions are only able to learn the expected
results rather than the original health data.
Smart Meter Billing: The smart meter [33], [34] allows one

to transmit a set of data points that record residential energy
consumption for short time intervals (e.g. every 15 minutes).
Then the consumption will be billed with dynamic, time-
of-use tariffs. However, the data may expose the behavioral
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FIGURE 1. DPFSS-based health data sharing.

patterns of residents. Our DPFSS scheme can provide a
privacy-preserving storage of the consumption data collected
by smart meters and conduct a verifiable computation of
the bill. In particular, by applying DPFSS in the time-of-use
billing scheme [33], the consumption profile c = (c1, . . . , cn)
uploaded by a smart meter, where every ci represents the
amount of utility used in the interval i of one day, can
be safely stored among a set of servers. Then with the
time-of-use tariff v = (v1, . . . , vn), where vi prices every
interval i, DPFSS enables the servers to jointly calculate and
output the time-of-use price P(c, v) =

∑n
i=1 civi of the con-

sumption of one day, without leaking additional information
about c.

C. RELATED WORK
There are some existing secret sharing schemes devised for
computing functions. However, such schemes neither support
the dynamics of the access structure nor satisfy proactive
security in a long-lived system.
Verifiable Secret Sharing (VSS): VSS schemes consider

an active adversary that may fully control the behaviors of
the participants or even the dealer to prevent a consistent
reconstruction. Such schemes [35], [36], [37] allow the hon-
est participants to reconstruct the same secret in the presence
of an active adversary. Constructions of VSS schemes usually
apply a commitment scheme to check the correctness of
shares. For example, Feldman [20] proposed a commitment
scheme which commits a polynomial f (X ) = a0 + a1X +
· · · + atX t with Com = (ga0 , . . . , gat ), where g is a random
generator of a cyclic group. Therefore, the correctness
of an evaluation (x, y) can be checked with the equality
gy =

∏t
i=0(g

ai ))x
i
. Their scheme is computational hiding,

under the DLOG assumption. Kate et al. [23] proposed
two unconditional hiding commitment schemes where the
commitment reveals no information about the polynomial.
In VSS schemes, the shares held by the participants are never
refreshed and the committee of participants is not dynamic
but static.
Multiplicative Secret Sharing (MSS): A m-MSS enables a

client to share m (m > 2) secrets s1, . . . , sm among a group
of parties such that s1×· · ·×sm can be reconstructed without

recovering any single secret. Ben-Or et al. [38] proposed the
first MSS scheme for computing the multiplication of two
secrets in the presence of a passive adversary. By applying
the Berlekamp Welch algorithm, Damgård and Nielsen [39]
constructed an unconditionally secure MSS scheme that can
correct a threshold number of errors. Yoshida and Obana [40]
introduced verifiable m-MSS and proposed a scheme [41]
for multiplicative-only homomorphism. MSS schemes have
static access structures and do not consider proactive
security.
Homomorphic Secret Sharing (HSS): HSS allows a client

to share a secret s among servers and every server in an
authorized subset can compute a function f on its share to
obtain a partial result such that these partial results allow
the reconstruction of f (s). Boyle et al. [42] introduced HSS
and constructed a 2-server HSS for evaluating any branching
programs. Verifiable HSS was studied in [43] and [44],
where the correctness of the reconstructed value is checked
with verification techniques. The access structures of HSS
schemes are static and the loss of partial results (e.g., caused
by latency or down of servers) may cause a failure to
recover f (s).
Function Secret Sharing (FSS): FSS allows a client to split

a function f into n function shares {fi}ni=1, each of which
perfectly hides f , such that f (s) can be recovered from the
n partial results f1(s), . . . , fn(s) for any s. Boyle et al. [45]
introduced FSS and constructed a verifiable FSS scheme
in [46]. Luo et al. [47] proposed an information-theoretic
secure (t, n)-threshold FSS, where any (t−1) function shares
unconditionally hide f . In FSS schemes, the input s is public
to all participants and the function f is secret from any
participant.

D. ORGANIZATION
In Section II, definitions and techniques related to our DPFSS
constructions are given. In Section III, our DPFSS model is
defined. In Section IV, we construct a DPFSS scheme and
formally prove its security. In Section V, we implement our
construction and evaluate its performance. Section VI shows
the conclusions of our work.
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II. PRELIMINARIES
Let κ be a security parameter. We say that a function ϵ(κ)
is negligible in κ and denote ϵ(κ) = negl(κ) if for any
c > 0, there is an integer κc such that ϵ(κ) < κ−c for
all κ > κc. We say that a function f (κ) is polynomial in
κ and denote f (κ) = poly(κ) if there exists c > 0 such
that f (κ) = O(κc). In this paper, we consider probabilistic
polynomial time (PPT) algorithms that run in time poly(κ).
For any integer n > 0, we denote [n] = {1, . . . , n}. For
any prime p, we denote by Fp the finite field of p elements
and denote by Fp[X ] the ring of univariate polynomials with
coefficients from Fp. We will use bold letters to denote
vectors and matrices. Let a,b be vectors of length n. For
any i ∈ [n], we denote by a[i] the i-th element of a.
We denote a ◦ b = (a[1] · b[1], . . . , a[n] · b[n]), a ⊘ b =
(a[1]/b[1], . . . , a[n]/b[n]) and ac = ((a[1])c, . . . , (a[n])c).
For anymatrixM, we denote byMi,j its (i, j)-entry.We denote
by 1n = (1, . . . , 1) the all-one vector of length n. For any
finite set A, we denote by ‘a←A’ the process of choosing an
element a uniformly from A.
Discrete Logarithm (DLOG) Assumption: Let G = ⟨g⟩

be a cyclic group of prime order p ≈ 2κ . We say that the
DLOG assumption is true in G if for any PPT adversary A,
Pr[A(g, gc) = c] ≤ ϵ(κ), where the probability is taken over
c←Fp and the randomness of A.
Bilinear Map: In this work, we use a bilinear group

generator [48] BG(κ) that takes a security parameter κ
as input and outputs a bilinear group context bp =

(p,G,GT , e, g), where G = ⟨g⟩ and GT are cyclic groups
of prime order p ≈ 2κ and e : G × G → GT is a map with
the following properties:

• bilinear: e(ga, gb) = e(g, g)ab for any a, b ∈ Fp;
• non-degenerate: e(g, g) is a generator of GT ;

• efficiently computable: There is a polynomial-time
algorithm computing e.

A. SHAMIR’S SECRET SHARING
For any integers t, n such that n ≥ t > 0, Shamir’s
(t + 1, n)-threshold secret sharing scheme SSS =

(SSS.Share,SSS.Recon) [1] allows a dealer to share a
secret s among n participants P1, . . . ,Pn such that: (i) any
≥ t+1 participants can recover swith their shares; (ii) any≤ t
participants learn no information about s. Formally, it consists
of two algorithms as follows:

• [s]t ← SSS.Share(t, n, s). The share generation
algorithm shares a secret s ∈ Fp among the n participants
by choosing a polynomial

f (X ) = s+
t∑
i=1

aiX i (1)

with random coefficients a1, . . . , at←Fp and sending
to every participant Pi a share si = f (i). In particular,
the vector [s]t = (s1, . . . , sn) = (f (1), . . . , f (n)) of all
shares is called a sharing of s under SSS.

• s← SSS.Recon({si}i∈I ). Given a set {si}i∈I of shares,
where I ⊆ [n] is a subset of cardinality > t , the
reconstruction algorithm recovers s as s =

∑
i∈I siℓI ,i

by doing Lagrange interpolation, where

ℓI ,i =
∏

z∈I ,z̸=i

z/(z− i) (2)

is a Lagrange coefficient for all i ∈ I .

Random Coupled Sharing (RCS): A random coupled
sharing (RCS) ([r]t , [r̃]t ) consists a pair of sharings [r]t =
(fr (1), . . . , fr (n)), [r̃]t = (fr̃(1), . . . , fr̃ (n)), where fr (X ) and
fr̃ (X ) are randomly chosen degree-t polynomials subject to
fr (0) = fr̃ (0). In this work, the random coupled sharings will
be utilized to transfer quadratic functions of secret data from
the old committee to the new committee.

B. POLYNOMIAL COMMITMENT
A polynomial commitment scheme allows one to commit to
a polynomial f by publishing a commitment comf and later
open the evaluation of the polynomial f at any input i (i.e.,
y = f (i)) such that a verifier can check the correctness of
y with comf . The scheme is called hiding if comf leaks
no information about f and binding if the committer cannot
open comf to a value y′ ̸= f (i) that successfully passes the
verification.

In Feldman’s work [20], a discrete logarithm based polyno-
mial commitment scheme FC = (FC.Setup,FC.Commit,
FC.Verify) has been applied to the sharing polynomial f in
Eq. (1) to construct a verifiable secret sharing scheme. In this
work, we will use FC to verify the correctness of the shares
under SSS as well. Note that the sharing [s]t in Section II-A
may be identified with the sharing polynomial f in Eq. (1).
We will interchangeably say FC is a commitment scheme for
polynomials or for sharings. For completeness, the scheme
FC can be described as follows:

• ck ← FC.Setup(κ): Take the security parameter
κ as input, choose a cyclic group G = ⟨g⟩ of
prime order p ≈ 2κ , and output a commitment key
ck = (G, g).

• comf ← FC.Commit(ck, f ): Take a polynomial
f (X ) = s + a1X + · · · + atX t as input and output a
commitment comf = (gs, ga1 , . . . , gat ).

• {0, 1} ← FC.Verify(ck, comf , i, y): To verify the
correctness of y as f (i), compute a witness ηi =∏t

z=0 comf [z + 1]i
z
(= gf (i)). If gy = ηi, output 1;

otherwise, output 0.

The scheme FC is unconditionally binding and com-
putationally hiding under the DLOG assumption in G.
Furthermore, it is linearly homomorphic: for any constants
α, β ∈ Fp and any polynomials f1(X ), f2(X ) ∈ Fp[X ] of
degree ≤ t , say f1(X ) = s1 + a1X + · · · + atX t and
f2(X ) = s2 + b1X + · · · + btX t ,

comαf1+βf2 = (comf1 )
α
◦ (comf2 )

β . (3)

VOLUME 12, 2024 25753



H. Chen, L. Zhang: Dynamic Proactive Secret Sharing Scheme for Quadratic Functions

III. DPFSS MODEL
A dynamic proactive secret sharing scheme for quadratic
functions involves an input client Pin, an output client Pout ,
an old committee C = {P1, . . . ,Pn} and a new committee
C̃ = {P̃1, . . . , P̃n}, where {Pin,Pout } ∩ (C ∪ C̃) = ∅. It allows
the input client to share a vector s = (s1, . . . , sm) of secrets
among the members of C such that later C is able to transfer
the evaluations of N (≤ n− t) functions {Fk}Nk=1 at s to C̃ and
the output client is able to reconstruct theN values {Fk (s)}Nk=1
with shares from the new committee C̃.
Definition 1 (Dynamic proactive functional secret shar-

ing):ADPFSS schemeDPFSS = (DPFSS.S,DPFSS.FH,
DPFSS.R) consists of three algorithms or protocols that can
be described as follows:

• ({sj}nj=1,aux) ← DPFSS.S(κ, t, n, s). The share
generation algorithm takes a security parameter κ ,
a threshold t(< n/3), the size n of committees and a
secret vector s = (s1, . . . , sm) as input and outputs both
n shares {sj}nj=1 of s and a piece of public verification
information aux. The input client will run this algorithm,
distribute a share sj to every participant Pj in the old
committee C and make aux public.

• ({̃sj}nj=1, ãux) ← DPFSS.FH({Fk}Nk=1, {sj}
n
j=1,aux).

The function handoff protocol enables the committee C
with inputs s1, . . . , sn,aux to share theN (≤ n−t) values
{Fk (s)}Nk=1 to C̃. At the end of this protocol, each party
P̃j ∈ C̃ learns a share s̃j of the N values, and a piece of
verification information ãux is made public.

• {Fk (s)}Nk=1 ← DPFSS.R({̃sj}nj=1, ãux). The recon-
struction algorithm takes {̃sj}nj=1 and ãux as input, and
outputs the N evaluation results {Fk (s)}Nk=1.

In our model (Fig. 2), the functions {Fk}Nk=1 are public to
both committees and depend on the application scenarios.
Adversary: In our model, an adversary is a PPT algorithm

that may corrupt at most t(< n/3) parties in every committee
(≤ t parties in C and ≤ t parties in C̃), in order to learn
information about the secret vector s or the evaluation result
{Fk (s)}Nk=1, or fool the output client to output a wrong
evaluation result. The adversaryAmay be mobile and active:

• Mobile. A may corrupt some parties and later moves
to corrupt the others so that it can eventually learn all
information held by the corrupted parties.

• Active.A canmodify the internal states as well as control
the behaviors of the corrupted parties.

Network: We assume a synchronous network. The input
client Pin, the output client Pout and the parties in committees
C and C̃ all have access to secure point-to-point (P2P)
channels such that they know the source of the received
message. The adversary cannot learn the content of the
message or speak on behalf of an honest party. Furthermore,
there is a broadcast channel via which any message can be
made public to all involved parties in our DPFSS model.
Definition 2 (Integrity and Secrecy): The scheme DPFSS

should satisfy the properties of integrity and secrecy with
respect to the adversary and the network described as above.

• Integrity. In the presence of any mobile and active PPT
adversary A that controls ≤ t parties from C and ≤ t
parties from C̃, the output client always outputs the
correct values of the N evaluation results {Fk (s)}Nk=1,
by faithfully executing DPFSS.R.

• Secrecy. Any mobile and active PPT adversary A that
controls ≤ t parties from C and ≤ t parties from C̃
learns no information about the secret vector s or the N
evaluation results {Fk (s)}Nk=1.

Remark 1: Similar to [18], the integrity and secrecy and of
our DPFSS are informally defined. Proofs of these properties
are quite formal and depend on the design idea that every
message in our scheme will be verified and the sender of
a maliciously designed message will be removed from the
protocol execution immediately.

IV. DPFSS FOR QUADRATIC FUNCTIONS
In this section, we construct a DPFSS scheme that allows the
old committee C to pass the evaluation results {Fk (s)}Nk=1 of
N quadratic functions F1, . . . ,FN at the secret vector s =
(s1, . . . , sm) to a new committee C̃, where the functionFk (k ∈
[N ]) has the following form:

Fk (s) = a(k)0 +
∑
ι1∈[m]

a(k)ι1 sι1 +
∑

ι1,ι2∈[m]

a(k)ι1,ι2 sι1sι2 . (4)

A. SHARE GENERATION
In the share generation phase (Protocol 1) of our DPFSS
scheme, the input client Pin first generates a bilinear group
context bp = (p,G,GT , e, g) and uses the cyclic group G
to set up a commitment key ck = (G, g) for Feldman’s
polynomial commitment [20]; then it invokes Shamir’s secret
sharing to choose a polynomial fi and use fi to compute a
sharing [si]t for every element si of the secret vector s; finally,
it commits to fi with Feldman’s polynomial commitment
scheme.

Protocol 1. Share Generation DPFSS.S
Input: security parameter κ , threshold t , committee size n(> 3t),
secrets s = (s1, . . . , sm).
Output: {sj}nj=1,aux = (bp, ck, {comfi }

m
i=1).

1: Invoke FC.Setup(κ) by running BG(κ) to generate a bilinear
group context bp = (p,G,GT , e, g) and defining a commit-
ment key ck = (G, g).

2: For every i ∈ [m], invoke SSS.Share(t, n, si) to choose a
polynomial fi(X ) = si + fi,1X + · · · + fi,tX t and compute a
sharing [si]t = (si,1, . . . , si,n) = (fi(1), . . . , fi(n)) of si. Set
sj = (s1,j, . . . , sm,j) for every j ∈ [n].

3: For every i ∈ [m], invoke FC.Commit(ck, fi) to generate a
commitment comfi = (gsi , gfi,1 , . . . , gfi,t ).

B. FUNCTION HANDOFF
The function handoff phase (Protocol 2) contains two sub-
phases: Prepare and Refresh (Fig. 3). In Prepare, the
parties in C̃ jointly generate N Random coupled sharings
(RCSs) ([rk ]t , [r̃k ]t )Nk=1, where each ([rk ]t , [r̃k ]t ) consists two
degree-t sharings of the same random value rk (= r̃k ), which
are distributed to the old and new committee, respectively.
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FIGURE 2. Our DPFSS model.

In the refresh phase, each RCS ([rk ]t , [r̃k ]t ) is used to transfer
a sharing of Fk (s) from the old committee C to a new
committee C̃.

Protocol 2. Function Handoff DPFSS.FH
Participants: old committee C = {P1, . . . ,Pn}, new committee
C̃ = {P̃1, . . . , P̃n}
Input: {Fk }Nk=1, {sj}

n
j=1,aux = (bp, ck, {comfi }

m
i=1), where

{Fk }Nk=1 and aux are public inputs known to all participants and sj
is a private input of Pj for all j ∈ [n].
Output: {̃sj}nj=1, ãux = (ck, {com[s̃k ]t }

N
k=1).

The prepare phase:

1: Every party in C ∪ C̃ initializes B = ∅ as the set of corrupted
parties.

2: Every party P̃i randomly chooses two polynomials hi(X ) =
ui +

∑t
z=1 hi,zX

z and h̃i(X ) = ũi +
∑t

z=1 h̃i,zX
z, where

ui = ũi. and prepares a RCS ([ui]t , [ũi]t ) such that [ui]t =
(ui,1, . . . , ui,n), [ũi]t = (ũi,1, . . . , ũi,n). It sends ui,j and ũi,j
to Pj and P̃j respectively for every j ∈ [n], and then
broadcasts comhi = FC.Commit(ck, hi) and comh̃i

=

FC.Commit(ck, h̃i).
3: Every party Pj computes b = FC.Verify(ck, comhi , j, ui,j) to

check the correctness of ui,j. If b = 0, P̃i is required to publish
a share u′i,j. If FC.Verify(ck, comhi , j, u

′
i,j) = 0, P̃i is found

corrupted and all parties in C ∪ C̃ set B← B ∪ {P̃i}; otherwise,
all parties set ui,j = u′i,j.

4: Every party P̃j computes b = FC.Verify(ck, comh̃i
, j, ũi,j) to

check the correctness of ũi,j. If b = 0, P̃i is required to publish
a share ũ′i,j. If FC.Verify(ck, comh̃i

, j, ũ′i,j) = 0, P̃i is found

corrupted and all parties in C ∪ C̃ set B← B ∪ {P̃i}; otherwise,
all parties set ũi,j = ũ′i,j.

5: For every i ∈ [n], all parties in C ∪ C̃ check if comhi [1] =
comh̃i

[1]. If not, they set B← B ∪ {P̃i}.

6: For every i ∈ B, set [ui]t = [ũi]t = 0n, and comhi = comh̃i
=

1t+1.
7: Let M = (Mk,z) = (kz−1) ∈ FN×np be a public Vandermonde

matrix. For every k ∈ [N ], Pj and P̃j compute rk,j and r̃k,j,
respectively, where

rk,j =Mk,1u1,j + · · · +Mk,nun,j,

r̃k,j =Mk,1ũ1,j + · · · +Mk,nũn,j. (5)

The commitments of [rk ]t = (rk,j)nj=1 and [r̃k ]t = (r̃k,j)nj=1 are
computed as

com[rk ]t = (comh1 )
Mk,1 ◦ · · · ◦ (comhn )

Mk,n ,

com[r̃k ]t = (comh̃1
)Mk,1 ◦ · · · ◦ (comh̃n

)Mk,n . (6)

The refresh phase:
1: For all k ∈ [N ], every party Pj computes vk,j = rk,j +
Fk (sj) = hk (j) + Fk (f1(j), . . . , fm(j)). It then publishes a vector
vj = (v1,j, . . . , vN ,j).

2: For all (k, j) ∈ [N ]×[n], every party in C̃ checks the correctness
of vk,j with

e(g, g)vk,j = e(grk,j , g) · e(g, g)a
(k)
0 ·

∏
ι1∈[m]

e(gsι1,j , g)a
(k)
ι1

·

∏
ι1,ι2∈[m]

e(gsι1,j , gsι2,j )a
(k)
ι1ι2 , (7)

where the witnesses of rk,j and every {sι,j}ι∈[m] are computed
from the commitments com[rk ]t , comfι as

grk,j =
t∏

z=0

(
com[rk ]t [z+ 1]

)jz
,

gsι,j =
t∏

z=0

(
comfι [z+ 1]

)jz
.
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FIGURE 3. Share flow of DPFSS.FH. The solid lines represent the flow between different committees and the dotted lines represent
the flow in the same committee.

We say that a vector vj is valid if all of its elements pass the
above verification. Let J = {j ∈ [n] : vj is valid}. For every k ∈
[N ], every party in C̃ interpolates a degree-2t polynomial φk (X )
such that φk (j) = vk,j for all j ∈ J , and computes vk = φk (0)
and comvk = (gvk , 1t ), where vk is considered as a constant
polynomial.

3: For all k ∈ [N ], every party P̃j computes s̃k,j = vk−r̃k,j. Finally,
P̃j learns s̃j = (s̃1,j, . . . , s̃N ,j).

4: For every k ∈ [N ], every party in C̃ publishes the commitment
com[s̃k ]t = comvk ⊘ com[r̃k ]t . The parties determine com[s̃k ]t
using a majority rule.

C. RECONSTRUCTION
In this phase (Protocol 3), an output client Pout reconstructs
the functions with the shares provided by the new committee.

Protocol 3. Reconstruction DPFSS.R

Input: {̃sj}nj=1, ãux = (ck, {com[s̃k ]t }
N
k=1).

Output: s̃ = (s̃1, . . . , s̃N )
1: For all k ∈ [N ], Pout computes bj = FC.Verify(ck,

com[s̃k ]t , j, s̃k,j) to check the correctness of each s̃k,j in s̃j. Let
J = {j ∈ [n] : bj = 1}. Pout applies SSS.Recon to the shares
{s̃k,j}j∈J to reconstruct a polynomial ψk (X ) of degree ≤ t and
sets yk = ψk (0).

2: Pout eventually outputs a vector s̃ = (s̃1, . . . , s̃N ).

D. SECURITY ANALYSIS
Integrity of Our DPFSS Scheme: As per Definition 2, the
integrity of our DPFSS scheme requires that: In the presence
of any mobile and active PPT adversary A that controls ≤ t
parties from C and ≤ t parties from C̃, the output client

always outputs the correct values of the N evaluation results
{Fk (s)}Nk=1, by faithfully executing DPFSS.R.

Without loss of generality, we suppose that A is a
PPT adversary that controls exactly t parties from C (say
P1, . . . ,Pt ) and t parties from C̃ (say P̃1, . . . , P̃t ) throughout
the entire execution of DPFSS = (DPFSS.S,DPFSS.FH,
DPFSS.R). Note that A sends no messages in the share
generation phase DPFSS.S. It suffices to show that A
cannot fool the output client into outputting a vector s̃ ̸=
{Fk (s)}Nk=1 by participating DPFSS.FH and DPFSS.R. Our
proof of integrity is divided into three parts, which are
regarding the prepare phase of DPFSS.FH, the refresh phase
of DPFSS.FH, and the reconstruction protocol DPFSS.R,
respectively.
Lemma 1: Let A be a PPT adversary that controls the

parties P1, . . . ,Pt ∈ C and P̃1, . . . , P̃t ∈ C̃. At the end of
the prepare phase of DPFSS.FH, there exist 2N polynomials
{σk (X )}Nk=1 and {σ̃k (X )}Nk=1 of degree ≤ t such that for all
k ∈ [N ],

• σk (0) = σ̃k (0);
• σk (j) = rk,j, ∀j ∈ {t + 1, . . . , n};
• σ̃k (j) = r̃k,j, ∀j ∈ {t + 1, . . . , n}.
Proof: For every i ∈ [n], let [ui]t = (ui,1, . . . , ui,n)

and [ũi]t = (ũi,1, . . . , ũi,n) be the RCS after the steps 3,
4, 5, and 6 of the prepare phase of DPFSS.FH have been
executed. Note that this RCS ([ui]t , [ũi]t ) may be different
from the RCS at step 2 of the prepare phase, which may
undergo changes at steps 3, 4, 5, and 6. We start the proof
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by showing that there exist 2n polynomials {τi(X )}ni=1 and
{τ̃i(X )}ni=1 such that for every i ∈ [n]:
• τi(0) = τ̃i(0);
• τi(j) = ui,j, ∀j ∈ {t + 1, . . . , n};
• τ̃i(j) = ũi,j, ∀j ∈ {t + 1, . . . , n}.

For every i ∈ B, the party P̃i is found corrupted. Both
[ui]t and [ũi]t have been set to 0n at step 6. Thus, we can
take τi(X ) = τ̃i(X ) = 0. For every i ∈ [n] \ B, the
specifications of steps 3, 4, 5 and 6 show that we must have
comhi [1] = comh̃i

[1] and FC.Verify(ck, comhi , j, ui,j) =
FC.Verify(ck, comh̃i

, j, ũi,j) = 1. It suffices to set τi(X ) =
hi(X ) and τ̃i(X ) = h̃i(X ). For all k ∈ [N ], let

σk (X ) =
n∑
i=1

Mk,i · τi(X ), σ̃k (X ) =
n∑
i=1

Mk,i · τ̃i(X ). (8)

Then the specifications of step 7 show that these polynomials
have degree ≤ t and satisfy the expected properties.
Lemma 2: Let A be a PPT adversary that controls the

parties P1, . . . ,Pt ∈ C and P̃1, . . . , P̃t ∈ C̃. At the end of
the refresh phase of DPFSS.FH, there exist N polynomials
{ψk (X )}Nk=1 of degree ≤ t such that ψk (0) = Fk (s) for all
k ∈ [N ].

Proof: For every j ∈ [n], Pj learns a share sj of s
from the share generation phase DPFSS.S and N shares
{r1,j, . . . , rN ,j} of the sharings {[rk ]t }Nk=1 from the prepare
phase of DPFSS.FH. Let vj = (v1,j, . . . , vN ,j) be the vector
published by Pj at step 1 of the refresh phase of DPFSS.FH.
By Lemma 1, for all k ∈ [N ] and j ∈ {t + 1, . . . , n}, vk,j =

rk,j + Fk (sj) is published by an honest party Pj and vk,j =
σk (j)+Fk (f1(j), . . . , fm(j)) is the evaluation of the polynomial

φk (X ) = σk (X )+ Fk (f1(X ), . . . , fm(X ))

at X = j, where the polynomial has degree ≤ 2t and
f1, . . . , fm are the m polynomials of degree ≤ t from
DPFSS.S. In particular, the equation vk,j = rk,j + Fk (sj)
implies that the Eq. (7) at step 2 of the refresh phase is true.
Thus, vj is valid and j ∈ J .

On the other hand, for j ∈ [t], Pj is controlled byA and we
may not have φk (j) = vk,j, which holds if and only if the Eq.
(7) holds. If φk (j) = vk,j is true for all k ∈ [N ], then vj will
be valid and j ∈ J .
The above analysis shows that |J | ≥ n − t . As stated in

DPFSS.S, we have n > 3t and so |J | > 2t . For every k ∈
[N ], φk (X ) can be interpolated with the≥ 2t + 1 valid shares
{vk,j}j∈J . In particular, we have

vk = φk (0) = σk (0)+ Fk (s).

For all k ∈ [N ] and j ∈ {t + 1, . . . , n}, the honest party P̃j
computes a value s̃k,j = vk − r̃k,j, which is equal to φk (0) −
σ̃k (j) = σk (0)+Fk (s)−σ̃k (j), an evaluation of the polynomial

ψk (X ) = σk (0)+ Fk (s)− σ̃k (X ) (9)

at X = j. By Lemma 1, ψk (X ) has degree ≤ t and ψk (0) =
Fk (s).

For all k ∈ [N ], the honest parties P̃t+1, . . . , P̃n compute
the same commitment com[s̃k ]t = comvk⊘com[r̃k ]t , because
they all have the same vk and com[r̃k ]t . In fact, com[s̃k ]t is a
commitment of ψk (X ). As the majority of the parties in C̃ are
honest, this commitment will be output as an element of ãux.
Lemma 3: Let A be a PPT adversary that controls the

parties P1, . . . ,Pt ∈ C and P̃1, . . . , P̃t ∈ C̃. At the end of the
reconstruction phase DPFSS.R, the output client Pout can
reconstruct F1(s), . . . ,FN (s).

Proof: By the proof of Lemma 2, for all k ∈ [N ]
and j ∈ {t + 1, . . . , n}, s̃k,j is the evaluation the poly-
nomial ψk (X ), whose commitment is com[s̃k ]t . Therefore,
FC.Verify(ck, com[s̃k ]t , j, s̃k,j) = 1 for all k ∈ [N ] and
j ∈ {t + 1, . . . , n}. Thus, {t + 1, . . . , n} ⊆ J and J
contains ≥ t + 1 elements. DPFSS.R will reconstruct the
polynomial ψk (X ) of Eq. (9) for all k ∈ [N ]. Consequently,
Pout will output s̃ = (s̃1, . . . , s̃N ) = (ψ1(0), . . . , ψN (0)) =
(F1(s), . . . ,FN (s)).
Theorem 1 (Integrity): In the presence of any mobile and

active PPT adversary A that controls ≤ t parties from
C and ≤ t parties from C̃, the output client will output
the correct N functions {Fk (s)}Nk=1 by faithfully executing
DPFSS.R.

Proof: The secrets s are firstly shared among the old
committee C by an input client. By Lemma 1 and Lemma 2,
N functions {Fk (s)}Nk=1 are transferred from C to C̃ with N
RCSs in the function handoff phase. By Lemma 3, these
functions stay invariant in the reconstruction phase. Therefore
an honest output client will output {Fk (s)}Nk=1. We conclude
that the integrity of our DPFSS scheme holds throughout the
execution.
Secrecy of Our DPFSS Scheme: As per Definition 2, the

secrecy of our DPFSS scheme requires that: Any mobile and
active PPT adversaryA that controls ≤ t parties from C and
≤ t parties from C̃ learns no information about the secret
vector s or the N evaluation results {Fk (s)}Nk=1.

Without loss of generality, we suppose that A is a
PPT adversary that controls exactly t parties from C (say
P1, . . . ,Pt ) and t parties from C̃ (say P̃1, . . . , P̃t ) throughout
the entire execution of DPFSS. Recall that our DPFSS
scheme consists of three phases: share generation DPFSS.S,
function handoff DPFSS.FH and reconstruction DPFSS.R.
As the parties controlled by A receive no messages in
DPFSS.R, it suffices to show that A learns no information
about s and {Fk (s)}Nk=1 in DPFSS.S and DPFSS.FH. Other
than the public inputs, the information obtained by A in the
two phases can be described as follows:

• DPFSS.S: t shares {si}ti=1 of the secret vector s from
{Pi}ti=1.

• DPFSS.FH: tN shares {rk,1, . . . , rk,t }Nk=1 of {[rk ]t }
N
k=1

and n public vectors {vi}ni=1 from {Pi}ti=1; tN shares
{r̃k,1, . . . , r̃k,t }Nk=1 of {[r̃k ]t }Nk=1 and t intermediate
evaluation results {s̃i}ti=1 from {P̃i}

t
i=1.

Lemma 4: Let A be a PPT adversary that controls the
parties P1, . . . ,Pt ∈ C and P̃1, . . . , P̃t ∈ C̃. In the share
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generation phase, the adversary A learns no information
about s from the corrupted parties in C.

Proof: In DPFSS.S,A obtains t shares {si}ti=1 of s from
the corrupted parties {Pi}ti=1 andm commitments {comfz}

m
z=1.

For every sz ∈ s (z ∈ [m]), {si}ti=1 contain t shares
sz,1, . . . , sz,t in [sz]t , which is a Shamir sharing of sz generated
with fz, a polynomial of degree ≤ t . The security of Shamir
SSS shows that A learns no information about sz. Hence, A
learns no information about s from {si}ti=1.

On the other hand, for every z ∈ [m], fz(0) = sz is an
element of s and comfz is a commitment of fz. Due to the
computationally hiding property of Feldman’s polynomial
commitment, the PPT adversary A cannot learn sz from
comfz .
Lemma 5: Let A be a PPT adversary that controls the

parties P1, . . . ,Pt ∈ C and P̃1, . . . , P̃t ∈ C̃. In the
function handoff, the adversaryA learns no information about
{Fk (s)}Nk=1 from the corrupted parties in both committees.

Proof: In the prepare phase of the function handoff
phase DPFSS.FH A obtains tN shares {rk,1, . . . , rk,t }Nk=1
of {[rk ]t }Nk=1 from {Pi}ti=1, tN shares {r̃k,1, . . . , r̃k,t }Nk=1 of
{[r̃k ]t }Nk=1 from {P̃i}ti=1, and 2N commitments {com[rk ]t ,

com[r̃k ]t }
N
k=1. The ([rk ]t , [r̃k ]t )Nk=1 are computed in the

following way

([r1]t , · · · , [rN ]t )T =M([u1]t , · · · , [un]t )T ,

([r̃1]t , · · · , [r̃N ]t )T =M([ũ1]t , · · · , [ũn]t )T ,

where ([ui]t , [ũi]t )ni=1 are generated by the parties in C̃.
Noted that N ≤ n − t (See Section III) and M ∈ FN×np

is a Vandermonde matrix such that any N × N submatrix
is invertible. As P̃t+1, . . . , P̃n are n − t ≥ N honest
parties in C̃, there is a one-to-one map from any N of
the n − t honestly generated RCSs ([ui]t , [ũi]t )ni=t+1, which
are uniformly distributed, to ([rk ]t , [r̃k ]t )Nk=1. Therefore, the
output couples ([rk ]t , [r̃k ]t )Nk=1 are uniformly distributed as
well.

For every k ∈ [N ], the polynomial σk (X ) (resp. σ̃k (X ))
from Lemma 1 satisfies σk (j) = rk,j (resp. σ̃k (j) = r̃k,j)
for j = t + 1, . . . , n, where (rk,j)nj=t+1 (resp. (r̃k,j)nj=t+1)
are uniformly distributed. Thus, σk (X ) and σ̃k (X ) are random
polynomials of degree ≤ t such that σk (0) = σ̃k (0).
Therefore, the adversaryA learns no information about σk (0)
from the shares {rk,1, . . . , rk,t } and {r̃k,1, . . . , r̃k,t }.

On the other hand, we have that com[rk ]t [1] = gσk (0) and
com[r̃k ]t [1] = gσ̃k (0). By the computationally hiding property
of Feldman’s polynomial commitment prevents, the PPT
adversary A cannot learn σk (0) from com[rk ]t and com[r̃k ]t .

In the refresh phase of function handoff, for each k ∈
[N ], the adversary A can reconstruct vk = σk (0) + Fk (s)
from {vk,i}ni=1, which are n elements from the vectors {vi}ni=1
published by the parties in C (by Lemma 2). Since A cannot
recover σk (0), it cannot calculate Fk (s) from vk .

Besides {vk}Nk=1, A also obtains {s̃i = (s̃1,i, . . . , s̃N ,i)}ti=1
from {P̃i}ti=1 in the refresh phase, where s̃k,i = vk − r̃k,i for
all k ∈ [N ] and i ∈ [t]. Therefore, for every k ∈ [N ], A has

TABLE 1. Communication complexity of each phase.

t shares {s̃k,1, . . . , s̃k,t } in [s̃k ]t , whose sharing polynomial
is the ψk (X ) in Eq. (9). Since ψk (X ) has degree ≤ t , the t
shares do not suffice to interpolate ψk (X ) and thus give no
information about ψk (0) = Fk (s).
Theorem 2 (Secrecy): The mobile and active PPT adver-

sary A, which corrupts ≤ t parties in C and ≤ t parties
in C̃, learns no information about s or {Fk (s)}Nk=1 during the
execution of DPFSS scheme.

Proof: By Lemma 4 and Lemma 5, the adversary A
learns no information of the secrets s or {Fk (s)}Nk=1 during the
share generation phase and the function handoff phase. And
in the reconstruction phase, it is an honest output client who
reconstructs {Fk (s)}Nk=1. Therefore, the secrecy of our DPFSS
scheme holds throughout the execution.

V. PERFORMANCE EVALUATION
Like [17] and [18], the efficiency of our DPFSS scheme
DPFSS can bemeasured with its communication complexity
and time complexity. In this section, we show that the
proposed scheme achieves a communication complexity of
O(n2+mn) and a time complexity ofO(n), which are compa-
rable with themost efficient DPSS scheme from [17].We also
implement DPFSS and evaluate its performance concretely.

A. EFFICIENCY ANALYSIS
Communication Complexity: In every phase of our DPFSS
scheme, the communication cost is incurred by the following
kinds of operations, whose complexity can be described as
follows:
• Share a secret: Share a secret s among a committee of n
parties requires one to send each party a share in [s]t =
(s1, . . . , sn), which incurs a communication cost ofO(n)
field elements.

• Publish a commitment: Each commitment consists of
t + 1 group elements, the communication cost incurred
by publishing a commitment is O(t) group elements.

• Reconstruct a secret: Reconstructing a secret s from its
sharing [s]t requires one to obtain n shares from the
parties and thus incurs a communication cost of O(n)
field elements.

Based on the above analysis, the communication complexity
(see Table 1) of the three phases DPFSS.S,DPFSS.FH and
DPFSS.R of our scheme can be analyzed as follows:
• DPFSS.S: In this phase, a constant numberm of secrets
s are shared by the input client Pin and the commitments
of the sharings are published. The communication
complexity of this phase is O(mn) field elements plus
O(mt) group elements.
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TABLE 2. Time complexity of each phase.

• DPFSS.FH: In the prepare phase, parties in C̃ generate
n RCS {([ui]t , [ũi]t )}ni=1, which contain 2n sharings, and
publish their commitments. The communication cost
is O(n2) field elements plus O(nt) group elements.
In the refresh phase, every Pj ∈ C publishes a vector
vj of N elements. For k ∈ [N ], a sharing [s̃k ]t
is computed among C̃ and every P̃j ∈ C̃ publishes
a commitment com[s̃k ]t at the end of this phase.
The communication cost is O(Nn) field elements plus
O(Nt) group elements. Hence, the total communication
complexity of DPFSS.FH isO(n2+Nn) field elements
plus O((n+ N )t) group elements.

• DPFSS.R: Reconstructing the evaluation results
requires the parties in the new committee C̃ to
send vectors {s̃j}nj=1 to the output client, where each
vj includes N elements. Hence, the communication
complexity is O(Nn) field elements.

The communication complexity of DPFSS is O(n2 + (N +
m+ t)n+ (m+N )t), As mentioned in Section III, N < n− t
and t < n/3. Thus, the communication complexity of our
scheme is O(n2 + mn) field/group elements.
Time Complexity: Let a-exp and a-bp be the time cost of

computing a exponentiations in G and computing a pairings,
respectively. In every phase of our DPFSS scheme, the time
cost is incurred by the following kinds of operations, whose
complexity can be described as follows:
• Generate a secret sharing: A secret sharing [si]t =
(si,1, . . . , si,n) = (fi(1), . . . , fi(n)) = (si,1, . . . , si,n) is
a vector of n evaluations of a polynomial fi(X ) = s +∑t

j=1 fi,jX
i. The cost of generating [si]t is O(nt) with

Horner’s method [49].
• Commit a secret sharing: A commitment comfs =

(gsi , gfi,1 , . . . , gfi,t ) of [si]t is vector of t + 1 exponents
of a group generator g. The cost of committing a secret
sharing is O(t)-exp

• Verify a share: Check whether a given value y is equal
to the share si,j in a sharing [si]t , it needs to computes a
witness

ηj =

t∏
z=0

comf [z+ 1]j
z
(= gsi,j ),

then compute gy and check if the equation gy = ηj
holds. The time complexity of verifying a share is
O(t2)-exp.

• Reconstruct a secret:Given t+1 shares in [si]t , the secret
si can be recovered by applying Lagrange interpolation.
The cost of reconstructing a secret is O(t2).

The time complexity of ourDPFSS is analyzed as follows:
• DPFSS.S: In this phase, the input client Pin generates
sharings for m secrets s = (s1, . . . , xm) and computes
their commitments. The time complexity of this phase
is O(nmt) field operations plus O(mt)-exp.

• DPFSS.FH: The time complexity of the prepare phase
isO((N + t2)n) field operations plusO(nt2+Nnt)-exp:
– In Step 2, for all i ∈ [n], the computation

of each ([ui]t , [ũi]t ) along with the commitments
comhi , comh̃i

costs O(nt) and O(t)− exp;
– In Step 3-4, for each j ∈ [n], the verifications of
{ui,j}ni=1 (executed by Pj ∈ C) and the verifications
of {ũi,j}ni=1 (executed by P̃j ∈ C̃) cost O(nt2)-exp;

– In Step 7, the computations of {([rk ]t , [r̃k ]t )}Nk=1,
which areN linear combinations of {([ui]t , [ũi]t )}ni=1
(See Eq. 5), costs O(Nn). As shown in Eq.
(6), the computation of com[rk ]t (resp. com[r̃k ]t ),
which involves component-wise multiplication
of comh1 , . . . , comhn (resp. comh̃1

, . . . , comh̃n
),

costs O(Nnt)-exp.
The time complexity of the refresh phase is O((m2

+

t2)N ) field operations plus O(Nnt2)-exp plus
O(Nn)-bp:
– In Step 1, for each j ∈ [n] and k ∈ [N ], the

evaluation vk,j = rk,j + Fk (sj), where |sj| = m and
Fk is a degree-2 polynomial, costs O(Nm2);

– In Step 2, for all j ∈ [n], the computations
of the involved shares’ witnesses in each vj =
(v1,j, . . . , vN ,j) have a workload of O(Nnt2)-exp.
For every k ∈ [N ], the verification of the equation
v′k,j = rk,j + Fk (sj) is done by confirming
whether Eq. (7) is true, which costsO(Nn)-bp. The
reconstructions of v1, . . . , vN from 2t + 1 valid
vectors out of {vj}nj=1 cost O(Nt2).

– In Step 3, for each j ∈ [n], the computations of
{s̃k,j = vk − r̃k,j}Nk=1 cost O(N ).

– In Step 4, for all k ∈ [N ], the computation
of com[s̃k ] contains one component-wise division,
where every commitment vector has t + 1 group
elements. The cost is O(Nt)-exp;

Hence, the total time complexity of the function handoff
phase isO((N + t)n+m2N + t2N ) field operations plus
O(Nnt2)-exp plus O(Nn)-bp.

• DPFSS.R: The output client applies Shamir’s SSS to
reconstruct every evaluation result, where the Lagrange
interpolation is applied. Therefore, the time complexity
is O(Nt2) field operations.

In conclusion, the time complexity of our DPFSS construc-
tion is O((N + mt)n + m2N + t2N ) field operations plus
O(Nnt2 + mt)-exp plus O(Nn)-bp, which is linear n.

B. EXPERIMENTAL/RESULTS
We implement DPFSS in C++ and use the C library
FLINT 2.8.0 [50] to realize large number operations and
use the C library RELIC 0.5.0 [51] to realize bilinear
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TABLE 3. Time for DPFSS setting with committee sizes 20-100.

FIGURE 4. Time for DPFSS.FH setting with committee sizes 100-1000.

group operations. Our codes are run in single-thread on
an Intel(R) Xeon(R) E-2286G CPU @ 4.0 GHz with
6 cores and 64 GB memory. We run each experiment
100 times and report their average. Our codes are available
at: https://github.com/dpfsscode/DPFSS.
Benchmarks:We first choose the parameters for the bilin-

ear group generator BG, Feldman’s polynomial commitment
scheme FC and our construction DPFSS. Then we quantify
the cost of each algorithm or protocol involved in DPFSS.
1) Parameter selection: We choose the pairing-friendly

elliptic curve BLS12-381 over Fq for a 128-bit prime
q, the order of G,GT in the elliptic curve is q. We use
the groupG to set up the commitment key of Feldman’s
scheme FC such that the order of the group is q as well.
For our DPFSS, the polynomial arithmetic is done
over the polynomial ring Fp[X ] for a 256-bit prime p.

2) Experimental time complexity:We implement BG, FC
and DPFSS with the parameters stated above. In the
optimistic case, where all parties behave honestly,
we measure the costs of our DPFSS (DPFSS.S,
DPFSS.FH and DPFSS.R ) for increasing numbers
of nodes in the committee. The results are presented
in Table. 3. Compared with the running time of
DPFSS.FH, the running time of the other phases
is rather tiny. Therefore, we measure the costs of

DPFSS.FH for committees with larger sizes. The
results are presented in Fig. 4 and it shows that the cost
of time matches our expectation of linear asymptotic
growth in n and suggests a low constant, e.g., for a
committee of size n = 1000, the total execution time is
only about 2 minutes.

3) Experimental communication complexity: The data
that transmitted throughout our DPFSS includes: mn
elements of Fp (m-share vectors {sj}nj=1) and m com-
mitments ({comfi}

m
i=1), which includes t + 1 elements

of Fq in the DPFSS.S; n2+Nn elements of Fp (shares
in {([ui]t , [ũi]t )}ni=1, N -share vectors {vj}nj=1) and (2 +
N )n commitments ({comhi , comh̃i

}
n
i=1, {com[s̃k ]t }

N
k=1

from each P̃i ∈ C̃) in the DPFSS.FH; Nn elements
of Fp (N -share vectors {s̃j}nj=1) in the DPFSS.R.
In aforementioned parameter selection, prime p is 256-
bit and prime q is 254-bit. For example, for t =
20,N = 10,m = 10 and n = 100, the communication
complexity of DPFSS is about 32n2 + 9088n bytes,
which ≈ 1.166 MB.

VI. CONCLUSION
In this work, we define a new model of DPSS, which is
called DPFSS and allows the old committee to pass a function
of shared data to a new committee. By applying Shamir’s
secret sharing and random coupled sharing, we design a
DPFSS scheme that can transfer quadratic functions of
the shared data. In the proposed construction, we also use
Feldman’s scheme to commit to secret sharings, in order
to make the correctness of the shares verifiable. Our
construction satisfies the properties of integrity and secrecy,
and acheieves a communication complexity of O(n2). We
implement the proposed construction and show its efficiency
with experimental results. It is an interesting open problem to
construct DPFSS schemes for polynomials of degree > 2.
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