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ABSTRACT Radar sensing can penetrate non-conducting materials, such as glass, wood, and plastic, which
makes it appropriate for recognizing gestures in environments with poor visibility, limited accessibility,
and privacy sensitivity. While the performance of radar-based gesture recognition in these environments
has been extensively researched, the preferences that users express for these gestures are less known.
To analyze such gestures simultaneously according to their user preference and their system recognition
performance, we conducted three gesture elicitation studies each with n1=30 participants to identify user-
defined, radar-based gestures sensed through three distinct materials: the glass of a shop window, the wood
of an office door, and polyvinyl chloride in an emergency. On this basis, we created a new dataset of
nine selected gesture classes for n2=20 participants repeating twice the same gesture captured by radar
through three materials, i.e., glass, wood, and polyvinyl chloride. To uniformly compare recognition rates in
these conditions with sensing variations, a specifically tailored procedure was defined and conducted with
one-shot radar calibration to train and evaluate a gesture recognizer. ‘Wood’ achieved the best recognition
rate (96.44%), followed by ‘Polyvinyl chloride’ and ‘Glass’. We perform a preference-performance analysis
of the gestures by combining the agreement rate from the elicitation studies and the recognition rate from
the evaluation.

INDEX TERMS Gesture elicitation study, gesture sensing through materials, hand gesture recognition, new
datasets, one-shot radar calibration, radar-based gesture recognition, user-defined gestures.

I. INTRODUCTION
Radio Detection And Ranging (Radar) technologies detect
objects and movements via electromagnetic or radio
waves [1] that can penetrate non-conducting materials, such
as glass, wood, plastic, paper, cardboard, and rubber [2], [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Sabarimalai Manikandan .

This capability makes radars appropriate for sensing human
gestures in conditions usually not covered by other sensing
technologies such as computer vision: environments with
poor visibility (e.g., dark places, conditions with fog, rain,
dust, smoke, or adverse light) [4], [5], limited accessibility
(e.g., hidden or indirect locations, places behind or below
rough surfaces) [6], [7], and privacy-sensitivity (e.g., when
the user does not want to be filmed or recognized) [8], [9].
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On one hand, radar-based gesture recognition systems
have demonstrated their effectiveness [10], reliability, and
robustness [11] despite being influenced by environmental
conditions [12]. Most studies [12], [13], [14], [15], [16],
[17], [18] have reported their performance in terms of
high recognition accuracy rates, making dynamic [16],
[17], real-time [19], [20], [21] interaction feasible. High-
frequency, wide-bandwidth radars detect even the finest
movements [22], such as the fingers of a hand [23], at a
reasonable distance [24]. However, the wide variety of radars
used [25] and the particularity of their models, methods,
and tools used to recognize gestures limit reuse in another
context [26]. There are almost as many different methods
as there are different radars, all reporting recognition rates
worthy of direct real-time interaction. The same method is
never used twice for two different radars. Different Machine
Learning (ML) and Deep Learning (DL) methods achieve
excellent results, provided they are optimized for the radar
and dataset in question, at the risk of overfitting. While most
of these studies optimize recognition performance [25], they
give little or no consideration to the preferences expressed
by end-users regarding the actual use of well-recognized
gestures [27].

On the other hand, the preference of users for this or
that gesture is the subject of an increasing number of
studies [28], but they too sometimes ignore performance.
Many Gesture Elicitation Studies (GESs) [29] identify a
vocabulary [30] of common gestures, such as for 3D travel
in mid-air [31], but this type of study is rare for radars:
Siean et al. [27] deplore the scarcity of such studies, the
lack of replication, and the difficulty of transposing the
results. A GES [29] is a participatory design method where
participants propose gestures theywould like to use to execute
system functions, such as snapping fingers to open the menu
of a smart TV [32]. The experimenter analyzes the elicited
gestures and calculates an agreement rate among participants’
gesture proposals to understand which gestures are most
preferred. The gesture vocabularies for existing sensors are
not necessarily transposable to radars, because their contexts
of use are different and because the radar assumes potentially
different gestures.

In short, radar gesture performance studies deal little or
nothing with user preferences, and preference studies deal
little or nothing with performance. This paper reconciles
performance with preference in the context of gestures
recognized by a commodity radar [5] through multiple
materials [33]. In this paper, we will also use a commodity
radar, which refers to a standardized, widely produced,
available, and cheap, radar characterized by its unified
specifications, and interchangeable components. Custom-
made radars are challenging to reproduce and to reuse across
contexts.

The contributions of this paper are manifold: after
reviewing work related to radar-based gesture recognition
through various materials (Section II), we define three
scenarios that are specifically tailored to radar-based gestures

sensed through three materials (Section III): glass, wood, and
polyvinyl chloride (PVC). Using these scenarios, we conduct
three gesture elicitation studies to collect preferred gestures
from participants (Section III) from which we selected
nine common gestures, leading to the acquisition of a
new dataset of gestures sensed through multiple materials
(Section IV). To uniformly compare recognition rates,
we introduce a one-shot radar calibration procedure to train
a template-based recognizer on this dataset (Section IV-F).
Finally, we evaluate the recognition performance and perform
a performance-preference analysis (Section V) to balance
performance vs. preference of gestures sensed through mul-
tiple materials (Section VI) and to discuss their limitations
(Section VII). Section VIII summarizes the contributions and
presents some avenues to this work.

II. RELATED WORK
This section reviews existing work related to radar-based
gesture interaction in general (Section II-A) and in par-
ticular when the radar senses through multiple materials
(Section II-B). We define a radar gesture as follows [27]: ‘‘A
radar gesture is any movement or pose of a body part or the
whole body, performed in mid-air, around a physical object
or digital device, or concerning the body, object, or device,
which is detectable and recognizable by a radar sensor.’’

A. RADAR-BASED GESTURE INTERACTION
1) PERFORMANCE
Radar-based gesture recognition is recognized for its abun-
dance of models, methods, and algorithms [25], [34]. There
are almost as many different approaches as there are radars
with different bandwidths and frequencies. Fortunately, some
surveys [35] and reviews [26] have highlighted a few trends,
but these are not easily transposable to other contexts of use.

The performance of radar-based systems has made great
progress, in real-time recognition with high accuracy [34],
especially in recent years compared to Cheng et al. [36]’s
survey, where radars were almost absent. Current research
is converging on a certain intelligence of the recognition
process. Wang et al. [37] investigate gesture recognition
applications based on Frequency-Modulated Continuous-
Wave (FMCW) radar, summarize radar research, and classify
radar gestures in coarse-grained and fine-grained categories.

A Systematic Literature Review (SLR) of radar gestures
[27] reported that: (1) 67% of the papers focus on per-
formance in terms of recognition accuracy rate; (2) 30%
of the papers demonstrate the application through a case
study or a user scenario; (3) only 2% are dedicated to user
experience aspects, very rarely on a gesture elicitation study
or any other type of study that would consider human factors.
The most frequently used techniques are Convolutional
Neural Networks (CNN: 33%), k-nn (18%), Long Short-
Term Memory (LSTM: 14%), Support Vector Machines
(SVM: 9%). A more extensive SLR [26] on 118 papers
confirms these figures: 54% of the 151 algorithms come
from DL, in which CNN are the most frequent, combined
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with LSTM or SVM. This SLR unveils a large variety
of radar technology of different operating frequencies and
bandwidths, antenna configurations, but also various gesture
recognition techniques. Although highly accurate (all papers
report an accuracy often greater than or equal to 90%),
these techniques require a large amount of training data that
depends on the type of radar. Only 0.85% report some user
study.

Radars are today used in both stationary and mobile
contexts of use. Prior works on radar-based gesture recog-
nition [14], [18], [38], [39] mostly relied on a fixed,
custom radar and on advanced ML/DL algorithms to
cope with the complexity of radar signals. More recent
works support dynamic, real-time recognition in mobile
contexts of use [15], [18], [40]. The Google Soli chip [41]
is embedded in a smartphone for recognizing various
classes of gestures. There are several radar-based hand
tracking systems such as EtherPose [42], CW-Radar [43],
the Magic Carpet [44] and its Gesture-Sensing Radars
Project, GestureVLAD [10], Ingenious [15], Forte [45]
RadarSense [26], RadarGesture [13]. Radar-based gesture
interaction has been pioneered by the Magic Carpet [44],
a Doppler radar used for sensing coarse body gestures by
signal processing. Later on, Radar Categorization for Input &
Interaction) (RadarCat) [46] used a random forest algorithm
to differentiate 16 transparent materials and 10 body parts.
Yeo et al. [47] used radar in tangible interaction for counting,
ordering, and identifying objects for tracking their orien-
tation, movement, and between-object distance. Radars are
widely used in several domains of application, such as indoor
human sensing with commodity radar [5], human activity
recognition [8], human position estimation [38], motion
classification [14].

GestureVLAD [10] uses unsupervised frame represen-
tation followed by supervised sequence representation to
recognize 11 gestures from range-Doppler images with an
accuracy of 91.38%, even with slight variations, which is
always a challenge [48]. Pantomime [14] uses a 76-81 GHz
radar and LSTM and Pointnet++ to recognize 21 ges-
tures from 3D point clouds with an accuracy of 95%.
Wang et al. [49] recognize 2D stroke gestures: their low-
dimensionality, as opposed to 3D gestures, do not require
more antennas. Short-range radar-based gestures could also
be recognized using 3D CNNs with a triplet loss [24]. Most
existing works exploit a custom radar built with specific,
on-purpose features, hard to reproduce.

More recently, Choi et al. [19] recognize a set of 10 hand
Google Soli gestures in real-time. It has been magnified in
RadarNet [39], an algorithm optimized for efficiently recog-
nizing five gesture classes on computationally constrained
battery-powered devices. Attygale et al. [18] exploited the
Soli via a three-dimensional convolutional neural network
(Conv3D) and a spectrogram-based ConvNet to recognize
on-object gestures (e.g., 94% for a five-gesture set). Unlike
embedding a radar in any object [47], an external radar
enables any object to be tracked.

In view of this work, we can apply Deepl Learning, but
we are keen to test a template-based [50] recognizer [51]
because it customizes the gestures by modifying templates
only, with a reasonable number of templates [12], and without
re-training [52], [53]. Furthermore, we are siding with a
commodity radar by taking the Walabot DIY 2 radar [3], [5],
[15], [26], [45], [54], [55].

2) PREFERENCE
Siean et al.’s SLR [27] mentioned only two studies.
Magrofuoco et al. [56] conducted a GES for controlling IoT
devices that involved 25 participants and a confirmatory study
with 20 participants. The authors analyzed micro-gestures
performed with the hands and fingers and sensed with a small
radar, and compiled a consensus set of 19 gestures using
the agreement rate measure. Sluÿters et al. [57] conducted
a multi-context GES for eliciting mid-air hand gestures
to interact with multimedia content presented on a large
display. The resulting vocabulary was transferred to the
stage of gesture recognition to determine to what extent
these user-defined gestures were also efficient as system-
recognizable gestures. The first study only addressed the
preference for such radar gestures, without mentioning their
performance while the second transferred preferred gestures
from a GES to a recognizer, but we still do not know
the relationship between preference and performance. More
studies are needed to understand end users’ preferences
regarding radar gestures, especially when opportunistically
selected. Only a few studies [18], [40] justify this choice.

In view of all this work, we plan to conduct a series
of gesture elicitation studies that are specifically aimed at
identifying gestures in radar-based contexts of use to unveil
users’ preferences for gestures in these contexts.

B. RADAR-BASED GESTURE INTERACTION THROUGH
MULTIPLE MATERIALS
Radar sensing [46] today appears as a viable alternative to
sensing techniques that cannot operate in environments with
poor visibility, limited accessibility, and privacy sensitivity.
Radars can be operated below a surface [8], behind a wall [3],
and beneath different materials, such as wallpaper, cardboard,
and wood, without affecting the recognition [14]. Radars
are also insensitive to weather and lighting conditions [2].
Radar technologies have been successfully applied in various
domains such as virtual reality [58], activity recognition [8],
[38], tangible interaction [47], detection of leaks in the
ground [59], detection of pedestrian movements [60],
detection of material [61], [62], detection of objects [3],
[22], and detection of gestures through materials [33], [63],
fabrics [40], [42], and liquids [64].
EtherPose [42] is a continuous hand pose tracker with

two wrist-worn antennas, from which the real-time dielectric
loading resulting from different hand poses measure to
recognize gestures performed with the hand covered by
fabrics. Solids on Soli [33] delivers an extensive catalog
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of materials through which motion can be detected, which
estimates the range of possible materials through which
radar can detect movement. The 2D radar signal contains
spatial information that is easier to interface with further
pose or gesture recognition functions to extract useful
information [65].

Given all this work, we test gesture recognition by a
mobile radar through different materials, but in realistic usage
contexts based on radar-specific scenarios with a view to
high-performance, preferred, real-time interaction. For these
reasons, we base our work on the results of three GESs,
which are delivered in the next section. To avoid calibrating
the radar in multiple contexts, we use the far-field full-wave
radar equation [66] to calibrate the radar and make the data
independent of the radar and/or material [67].

III. GESTURE ELICITATION STUDIES FOR RADARS
Chen et al. [54] regret that there is a gap between
laboratory-tested scenarios and actual application scenarios.
Wang et al. [22] define use scenarios with multiple partici-
pants in adapted contexts of use that are covered by radars
only. Siean et al. [28] defined a scenario for controlling a
smart television. Siean et al. [27] recommend that we should
‘‘Identify genuine application areas for radar gestures’’,
‘‘Design gesture types specific to radar sensing’’, ‘‘Identify
new locations for radar sensor placement’’. To address these
needs, we define three use scenarios (Section III-A) that are
tailored to radar-based interaction in contexts of use that are
not covered by existing studies. We conducted a separate
gesture elicitation study for each scenario, named GES1,
GES2, and GES3, respectively (Section III-B), the results are
reported (Section III-C).

A. DEFINITION OF USE SCENARIOS
We envision three use scenarios for radar-based interaction:

• Shop window display. Retail store windows create
a visually attractive first impression for customers.
Beyond static visual merchandising, retail companies
deploy interactive displays for presenting their products
in a more interactive way to improve their customer
experience [68]. We define a scenario inspired by [69]
and [70]: In a shopping mall, a customer interacts by
gesture with an electronic catalog of clothes displayed
behind a glass window in a supposedly smart environ-
ment that can be controlled for light and temperature.
Clothes are presented in the form of photos and sound
videos. The customer browses these contents by gesture
and asks a sales assistant for help, either face-to-face or
remotely by phone.

• Office Door Situated Display.Hermès [71] is a display
located on an office door to support interaction between
visitors to the office owner, whether this person is in or
out of the office. We define a scenario inspired by [71]:
A visitor rings the office wooden door to check whether
the owner is present, to identify herself or himself, and
to enter the office if the owner accepts the visit. If
the owner is absent, the visitor can enter the office

provided that accreditation is granted. If not, voicemails,
notifications, and appointments management can be
operated by gestures in front of the office door.

• Behind wall emergency. Emergency situations, indoor
falling [72], when vital signs are engaged [73], can
be detected using a remote radar behind surfaces [3].
We define a scenario inspired by [72], [73], and [74]:
Someone is trapped in a room behind a door they
can no longer open, and asks for help by gesture
because they are unable to speak. The subject is lying
down and describes the critical situation, both bodily
(e.g., pain, temperature) and environmental, and calls
emergency units, e.g., doctor, ambulance, police, and fire
department.

B. EXPERIMENTS
1) PARTICIPANTS
Thirty voluntary participants were recruited for each study
via a contact list in different organizations and via social net-
works (GES1: 13 female, 17 male, Male/Female ratio=1.30,
aged between 19 and 58 years old, M=27.43, SD=12.62 –
GES2: 11 female, 19 male, Male/Female ratio=1.73, aged
between 18 and 65 years old – GES3: 14 female, 16 male,
Male/Female ratio=1.14; aged between 9 and 60 years old,
M=32.07, SD=16.57). Their occupations varied. For GES1
for instance, 7

30=23% come from information technologies,
5
30=16% are civil or industrial engineers, 5

30=16% come
from linguistics, the other domains of activity including law,
journalism, or education. All participants reported frequent
use of computers and smartphones, no dexterity problems,
no participation in such a study, and no use of the radar
involved. Two GES1 participants knew the device before the
experiment, even though they never used it.

2) STIMULI
Based on each scenario, we have searched for the potential
functions most frequently used in such contexts: 19 for GES1
and GES3 (see first column of Fig. 2 and 4) and 16 for
GES2 (see first column of Fig. 3). We created a Microsoft
PowerPoint presentation showing a referent [29] for each
function via a before/after action represented on one slide at
a time. Each representation reproduced a simplified view of
the screen with the cause and the effect.

3) SETUP AND APPARATUS
The experiment took place in a quiet office meeting room.
A separate laptop was used as a display for showing the
referents to the participants. All gestures were recorded by
a capturing application and by a camera placed in the back
of the participants to capture their hands and fingers without
capturing their faces. To keep the study centered on the topic,
participants were asked to limit their movements in this way.

4) PROCEDURE AND TASK
The participants were welcomed to the setup by a researcher
and were first asked to sign an informed GDPR-compliant
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FIGURE 1. Scenarios for radars: (a) Shop window display, (b) Office door situated display, (c) Behind wall emergency.

FIGURE 2. Consensus set of gestures resulting from the first gesture elicitation study ‘‘shop window display’’: referent, agreement rate (AR) and
magnitude, thinking time, goodness-of-fit, consensus gesture, and icon. The two best and worst values of the two variables are depicted by a top-pointing
arrow and a bottom-pointing arrow, respectively. Error bars show a confidence interval of 95%.

consent form. Then, they were given information about the
GES and the general procedure of the experiment. They were
also asked to fill out a sociodemographic questionnaire (e.g.,
age, gender, handedness, their use of technologies based on
a 7-point Likert scale ranging from 1=strongly disagree to
7=strongly agree) and to perform a Motor-skill test [75]
consisted in pinching each finger with the thumb several
times.

Each session implemented the GES original protocol [29],
[76]: participants were presented with the referents, i.e.,
actions to ensure the function in each context, for which
they proposed suitable gestures to execute those referents,
i.e., gestures that fit referents well, are easy to produce
and to remember. Participants were instructed to remain
as natural as possible. The global order of referents was
randomized per participant based on a real random generator
based on weather temperatures. When a member of a pair
of two related referents, such as ‘‘Dim light’’ and ‘‘Brighten

light’’, was selected, the other member was presented just
after so that participants could keep in mind the link
between two related referents, thusminimizing inconsistency.
Each session took approximately 40 minutes per participant.
One researcher welcomed participants and checked the
form filling and another experimenter presented referents,
thus ensuring minimal interference from and among the
researchers. The dependent variables for our within-subjects
design are:

1) Thinking-Time: a real variable defined as the average of
times elapsed between the first showing of the referent
and the moment when the participant knew which
gesture would be preferred, was measured in seconds.

2) Goodness-of-fit: a real variable defined as the average
rating from 1 to 10 expressing to what extent partici-
pants thought their gesture was appropriate.

3) Agreement rate (AR): a real variable representing the
agreement among participants for proposing a gesture
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for a referent, as computed by AGATe [76] along
with its magnitude (AR ≤0.1=low, 0.1< AR ≤0.3=
moderate, 0.3< AR ≤0.5= high, 0.5< AR ≤1= very
high).

C. RESULTS AND DISCUSSION
Figs. 2, 3, and 4 show the results for the three studies.

1) AGREEMENT RATE
Regarding GES1, the agreement rates are overall moderate
in magnitude (M=0.24, SD=0.157), ranging between 0.074
(low) for ‘‘Turn assistant help off’’ and 0.536 (very high)
for ‘‘Answer help phone Call’’. On the global sampling,
5
19=26% of the rates belong to the low consensus category,
9
19=47% of the rates belong to the moderate range, 3

19=16%
are high, and 2

19=10% are very high. Apart from a few
exceptions, most gestures received an agreement rate slightly
higher or close to those reported in the GES literature
([76] that summarized agreement rates of 18 GESs). These
values are due to two potential reasons: the design space of
possible gestures with radar is so large that participants came
up with many different gestures, sometimes repeatedly; the
legacy bias [77] is not so present due to the perceived novelty
of the radar. ‘‘Answer help phone call’’ (AR=0.436) and
its symmetric ‘‘End help phone call’’ (AR=0.533) received
the two best rates leading to the gesture class ‘‘Touch an
ear’’, which is body-deictic (since pointing to one’s ear) and
pantomimic (since mimicking a physical phone reaching the
ear). These two referents were assessed as the most familiar.
Overall, classical gesture classes were observed (e.g., ‘‘Press
remote control’’, ‘‘Swipe’’, ‘‘Rotate’’, and ‘‘Flip’’ in many
directions), some less frequent gestures were proposed (e.g.,
‘‘Open hand’’, ‘‘Close hand’’, ‘‘Clap hands’’).

RegardingGES2, the agreement rates are also moderate in
magnitude (M=0.28, SD=0.224), ranging between 0.087 for
‘‘Move appointment’’ and 0.749 for ‘‘Remove a notifica-
tion’’. The average rate falls inside the moderate category
(<0.3) [76]. On the global sampling, 2

16=13% of the rates
belong to the very high consensus category, 4

16=25% to the
high category, 7

16=44% to the moderate one, and 3
16=18% to

the low one. Despite the less usual scenario, many frequently
proposed gestures are similar to touch gestures inherited
from touch-based devices for ‘‘Next screen’’ and ‘‘Previous
screen‘‘ and coincide with other GESs [78]. More original
are the gestures ‘‘Knock sign’’ (AR=.301) proposed for the
referent ‘‘Call owner’’, ‘‘Hear sign’’, ‘‘Touch an ear’’ (like in
GES1), and ‘‘Move fist’’.

Regarding GES3, the agreement rates are moderate
(M=0.181, SD=0.052), ranging between 0.087 for ‘‘Call the
police’’ and 0.301 for ‘‘I’m too hot’’ (high magnitude). The
average rate falls inside the moderate category (<.3) [76].
There are no referents with a very high rate of agreement,
1
19=5% has a high agreement, 17

19=90% has a moderate
agreement, and 1

19=5% receive a low agreement. The
referents in this study are not linked to any environment
or device, such as a smart home, smartphone, or smart

car, therefore participants were not so subject to the legacy
bias [77], which also explains the low magnitudes as they
were unfamiliar with these functions. The referents with the
two best rates can be associated with a device (e.g., ‘‘I’m too
hot’’ with air conditioning or ‘‘I’m too cold’’ with heating).
This GES produced several unprecedented gestures such as
‘‘Shake clothes’’, ‘‘Rub hands’’, ‘‘Push to threat’’, ‘‘Tap on
the opposite arm’’ while others were repeated from previous
GES (e.g., ‘‘Clap hands’’, ‘‘Touch an ear’’, ‘‘Open hand’’, and
‘‘Close hand’’).

2) THINKING TIME
This variable received quite high values (e.g., M=9.25s,
SD=12.43s for GES1, M=6.21s, SD=5.99s for GES3) and
ranges from 3.37s for ‘‘I had an accident’’ to 9.38s for ‘‘There
is a gas leak) and large ranges (e.g., from 5.70s for ‘‘Dim
light’’ to 15.08s for ‘‘Next item’’ in GES1). The thinking
time correlates negatively with the agreement rate (Pearson’s
rn=19=−.525,R2=.275, p=.0211): referents with a higher
thinking time have a lower agreement rate. Similar figures
are obtained for the two other GESs. This corresponds to
Zaiţi et al. [79]’ finding who found that the thinking time
correlates negatively with the agreement rate.

3) GOODNESS OF FIT
This variable received a high value denoting subjective
satisfaction of the participants in the gestures they proposed
(e.g., M=7.45, SD=0.58, Mdn=7.57 for GES1, M=7.51,
SD=0.53, Mdn= 7.6 for GES2, M=7.50, SD= 0.41,
Mdn=7.53 for GES3). The similarity of the values obtained
for this variable in the three studies argues for a certain consis-
tency in the way participants assessed the match between the
gestures they proposed and the associated functions, despite
the differences in the scenarios: the three scenarios have their
level of familiarity increasing. A single-factor ANOVA did
not return any significance (SS=1.81, df=3, F=.20, p>.1,
n.s.), suggesting that the thinking time did not influence the
goodness of fit. Participants were not particularly happier
when they elicited a gesture faster or slower. However,
it correlates significantly with the agreement rate (Pearson’s
rn=19=.735,R2=.540, p<.001∗∗∗): the higher the goodness
of fit, the higher the agreement rate.

IV. ACQUISITION OF GESTURE DATASETS THROUGH
THREE MATERIALS
A. SELECTION OF GESTURE CLASSES
The main aim of the three gesture elicitation studies was to
identify gesture classes in three different scenarios involving
three different materials. Without knowing whether this
influences the gestures proposed, we note that certain gesture
classes recur from one study to the next, regardless of the
materials involved.Wewill therefore proceed with a selection
of different gesture categories, startingwith those found in the
studies, preferably more than once.
One can memorize only a limited number of ges-

tures, preferably user-defined: Nacenta et al. [83] found that
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FIGURE 3. Consensus set of gestures resulting from the second elicitation study ‘‘office door situated display’’: referent, agreement rate (AR) and
magnitude, thinking time, goodness-of-fit, consensus gesture, and icon. The two best and worst values of the two variables are depicted by a top-pointing
arrow and a bottom-pointing arrow, respectively. Error bars show a confidence interval of 95%.

FIGURE 4. Consensus set of gestures resulting from the third gesture elicitation study for the ‘‘behind wall emergency’’: referent, agreement rate (AR) and
magnitude, thinking time, goodness-of-fit, consensus gesture, and icon. The two best and worst values of the two variables are depicted by a top-pointing
arrow and a bottom-pointing arrow, respectively. Error bars show a confidence interval of 95%.

user-defined gestures are easier to remember, both immedi-
ately after creation and on the next day with a 24% difference
in recall rate compared to pre-designed gestures. Sluÿters
et al. [57] reported also an excellent recall rate of a limited
number of gestures when gestures were user-defined, even
after one week. So, we wanted to select a limited number
of classes from the user-defined gestures proposed in our
three aforementioned studies. Our selection of nine gesture

classes was based on the user-defined gestures proposed in
the three aforementioned studies, on the review of successful
radar-based gesture recognition as well as on the heuristic
evaluation [84] considering the capabilities of a commodity
radar. We selected nine gestures that cover the three levels of
taxonomy (i.e., hand, arm, and body - see Fig. 5) and that were
identified in at least one GES. Table 1 shows our selection:
‘‘Open hand’’ from GES1 and GES3, ‘‘Close hand’’ from
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FIGURE 5. Selection of nine user-defined gestures classified according to the three-level taxonomy: hand (light green), arm (medium green), and body
(dark green). Each gesture representation is decomposed into four steps for visual priming during the study.

TABLE 1. Selection of gesture classes and their characterization. Cat. refers to the category illustrated in Fig. 5: hand, arm, or body level. Class. refers to
the location in Aigner et al.’s [80] classification such as M=metaphoric, D=dynamic, S=semaphoric, T=stroke, P=pantomimic and in wang et al. [37]’s
classification such as C=coarse grained gesture and F=fine grained gesture. Corresp. denotes the correspondence of the selected gesture to gestures
identified in radar-based studies when any. GES name refers to the presence of the selected gesture in any previously conducted GES (1 to 3), along with
its Thinking-Time (TT), Goodness-of-Fit (GoF), and Agreement Rate (AR). The last column refers to the timed gesture image and its filtering in Fig. 7.

GES1 and GES3, ‘‘Knock’’ from GES2, ‘‘Palm push’’ from
GES3, ‘‘Palm pull’’ from GES2, ‘‘Fist push’’ from GES2,
‘‘Swipe right’’ from GES1 and GES2, ‘‘Swipe left’’ from
GES1 and GES2, and ‘‘Infinity’’ from GES3. Our selection
of nine gestures partially overlaps with other classifications,
taxonomies, and other references (col. 4 and 5 of Table 1).
Compared to [56], our ‘‘Swipe right’’ and ‘‘Swipe left’’
gestures can be mapped to functions that navigate, whereas
our ‘‘Open hand’’ and ‘‘Close hand’’ gestures can be mapped
to opening/closing functions.

Fig. 5 shows also the decomposition of each gesture into
a sequence of steps materialized by an online mannequin
that served for visual priming in the dataset acquisition. For
example, ‘‘Palm push’’ is described as follows: from the
starting position, with the palm opened facing down, the arm
is raised and bent keeping the hand as close as possible to the
body, and such that the palm is parallel to the surface of the
plate, facing the target. Then, the arm is horizontally extended
towards the target, while keeping the palm parallel to it, until
the full extension. Finally, the arm is lowered to the ending
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position, remaining fully extended and with the palm opened
until the end.

B. MATERIAL SELECTION
Solids on Soli [33] delivered an extensive catalog of various
materials, either as a single layer or with multiple layers
(e.g., multiple sheets of paper), which is very useful to
determine the impact of non-conductive material on radar
penetration. In contrast, we wanted to test radar gesture
sensed through a limited number of materials that were
selected based on the use scenarios (Section III-A) and on
the following rationale:

• Glass: this material is frequently used in everyday life,
in every house, as well as in public buildings like shops
for their showcases. An interesting property that glass
has over other materials is that it is transparent, thus
enabling the end user to interact with a screen behind
the glass.

• Wood: this common material is encountered very often
in day-to-day life and can be utilized in a wide variety of
contexts. Indeed, wood is used to make furniture such as
desks and shelves, or for house elements such as doors
and shutters. It can also be used for structural purposes.
A wide variety of wood exists, all slightly varying in
density and permittivity.

• PVC: this material is very popular in the piping industry,
it is also used to make chairs or curtains, or even for
flooring. The main interest of having PVC in the pool
of materials is to have a representative of the polymers.

With the combination of these three materials, we cover a
wide variety of real-world contexts of use and a large number
of potential scenarios in which hand gesture recognition can
be deployed. For this study, a wood plate made of plywood
of 100 cm × 100.1 cm × 1.7 cm (W/H/D), a glass plate
of 100 cm × 100 cm × 0.5 cm (W/H/D), and a PVC
plate of 100.1 cm × 100.5 cm x 0.9 cm (W/H/D) were used
(see Fig. 7–3, 4, 5 and the right part of Fig. 6).

C. APPARATUS
To ensure a cost-effective and accessible interaction,
we selected the Walabot Developer Pack, a commodity
ultra-wideband (UWB) FMCW radar whose dimensions are
5.67 in.×3.35 in.×0.71 in. We used the version operating
over the narrower 6.3-8 GHz range, which is the most restric-
tive and challenging for gesture recognition. The device is
equipped with an array of 18 antennas: 4 as transmitters and
14 as receivers. Depending on the configuration, it senses
motion with up to 40 pairs of antennas. TheWalabot has been
proven efficient in various domains of applications, such as
material identification [61] and activity recognition [8], [85].
Avrahami et al. [8] recognize human activities at a checkout
counter and a typical office deskwith a sensor deployed under
the work surface. When the subject performs predefined
activities, data is captured as RF samples. Zhang et al. [16]
propose a deep neural network for continuous gesture
recognition and evaluate it on a dataset of eight hand gestures
(with 150 samples per class) performed very close to the

radar. The network is trained with 120 samples per gesture
while the 30 remaining samples are used for testing. Walabot
can be used as a wall scanner to image studs or pipes behind a
wall. Wang et al. [49] used this device for the early detection
of nematodes in walnuts. Walabot generates a 2D heatmap
image in spherical coordinates from the facing arena. The size
of the arena can be modified within the range of θ=−45◦ to
θ=45◦, φ=−90◦ to φ=90◦ and R up to 10 m.

D. SETUP
The three different plates were mounted on easels in front
of the participant and marked on the ground using tape to
preserve the consistency of experimental conditions (Fig. 6).
Thanks to these easels, the position of the plates can be
adapted vertically and tilting can also be adjusted. The
tilt angle of the easels is adjusted once, before the very
first recording session, such that the plates would remain
stable at a 90◦ with the ground, perfectly vertical, remaining
untouched throughout the recording sessions. The height of
each easel is adjusted vertically accordingly according to
the participant during each recording session. A cardboard
ruler is used to define the maximal position of the feet of
the participant. Each radar is attached to the center of a
plate using tape, in a horizontal position. The Walabot is
connected via its micro-USB port to the USB port of a
computer using a micro-USB to USB cable. The computer
controlled by the experimenter is placed on a table behind the
easels and the plates. A Walabot-specific recording software
is used to register the raw data from the device. The software
prompts the experimenter to enter a series of parameters in a
configuration file (see Section VIII), valued as follows:

• The name of the dataset, the following format,
which includes the anonymous code attributed to
the participant, was used: anonymousCode_material,
e.g., 54_wood.

• The profile of the Walabot, always set to the value 2. It
corresponds to the profile PROF_SENSOR_NARROW
of the Walabot, which is available on both the EU/CE
and the US/FCC versions. With this profile, the Walabot
normally records 4096 fast-time samples per frame, but
the software limits the recording to the first 1024 fast-
time samples of each frame.

• The user ID, corresponding to the anonymous code.
• The number of gesture classes, is always set to the
value 10 (the 9 gestures plus one corresponding to the
recording of the background).

• The number of repetitions of each gesture, is always
set to the value 5, even though the background is only
recorded once, at the very end.

• The automatic naming of the output files, always set to
‘‘yes’’. This will name the file with the following for-
mat: WalabotSignal_User_ userID_Gesture_gesture
Class_repetition. For example, the naming could
produce something like WalabotSignal_User_54_
Gesture_6-3, which is useful for future computation.

The computer of the experimenter is also connected to
a secondary screen placed on the ground, in between the
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FIGURE 6. Setup for radar-based gesture acquisition through three materials: wood, glass, and PVC.

easels to show the gesture animations (Fig. 5) for visual
priming.

E. PROCEDURE FOR GESTURE ACQUISITION
The following protocol was used to record the hand gestures:

1) The participant puts aside all objects from their pockets
and removes any jewelry from their hand such as rings,
bracelets and watches. Participants who were unable to
remove some rings kept them during the experiment.

2) Starting with the glass plate, the participant is asked to
stand straight facing the surface of the plate and to hold
their arm horizontally fully extended in front of him.
The experimenter adapts the height of the easel such
that the target is aligned with the arm of the participant.

3) The participant, with their arm still in the horizontal
position, is asked to open their hand such that their
palm faces the surface of the plate. Then, the participant
moves forward until their palm is 20 cm away from the
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plate. The experimenter places a cardboard box on the
ground against the feet of the participant.

4) The experimenter makes sure that the radar is plugged
into the computer, starts the recording software,
and configures it with the correct parameters. The
experimenter verbally describes the gesture to perform
to the participant and then shows its corresponding
animation. Five repetitions are recorded:
a) The participant stands in front of the plate, feet

against the cardboard box, in the starting position.
b) The experimenter starts recording and says

‘‘top’’.
c) The participant performs the gesture.
d) Once the participant reaches the ending position,

the experimenter stops the recording.
e) If the participant did not perform the gesture

correctly, or if there was any issue during the
recording, an extra repetition of the gesture is
done.

5) For each gesture, step 4 is repeated.
6) Once all the gestures are achieved, the experimenter

asks the participant to step aside.
7) Steps 2 to 6 are repeated for the wood and PVC plates.
We have now selected nine gestures to be acquired on

the Walabot radar with glass, wood, and PVC. Given that
future gestures will have to be recognized by a recognizer for
these three materials, we introduce in the following section a
novel procedure that avoids re-calibrating the radar each time
the material is changed. A recognizer can be trained on one
material at a time, but we want to consider all three materials
at once.

F. ONE-SHOT RADAR CALIBRATION
A one-shot radar calibration is a process in which a radar
is calibrated only once using a single measure concerning
a single target. While classical calibration techniques are
multi-shot when they perform multiple measures concerning
multiple, different targets, thereby requiring sophisticated
procedures, a one-shot calibration largely simplifies the
process by relying on a single target.

During a one-shot radar calibration, the radar system
collects data from the reference target, which could be
a known reflective object or a calibration standard with
precisely measured properties. The radar system then uses
the acquired data to adjust its internal parameters, such
as gain, timing, or frequency settings, to align with the
expected performance. We used the far-field full-wave radar
equation [66] to accurately model the radar signal. This
equation allowed us to calibrate the radar system, mitigating
the radar-antenna-material effects. It is expressed in the
frequency domain as:

S(ω) = Ri(ω) +
T (ω)Gxx(ω)

1 − Rs(ω)Gxx(ω)
(1)

where S(ω) represents the ratio between the scattered and
incident field at the radar reference plane, ω is the angular
frequency, Ri(ω) denotes the global reflection coefficient

of the antenna for fields incident from the radar reference
plane onto the source point (phase center), T (ω) represents
the product of the global transmission coefficients for fields
incident from the field point (phase center) onto the radar
reference plane and vice versa, and Rs(ω) is the global
reflection coefficient for fields incident from the target onto
the field point. The term Gxx(ω) represents the Green’s
function for wave propagation in 3D layered media [66].
For the Walabot, after applying a Fast Fourier Transform,
we measure b(ω) and a(ω) remains unknown. Consequently,
Eq. ( 1) is rewritten as:

b(ω) = Hi(ω) +
H (ω)Gxx(ω)

1 − Hs(ω)Gxx(ω)
(2)

where we define Hi(ω) = a(ω)Ri(ω), H (ω) = a(ω)T (ω),
and Hs(ω) = Rs(ω) as the three radar-antenna characteristic
functions. To apply the full-wave radar equation, it is neces-
sary to know these functions, denoted as Hi(ω), H (ω), and
Hs(ω). These functions are determined through calibration
measurements conducted at varying distances from a known
medium, for which corresponding Green’s functions can
be computed. Typically, a perfect electrical conductor, such
as a copper plane, is used for this purpose. Once these
measurements are complete, and the corresponding Green’s
functions are calculated, they are used within a linear system
of equations, which is solved analytically to derive the three
unknown functions. Importantly, each frequency component
operates independently.

Our calibration procedure was conducted at the lab facili-
ties of GPRLouvain, which are equipped with an automated
positioning scanner and a 3 m × 3 m copper plane (Fig. 7-1)
designed specifically for radar calibration. Measurements
were taken at five distinct distances from the copper plane
thanks to a 3D movable arm to determine the three unknowns
per frequency (Fig. 7-2). This results in an overdetermined
system of equations, enhancing the calibration precision.
The radar equation is theoretically applicable to any antenna
geometry; therefore, we calibrated the Walabot mounted on
threematerials of interest: glass, wood, and PVC (Fig. 7-3–4).
This assumes that thesematerials are integrated into the radar-
antenna system, inherently accounting for all reflections and
transmissions related to their presence and interactions with
the radar unit itself. The radar equation can effectively remove
radar-antenna-material effects:

Gxx(ω) =
S(ω) − Hi(ω)

H (ω) + S(ω)Hs(ω) − Hi(ω)Hs(ω)
(3)

This equation yields measurements that are independent of
material composition and thickness.Within a given frequency
range, it provides a degree of independence for gesture
recognition, mitigating the influence of both the specific radar
device and the intervening material between the radar and
the target individual. Notably, the far-field model effectively
accounts for most factors, with the exception of the antenna
radiation pattern. While the generalized radar equation [86]
could emulate the antenna radiation pattern, it does so at
the cost of significantly increased complexity. Depending

VOLUME 12, 2024 27905



A. Sluÿters et al.: Analysis of User-Defined Radar-Based Hand Gestures Sensed Through Multiple Materials

FIGURE 7. One-shot calibration of a radar: (1) preparation of the mobile arm in front of the copper plate above a sandbox, (2) positioning scanner,
(3) radar calibration on glass, (4) on wood, and on (5) PVC.

on the impedance characteristics of the material, the field
transmitted to the target can be lower than the emissions from
the radar, resulting in a reduced Signal-to-Noise Ratio (SNR).

G. GESTURE DATASET ACQUISITION AND PROCESSING
1) ACQUISITION
Through the same channels used for the GES in Section III,
we recruited 20 new participants (8 females, 12 males,
and 0 identified as gender variant/non-conforming, aged
between 19 and 81 years old, M=37.30, SD=19.18, 2 left-
handed vs. 18 right-handed) who did not participate in
these GES to avoid any carry-over effect. After performing
the one-shot calibration (Section IV-F), installing the setup
(Section IV-D), and running the procedure (Section IV-E),
we collected a dataset of 20 participants× 9 gestures× 5 rep-
etitions × 3 materials = 2,700 samples.

2) PROCESSING
We have sequentially executed the following signal-
processing techniques on the dataset: the raw data are
transformed into the time range by performing the Fast
Fourier Transform (FFT) [87] along the fast time dimension;
the background scene is removed from the resulting
output [88]; an Inverse Fast Fourier Transform (IFFT) [89] is
performed; a Time Gating [90] truncates the signal between
0 and 4 nanosec. to isolate the hand gesture from the
body (i.e., in this window, the signal corresponding to the
reflections occurring between 0 and 60 centimeters from
the radar is kept – see left part of gestures in Fig. 8);
and final filtering (right part of gestures in Fig. 8) defines
the permittivity value below which the estimated value of
distance and permittivity are replaced by 75 cm and 1.1,
respectively.

Fig. 8-left reproduces the output in the time domain of
one antenna pair after the Time Gating with wood, where
the X axis denotes the frame index whereas the Y axis is the
time at which the signal is received to be interpreted as the
distance between the hand and the radar. The color of each
point corresponds to the signal amplitude. For example, the
‘‘Palm push’’ (Fig. 9d-left) is decomposed into a phase where
the palm approaches the radar, a phase where the palm is
stationary in front of the radar, and a phase where the signal
disappears after the participant takes the hand out of the field

of view. We observe a similar phenomenon for ‘‘Fist push’’
(Fig. 8f-left) and the opposite for ‘‘Palm pull’’ (Fig. 9e-left).
Fig. 8-right reproduces the output of one antenna pair after the
Filtering with wood, where the X axis represents the frame
index and the Y axis represents the estimated distance and
permittivity. The results confirm that they correctly represent
the distance between the hand and the radar, but are more
varying for the permittivity.

For example, the ‘‘Palm push’’ (Fig. 9d) and the ‘‘Palm
pull’’ (Fig. 9e) see their permittivity rising when the palm
is in front of the radar and staying low the rest of the time.
However, for the other gestures where the configuration and
the position of the hand is less consistent in front of the radar,
the permittivity curves contain some spikes that do not always
fit with the gestures. The amplitude of the reflection is also
affected when there are slight variations in the orientation of
the hand.

H. USER PRIVACY AND DATA SECURITY
For each GES and gesture acquisition, a random sampling
was applied to select the corresponding number of partici-
pants from a list of candidates maintained in our organization.
Participant occupations included various domains, such as
management, social sciences, engineering, computer science,
education, law, office, and finance. We checked that all
participants owned smartphones and/or tablets, that they were
used to touch and gesture input and they did not suffer
from any particular physical restriction. They were invited
to sign a GDPR-compliant consent form approved by our
ethical committee specifying that their data is anonymized
and that the dataset will only include an anonymous identifier,
thus preserving their privacy. Data security is ensured by
computer protection against external attacks and secure com-
munication between the Walabot and the laptop running the
recognizer.

V. PERFORMANCE-PREFERENCE ANALYSIS
A. PERFORMANCE
1) INDEPENDENT VARIABLES
We define the following independent variables:

• Number of training templates (T ): represents the number
of gesture samples used to train the recognizer. In the
user-dependent scenario, it is assigned to T={1, 2, 4},
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FIGURE 8. Signal of an antenna pair after the time gating (left) and filtering (right) for each gesture
performed in front of the wood plate.
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FIGURE 8. (Continued.) Signal of an antenna pair after the time gating (left) and filtering (right) for each
gesture performed in front of the wood plate.

as we have only 5 samples per gesture per user while
in the user-independent scenario, it is assigned to
T={1, 2, 4, 8, 16}.

• Number of sampling points (N): represents the number
of points per gesture template: N={x ∈ N|4≤x≤40}.

• Antenna pairs (AP): defines the set of antenna pairs
from which the data were used: AP={(1,2,3,6,8,9),
(4,5,7,10,11,12), (1,2,3,4,5,6,7,8,9,10,11,12)}. These

three sets demonstrated admissible results [26]. Fur-
thermore, the two sets of 6 pairs are composed of
non-redundant antenna pairs.

• User dependence: specifies whether the gesture recog-
nition was evaluated in user-dependent (each repetition
of the training and testing is done with only the
gesture samples from one particular user) and/or user-
independent (all the gesture samples from all the users
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are mixed and used together in training and testing)
scenarios [53].

2) GENERAL PROCEDURE
To compute the Recognition Rate, i.e., the ratio of correctly
recognized gestures divided by the number of trials, and
the Execution Time, i.e., the time for recognizing the
class of a candidate gesture, for each combination of the
independent variables, a typical procedure relies on a Leave-
One-Out Cross-Validation (LOOCV) [91]. For each variable
combination and gesture class, three steps are repeated
1000 times: (1) select a random testing sample from the
gesture set; (2) train the recognizer using a set of randomly
selected samples, produced by the same user as the testing
sample; and (3) recognize the testing sample. We used the
Jackknife recognizer [51] in all subsequent testings because
this recognizer is efficient on multiple data types, is modality
agnostic, and obtains excellent results with few samples.
Furthermore, its template matching [50] enables the end user
to customize the gesture set by editing templates without
retraining everything, contrarily to ML/DL algorithms. All
tests are run on a Dell laptop equipped with an Intel Core
i7-10875H CPU at 2.30GHz with 31.8 Go of exploitable
RAM.

The training and testing of the recognizer were achieved
according to a train-test split methodology: one sample of a
gesture class is selected for the testing set and a part or all the
other samples are used for the training set. Once the training
is complete, the recognizer assigns a label, corresponding to a
gesture class, to the sample in the testing set. This procedure
was repeated 200 times for the 9 gesture classes for each set
of parameters, totaling 1,800 label assignments each time.

3) RESULTS AFTER THE BACKGROUND SUBTRACTION
In the user-dependent scenario, the best recognition rate with
wood is 96.1% with the configuration T=4, N=33, and
AP=(1,2,3,6,8,9), resulting in an execution time of 5.05 ms,
thereby making it eligible for dynamic, real-time interaction.
With the PVC, the best recognition rate is 83.7% with the
configuration T=4, N=38, and AP=(4,5,7,10,11,12) for an
execution time of 5.72 ms. Gestures performed in front of the
glass are recognized with a rate of 67%with the configuration
T=4, N=38, and AP=(1,2,3,4,5,6,7,8,9,10,11,12), leading
to an execution time of 8.47 ms. Fig. 9 shows the evolution of
the recognition rate for the best set of antenna pairs parameter
for each plate. Independently of the plate, a higher number of
training templates always gives better accuracy. Concerning
the AP parameter, the best set of antenna pairs is different
for the 3 plates, but the accuracy across all the sets for the
same plate remains close. Regarding the number of points,
the accuracy starts to increase with the number of sampling
points increasing, but only up to a certain point. Around 25 to
30 sampling points, the accuracy starts to level off.

This remains the case for up to 40 sampling points. If we
analyze the accuracy across the different plates, the wood
plate gives overall better results, followed by the PVC plate,
and the glass plate. This is expected, as the wood plate made

of plywood has the lowest permittivity of approximately
2.8 [92], compared to a permittivity of approximately 6.0 [92]
for the glass plate, which has a much greater impact on
the radar signal. The PVC plate, with a permittivity of
approximately 4 [72], gives results in between the two other
plates.

In the user-independent scenario, the recognition rate is
always low. For the gestures performed in front of the wood
plate, the highest recognition rate is 31.5% with an execution
time of 23.63 ms with the configuration T=16, N=40, and
AP=(1,2,3,6,8,9). For the PVC plate, the best rate is 20.2%
with an execution time of 21.45 ms with the configuration
T=16, N=36, and AP=(4,5,7,10,11,12). Finally, we observe
an accuracy of 19.8% at best with an execution time of
26.97 ms for the glass plate with the configuration T=16,
N=29, and AP=(1,2,3,4,5,6,7,8,9,10,11,12). Fig. 10 shows
the complete accuracy results for the best set of antenna pairs
parameter for each plate.

Compared to the user-dependent scenarios, the accuracy
is much lower. The impact of the training templates and
sampling point parameters remains the same for the wood
plate and the PVC plate. The more training templates and
sampling points, the higher the accuracy is, even though the
impact is very small for the PVC plate. For the glass plate,
increasing the sampling points doesn’t significantly improve
the accuracy. Concerning the set of antenna pairs parameter,
the highest accuracy is obtained with the same sets as in the
user-dependent scenarios for each material. Once again, the
wood plate has the highest accuracy, followed by the PVC
plate and then the glass plate.

4) RESULTS AFTER THE FILTERING STEP
Concerning the results with the filtering step data in the user-
dependent scenarios, the highest accuracy obtained for the
recognition of gestures done in front of the wood plate is
66.2% with an execution time of 0.38 ms with the config-
uration T=4, N=29, and AP=(1,2,3,4,5,6,7,8,9,10,11,12).
For the gestures done in front of the PVC plate, the highest
accuracy is 61.2% with an ART of 0.34 ms with the config-
uration T=4, N=27, and AP=(1,2,3,4,5,6,7,8,9,10,11,12).
Finally, with the glass plate, the best accuracy is 66.3% with
an ART of 0.26 ms with the configuration T=4, N=21, and
AP=(1,2,3,4,5,6,7,8,9,10,11,12). Fig. 11 shows the complete
accuracy results for the best set of antenna pairs for each plate.
Independently of the plate, the higher number of training

templates always gives a better accuracy. Concerning the AP
parameter, the set with the 12 antenna pairs always gives
better accuracy than the two other sets with 6 antenna pairs.
The impact of the number of sampling points is also similar
to what was observed with the background subtraction data.
The accuracy starts to increase with the number of sampling
points increasing, but only up to a certain point. Around
20 to 25 sampling points, the accuracy starts to level off. This
remains the case for up to 40 sampling points.
After the filtering step, we obtained similar recognition

rates across the 3 plates, which was not the case with the
background subtraction data. If we compare the results for
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FIGURE 9. Recognition rate after background subtraction in the user-dependent scenarios with the best AP for the plates.

FIGURE 10. Recognition rate after the background subtraction in the user-independent scenarios with the best AP for the plates.

FIGURE 11. Accuracy of the recognizers with the filtering step data in the user-dependent scenarios with the best AP value for gestures performed in
front of the three plates.

each plate, the accuracy is lower with the filtering step
data for the wood plate and the PVC plate than it was
with the background subtraction data. This is due to the
dimensionality reduction operated by the processing pipeline.
However, for the glass plate, we obtained similar results,
meaning that the processing pipeline was still able to extract
relevant distance and permittivity values from a signal of
lower quality. Regarding the execution time, it is faster for
all the plates, again because of the dimensionality reduction.

In the user-independent scenario, the overall accuracy is
once again low. The highest accuracy obtained for gestures
performed in front of the wood plate is 21.3% with an
execution time of 1.69 ms with the configuration T=16,
N=32, and AP=(1,2,3,4,5,6,7,8,9,10,11,12). With the PVC
plate, the highest accuracy is 22.8% with an ART of 1.35 ms
with the configuration T=16, N=34, and AP=(1,2,3,6,8,9).
With the glass plate, the highest accuracy is 24.2% with
an execution time of 0.83 ms with the configuration T=16,
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FIGURE 12. Accuracy of the recognizers with the filtering step data in the user-independent scenarios with the best AP value for gestures performed in
front of the three plates.

N=25, and AP=(4,5,7,10,11,12). Fig. 10 shows the complete
accuracy results for the best set of antenna pairs for each plate.

As expected, the accuracy in the user-independent scenario
is lower than in the user-dependent one. However, we still see
some similarities in the impact of the different parameters.
The accuracy still increases on average with the number of
training templates. Increasing the number of sampling points
also has the same effect as in the user-dependent scenario,
but the increase in accuracy is way slower. Concerning the
set of antenna pairs parameter, as the resulting accuracy
remains very similar for the 3 different AP values, it is not
possible to confirm that one set has a significant advantage
over the others. If we compare the results obtained with
the background subtraction data in the user-independent
scenario, we see that the accuracy with the filtering step data
is lower for the wood plate but higher for the PVC plate and
the glass plate.

B. PREFERENCE
To investigate the relationship between performance
(Section V-A) and preference (Section III), we conducted
a preference-performance analysis, an instance of the
Importance-Performance Analysis (IPA) [93], in which we
assign each of the nine gesture classes to four different
quadrants according to a differentiation provided by the
coordinate origin as regards the average value of each
variable, which is represented by plain orange lines in
Fig. 14. This figure shows the results of the analysis for
the performance expressed by its recognition rate and the
preference expressed by the corresponding agreement rate
obtained from the GES. Fig. 14 shows the results for the wood
plate according to the three measures obtained in the GES: by
agreement rate, by thinking time, and by goodness-of-fit. The
green areas contain the gestures that are both admissible for
performance and preference. Similar figures can be obtained
for the other conditions (see our companion website).

VI. DISCUSSION AND IMPLICATIONS FOR DESIGN
This section discusses the results of the testing presented in
the previous section and their implications for the design of

FIGURE 13. Precision of the gesture recognition per material: wood in
brown, PVC in light gray, and glass in light blue. Error bars show a
percentage of 5%.

radar-based gesture interaction. The results presented in the
previous sections are summarized in Table 2 and Table 3
respectively. From the results in Table 2, we observe that
performing hand gesture recognition through the wood plate
with the Walabot in a user-dependent scenario and with the
data from the background subtraction is a viable solution
with appropriate Jackknife recognizer parameters. Fig. 13
shows the precision for nine gestures through the three
materials. A Wilcoxon signed-ranked test for paired samples
suggests that the wood condition is significantly more precise
than the glass (z-score=2.75, p=.0029∗∗) and than the PVC
(z-score=2.74, p=.0059∗∗) both with a large effect size
(r=.61). Similarly, the PVC is significantly more precise
than the glass (z-score=2.75, p=.0059∗∗) with a large effect
size (r=.6). Concerning the PVC and the glass plates, the
accuracy obtained in the user-dependent scenario with the
background subtraction is lower, and probably too low to
ensure a good user experience in a real-life situation. Each
radar gesture univocally appears in one of the four quadrants
as follows:

1) Quadrant 1 (Q1, in green) corresponds to high-
performance values and high-preference values for
radar gestures. It is labeled ‘‘Keep up the good work’’
because the gestures contained in this quadrant are pos-
itively assessed by the participants, who acknowledge
both their preference and their performance. Designers
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TABLE 2. Highest accuracy obtained for the 3 plates with the background subtraction step data in the user-dependent and the user-independent
scenarios. Acc=accuracy [%], Exec. t.=average execution time [ms], T =number of training templates, N=number of sampling points, AP=set of antenna
pairs.

TABLE 3. Highest accuracy obtained for the 3 plates with the filtering step data in the user-dependent and the user-independent scenarios. Acc=accuracy
[%], Exec. t.=average execution time [ms], T =number of training templates, N=number of sampling points, AP=set of antenna pairs.

FIGURE 14. Preference-performance analysis for the three materials wood (top), PVC (middle), and glass (bottom) by agreement rate (left),
by thinking time (center), and by goodness-of-fit (right).

are encouraged to maintain current strategies for these
variables and retain these gestures as ideal candidates.
For example, if we want to consider the agreement
rate, then Fig. 14-a suggests ‘‘Swipe left’’, ‘‘Swipe
right’’, ‘‘Close hand‘‘ and ‘‘Knock’’ as the gestures
maximizing both criteria. However, if we consider
the average thinking time, then Fig. 14-a suggests
keeping the most performing gestures having the
lowest thinking times, which are ‘‘Swipe left’’, Close
hand’’, ‘‘Palm push’’, ‘‘Palm pull’’, and ‘‘Knock’’.
These suggestions are not the same as for the agreement
rate. If we consider the goodness-of-fit, Fig. 14-c
suggests another set.

2) Quadrant 2 (Q2, in yellow) corresponds to high-
performance values and low-preference values for
gestures. It is labeled ‘‘Concentrate here’’ because the
gestures that fall into this quadrant should receive the
highest priority. Action should be taken to address
the challenges raised by these gestures because the
participants performed well with them in principle but
would not prefer to use them for their purposes. For
example, the participants do not like to be forced to
operate efficiently in a continuous manner.

3) Quadrant 3 (Q3, in orange) corresponds to low-
performance values and low-preference values for
gestures. It is labeled ‘‘Low priority’’ because the
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gestures located in this quadrant are not essential,
do not perform well, and could be discontinued in the
design process without any detriment.

4) Quadrant 4 (Q4, in ivory) corresponds to low-
performance values and high-preference values for
gestures. It is labeled ‘‘Possible overkill’’ because the
participants do not perform well with these gestures,
yet perceive them to be highly preferred.

VII. LIMITATIONS
Our study has inevitably some limitations that are inherent
to the various decisions made during the process. While three
real-world scenarios initiated three gesture elicitation studies,
the gestures collected from these studies were acquired in
a simulated environment, which reflects only partially real-
world environments. Considering other scenarios, especially
for exceptional cases (e.g., in hidden, dark, tense conditions),
would probably lead to other gestures. Limitations are also
inherent to the protocol of the gesture elicitation studies,
which are subject to the legacy bias [77]. Replications and
other protocols would certainly make the vocabulary of
gestures more solid, perhaps also tested in other conditions
than an elicitation study.

A. LIMITATIONS INDUCED BY THE RADAR USED
Although we selected the nine gesture classes from the
elicitation studies to come up with their agreement rate,
thinking time, and goodness-of-fit, we could have identified
other sets of gestures, supersets, or sub-sets, and reproduced
the rest of the study in the same way. The bandwidth of the
Walabot version used in this paper is the narrowest of all
Walabot versions, resulting in a lower resolution. Changing to
a radar with a larger bandwidth should in principle improve
the signal quality. Furthermore, while the Walabot features
18 antennas, three of them cannot be selected and the set
of available antenna pairs is limited. Radars with a more
flexible way of configuring the antennas as emitters and
receivers would be appreciated. The Walabot suffers from a
relatively low signal-to-noise ratio and interferences between
the emitter and receiver antennas, but the radar equation
removes these interferences.

In this study, we investigated the interaction of a high-
frequency radar, specifically the Walabot operating in the
C-band, with various non-metallic materials, including glass,
PVC, and wood, to assess their impact on hand gesture
recognition for human-machine interfaces. Our advanced
electromagnetic modeling, supported by the full-wave radar
equation, successfully mitigates the effects of these materials
on the signal processing. However, it is important to note that
the material’s thickness and permittivity can still influence
the signal-to-noise ratio, which is crucial for accurate gesture
recognition.

While the detrimental effect of material characteristics
on the radar signal increases with higher permittivity and
thickness, most common non-metallic materials exhibit
relatively low permittivity. This range typically falls between
2 and 8 for solid dry materials, making our results with glass,

PVC, and wood broadly representative. However, materials
with high water content or those that are intrinsically metallic
should be avoided, as they can significantly attenuate or
completely reflect radar waves, respectively. For instance,
materials like drywall and certain plastics, with relative
permittivities within the aforementioned range, should be
compatible with our method. Liquids should be avoided as
their permittivity is usually significant.

It is also crucial to consider the electrical conductivity and
dielectric losses at C-band frequencies. Materials with high
conductivity or significant dielectric losses can adversely
affect the radar’s performance due to wave attenuation. Thus,
our methodology is most applicable to materials that are not
only non-metallic but also have low to moderate permittivity
and minimal dielectric losses in the relevant frequency
range. For example, materials such as polystyrene (relative
permittivity 2.6) or fiberglass (relative permittivity 4-6) could
be suitable candidates for further exploration in similar
applications

B. LIMITATIONS INDUCED BY THE RECOGNIZER
Then, important limitations are inherent to the choice of
the recognizer and the number of templates: we selected
Jacknife [51], one of the most powerful template-based
recognizer that is modality agnostic and that gets excellent
recognition rates in general, even with few templates. Other
template-based recognizers [94], [95], [96] and other ML/DL
algorithms should be used instead to determine the influence
of their approaches on the recognition rate and execution
time. The main reason why we kept a template-based
recognizer was its ability to produce a customizable gesture-
based interface: any modification of the templates does not
affect the recognizer. So, user-defined gestures are welcome
in this vein, which has been promoted by Mauro et al. [12].

VIII. CONCLUSION AND FUTURE WORK
Our initial mission statement was to determine to what extent
a commodity radar, such as the Walabot, could serve as an
effective and efficient sensing device for recognizing hand
gestures across different materials, in our case glass, wood,
and PVC. We also set ourselves the goal of establishing
a certain balance between gesture recognition performance
(which is widely reported in studies with radars) and the
preference expressed by end users for these gestures (which
is rarely investigated to date). To this end, we used three
real-world scenarios involving these materials to demonstrate
the radar’s singular and original character: a glass pane can
get dirty after intense tactile interaction and is subject to the
elements, whereas a radar located behind the pane is not;
a wooden office door allows the radar to be located behind
the door to prevent vandalism, deterioration, and video use;
someone may find themselves in a critical situation behind
a PVC wall and be able to communicate their situation to
somebody on the other side of the wall.

These three scenarios enabled us to conduct three gesture
elicitation studies, each with 30 different participants, which
determined a vocabulary of radar gestures specific to each
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scenario and identified nine classes of gestures commonly
used with radar. Creating a classification of radar gestures
would be welcome, highlighting radar-specific gestures not
found in any other study, and gestures that are also used
with other devices. This classification is underway, showing
the intersections between studies, and is available on our
companion website. For each class of gesture, each study has
produced its agreement rate, thinking time, and goodness-of-
fit, enabling us to express the preference for these gestures.

After identifying nine gesture classes from these three
studies, we built up a new dataset that is publicly available
on our companion website. More and more datasets of
this type are appearing, which would make it possible to
establish comparative testing between different algorithms
based on the same set of datasets, something that has
not yet been achieved in this area. To rigorously acquire
the gestures of 20 subjects with the 9 gestures repeated
5 times over 3 materials, which generated 2,700 samples,
we introduced a unique one-shot radar calibration method
that avoids, once and for all, re-calibrating the radar each
time it is used for a particular material. Thanks to this
method, it is no longer necessary to re-calibrate the radar after
this procedure. We have shown theoretically and empirically
how this unique one-shot calibration can be achieved. In
future work, we could pursue this approach by demonstrating
this benefit under more variable experimental conditions.
In particular, it would be interesting to show that the
recognizer training performed with one material could be
transposed, to some extent, to recognition with another
material. Indeed, Green’s function resulting from the analysis
of radar signals acquired with different materials remains the
same, independently of each material. This would satisfy the
property of material-independent gesture recognition.

Next, we trained a template-based recognizer on the novel
dataset to identify the configurations that lead to the best
recognition rates for each material according to stage and
according to scenario, user-dependent or user-independent.
We found that wood achieved the best results, especially in
the user-dependent scenario. The user-independent scenario
achieved low recognition rates, mainly due to variations in
the participants’ articulations, but also to the fact that the
recognizer used only worked on the basis of 5 templates
per person, which imposed a strict constraint. If we relax
this constraint, we lose the property of customization: any
modification of the dataset templates, leaving the recognizer
used unchanged (Jacknife is template-based only), would
result in retraining of any other ML/DL algorithm, unless
near-real-time retraining is possible. The average execution
times obtained in our study never exceed 30 ms, which
fully authorizes direct manipulation interaction. It would
be advantageous to use well-established and tested ML
algorithms, such as the spectogram [18], [40], instead of a
template-based recognizer. In this case, we would certainly
need more templates per user and per gesture (only 5 in our
case).

Finally, we mapped recognition performance (expressed
by its recognition rate per gesture class derived from

the confusion matrix) to gesture preference (expressed by
measures from elicitation studies) using a performance-
preference analysis. This analysis enabled us to divide the
9 gestures studied into four quadrants and to identify the
gestures that preserve the balance between performance and
preference, as well as to see which gestures should be
worked on in the future. The three elicitation studies are
just the beginning, and more are needed to support a true
classification. Similarly, we could either try to extend the
nine gesture classes to see the impact of this extension or
consider other sets of up to 10 gestures, to preserve the user’s
ability to memorize them [83]. Other materials could also
be considered, especially those offering good permittivity
and those reported as promising in the catalog of Solids on
Soli [33].

OPEN SCIENCE
Our companion website provides the reader with useful
resources, including the Walabot novel dataset acquired and
its description (Section IV), and the data from the testing
in all conditions and materials (Section V-A), along with
additional screenshots showing the configurations and some
open-source code. Furthermore, we also suggest a starting
point for the classification of radar gestures based on the three
gesture elicitation studies to be further expanded.
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