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ABSTRACT Although end-to-end (E2E) text-to-speech (TTS) models with HiFi-GAN-based neural
vocoder (e.g. VITS and JETS) can achieve human-like speech quality with fast inference speed, these
models still have room to further improve the inference speed with a CPU for practical implementations
because HiFi-GAN-based neural vocoder unit is a bottleneck. Additionally, HiFi-GAN is widely used
not only for TTS but also for many speech and audio applications. To accelerate HiFi-GAN while
maintaining the synthesis quality, Multi-stream (MS)-HiFi-GAN, iSTFTNet and MS-iSTFT-HiFi-GAN
have been proposed. Although inverse short-term Fourier transform (iSTFT)-based fast upsampling is
introduced in iSTFTNet and MS-iSTFT-HiFi-GAN, we first find that the predicted intermediate features
input to the iSTFT layer are completely different from the original STFT spectra due to the redun-
dancy of the overlap-add operation in iSTFT. To further improve the synthesis quality and inference
speed, we propose FC-HiFi-GAN and MS-FC-HiFi-GAN by introducing trainable fully-connected (FC)
layer-based fast upsampling without overlap-add operation instead of the iSTFT layer. The experimen-
tal results for unseen speaker synthesis and E2E TTS conditions show that the proposed methods can
slightly accelerate the inference speed and significantly improve the synthesis quality in JETS-based
E2E TTS than iSTFTNet and MS-iSTFT-HiFi-GAN. Therefore, the iSTFT layer can be replaced by the
proposed trainable FC layer-based upsampling without overlap-add operation in HiFi-GAN-based neural
vocoders.

INDEX TERMS End-to-end text-to-speech, fully-connected layer-based upsampling, iSTFTNet, multi-
stream HiFi-GAN, neural vocoder.

I. INTRODUCTION
In recent years, text-to-speech (TTS) technology, which gen-
erates speech waveforms from input text, can synthesize
high-quality speech as good as human speech by using deep
learning techniques such as Tacotron 2 [1] combined with
WaveNet-based neural vocoder [2]. However, this system
requires large computing resources such as a GPU to gen-
erate speech waveforms, so it was necessary to reduce the

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Huang .

model size and improve the inference speed. To achieve the
high-speed inference while maintaining the synthesis quality,
several end-to-end (E2E) TTS models have been proposed
that can synthesize speech waveforms directly from input
text or phoneme sequences with a single neural network [3],
[4], [5], [6], [7], [8], [9]. Especially, VITS [7] and JETS [8]
can achieve human-like quality and real-time inference. How-
ever, these models have room for improving the inference
speed with a single CPU because HiFi-GAN [10]-based
neural vocoder unit used in these models is a bottle-
neck in the inference speed although Glow-TTS [11]-based
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acoustic model for VITS and Fastspeech 2 [4]-based acous-
tic model for JETS can realize quite fast inference with a
single CPU.

An effective approach to improving the inference
speed of TTS models is to accelerate neural vocoders.
Vocoder is a speech waveform generator that can con-
vert arbitrary parameters, such as acoustic features for
analysis-synthesis or intermediate features in E2E TTS
models, into speech waveforms. Initially, conventional TTS
models have employed signal-processing-based source-
filter vocoders (e.g. STRAIGHT [12] and WORLD [13]).
However, the synthesis quality was not good enough. Sub-
sequently, by using WaveNet vocoder [2], which introduces
an autoregressive (AR) neural network, TTS models can
synthesize speech waveforms that closely resemble human
speech. However, to achieve human-like speech, neural
vocoders require large computational resources such as a
GPU. To realize real-time inference, many AR models [14],
[15], [16], [17], [18], [19], [20] and non-AR models [21],
[22], [23], [24], [25], [26] have been proposed. Although
these models can synthesize high-fidelity speech waveforms,
a GPU is required for real-time inference. Compared with
these models, MelGAN [27], Multi-band MelGAN [28] and
HiFi-GAN [10] are based on generative adversarial network
(GAN) [29] and can realize real-time inference with a single
CPU by introducing upsampling-based generators. Espe-
cially, HiFi-GAN can realize human-like quality synthesis
for both single and multi-speaker models1 and is becoming a
de facto standard of neural vocoders and is widely used not
only for TTS [6], [7], [8], [9], [31], [32] but also for many
speech and audio applications, such as voice conversion [33],
[34], singing voice synthesis [35], speech enhancement [36],
[37], bandwidth extension [36], neural audio codec [38],
automatic spoken language acquisition [39], fundamental
frequency (fo) [40] controllable neural vocoders [41], [42],
[43], speech rate conversion [43], [44] and sound field recon-
struction [45]. Additionally, extended models have also been
investigated [46], [47], [48], [49]. Although the inference
speed of HiFi-GAN is fast, the real-time factor (RTF) is more
than 0.5 on a single CPU. If the duration of awaveform is 10 s,
the inference time is more than 5 s. Therefore, it is important
to further accelerate the inference speed of HiFi-GAN with a
single CPU for practical applications.

To accelerate the inference speed of HiFi-GAN while
maintaining the synthesis quality, Multi-stream (MS)-HiFi-
GAN [50] and iSTFTNet [51] have been proposed by
replacing the final 4× upsampling layers of HiFi-GAN with
lightweight fast upsampling layers.2 Additionally, by effi-
ciently combining these models, MS-iSTFT-HiFi-GAN [53]

1Recently, another GAN-based model, WaveFit [30], has been proposed.
Although it can realize higher synthesis quality than HiFi-GAN and com-
parable inference speed to HiFi-GAN, the training cost is higher than
HiFi-GAN and no implementation is provided.

2Although MISRNet [52] has also been proposed, it can only accelerate
the inference speed of HiFi-GAN on a GPU and cannot accelerate the
inference speed on a CPU. Therefore, it is not considered in this paper.

has also been proposed in VITS-based E2E TTS model and
can realize 4 times faster inference than vanilla HiFi-GAN
while maintaining the synthesis quality. Focusing on iSTFT-
Net, this architecture can reasonably achieve the acceleration
of HiFi-GAN by using the inverse short-term Fourier trans-
form (iSTFT)-based fast upsampling. However, we first show
that the intermediate features input to the iSTFT layer are
completely different from the original STFT spectra due to
the redundancy of the overlap-add operation in iSTFT. This
means that the iSTFT-based upsampling does not work as
expected and there is room for improvement.

To further improve the synthesis quality and inference
speed of iSTFTNet and MS-iSTFT-HiFi-GAN, we propose
simple but efficientmodels, FC-HiFi-GANandMS-FC-HiFi-
GAN by replacing iSTFT layer-based upsampling using fixed
weights based on the Fourier basis and overlap-add operation
with trainable fully-connected (FC) layer-based lightweight
upsampling without overlap-add operation. In experiments
for analysis-synthesis-based unseen speaker synthesis and
VITS- and JETS-based E2E TTS conditions, we show that
the proposed methods can also realize fast and high-fidelity
synthesis as well as iSTFTNet and MS-iSTFT-HiFi-GAN,
slightly improve the inference speed than iSTFTNet and MS-
iSTFT-HiFi-GAN, and significantly improve the synthesis
quality for JETS-based E2E TTS by trainable but lightweight
upsampling without overlap-add operation.

The rest of this paper is organized as follows. Conventional
HiFi-GAN-based fast neural vocoders and E2E TTS models,
VITS and JETS, are briefly introduced in Sec. II. The issues
for iSTFT-based upsampling are explained in Section III.
FC-HiFi-GAN and MS-FC-HiFi-GAN are then proposed
in Sec. IV. Section V describes experiments to compare
the proposed FC-HiFi-GAN and MS-FC-HiFi-GAN with
the conventional models for analysis-synthesis-based unseen
speaker synthesis and VITS- and JETS-based E2E TTS con-
ditions. Finally, conclusions are presented in Section VI.

II. CONVENTIONAL MODELS
A. HiFi-GAN-BASED FAST NEURAL VOCODERS
1) HiFi-GAN [10]
HiFi-GAN is a GAN-based neural vocoder consisting of
a generator and two superior discriminators. The generator
synthesizes speech waveforms from acoustic features, such
as mel-spectrograms, by progressively upsampling the input
features (8× → 8× → 2× → 2×) using transposed con-
volutional layers with residual blocks as shown in Fig. 1(a).
With the efficient upsampling-based generator and sophisti-
cated discriminators, HiFi-GAN can realize high-fidelity and
fast speech synthesis.

2) MS-HiFi-GAN [50]
AsMulti-bandMelGAN [28], HiFi-GAN can be easily accel-
erated by replacing the last two layers for final 4× upsam-
pling to multi-rate signal processing [54]-based sub-band
synthesis filter [55] as used in [16] where the four sub-band
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FIGURE 1. Architectures of (a) HiFi-GAN, (b) Multi-stream HiFi-GAN, (c) iSTFTNet, and (d) proposed FC-HiFi-GAN generators. T,
T.Conv, ResBlock and Conv1d are the number of frames of mel-spectrograms for analysis-synthesis condition or hidden features
for E2E TTS condition, transposed convolutional layer, residual block and 1-dimensional convolutional layer.

output waveforms are upsampled by zero-padding and then
a full-band speech waveform is synthesized by the synthe-
sis filter. However, the multi-band structure with constant
synthesis filter is too restrictive to train HiFi-GAN because
the sophisticated HiFi-GAN discriminators can easily dis-
tinguish between real and synthetic speech. By replacing
the sub-band synthesis filter, which can be regarded as a
convolutional layer with fixed weights without bias, with a
trainable convolutional layer without bias, MS-HiFi-GAN
can be successfully trained by decomposing the four output
waveforms in a data-driven manner. Then, MS-HiFi-GAN
can successfully accelerate the inference speed of HiFi-GAN
while maintaining the synthesis quality. The architecture of
the MS-HiFi-GAN generator is shown in Fig. 1(b).

3) iSTFTNet [51]
Similar to the sub-band synthesis filter in Multi-band Mel-
GAN [28], iSTFT can also be regarded as an upsampling
operation. For both accelerating HiFi-GAN and making
the best use of input mel-spectrogram structure, iSTFTNet
replaces the last two layers for final 4× upsampling of
HiFi-GAN with iSTFT-based fast upsampling as shown in
Fig. 1(c). In iSTFTNet, the amplitude and phase components
of the STFT spectra are predicted by a 1D convolutional layer
before the iSTFT layer. Compared with MS-HiFi-GAN with
trainable lightweight upsampling, iSTFTNet can also suc-
cessfully accelerate the inference speed of HiFi-GAN while
maintaining the synthesis quality although the iSTFT layer
with fixed weights based on the Fourier basis is not trainable.

4) MS-iSTFT-HiFi-GAN [53]
By combining a trainable convolutional layer-based upsam-
pling for MS-HiFi-GAN and iSTFT-based upsampling for
iSTFTNet, MS-iSTFT-HiFi-GAN has been proposed to fur-
ther accelerate HiFi-GAN-based neural vocoder. MS-iSTFT-
HiFi-GAN is introduced in the speech waveform synthesizer
component for VITS-based E2E TTS. The architecture of
the MS-iSTFT-HiFi-GAN generator is depicted in Fig. 2(e).
Although MS-iSTFT-HiFi-GAN is twice as fast as MS-
HiFi-GAN and iSTFTNet, it can still maintain the synthesis
quality.

B. E2E TTS MODELS
1) VITS [7]
VITS is proposed as an E2E TTS model extended from
Glow-TTS [11]. In the training of Glow-TTS, the target
mel-spectrograms are converted to Gaussian white noise by
the Flow [56]-based decoder, and the alignment between
the hidden features converted from the input text and con-
verted white noise is gradually obtained by monotonic
alignment search (MAS) [11] without external aligners.
In the inference, the upsampled hidden features are con-
verted to the target mel-spectrograms by Flow-based inverse
transformation. In VITS, the target linear-spectrograms are
converted to the latent variables based on variational auto-
encoder (VAE) [57], and the latent variables instead of
mel-spectrograms are converted not only to Gaussian white
noise by the Flow-based decoder but also to the target
speech waveforms by HiFi-GAN-based neural vocoder. All
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FIGURE 2. Architectures of (e) MS-iSTFT-HiFi-GAN and (f) proposed MS-FC-HiFi-GAN generators. T, T.Conv, ResBlock and Conv1d are the
number of frames of mel-spectrograms for analysis-synthesis condition or hidden features for E2E TTS condition, transposed
convolutional layer, residual block and 1-dimensional convolutional layer.

FIGURE 3. Architectures of VITS and JETS generators.

the network components are jointly trained with the same
discriminators for HiFi-GAN, and the intermediate latent
variables are optimized to minimize the training loss. Then,
VITS can realize higher-quality TTS than the cascade model
with Glow-TTS and HiFi-GAN [7]. The architecture of
the VITS generator is shown in Fig. 3(a). In MS-iSTFT-
VITS,MS-iSTFT-HiFi-GAN (Fig. 2(e)) is used for the neural
vocoder instead of vanilla HiFi-GAN [53].

2) JETS [8]
Compared with VITS, which efficiently introduces three
kinds of deep generative models, Flow [56], VAE [57] and
GAN [29], JETS is a simpler E2E TTS model while realizing

higher synthesis quality than VITS [8]. JETS is realized by
joint training of FastSpeech 2 [4]-based acoustic model and
HiFi-GAN-based neural vocoder with the same discrimina-
tors for HiFi-GAN without intermediate mel-spectrograms
nor external aligners although FastSpeech 2 [4] requires
an external aligner, such as Montreal Forced Aligner [58].
In JETS, an alignment training framework proposed in [59]
with MAS is introduced, and the alignment between the
hidden features converted from the input text sequences and
the target mel-spectrogram sequences is gradually obtained
in the training as VITS.

III. ISSUES FOR ISTFT LAYER-BASED UPSAMPLING
In this section, we first show that the iSTFT-based upsam-
pling used in iSTFTNet and MS-iSTFT-HiFi-GAN does not
work as expected. As described in Sec. II-A3, the ampli-
tude and phase components of the STFT spectra are inferred
by the 1D convolutional layer before the iSTFT layer, and
high-fidelity speech waveforms can be synthesized by the
final iSTFT layer-based fast upsampling in iSTFTNet. To
explain the actual behavior of iSTFTNet, Figure 4 shows
the magnitude and phase components of the STFT spectrum
of an original female speech waveform used in the experi-
ments of analysis-synthesis condition conducted in Sec. V,
those estimated by iSTFTNet, and those reanalyzed from
the speech waveform synthesized by using the estimated
STFT spectrum, respectively. The estimated magnitude and
phase components (Fig. 4(b)) differ from those of the orig-
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FIGURE 4. (a) amplitude and phase components of STFT spectrum of an original speech waveform (jvs001-BASIC5000-0025), (b) those
estimated by iSTFTNet trained using JVS corpus, (c) those reanalyzed from the speech waveform synthesized by using (b).

inal (Fig. 4(a)). This result indicates that iSTFTNet cannot
perfectly predict the magnitude and phase components of
the STFT spectra. However, the reanalyzed magnitude and
phase components (Fig. 4(c)) are indistinguishable from
those of the original Fig. 4(a). When the fast Fourier trans-
form (FFT) length and shift length of acoustic feature analysis
in STFT are M and N , M/N = Q samples are summed
for each sample in iSTFT by the overlap-add operation
(Fig. 5(a)). Therefore, the overlap-add operation in iSTFT
has the ‘‘redundancy’’ for Q ≥ 2. By the redundancy of
the overlap-add operation and the GAN-based training in the
time domain, the magnitude and phase components estimated
by iSTFTNet, that differ from those of the original, can
still synthesize high-fidelity speech waveforms. Conversely,
iSTFTNet is trained to estimate STFT spectra for synthesiz-
ing high-quality speech waveforms through the overlap-add
operation, and GAN-based training in the time domain has no
restriction in the STFT domain. Therefore, direct estimation
of speech waveform samples in the time domain is more
suitable for GAN-based training in the time domain than the
indirect estimation of STFT spectra introduced in iSTFTNet.
Additionally, there is a room for improvement in the iSTFT
layer-based upsampling with untrainable fixed weights based
on the Fourier basis compared with MS-HiFi-GAN with
trainable fast upsampling [50].

IV. PROPOSED FULLY-CONNECTED LAYER-BASED
TRAINABLE UPSAMPLING WITHOUT OVERLAP-ADD
OPERATION: FC-HiFi-GAN AND MS-FC-HiFi-GAN
As described in Sec. III, the iSTFT layer-based upsampling
has the following issues.

• The intermediate features inferred by the 1D convolu-
tional layer in iSTFTNet are completely different from
the original STFT spectra.

• The iSTFT-based upsampling in iSTFTNet and MS-
iSTFT-HiFi-GAN is not suitable for GAN-based

FIGURE 5. (a) iSTFTNet with overlap-add operarion, and (b) proposed
FC-HiFi-GAN without overlap-add operation. T is the number of frames,
and M and N are the FFT length and shift length of acoustic feature
analysis.

training in time domain because GAN-based training in
the time domain has no restriction in the STFT domain.

• The iSTFT layer introduces untrainable fixed weights
based on the Fourier basis.

Inspired by MS-HiFi-GAN with trainable fast upsam-
pling [50], we propose a simple but efficient FC layer-based
fast upsampling to solve the above issues of the iSTFT-based
upsampling. Then, we proposed FC-HiFi-GAN and MS-
FC-HiFi-GAN by replacing the iSTFT layer-based upsam-
pling in iSTFTNet and MS-iSTFT-HiFi-GAN with the FC
layer-based trainable fast upsampling as shown in Figs. 1(d)
and 2(f), respectively.

In the proposed FC layer-based upsampling, N× upsam-
pling is simply realized by a trainable FC layer with output
channels of N and reshaping the output tensor shape from (B,
N , T ) to (B, 1, NT ) as shown in Figs. 1(d), 2(f) and 5(b),
where B and T are the batch size and number of frames,
respectively. The proposed FC-layer-based upsampling is
equivalent to sub-pixel convolution (pixel shuffler)-based
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FIGURE 6. (a) mel-spectrogram of original speech waveform and (b) to (e) mel-spectrograms and intermediate features of iSTFTNet,
proposed FC-HiFi-GAN, MS-iSTFT-HiFi-GAN and proposed MS-FC-HiFi-GAN input to iSTFT layer or FC layer for JETS-based E2E TTS with
LJSpeech corpus (LJ050-0225).

upsampling [60] with 1×1 convolutional layer. As MS-HiFi-
GAN [50], the trainable FC layer without bias is introduced.

Additionally, FC can be realized with fewer calculations
than iSTFT. WhenM is a power of 2, inverse FFT is applyed.
M audio samples are calculated by 2M log2M real number
multiplications and 3M log2M real number additions in the
iFFT. Then, 2MN log2M real number multiplications and
3MN log2M + N (Q − 1) = 3MN log2M + M − N real
number additions are required to synthesize N audio samples
in the iSTFT because iSTFT is calculated by shifting frame
and overlap-add with shift length N . Conversely, FC without
bias is calculated as x = Wh, where x ∈ RN×1, W ∈

RN×(M+2), and h ∈ R(M+2)×1 are the vector of N audio

samples, trainable weight matrix of the fully-connected layer,
and vector of hidden features, respectively. Then, (M + 2)N
real number multiplications and (M+1)N real number addic-
tions are required to synthesize N audio samples in the FC.
In iSTFTNet and FC-HiFi-GAN, M = 16 and N = 4.
Therefore, FC-based upsampling can realize faster inference
than iSTFT-based upsampling.

The FC layer-based upsampling differs from the iSTFT
layer-based upsampling in the following important points.

• Theweights of FC layer-based upsampling are trainable.
• The FC layer-based upsampling can directly predict
speech waveform samples without overlap-add opera-
tion (Fig. 5(b)), and it is more suitable for GAN-based
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TABLE 1. Results of objective and subjective evaluations of analysis-synthesis condition for unseen speaker synthesis with multi-speaker models.

training in time domain than the indirect estimation of
STFT spectra by the iSTFT-based upsampling.

With these features, the proposed FC layer-based upsam-
pling with trainable weights without overlap-add operation is
expected to further improve the inference speed and synthesis
quality compared to the iSTFT layer-based upsampling with
fixed weights based on the Fourier basis and overlap-add
operation.

V. EXPERIMENTS
A. EXPERIMENTS OF ANALYSIS-SYNTHESIS CONDITION
FOR UNSEEN SPEAKER SYNTHESIS WITH MULTI-SPEAKER
MODELS
To evaluate the proposed FC-HiFi-GAN and MS-FC-HiFi-
GAN and to compare them with the conventional HiFi-
GAN, MS-HiFi-GAN, iSTFTNet and MS-iSTFT-HiFi-GAN
in fundamental analysis-synthesis condition, experiments of
analysis-synthesis condition for unseen speaker synthesis
with multi-speaker models were first conducted. Some of the
speech samples used in the experiments are available online.3

1) EXPERIMENTAL CONDITIONS
a: DATASET
We used JVS corpus [61] of parallel 100 and non-parallel
30 sentences read by 100 Japanese speakers with a sam-
pling frequency of 24 kHz. The utterances of 90 speakers
(jvs011 to jvs100) were used for the training set, and the non-
parallel 30 sentences of the remaining 10 speakers (jvs001
to jvs010) not included in the training set were used for the
test set. The input acoustic features were 80-dimensional mel-
spectrograms bandlimited to 7600 Hz where the FFT and hop
sizes were 1,024 and 256 samples, respectively.

b: MODEL SETTING
In the experiments, HiFi-GAN-based models were trained
and inferred by modifying a PyTorch [62]-based open source
implementation,4 and each model was trained up to 2.5 mil-
lion iterations by using an NVIDIA Tesla V100 GPU.
As shown in Figs 1 and 2, the upsampling rates and kernel
sizes of the transposed convolutional layers for HiFi-GAN
were [8, 8, 2, 2] and [16, 16, 4, 4], those for MS-HiFi-GAN,

3Please download the zip file from
https://www.okamotocamera.com/UduQZiJzCw3f1Iw.zip
in peer review. The page will be published online when the submission is
accepted.

4https://github.com/kan-bayashi/ParallelWaveGAN

FIGURE 7. Result of T-test for MOS tests in Table 1. Values for p < 0.05
(statistically significant) are bold with yellow highlighting.

iSTFTNet and FC-HiFi-GAN were [8, 8] and [16, 16], and
those forMS-iSTFT-HiFi-GAN andMS-FC-HiFi-GANwere
[4, 4] and [8, 8], respectively. The initial channel of all the
models was 512 as HiFi-GAN V1 model [10]. The model
configuration of HiFi-GAN was the default setting5 where
only the sampling frequency was changed from 22,050 Hz to
24 kHz. The model configurations of the other models were
modified from that of HiFi-GAN.

c: EVALUATION CRITERIA
As objective evaluation criteria, the mel-cepstral distortion
(MCD) and log fo root mean square error (log fo RMSE)
between the original and synthesized speech waveforms
were evaluated. These values were calculated by using
ESPNet2-TTS [63].6 To measure RTFs, we used an Intel
Xeon 6152 CPU (with one core). A mean opinion score
(MOS) test with a five-point scale (5 for excellent, 4 for good,
3 for fair, 2 for poor, and 1 for bad) [64] was conducted to
evaluate the subjective perceptual quality of the ground truth
and synthesized speech waveforms. For the MOS test, non-
parallel 30 utterances of two female (jvs004 and jvs008) and
two male (jvs001 and jvs003) speakers were used. In the
MOS test, twenty adult native Japanese speakers without
hearing loss listened to the original and synthesized speech
samples using headphones and evaluated 140 sentences in
total, consisting of 20 sentences of each model and ground
truth samples (6 × 20 + 20 = 140).

2) RESULTS OF ANALYSIS-SYNTHESIS EXPERIMENTS
The results of the objective and subjective evaluations for
unseen speaker synthesis with multi-speaker models are

5https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/
ljspeech/voc1/conf/hifigan.v1.yaml

6https://github.com/espnet/espnet/tree/master/egs2/TEMPLATE/asr1/
pyscripts/utils/
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shown in Table 1. Additionally, Figure 7 shows the result
of the T-test for the MOS tests in Table 1. First of all,
the proposed MS-FC-HiFi-GAN realized the fastest infer-
ence speed and highest synthesis quality compared with the
other models although there was no significant difference
between the MOS value of MS-FC-HiFi-GAN and those of
the other models. As expected, FC-HiFi-GAN and MS-FC-
HiFi-GAN without overlap-add operation realized slightly
faster inference than iSTFTNet and MS-iSTFT-HiFi-GAN
with overlap-add operation while maintaining the synthesis
quality by the trainable FC layer.

B. EXPERIMENTS OF E2E TTS CONDITION
The analysis-synthesis condition is a simpler problem
because the inputs were ground truth mel-spectrograms. For
this reason, there was no significant difference between the
MOS values of iSTFTNet and FC-HiFi-GAN, or between
those of MS-iSTFT-HiFi-GAN and MS-FC-HiFi-GAN.

Therefore, we evaluated the performance of each neural
vocoder in E2E TTS condition, which is a more complex
problem than analysis-synthesis condition. For E2E TTS
models, we introduced VITS [7], which was used in MS-
iSTFT-HiFi-GAN. Additionally, we introduced JETS, which
is expected to realize higher quality and more stable syn-
thesis than VITS [8]. The neural vocoder part of each E2E
TTS model was changed to iSTFTNet, MS-HiFi-GAN, MS-
iSTFT-HiFi-GAN, andMS-FC-HiFi-GAN, and the inference
speed and synthesis quality of these models for E2E TTS
condition were compared.

1) EXPERIMENTAL CONDITIONS
a: DATASET
In the TTS experiments, we first used LJspeech [65] with
a sampling frequency of 22.05 kHz. As the default setting
of ESPnet2-TTS [63], 12,600 utterances, 250 utterances and
250 utterances were used for the training, validation and
test sets, respectively. Although LJSpeech is widely used in
TTS experiments as [7], [8], [51], and [53], the original
recordings were distributed as 128 kbps MP3 files and they
may contain artifacts introduced by the MP3 encoding [65].
To evaluate the neural vocoder models using a higher quality
corpus, we introducedHi-Fi TTS dataset [66] with a sampling
frequency of 44.1 kHz. In the experiments, a clean female
speaker corpus (Reader ID: 92) was selected, and normal-
band (24 kHz) and full-band (44.1 kHz) E2E TTS models
were trained combined with these neural vocoders. As the
default setting of Hi-Fi TTS dataset [66], 35,146 utterances,
50 utterances and 100 utterances were used for the training,
validation and test sets, respectively.

b: MODEL SETTING
In the experiments, VITS- and JETS-based E2E TTS models
were trained and inferred by the modifying PyTorch-based
open source implementation provided in ESPnet2-TTS [63].

Each model was trained up to 1.0 million iterations by using
four NVIDIA Tesla V100 GPUs.

The FFT and hop sizes of acoustic feature extraction for
sampling frequencies of 22.05 kHz and 24 kHz were also
1,024 and 256 samples, respectively. Then, the upsampling
rates and kernel sizes of the transposed convolutional lay-
ers in the neural vocoder part for 22.05 kHz and 24 kHz
were the same as those used in the experiments for analysis-
synthesis condition. The model configurations of VITS and
JETS with HiFi-GAN for LJSpeech (22.05 kHz) were the
default settings.78 The model configurations of the other
models for 22.05 kHz and 24 kHz were modified from the
default settings.

The FFT and hop sizes of acoustic feature extraction for
full-band VITS and JETS with a sampling frequency of
44.1 kHz were 2,048 and 512 samples, respectively. Then,
the upsampling rates and kernel sizes of the transposed con-
volutional layers for HiFi-GAN were [8, 8, 2, 2, 2] and
[16, 16, 4, 4, 4] [63], those for MS-HiFi-GAN, iSTFTNet
and FC-HiFi-GAN were [8, 8, 2] and [16, 16, 4], and those
for MS-iSTFT-HiFi-GAN and MS-FC-HiFi-GAN were [4,
4, 2] and [8, 8, 4], respectively. The model configuration of
full-band VITS with HiFi-GAN for 44.1 kHz was the default
setting.9 The model configurations of full-band VITS with
the other models were modified from the default setting of
full-band VITS. The model configurations of full-band JETS
with these models were modified from the default setting of
JETS for 22.05 kHz.

c: EVALUATION CRITERIA
As objective evaluation criteria, the MCD, log fo RMSE and
RTF were also evaluated as the analysis-synthesis condition.
Additionlly, the character error rate (CER) of automatic
speech recognition (ASR) were measured as in [8] and [63]
to evaluate the stability of E2E TTS models. The CER
was calculated by a Conformer-based ASR trained using
LibriSpeech corpus [67] by ESPnet [68]. A MOS test with a
five-point scale was also conducted to evaluate the subjective
perceptual quality of the ground truth and synthesized speech
waveforms. In the MOS test, twenty adult native English
speakers without hearing loss listened to the original and
synthesized speech samples using headphones and evalu-
ated 390 sentences in total, consisting of 10 sentences of
each model and ground truth samples ((12 × 10 + 10) ×

3 [LJSpeech, Hi-Fi TTS (24 kHz) and Hi-Fi TTS (44.1 kHz)]
= 390).

2) RESULTS OF E2E TTS EXPERIMENTS
The results of the subjective and objective evaluations for
normal-band and full-band E2E TTS conditions are pre-

7https://github.com/espnet/espnet/blob/master/egs2/ljspeech/tts1/conf/
tuning/train_vits.yaml

8https://github.com/espnet/espnet/blob/master/egs2/ljspeech/tts1/conf/
tuning/train_jets.yaml

9https://github.com/espnet/espnet/blob/master/egs2/jsut/tts1/conf/tuning/
train_full_band_vits.yaml
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TABLE 2. Results of objective and subjective evaluations of normal-band E2E TTS conditions using LJSpeech corpus and Hi-Fi TTS dataset.

TABLE 3. Results of objective and subjective evaluations of full-band E2E TTS conditions using Hi-Fi TTS dataset.

sented in Tables 2 and 3. Additionally, Figure 8 shows the
results of the T-test for the MOS tests in Tables 2 and
3. First, JETS-based models significantly realized higher
quality synthesis than VITS-based models and outperformed
VITS-based models in terms of the MCD, log fo RMSE,
and CER for both normal-band and full-band E2E TTS
conditions as [8]. Although the proposed JETS-based MS-
FC-HiFi-GAN could not realize the highest synthesis quality
compared with MS-HiFi-GAN (LJSpeech and full-band
Hi-Fi TTS) or HiFi-GAN (normal-band Hi-Fi TTS), it signif-
icantly realized higher synthesis quality than the conventional
MS-iSTFT-VITS [53] (VITS-based E2E TTS with MS-
iSTFT-HiFi-GAN), and realized the fastest inference and
lowest CER compared with the other models for both nor-
mal and full-band E2E TTS conditions. Additionally, there
were significant differences between the MOS values of
JETS with FC-HiFi-GAN and JETS with iSTFTNet for both
normal-band and full-band conditions, and those of JETS
with MC-FC-HiFi-GAN and JETS with MS-iSTFT-HiFi-
GAN for LJSpeech corpus.

Fig. 6 shows the STFT spectra of a speech waveform in the
test set and intermediate features of JETS-based E2E TTS
models with iSTFTNet, FC-HiFi-GAN, MS-iSTFT-HiFi-
GAN, and MS-FC-HiFi-GAN, and mel-spectrograms of the
original speech waveform and those synthesized by JETS-
based E2E TTS models with iSTFTNet, FC-HiFi-GAN,
MS-iSTFT-HiFi-GAN, andMS-FC-HiFi-GAN. The interme-
diate features of iSTFTNet are also completely different from
the STFT spectra of the original speech waveform as shown
in Fig. 4 in analysis-synthesis condition. As the interme-
diate features of iSTFTNet, those of MS-iSTFT-HiFi-GAN
have the same tendency. Compared with the intermediate

features of iSTFTNet and MS-iSTFT-HiFi-GAN, those of
the proposed FC-HiFi-GAN and MS-FC-HiFi-GAN input to
the trainable FC layer-based fast upsampling layer are opti-
mally trained to synthesize high-fidelity speech waveforms
as shown in Fig. 6(c) and (e). Additionally, the harmonic
structures of the proposed (c) FC-HiFi-GAN and (e) MS-FC-
HiFi-GAN are clearer than those of (b) iSTFTNet and (d)
MS-iSTFT-HiFi-GAN as showin in the red and green boxes
in Fig. 6.

Consequently, the proposed FC-HiFi-GAN and MS-FC-
HiFi-GAN with trainable FC layer-based fast upsampling
layer without overlap-add operation can realize slightly faster
inference and significantly improve the synthesis quality
for JETS-based E2E TTS than iSTFTNet and MS-iSTFT-
HiFi-GAN with iSTFT layer-based upsampling using fixed
weights and overlap-add operation. Therefore, the iSTFT
layer-based upsampling can be replaced by the proposed FC
layer-based upsampling in HiFi-GAN-based neural vocoders.
The summary of the results of the experiments are as
follows:

• The proposed JETS-based models can significantly
improve the synthesis quality with lower CER compared
to the VITS-based models.

• JETS with the proposed MS-FC-HiFi-GAN can realize
higher MOS values than the conventional MS-iSTFT-
VITS in all the conditions.

• In many conditions, the proposed FC-HiFi-GAN can
realize higher MOS values than the conventional
iSTFTNet.

• The proposed MS-FC-HiFi-GAN can realized signifi-
cantly higher MOS values than MS-iSTFT-HiFi-GAN
in many conditions.
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FIGURE 8. Results of T-test for MOS tests in Tables 2 and 3. Values for p < 0.05 (statistically significant) are bold with
yellow highlighting.

VI. CONCLUSION
HiFi-GAN is widely used not only for TTS but also for
many speech and audio applications. Although iSTFTNet
and MS-iSTFT-HiFi-GAN have been proposed to accel-
erate HiFi-GAN while maintaining the synthesis quality,
we first pointed out that the predicted intermediate fea-
tures input to the iSTFT layer are completely different from
the original STFT spectra due to the redundancy of the
overlap-add operation in iSTFT. To further improve the syn-
thesis quality and inference speed of HiFi-GAN based neural
vocoder, we proposed FC-HiFi-GAN andMS-FC-HiFi-GAN

by introducing trainable FC layer-based fast upsampling
without overlap-add operation instead of the iSTFT layer.
The results of experiments for unseen speaker synthesis
with multi-speaker models and E2E TTS with VITS- and
JETS-based normal-band and full-bandmodels demonstrated
that the proposed methods with trainable FC layer-based
fast upsampling without overlap-add operation can slightly
accelerate the inference speed and significantly improve the
synthesis quality in JETS-based E2E TTS than iSTFTNet and
MS-iSTFT-HiFi-GAN with iSTFT-based upsampling using
fixed weights based on the Fourier basis and overlap-add
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operation. Consequently, the iSTFT layer-based upsampling
can be replaced by the proposed FC layer-based upsampling
in HiFi-GAN-based neural vocoders.
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