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ABSTRACT Crowd behavior recognition plays a critical role in various domains, including public safety,
event management, and urban planning. Understanding crowd dynamics and detecting behaviors based
on violence levels are crucial for preventing incidents and maintaining order in crowded environments.
However, traditional surveillance methods fall short of providing comprehensive and real-time insights
into complex crowd behavior patterns and fail to distinguish different violence levels within crowds that
affect proactive decision-making. Moreover, most of the current systems do not provide reliable secure
data transmission and are not viable in protecting the privacy of individuals. This paper designs an end-
to-end secure and smart surveillance system, namely PublicVision, that transmits CCTV data securely to a
remote central hub where a deep learning (DL) model based on Swin Transformer is utilized to identify
and analyze crowd behaviors. A novel video dataset was created to train the DL model that identifies
crowds based on size and violence level. The proposed system incorporates end-to-end security by creating
a Dynamic Multipoint Virtual Private Network (DMVPN) and leverages the property of IP Security (IPSec)
and Firewall for confidentiality and integrity during transmission and storage. Experiment analysis and
real-time inference using DeepStream Software Development Kit (SDK) proved that the proposed system
has significant implications for public safety, security, and crowd management in various contexts, including
public spaces, transportation hubs, and large-scale events.

INDEX TERMS Crowd behavior recognition, deep learning, public safety, secure data transmission, smart
surveillance, system design.

I. INTRODUCTION
Surveillance cameras are widely used to monitor actions
and detect concerning behavior and have been used by
government entities, law enforcement, and private entities
to monitor certain areas and geographical regions and
initiate appropriate responses based on actions observed.
This advantage has led to the use of large numbers of
surveillance camera systems to be implemented in different
countries. For instance, China, the United States of America,
and the United Kingdom have deployed around 15 million,
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112 thousand, and 628 thousand Closed Circuit Television
(CCTV) cameras, respectively [1].
Despite the success of surveillance cameras, as evidenced

by their wide use, their utilization still suffers from a major
drawback. Conventional use of surveillance cameras relies on
human operators who monitor footage coming from surveil-
lance cameras and alert authorities if they detect concerning
events. This means that a great number of people are required
to operate large networks of surveillance cameras. If an
insufficient number of operators are allocated for monitoring
surveillance footage, critical events could be left undetected.
Additionally, although CCTV has dramatically benefited
many different areas (i.e., crime and safety monitoring,
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theft and vandalism detection, etc.), it is still a reactive
approach when it comes to public safety monitoring. With
more than half of the world’s population residing in cities,
the need for smarter insight into the city’s workings is
imperative. As cities becomemore crowded, public safety due
to disasters, unrest, public gatherings, crimes, etc. becomes an
ever-rising issue. Therefore, crowd detection and assessment
are becoming an integral part of any city (both for safety and
planning). Due to the growth of cities, traditional means of
city surveillance and protection are insufficient. It becomes
increasingly evident that the answer to developing smarter
and safer cities lies largely in surveillance data analytics.
Developing a system that can detect crowds, understand
their behaviors, and develop methods to effectively man-
age them is still a scattered effort, despite the potential
benefits.

Several systems of real-time video analysis already exist in
the market. For instance, Senstar Corporation [2] developed
many smart security and video management systems. One
such system developed by Senstar, meant for security
applications, is a crowd detection system [3] that estimates
the number of people captured by CCTV cameras and
sets off an alarm when a certain capacity or percentage
of occupancy is reached. Another security-focused smart
surveillance application that is widely used with facial
recognition is to detect certain individuals. For example,
Brondby, a Danish Football club, uses a facial recognition
system in their stadium to identify fans who are banned
from attending games due to previous unruly behaviour [4].
Amazon uses a video-analysis system named ‘‘Just Walk
Out’’ [5], that tracks customers inside their convenience store
chain, Amazon Go, to automatically identify how much to
charge each customer, eliminating the need for long check-
out lines.

Given the state-of-the-art, there does not exist a system
designed to provide an autonomous and proactive approach
to crowd surveillance and behavior/event detection. Further-
more, no system in the literature provides secure data transfer
which is a necessity to preserve the integrity and authenticity
of data, to prevent unauthorized access and manipulation, and
to protect the privacy of individuals. As such, we propose the
design of a secure, intelligent, and proactive system, called
PublicVision, that combines the rich capabilities of Artificial
Intelligence (AI) to advance the capabilities of government
and municipal agencies to manage critical public safety and
plan city services accordingly. The general infrastructure of
the proposed PublicVision system is shown in Figure 1. The
system comprises three layers 1) Source Spoke Layer, 2)
Secure Transportation Layer, and 3) Central Hub Layer. The
geographically located CCTV cameras and corresponding
connected routers are the main components of the source
spoke layer. The central hub layer is responsible for running
the Deep Learning (DL) model on the footage coming
from each CCTV camera in real-time while the Secure
Transportation Layer provides the security to the data using
a Virtual Private Network (VPN) and firewall.

Specifically, we design and build a system that automates
city-wide surveillance, automatically detecting family of
concerning events and alerting authorities about the location,
nature, and extent of the behavior observed. We are specifi-
cally interested in crowd behavior detection as it is a crucial
task that is especially important during periods of social
unrest and large public events. Unlike action recognition tasks
in the literature, we are interested in capturing information
about both the size and behavior of a crowd. A training dataset
that fits our purposes does not exist in the literature. Thus,
we initiated a data collection effort focused on developing a
dataset that encompasses various public scenery (i.e., crowds
of different sizes and violence levels).

The proposed PublicVision primarily focuses on the auto-
matic detection of crowd behavior, leveraging the capabilities
of Deep Learning (DL) techniques. These techniques are
prominent nowadays to detect human actions [6], detect
and segment objects [7], classify images [8], and so on.
In all cases, deep learning systems have exhibited excellent
performance by automatically diving into the enviable
depiction of high-level data representations. The capability
of deep networks was exploited in the detection of crowd
behaviors as well [9], [10], [11], [12].

In particular, our system exerted the potential of a
CNN-based vision transformer, namely the Swin Trans-
former [13], for crowd behavior detection. Besides. we take
advantage of Nvidia’s DeepStream Software Development
Kit (SDK) [14] which is an intelligent application framework
to process real-time video data. DeepStream is a streaming
analytics toolkit that can run inference on a video stream
given a DL model. We use DeepStream, coupled with a
DL model that we develop using the aforementioned video
dataset, to run real-time inference from a central hub on
footage captured by remotely placed surveillance cameras
(Details are given in Section III C).

The main contributions of this work are as follows:
• An end-to-end secure smart surveillance system is
devised for tracking crowd events during periods of
unrest and in large public events.

• A three-layer infrastructure is built, which can ensure
real-time data capturing on one end, secure communica-
tion in themiddle, and smart detection of crowd behavior
using AI on the other end for intelligent and real-time
surveillance.

• We developed a novel video dataset and defined four
distinct crowd behaviors based on factors like crowd
size and violence. The automated detection of crowd
behavior was achieved by training a DL model using the
Swin Transformer.

• Experiments are conducted using the DeepStream SDK
to ensure that our proposed system can be used in a real
surveillance environment.

The remainder of the paper is organized as follows:
Section II outlines the surveillance systems in the literature,
previous work done in the field of video analysis, and
provides details of existing human-action datasets. Section III
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FIGURE 1. General infrastructure of the proposed PublicVision system.

discusses the proposed PublicVision system that explains
the functional components and its end-to-end integration.
Section IV outlines the steps taken to collect our novel
video dataset and DL model development with PublicVision
implementation details, followed by Section V that discusses
the potential impact of the PublicVision system. Finally, the
conclusion is presented in Section VI.

II. RELATED WORKS
Smart surveillance systems demand the proactive recognition
and detection of events to avoid mishaps and disasters. Over
the past decade, the increase in disasters and large-scale
incidents during protests has prompted researchers to analyze
surveillance video data using AI approaches. Besides, this
led to the creation of datasets for research purposes. This
section provides an outlook on the advances in video analysis
and gives an awareness of existing surveillance systems and
datasets.

A. SURVEILLANCE SYSTEMS
For the past two decades, with the upsurge in urban growth
and urban population, CCTVs have become an essential
commodity for public surveillance. In most traditional
surveillance systems, captured video footage is analyzed
manually, resulting in reactive rather than proactive decisions.
Later, the evolution of advanced visual sensors and AI
algorithms enables proactive decision-making feasible.

One of the earliest smart surveillance systems was
developed by IBM for detecting activities such as suspicious
behavior in parking lots, face recognition, license plate
recognition, and badge identification for access control
[15]. This system used the Middleware for Large Scale
Surveillance (MILS) integrated with web services for data
management. Another system by Fernandez et al [16].
collected data from large numbers of Internet of Things (IoT)-
based visual sensors to augment the emergency team with
video stream distribution and alarms. Here the data provided

by visual sensors were in the form of XML,whichwas used to
generate a semantic engine with knowledge-based ontology
for vehicle route detection and abnormal trajectory tracing.
Vehicle details were also analyzed in [17] to recognize
vehicle make and model, color, and license plate. Low-level
feature analysis from video data such as Speeded Up Robust
Feature (SURF) descriptors detected the make and model
while the Tesseract Optical Character Recognition (OCR)
tool recognized the license plate. In [18], violations of traffic
rules such as speed limit crossing, illegal parking detection,
one-way violation, etc., were detected using a distributed
wireless smart camera network. The distributed cameras were
considered agents, and they communicated with each other
via rule-based techniques to detect violations.

Besides, smart camera vendors provided surveillance solu-
tions for traffic violations [19], [20], gunshot detection [21],
loitering detection [19], [20], license plate recognition [19],
[20], and suspicious human behaviors such as fighting,
running, and falling [22]. The inception of smart cities
also compelled smart surveillance systems deployment for
intelligent traffic monitoring [19], [20], abandoned object
detection [19], radioactive isotope detection [20], and intel-
ligent routing [20]. Even though researchers and vendors
provide systems for traffic monitoring and other smart city
applications, none of them except the approaches of [22]
and [23] can be used for the analysis of crowd behavior.
However, [22] fails to address complex behaviors when
crowd density increases, whereas [23] lacks experimental
analysis in a real environment.

In a surveillance system, analysis and detection of
crowd behavior have emerged as a prominent topic as law
enforcement authorities and security personnel face many
challenges due to crowd gatherings in public places. Even
though in the field of computer vision, many works [9],
[10], [11], [12] were there for crowd analysis, none of them
provide an end-to-end solution for crowd management in
real-time. Besides, none of the studies consider the security
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aspects of data transmission, a significant aspect in today’s
world. Hence, real-time detection of crowd behavior and
secure data transmission is inevitable to make reliable smart
surveillance systems for critical decisions that help prevent
probable crowd-related accidents and abnormal activities.

B. ADVANCES IN VIDEO ANALYSIS
Over the past several years, significant advancements have
been made in video analytics using DL [24]. Specifically,
several works have tackled Human Activity Recognition
(HAR) [25], [26], [27], which is the task of recognizing
certain human actions from a series of image frames.
Attention has been drawn to HAR after several DL techniques
were shown to be useful for video analysis tasks. Tran et al.
[28] first proposed inflating two-dimensional Convolutional
Neural Networks (2D CNNs) into three-dimensional Con-
volutional Neural Networks (3D CNNs). 3D CNNs are
able to learn spatiotemporal features, which are capable
of processing series of frames, or videos. Carreir and
Zisserman [29] also proposed a Two-Stream Inflated 3D
(I3D) ConvNet, which inflates the usual 2D ConvNets into
3D ConvNets for video analysis. Carreir and Zisserman test
I3D on the Kinetics video dataset [30]. 3D CNNs were
then shown to suffer from short-term memory; they are
only capable of learning from 1 to 16 frames [31]. As a
result, Shi et al. [32] proposed Convolutional Long short-term
memory (Convolutional LSTMs) networks, a variant of
Recurrent Neural Networks (RNNs). Convolutional LSTMs
replace the fully-connected input-to-state and state-to-state
transitions of conventional LSTMs, a variant of RNNs, with
convolutional transitions that allow for the encoding of spatial
features.

Recently, transformer-based architectures have attracted
significant attention. Transformers use self-attention to learn
relationships between elements in sequences, which allows
for attending to long-term dependencies relative to RNNs,
which process elements iteratively. Furthermore, transform-
ers are also more scalable to very large capacity models [33].
Finally, transformers assume less prior knowledge about the
structure of the problem as compared to CNNs and RNNs
[34], [35], [36]. These advantages have led to their success
in many computer vision tasks such as image recognition
[37], [38] and object detection [39], [40]. Dosovitskiy et al.
[37] proposed ViT, which achieved promising results in
image classification tasks by modeling the relationship
(attention) between the spatial patches of an image using
the standard transformer encoder [41]. After ViT, many
transformer-based video recognitionmethods [13], [42], [43],
[44] have been proposed. In these works, different techniques
have been developed for temporal attention as well as spatial
attention.

In a nutshell, transformer-based approaches have led
to significant advancements in the realm of computer
vision. The performance improvements are quite impressive
and represent a major step forward in this field. Among
the transformer frameworks discussed above, the Swin

Transformer [13] has really been a game changer in the
field of computer vision. It has set new records in object
detection [13] and semantic segmentation benchmarks [13],
and has shown that transformer approaches are the future
of visual modeling. In addition, Swin Transformer possesses
shifted non-overlapping windows, whichmakes it suitable for
faster running speed and hardware friendly, which inspired
us to use the framework as the backbone of our proposed
model (Details of Swin Transformer framework are given in
Section IV-B).

C. EXISTING DATASETS
Early video datasets for action recognition include the
Hollywood [45], UCF101 [46], UCF50 [47], and the HMDB-
51 [48] dataset. The Hollywood dataset provides annotated
movie clips. Each clip in the dataset belongs to one of
51 classes, including ‘‘push’’, ‘‘sit’’, ‘‘clap’’, ‘‘eat’’, and
‘‘walk’’, while the UCF50 and UCF101 datasets consist
of YouTube clips grouped into one of 50 and 101 action
categories, respectively. Examples of action classes in the
UCF50 dataset include ‘‘Basketball Shooting’’ and ‘‘Pull
Ups’’ while the action classes in UCF101 include a
wider spectrum of classes subdivided into five different
categories, namely, body motion, human-human interactions,
human-object interactions, and playing musical instruments
and sports. The Kinetics datasets [30], [49], [50], more
recent benchmarks, significantly increase the number of
classes from prior action classification datasets to 400, 600,
and 700 action classes, respectively. The aforementioned
pre-existing datasets are useful for testing different DL
architectures but are not necessarily useful for specific
practical tasks, such as surveillance, which likely require
the distinction between a limited number of specific action
classes.

In terms of public datasets that encompass violent scenery,
a dataset focused on violence detection in movies is proposed
by Demarty et al. [51]. Movie clips in this dataset are
annotated as violent or non-violent scenes. Nievas et al. [52]
introduce a database of 1000 videos divided into two
groups, namely, fights and non-fights. Hassner et al. [53]
propose the Violent Flows dataset, which focuses on crowd
violence and contains two classes; violence and non-violence.
Sultani et al. [54] collected the UCF-Crime dataset, which
includes clips of fighting among other crime classes (e.g.,
road accident, burglary, robbery, etc.).

Perez et al. [55] proposed CCTV-fights, a dataset of
1000 videos, whose accumulative length exceeds 8 hours of
real fights caught by CCTV cameras. Akti et al. [56] put
forward a dataset of 300 videos divided equally into two
classes; fight and non-fight. UBI-fights [57] is another dataset
that distinguishes between fighting and non-fighting videos.
The aforementioned datasets are summarized in Table 1
where the number of action classes and size of the dataset are
outlined. In particular, the last column shows the number of
videos and the cumulative duration of all video clips in each
dataset (if this information is available).
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TABLE 1. Existing action recognition and crowd datasets in the literature.

In short, although the HAR datasets are useful for testing
different DL architectures, they are not necessarily useful
for specific practical tasks, such as surveillance, which
likely requires the distinction between a limited number
of specific action classes. Furthermore, to the best of
our knowledge, no video dataset in the literature contains
large gatherings, such as protests, as an action class. For
instance, protest datasets in the literature are limited to image
datasets [58] and protest metadata [59], which document
protester demands, government responses, protest location,
and protester identities. Thus, the novelty of our developed
video dataset is that it is specifically aimed toward identifying
scenarios of public unrest (violent protests, fights, etc.) or
scenarios that have the potential to develop into public unrest
(large gatherings, peaceful protests, etc.). Large gatherings
are particularly interesting and important to be carefully
monitored as they can lead to unruly events. Large gatherings
that seem peaceful can evolve into a violent scenario with
fighting, destruction of property, etc. In addition, the scale
of violence captured can inform the scale of the response
from law enforcement. Thus, for the current task, we divide
violence into small-scale violence (i.e., F) and large-scale
violence (i.e., LVG). To our knowledge, these aspects have
been largely neglected in existing datasets, which motivates
this work.

III. PROPOSED DESIGN OF PUBLICVISION SYSTEM
The design of the proposed end-to-end surveillance system
is based on general infrastructure, as illustrated in Figure 1.
The infrastructure is a three-layered framework - a source
spoke layer, a secure transportation layer, and a central hub
layer- that enables transmission, routing, and connectivity of
data. These layers encompass various hardware, software,
protocols, and technologies that facilitate the efficient and
reliable transfer of information between devices, systems, and
users. The following subsections discuss the details of the
functional components in each layer.

A. SYSTEM MODEL AND DESIGN
The model and design of the functional components asso-
ciated with each layer are portrayed in detail using the
schematic diagram shown in Figure 2.

1) SOURCE SPOKE LAYER
The main component in this layer is a set of networks
of CCTV cameras, where each network exists in separate
geographical locations. As shown in Figure 2, the cameras
located in multiple geographic locations collect real-time
video streams, which are then forwarded to a central location
via integrated service routers (ISR). The ISR is a network
router that securely connects digital networks for information
transmission. In particular, a sub-network is established in
this layer through an ISR router in each geographical location.
Since the live footage must travel through an Internet
Protocol (IP) network to the central hub, we employed IP
cameras in the proposed system. Hence, we build and test
our PublicVision system using Samsung’s PNM-9020VP
IP camera [60] (Refer to Figure 3). It is a multi-sensor
panoramic camera with a horizontal angular field of
view 180◦. It supports three video compression standards-
H.265, H.264, and MJPEG with a maximum frame rate
of 30fps.

In our proposed PublicVision system, we use ISR for
transmitting the video streams to the central hub layer. Also,
they are used for similar branch-to-branch communication
by allowing each camera’s footage to communicate to the
central hub. The router encapsulates data into small packets
for transmission through a secure network and has added
features such as mobile connectivity, cloud computing, and
multimedia performance. Moreover, the ISR is configured
with a dynamic multipoint virtual private network (DMVPN)
and IPSec for secure data transmission. The particulars
of DMVPN and IPSec are presented in the following
subsections.

2) SECURE TRANSPORTATION LAYER
This layer offers secure data transmission from the source
spoke layer to the central hub layer. Secure data transference
in surveillance is necessary to safeguard the privacy of
individuals, maintain the integrity and authenticity of data,
prevent unauthorized access and tampering, and ensure
the reliability of the surveillance system as a whole.
In the proposed system, we make use of a VPN to
secure the network, as we need to transfer data over
the public Internet. However, our cameras are in multiple
locations, which forced us to use Internet Protocol Secu-
rity (IPSec) over DMVPN instead of standard IPSec in
VPN.

DMVPN [61] is a routing solution to build VPN networks
with multiple nodes. DMVPN allows any two nodes to
communicate with one another without having to go through
a hub. It combines IPSec encryption, generic routing
encapsulation (GRE) tunnels, and Next Hop Resolution
Protocol (NHRP) for secure data transmission. Since we are
using DMVPN, an encryption tunnel is created using GRE
between the source router (ISR) and destination (Central hub
layer servers). This enables us to transmit data securely even
when the underlying network is the public Internet. Also,
the NHRP configuration helps to find the best route to the
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FIGURE 2. The general scheme of the proposed PublicVision system. The live footage of each CCTV camera at the source spoke layer is communicated
in real-time to the central hub layer that runs a video-analyzing Deep Learning model on that footage. The communication between each CCTV camera
network and the central hub layer is secured through DMVPN-over-IPSEC in addition to a firewall in the secure transportation layer that manages
incoming traffic.

FIGURE 3. Sample picture of the camera used in the PublicVision system.

destination with a minimum number of hops. Here, IPSec
adds an extra layer of security by providing authentication
to the GRE-encrypted data packets. On the other hand,
IPSec [62] is a framework that protects traffic on the network
layer. The salient features include confidentiality, integrity,
authentication, and replay protection. Confidentiality ensures
that only the sender and receiver can read the transmitted data,
while integrity guarantees that the data is not altered en route
between the sender and the receiver. Authentication allows
the receiver to verify that the data received originated from

the claimed receiver, and replay protection protects the data
from attackers capturing the video and replaying it at a later
time.

Furthermore, to prevent the central hub layer from
unwanted traffic, incoming traffic into the hub sub-network
is controlled by a Firewall, allowing only the designated
CCTV cameras to communicate with the central hub (i.e.,
sending their footage). The Firewall’s policy is set to allow
only devices with IP addresses that match the IP addresses
of the CCTV cameras to send network packets into the
hub’s sub-network. The Access List of the Firewall is
configured as the list of IP addresses of the CCTV cameras
in the different geographical locations. Specifically, we use
the Next Generation Firewall (NGFW), which provides
complete application visibility and control, application-level
awareness, threat control using sandboxing, identification
services, a comprehensive set of security technologies,
an integrated Intrusion Protection System (IPS), and Intrusion
Detection System (IDS), and capable of decrypting and
inspecting Secure Sockets Layer (SSL) for incoming and
outgoing traffic.

In addition to the security measures, this layer manages the
traffic between the source spoke layer and the central hub
layer using two switches - the access switch and the core
switch. The access switch is an Ethernet switch that connects
the devices in the central hub layer with the core switch,
whereas the core switch acts as a backbone transmission
system between the CCTV cameras in the source spoke layer
and the access switch.
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3) CENTRAL HUB LAYER
The kernel of the proposedPublicVision system is the central
hub layer which consists of GPU-equipped AI servers and
display monitors. Notably, the GPU-equipped AI servers
in the central hub layer are responsible for analyzing the
video stream and classifying the behavior using a DL model.
When a CCTV camera’s footage arrives at the central hub,
it is analyzed by the DL model to classify behavior in the
footage into one of the four behavior classes. The behavior
classes we identified were Natural Event, Fighting, Large
Peaceful Gathering, or Large Violent Gathering. Section IV
will provide the details of the DL model used and the
four behavior classes to which the observed footage will be
classified. To analyze incoming footage in real-time using the
developed DL model, we take advantage of Deepstream [14],
a software development kit developed by Nvidia.

The Deepstream SDK can be used to develop and deploy
efficient visual AI applications. Deepstream allows for
running a given DL model on a video stream in real time
by feeding the last several frames received from the video
stream to the model. The number of frames to be fed to
the model at any time will depend on a pre-determined
parameter, the input size of the model [14]. The output of the
DL model will be one of four labels or classes of behavior.
Finally, since the Deepstream requires a GPU to run [14],
we employed NVIDIA GeForce RTX 2080 Ti GPUs as AI
servers in the central hub layer. Besides, effective surveillance
can only be achieved by visualizing CCTV footage and
its associated behavior. Since DeepStream has the ability
to display the incoming video stream along with the label,
we utilize displaymonitors for live footage visualization. This
could also be useful for decision-making by viewing CCTV
footage.

B. SYSTEM INTEGRATION
The proposed PublicVision system is an end-to-end solution
for the behavior recognition of crowds. Based on the layered
framework discussed above, we represent this end-to-end
system as a directed graph, G = {C,E}, with the vertices
C as the functional components in the framework and edges
E as the connection between the components as shown
in Figure 4. The components (nodes in the graph) are
responsible for executing tasks allocated to them, whereas the
edges pass relevant data between the components.

The CCTV camera acts as the source of the framework
responsible for monitoring the area in its field of view and
captures Raw_Video_Stream. In contrast, theMonitor acts as
a sink to display the behavior detected frame along with its
associated label. That is, the goal of this end-to-end surveil-
lance system is to view the frame, fi, and detected crowd
behavior, bi while providing a Raw_Video_Stream, V =
{f0, f1, f2, . . .}, containing events of interest. The two com-
ponents, ISR Spoke and ISR Hub are routers responsible for
the encapsulation/decapsulation and encryption/decryption
of the stream packets resulting in Encrypted_Stream and
Decrypted_Stream based on DMVPN and IPSec.

The configuration process starts when a DMVPN tunnel
interface is created between the ISR Spoke and ISR Hub by
enabling NHRP authentication and GRE multipoint mode.
The NHRP protocol facilitates the dynamic mapping of a
next-hop destination address to the physical address (MAC
address) of the device responsible for forwarding packets
to that destination. On the other hand, multipoint GRE
enables the creation of a virtual tunnel between multiple
ISR Spokes in the Source Spoke layer allowing for the
encapsulation and transport of network traffic over an IP
network. In particular, the ISR Hub is connected to multiple
remote ISR Spokes and acts as a central point that can
receive and forward traffic from any remote spokes to
the appropriate destination. To complete the connection
configuration, appropriate routing protocols must be enabled
on ISR Spoke and ISR Hub. In our implementation, we use
the Enhanced Interior Gateway Routing Protocol (EIGRP)
that combines the features of distance-vector and link-state
routing protocols, making it a hybrid routing protocol. It uses
the Diffusing Update Algorithm (DUAL) to calculate the
shortest path and determine the best routes to destination
networks.

Further security is ensured for the video stream by
enabling IPSec in the DMVPN tunnel, which provides
confidentiality, integrity, and authentication to the transmitted
Encrypted_Stream while traversing the Global ISP. During
the IPsec negotiation process, the ISR Spoke and ISR Hub
exchange and verify a pre-shared key (PSK) using the
Internet Key Exchange version 2 (IKEv2) for authentication.
If the keys match, IPsec proceeds to establish a secure
connection using the Triple Data Encryption Standard
(3DES) for encryption and Message Digest Algorithm 5
(MD5) for integrity and authentication. 3DES is a symmetric
encryption algorithm that applies the DES algorithm three
times on each data block, while MD5 (Message Digest
Algorithm 5) is a widely used cryptographic hash function
that produces a 128-bit (16-byte) hash value which is a unique
fingerprint for a given output for verifying the integrity of
data. Algorithm 1 portrays a concise representation of the
configuration procedure for ISR Spoke and ISR Hub.

Furthermore, to ensure that the streams come from
authenticatedCCTV cameras, the nodeCore Switch forwards
the Decrypted_Stream to Firewall ASAv. The task assigned
to Firewall ASAv is to maintain an access list to allow
traffic from trusted CCTV . In the proposed PublicVision,
we employed NGFW, which offers application visibility and
control, an intrusion prevention system (IPS), and advanced
malware protection. Finally, the Access Switch passes the
Permitted_Stream to the AI Server that runs the DL model
to detect behavior bi. In particular, the DeepStream SDK
running on the Server captures the stream and feeds the last
twenty frames to the DL model. Subsequently, DeepStream
embeds the bi obtained from the DL model into the incoming
feed and displays it as Detected_Behavior on theMonitor .

As discussed in Section III, we have developed a novel
dataset to train the DL model that detects crowds based
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FIGURE 4. End-to-end representation of the proposed PublicVision system.

Algorithm 1 Configuration of ISR Spoke and ISR Hub
1: Notations Used: EA← Encryption algorithm, K← Pre-

shared key
Require: EA,K
2: procedure ConfigISRHub(EA,K )
3: Configure NHRP, GRE, and EIGRP.
4: Enable IPSec and configure EA and K
5: end procedure
6: procedure ConfigISRSpoke(EA,K )
7: Configure NHRP, GRE, and EIGRP.
8: Register NHRPwith the hub and establish mappings.
9: Enable IPsec

10: Configure EA and K to match the hub.
11: end procedure
12: procedure Tunnel(IP Address, EA, K)
13: Initiate_Tunnel← Encaps(IP Address)
14: VPN_Tunnel← EA(Initiate_Tunnel, K)
15: end procedure
16: procedure Spoke-Hub(DestIP)
17: R_spoke← Query (Hub_Public_IP)
18: Establish direct IPsec tunnels using Hub_Public_IP.
19: end procedure

on size and violence level (Dataset development and other
details are provided in Section IV). Thus Server detects bi
from Permitted_Stream using the trained DLmodel, which is
redirected to Monitor as Detected_Bahavior that comprises
fi with its associated label bi-Natural Event (N), Fighting (F),
Large Peaceful Gathering (LPG), or Large Violent Gathering
(LVG).

The DL model is a critical part of this proposed end-to-
end system that starts at the CCTV camera capturing outdoor
events and ends with a label describing the last two seconds
of footage. Since the designed system is for city-wide or
country-wide surveillance, footage from multiple cameras
has to effectively and securely reach the central hub layer
that runs the DL model. Additionally, since each camera in
the source spoke layer has a unique ID, detected events can

be easily and precisely located. As a result, the nature of the
concerning bi, as well as its location, can be detected and
communicated to a central agency, such as the Ministry of
Internal Affairs or Law Enforcement Forces, and an adequate
response could be deployed in a timely manner.

IV. EXPERIMENT AND ANALYSIS
A. DATASET DEVELOPMENT
Since our application deals first and foremost with training a
DL model to recognize certain human behaviors, a dataset
must be available for training such a model. However,
no satisfactory dataset exists in the literature that classifies
crowd behavior based on dynamics and violence level. Recall
that we seek to distinguish crowd behavior not only by
the violent nature of the behavior but also by its extent.
As far as we are aware, datasets in the literature distinguish
only between violent and non-violent events, while we are
additionally interested in the size of the crowd exhibiting
the behavior. Particularly, we are interested in classifying
crowd behavior along two axes, the violent nature of the
crowd as well as the size of the crowd. The first class
we are interested in consists of small non-violent crowds,
which we classify as Natural (N) events. The second class
of behavior that we believe is note-worthy is the class
of small violent crowds, which we label as small-scale
Fighting (F) events. Non-violent large crowds are labeled
as Large Peaceful Gathering (LPG) events while violent
large crowds are labeled as Large Violent Gathering (LVG)
events. In order to build a DL model that can effectively
distinguish between the four classes of interest (N, F, LPG,
and LVG), we build a novel dataset of videos belonging to
each of those four classes. Our developed dataset introduces
a unique classification system, enabling the categorization
of crowd behavior based on both the level of violence
and the size of the crowd, distinguishing it from existing
datasets. Figure 5 portrays the sample frames for each class.
In particular, we gather 1,413 videos that include one or more
of the classes of interest. Most of the videos were obtained
from YouTube, while other violence-detection datasets were
also incorporated into our dataset. The videos go through
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FIGURE 5. Sample frames for each behavior class from our dataset.

TABLE 2. An example annotation table describing 5 instances of the
relevant classes occurring in 3 separate videos.

standard pre-processing steps to prepare them to be fed to a
DL model for training. The subsequent subsections furnish
the details of video labeling and the requisite pre-processing
steps.

1) VIDEO ANNOTATION
For each video, we identify when the behaviors of interest
occur. We do so by recording the start and end time stamps
within which interesting behaviors are observed. The time
durations wherein nothing interesting happens (no fighting,
large peaceful gathering, or large violent gathering) are
recorded and labeled as ‘‘baseline’’. The annotation process
described above results in an annotation table such as the one
shown in Table 2. Each occurrence of a class recorded in the
annotation table is denoted as an instance of that class. Next,
we will see how instances recorded in the annotation table are
used to train a DL model.

2) VIDEO PRE-PROCESSING
The first pre-processing step is to unify the frame rate of
all videos collected. We set the frame rate of each video to
10 frames per second (FPS). We seek to build a DL model

that produces a class label based on the last 2 seconds of
incoming surveillance footage. As a result, it must be trained
with 2 seconds x 10 frames per second= 20-frame sequences.
After the frame rate of all videos had been set to 10 FPS,

videos were broken up into their frames (10 frames for every
second). Note that each video has an ordered set of frames
F = {f0, . . . , fn}. For each instance in the annotation table
with time range hi : mi : si−hf : mf : sf and class bi extracted
from video V , we extract sets of 20 frames, where each set
of 20 frames is called a sample. Samples are used to train
and validate a DLmodel. To extract samples from an instance
whose time range is hi : mi : si−hf : mf : sf , we first identify
the subset of consecutive framesFinstance ∈ F that is observed
during the time range of the instance hi : mi : si−hf : mf : sf .
Note that, since the frame rate of the videos was set to 10 FPS,
frames {f0, . . . , f9} occur between times 0 : 0 : 0 and 0 : 0 : 1,
frames {f10, . . . , f19} occur between times 0 : 0 : 1 and 0 :
0 : 2, and so on. In general, to find the first and last frames
in Finstance, f 0instance and f

k
instance respectively, for an instance

with time range hi : mi : si − hf : mf : sf , we apply the
following formula:

f 0instance = fp (1)

f kinstance = fq (2)

where

p = 10(3600hi + 60mi + si) (3)

q = 10(3600hf + 60mf + sf )+ 9 (4)

Given the frames of the instance Finstance = {fp, . . . , fq},
we can use all sets of 20 consecutive frames in Finstance,
{fp, . . . , fp+19}, {fp+20, . . . , fp+39}, and so on, for testing and
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FIGURE 6. Architecture of Swin-T in the Server that takes input video-Permitted_Stream and displays the Detected_Behavior using DeepStream on
the Monitor .

FIGURE 7. Average loss during the training and validation.

validation. However, in order to avoid needlessly inflating our
dataset, we skip ten frames between samples. Namely, given
the frames of an instance Finstance = {fp, . . . , fq}, we use the
following sets of frames as training and validation samples:
{fp, . . . , fp+19}, {fp+30, . . . , fp+49}, and so on.

B. VISION-BASED MODEL DEVELOPMENT
Having collected a dataset of samples, as illustrated in the
previous section, our dataset is ready for training. In this
work, we use a Swin Transformer [13], which is one of
the transformer architectures that is used in many computer
vision works as a general backbone for both image and video-
based problems. The Swin Transformer is a hierarchical
Transformer that divides images into small patches in the
shallow layers of the transformer architecture and merges
neighboring layers in the deeper layers to form larger patches.
The Swin Transformer also utilizes shifted windows for infer-
ence, giving it greater representational power that is reflected
in its recent state-of-the-art performances [13]. In addition
to its state-of-the-art performance, the Swin Transformer is
also more computationally effective than other models; The
computation time of the Swin Transformer grows linearly
with the resolution of the input images, as opposed to other
models, where computation time increases quadratically with

FIGURE 8. Comparison of accuracy(%) on our dataset.

image resolution. Among multiple versions of Video Swin
Transformer, we contemplate Swin-T, the tiny version of
Swin as it is designed to bemore efficient and faster than other
versions of Swin making it well-suited for scenarios where
computational resources are limited and inference speed is
crucial. The overall architecture of Swin-T is provided in
Figure 6.

The Swin-T framework consists of four stages, where
each stage has three components- Patch Merging, Linear
Embedding, and a Video Swin Transformer block except
stage 1. In stage 1, each frame in the Permitted_Stream, V =
{f1, f2, . . . fT } is divided into 3D patches/tokens of size 2×4×
4×3 by the 3D patch partition layer that results in T

2 ×
H
4 ×

W
4

tokens. These tokens are given to the linear embedding layer,
where the features of each token are projected to an arbitrary
dimension, C (For Swin-T, C = 96). The patch merging
layers of each stage perform the spatial downsampling and
concatenation of 2 × 2 neighboring patches, where a linear
layer is utilized to project the concatenated patches to half
of the input dimension. The significant block in each stage
is the video swin transformer block that comprises a 2-layer
multi-layer perceptron (MLP) with Gaussian Error Linear
Unit (GELU) activation unit and 3D shifted window-based
multi-head self-attention (3DWMSA) module.
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FIGURE 9. Connectivity established between SPOKE-1 and central hub layer for configuration verification.

FIGURE 10. Verification of the connection between Monitor3 (IP address 192.168.3.2) and Gateway IP (IP Address 192.168.3.1).

Before passing samples through the Swin Transformer
model, each frame is converted to 224 × 224 pixels, and a
20× 3× 224× 224 tensor is built for each sample (20 RGB
frames per sample, each frame is of size 224 × 224 pixels).
To validate our dataset, we split it into training and validation
sets. We seek to use 80% of samples for training and 20%
for validation. However, to ensure that there’s no correlation
between training and validation samples, the samples from
any one of the 1,413 videos are used either exclusively for
training or exclusively for validation. To achieve such a split,
and have it approximate an 80%-20% sample split as closely
as possible, a simple random search approach is used to
generate random training and validation video sets. At every
iteration, the number of samples per class for the training
and validation sets is counted. After a set amount of time,
60 seconds in our case, the best split is adopted and used
for training and validation. Note that the best split is the
one closest to 80:20 per-class split. The split used to train
and validate the Swin transformer model is summarized in
Table 3.

TABLE 3. Number of samples per class used for training and validation.

The training process of the model was performed by
minimizing the categorical cross-entropy loss by utilizing
the optimizer Stochastic Gradient Descent (SGD) with an
initial learning rate of 0.0001, a momentum of 0.9, and
a weight decay of 0.0001. The hyperparameters used for
training are compiled in Table 4. Figure 7 depicts the average
loss values during the training and validation of crowd
behavior classification. The decreasing behavior detection
loss demonstrates that the proposed approach successfully
detects the correct behaviors similar to the ground truth
labels. The training was performed using Python’s PyTorch
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FIGURE 11. Verification of the connection between Monitor3 (IP address 192.168.3.2) and Server3(IP Address 192.168.4.2).

TABLE 4. Hyperparameters used for training Swin-T.

TABLE 5. Results obtained by training the Swin transformer model on our
dataset.

framework in a GPU having NVIDIA GeForce with CUDA
11.4. We validated the trained Swin model by calculating the
accuracy value and mean average precision(mAP) and it is
observed that we attain an overall accuracy of 89.76% and an
mAP of 93.3%. The results obtained for individual behavior
classes are outlined in Table 5, where the accuracy of the
model when tested using the validation samples of each class
is reported. We also compare the overall accuracy of the Swin
Transformer model with the ResNet3D [63] and R(2+1)D
[63] frameworks, and the results (Figure 8) show that Swin
Transformer has higher accuracy, which enables us to use it
as the DL model for our experiments.

C. SYSTEM IMPLEMENTATION
The traffic flow and working concept of our system
via DMVPN were tested using the Qemu emulator [64].
We design the network based on the general infrastructure

shown in Figure 1. As per the scheme portrayed in Figure 2,
CCTV cameras were installed in multiple geographical
locations depicted as SPOKE-1, SPOKE-2, SPOKE-3, and
SPOKE-4. The remote CCTVs in the four spokes were
connected to the control room in the central hub layer via the
Internet. The communication between the control room and
remote CCTV was secured using DMVPN. We performed
the verification of configuration and connection settings
between SPOKE-1 and the central hub layer, i.e., with
Server3 and Monitor3 (Figure 9). This was done to ensure
that the design is correct and that the traffic of interest from
CCTV passes through the VPN tunnel and has full intercon-
nectivity between the server, storage, monitor, and remote
CCTV.

The verification of network establishment through the
Dynamic Host Configuration Protocol (DHCP) server con-
figured on Access Switch was done by pinging the Gateway
IP fromMonitor3 as illustrated in Figure 10. Besides, we can
ping our Server3 and our SPOKE-1 CCTV from Monitor-3,
which ensures that there is reachability, and we can easily
access the CCTV as portrayed in Figures 11 and 12.

To ensure that the DMVPN tunnel is up between the
SPOKE-1 and central hub and that the traffic flow is
encrypted, we run the command show int Tunnel in the ISR
HUB and ISR SPOKE terminals. The results are displayed in
Figure 13 and 14. Also, we make sure that the stream flow
is defined under the dynamic routing protocol EIGRP and
that neighborship is there between the VPN tunnel and IP.
We also provide extra security to the system by providing a
Firewall in the secure transportation layer. The hit count for
incoming traffic shown in Figure 15 proves that our system
guarantees that the access list is configured globally for
allowing traffic from lower security level to higher security
level.
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FIGURE 12. Verification of the connection between Monitor3 (IP address 192.168.3.2) and SPOKE-1 CCTV (IP Address 192.168.5.2).

FIGURE 13. DMVPN tunnel established in ISR HUB using EIGRP, IPSEC, and 3DES encryption.

Accordingly, connectivity is established from Monitor3,
located at the central hub layer, to the remote source
spoke layer. We can ping and access CCTV-1 over the
user interface at Monitor3, and the streaming traffic
is traversing through the VPN tunnel. The traffic is
encrypted/encapsulated and decrypted/decapsulated on both
sides at the ISR Router. Similarly, all connections are
verified and checked for the complete implementation of the
system.

We design and implement an end-to-end architecture that
uses IP surveillance cameras whose footage is encrypted and
fed in real-time to a remote server equipped with Deepstream.
Deepstream uses the Swin transformer model that we trained

on a manually collected dataset. Results (Table 5) from
the developed model demonstrate considerable potential for
the widespread deployment of the system described in this
work by security agencies. The developed DL model was
converted to the ONNX format [65], which established open
standards for representing machine learning algorithms and
a streaming source for the video feed. We utilized pyTorch’s
‘‘onnx’’ module to convert the model to ONNX format. The
ONNX file of the DL model was specified in DeepStream’s
configuration file to produce an inference engine file for use
in future runs of the DeepStream SDK. Figure 16 shows
examples of output displayed on the monitor screen with their
associated behaviors.
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FIGURE 14. DMVPN tunnel established in ISR SPOKE using EIGRP, IPSEC, and 3DES encryption.

FIGURE 15. Firewall access list showing hit count.

D. COMPARISON WITH STATE-OF-THE-ART SYSTEMS
We compared the significant characteristics of our system
with state-of-the-art end-to-end smart surveillance systems in
the literature closely related to our work, and are displayed
in Table 6. Surveillance system for crowd behavior detection
based on size and violence level offers various benefits,
particularly in the context of security, public safety, and
event management. In particular, considering the system’s
characteristics, such as the usage of the DL model, the
detection of crowd behavior that can distinguish the size
and violence level, end-to-end secure data transmission,
and real-time inference, has several advantages. These
include early threat detection for proactive intervention

before situations escalate, enhanced security for prevent-
ing incidents like riots, stampedes, or terrorist attacks,
resource optimization, public safety, real-time monitoring
to prevent tragedies, and balancing security with individual
privacy rights. Table 6 clearly portrays that our system
is efficient enough to handle such emergency situations
related to crowds compared to state-of-the-art surveillance
systems.

V. IMPACT AND APPLICATIONS
The use of the system outlined in this paper promises to have
tremendous benefits for city-wide surveillance. As previously
mentioned, such a system solves the major drawbacks of
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FIGURE 16. Examples of output displayed on the monitor using Deepstream. The crowd behavior corresponding to the frames is displayed in the
top left corner of each frame. The class baseline depicts the Natural(N) crowd.

TABLE 6. Comparison of characteristics with state-of-the-art systems for smart surveillance.

human-operated surveillance systems, which are inherently
expensive, in terms of the human capital required, and error-
prone. The system outlined in this paper would be useful
for governmental agencies all around the world, especially
in cases of emergencies, such as widespread unrest, and
during large-scale public events, such as concerts, national
holidays, and sports tournaments. Thus, the main beneficiary
of such a system would be governments all over the world.
In fact, since CCTV surveillance use is already widespread
in most countries, the upgrading of such systems from
traditional modes of operations to the more intelligent
approach described in this paper is relatively straightforward.

Governments’ potential interest in the smart surveillance
system outlined in this paper lies in the fact that the
proposed systems allow for effective and efficient allocation
of security efforts (efforts could be focused on areas where
large gatherings are occurring at any point in time). This
would help avoid situations getting out of hand because
of a delayed or insufficient security response. Additionally,
this surveillance system would allow for quick adjustment
and adaptation to changing threat levels due to the fact that
such a system is capable of immediately notifying authorities
regarding the location, nature, and scale of note-worthy
crowd behavior.
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VI. CONCLUSION AND FUTURE WORK
In a public surveillance system, automated real-time analysis
of crowds is often strenuous as the behavior of the crowds
is unpredictable. To overcome these unforeseeable situations,
datasets and models are inevitable that can recognize crowd
behavior based on crowd dynamics and violence levels.
Besides, surveillance systems should be reliable enough to
ensure the privacy of data and should employ technical and
organizational measures to safeguard sensitive information.
In this context, this paper proposes PublicVision, an end-to-
end secure surveillance system for city-wide or country-wide
surveillance for crowd behavior classification based on crowd
size and violence level. The proposed system consists of
sub-networks of CCTV cameras whose footage is securely
sent to a remote central hub, where servers will analyze
incoming camera footage in real time. The DL model in
the server used to analyze the camera footage is a Swin
transformer model that’s trained on a novel video dataset
that groups crowd behavior into four categories and can
distinguish crowd dynamics and violence levels. We ensure
the security of the transmitted data by leveraging the
implementation of DMVPN over IPSec. Experiment analysis
using DeepStream SDK proves that our system is capable of
real-time secure surveillance and crowd management. In the
future, we are planning to create robust DL models that
can fully leverage the spatiotemporal properties of video
data. Additionally, we are planning to explore the integration
of wireless communication protocols into the system to
generate location-specific alert messages. These efforts will
help enhance the capabilities of our surveillance system and
improve its effectiveness in managing public safety.
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