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ABSTRACT This study introduces an approach for route optimization of many-to-many Demand-
Responsive Transport (DRT) services. In contrast to conventional fixed-route transit systems, DRT provides
dynamic, flexible, and cost-effective alternatives. We present an algorithm that integrates DRT with the
autonomous shuttles at Korea National University of Transportation (KNUT), allowing dynamic route
modifications in real-time to accommodate incoming service calls. The algorithm is designed to take into
account the shuttle’s current position, the destinations of passengers already on board, the current locations
and destinations of individuals who have requested shuttle services, and the remaining capacity of the
shuttle. The algorithm has been developed to combine genetic algorithms and reinforcement learning. The
performance evaluation was conducted using a simulation model that emulates KNUT’s campus and the
adjoining local community area. The simulation results show significant improvements in two key metrics,
specifically the ‘Request to Pick-up Time’ and ‘Request to Drop-off Time’ during high-demand periods
over the single-shuttle operation. Additional simulation test with random service requests and stochastic
passenger walking distances showed the potential adaptability across different settings.

INDEX TERMS Autonomous vehicles, intelligent transportation systems, machine learning, machine
learning algorithms, public transportation, transportation.

I. INTRODUCTION
In light of the recent advancements in autonomous vehicle
technology, there is growing interest in exploring alternatives
to traditional driver-accompanied fixed-route public trans-
port [1]. Autonomous shuttle bus services are a particularly
appealing option due to their relatively low ongoing costs,
as there is no need to hire a driver. Deploying autonomous
shuttle services in low-demand corridors or areas can sig-
nificantly enhance the transport viability for their residents,
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effectively bridging gaps in the first and last mile of transit
trips [2].

Numerous pilot experiments in several countries, includ-
ing Australia, Austria, Estonia, Finland, France, Germany,
Norway, Switzerland, Sweden, The Netherlands, and US,
have demonstrated substantial advancements in technology
and acceptance by citizens [3], [4]. It should be noted that the
overall publicly available documentation of the autonomous
shuttle bus pilots is not sufficient to provide a complete
framework, but it looks like most pilots were conducted on
fixed routes [5].

Traditional fixed-route systems, due to their static nature,
face various inefficiencies in operation. They rely on
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predetermined schedules and routes, leading to an underuti-
lization of capacity during off-peak hours and overcrowding
during peak times [6]. Additionally, accommodating unex-
pected demand surges, events or fluctuations in passenger
distribution can pose a significant challenge [7]. These limi-
tations result in passenger inconvenience, longer travel times,
and high operational costs [8]. Due to the diminishing cost-
effectiveness, the quality of local public transport services
inevitably declines, leading to a detrimental impact on service
users and a subsequent decrease in ridership.

Addressing the shortcomings of traditional fixed-route sys-
tems, many-to-many Demand-Responsive Transport (DRT)
services serve as a dynamic and flexible alternative. These
services run on flexible routes in response to real-time
demand, enhancing passenger convenience by reducing wait
times and promptly adjusting to unexpected changes in
demand. Their capacity to adapt to demand fluctuations
allows them to avoid the inefficiencies often associated with
fixed-route systems, such as capacity underutilization and
overcrowding.

In this research, we propose a new methodology specif-
ically designed to optimize routes within a many-to-
manyDemand-Responsive Transport (DRT) framework. This
approach is tailored for autonomous shuttle buses and caters
to passengers with diverse origins, destinations, and prefer-
ences. Coordinating the operations of many-to-many DRT
services, which encompass autonomous shuttle buses and
cater to passengers with varying trip origin and destination
locations, and preferences continues to present a chal-
lenge [9]. The immediate objective of this study is to embed
and assess the proposed algorithm within the specific KNUT
environment, laying down a foundational understanding of
the algorithm’s potential.

Three simulation scenarios are prepared to validate our
proposed methodology. Scenario 1 tests a single autonomous
shuttle bus’s capacity to handle all service requests within
20 minutes, pinpointing peak demand periods. Scenario
2 builds on this, deploying additional vehicles during these
peak times to evaluate service efficiency improvements.
Scenario 3 introduces unpredictability, with random service
requests and varied passenger walking distances, testing
the algorithm’s adaptability across fluctuating demand and
diverse needs. Through these scenarios, this study seeks to
provide a solution that enhances the efficiency, adaptability,
and overall effectiveness of DRT operations.

II. RELATED WORKS
Demand-Responsive Transport (DRT) initially emerged in
the 1970s as an innovative solution to extend the coverage
of conventional fixed-route networks, particularly for groups
like the elderly and individuals with special needs and in areas
with lower demand densities [10], [11]. Enabled by interac-
tive and intelligent information platforms such as smartphone
applications or websites, DRT services are expected to grow
in popularity [12]. The feasibility and effectiveness of DRT

systems have been tested by pilot programs conducted in
many countries such as Australia [13], UK [14], and US [15].
As a form of paratransit, one-to-one DRT services are often

used as a mobility solution for specific demographics, such
as older adults, people with disabilities, or individuals in
areas underserved by traditional public transport [16]. While
this mode of service contributes to social inclusion, it often
involves high costs due to individualized service routes, long
waiting times, and high vehicle-kilometer costs [17]. In the
United States, the total operating expenses of paratransit
service exceeded 1.2 billion dollars with only 173 million
dollars collected in fares, as reported by the American Public
Transit Association [18].

One-to-many DRT services, acting like a feeder bus ser-
vice, function as connecting services between low-density
areas and traditional fixed-route transit services [19]. This
service model requires carefully coordinated schedules and
efficient vehicle dispatching to ensure an acceptable level
of service quality [20]. Efficient vehicle routing is a key
problem, as these services are dynamic and have to adjust
in real-time to passenger demand and traffic conditions. The
dynamic nature of the vehicle routing problem in both one-to-
many DRT services and the logistics sector are similar. Koç
et al. provided a comprehensive review of existing studies on
the simultaneous pick-up and delivery routing problem [21].
However, most existing algorithms for this problem only
consider the transport of goods from a specific depot to clients
and vice versa.

Many-to-many DRT services can offer flexible transit ser-
vices, accommodating multiple pickup and drop-off points.
One of the most significant challenges in implementing effi-
cient many-to-many DRT services is determining an optimal
route for vehicles. The task of managing variable pick-up and
drop-off locations, times, and customer preferences creates
a complex web of routing possibilities that makes effi-
cient and timely service provision a challenging task. The
issue of routing becomes even more complex when con-
sidering the need to minimize the cost and maximize the
utilization of vehicles while providing a satisfactory level of
service for customers. This difficulty is particularly preva-
lent in many-to-many DRT services where the routes are
not fixed and can change dynamically based on demand.
Moreover, factors such as traffic congestion, service delays,
and varying travel demands further complicate the routing
process. While advanced information technology platforms
and intelligent dispatching and matching systems have been
introduced to enhance operational efficiency, these tools still
face limitations and challenges. Therefore, in the context
of many-to-many DRT services, research into more robust
and efficient routing algorithms, that can quickly adapt to
dynamic changes in demand and other variables, remains a
critical area of study.

III. METHODOLOGY
Coordinating autonomous shuttle buses to serve passengers
with diverse starting points and destinations introduces a
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multi-dimensional problem that consists of several critical
aspects. The foremost consideration is the dynamic nature
of demand. Passengers may request a shuttle bus service at
any time, from any location, with each requiring drop-off at
a different destination. This ever-changing demand presents
a considerable challenge for autonomous shuttle buses.
The operating system must consistently adapt to real-time
requests while maintaining efficient route management.

Routing is also a significant challenging task. Given the
range of starting points and destinations, determining optimal
routes to minimize travel times and distances is essential.
Unlike fixed-route buses that continuously follow the same
circuit, an autonomous shuttle busmust possess the capability
to dynamically create and adjust its route in real time. This
adaptability needs to account for new passenger pick-ups
and drop-offs as they occur. Capacity management is another
crucial factor. As autonomous shuttle buses have limited
capacity, it’s critical for the service to ensure that this capacity
is not exceeded while attempting to meet as many requests as
possible. This requirement implies that the algorithm must
consider not only the shortest route but also the appropriate
number of passengers to be loaded at each point along the
route.

The factor of uncertainty can introduce significant com-
plexity. For instance, there’s a chance that passengers who
have requested service may not actually be at their stated
pick-up points when the shuttle arrives. This circumstance
raises the question of whether the shuttle should wait for
the passenger, potentially inconveniencing other passengers,
or proceed to maintain service efficiency.

To provide an effective and efficient autonomous shut-
tle bus service, this study formulates two key algorithms,
as illustrated in Fig. 1. The process of service provision
initiates when a user submits a service request. Upon receipt
of this request, the system activates the ‘On-Demand Board-
ing Guidance Algorithm’. This algorithm undertakes the
responsibility of locating the boarding stops for passengers.
Factors considered include the location of the service request,
its proximity to the ODD, and the operational efficiency.
Once the boarding location has been determined, the system
then generates an Estimated Time of Arrival (ETA) for the
pick-up.

Assuring access to high-quality shuttle position data is
paramount, as it directly influences the successful deploy-
ment and optimal functioning of the algorithm. The proposed
algorithm assumes access to high-quality shuttle position
data, a crucial element for its successful implementation and
optimal performance.

Following the initial step, the request and ETA data are
processed by an additional algorithm of the ‘Route Optimiza-
tion Algorithm’. This algorithm is tasked with determining
the most efficient bus route, and as a part of this process,
it calculates the Estimated Times of Arrival (ETA) at the
drop-off points for all active service requests. In the case of
multiple buses are in operation, themost appropriate bus from
the fleet to fulfill the request is examined as well.

FIGURE 1. Demand-responsive shuttle bus service process.

A. ON-DEMAND BOARDING GUIDANCE ALGORITHM
The patron’s interest in bus services significantly diminishes
when boarding stops are located more than a five-minute
walking distance [22], [23]. Moreover, as walking distance
increases, the accurate estimation of arrival times at pick-up
points becomes increasingly challenging, thereby complicat-
ing the provision of optimal dynamic routing in real-time.
Given the average adult walking speed of five km/hr., a dis-
tance of 400 meters is calculated for a five-minute walk.
Hence, in the cases of the walking distance exceeding 400m,
an alert is issued declaring the location non-serviceable.

To avoid frequent stops of the autonomous shuttle bus,
when a stop location within the same link already exists, new
service requests are directed to the previously established
stop. This strategy facilitates efficient and prompt service.
Likewise, passengers intending to travel to the same or nearby
destinations within a link can be directed towards a singular
drop-off point. The process of the on-demand boarding guid-
ance algorithm is presented in Fig. 2.

FIGURE 2. On-Demand boarding guidance algorithm.
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In the case of unexpected events, such as inclement
weather, road works, or accidents, the safety protocols
mandate an immediate halt to services, prioritizing the
well-being and security of both passengers and other road
users. Similarly, when facing sudden demand spikes that the
vehicle capacity cannot accommodate, our system steadfastly
upholds safety and service reliability. It promptly issues noti-
fications to passengers with excess service requests, clearly
communicating that we are unable to accommodate their
service call currently.

B. ROUTE OPTIMIZATION ALGORITHMS
This study aims to address a complex problem where it
responds to service requests that originate from various
pick-up points (OL1, OL2, OL3, . . . , OLk ) and are destined
for various drop-off points (DL1, DL2, DL3, . . . , DLk ). The
problem also requires considering the current location of the
vehicle (Lveh) to determine the most optimal route option.
For example, when there is one service request yet to be
picked up and a new service request comes in, there are a total
of six possible routes. In this context, the vehicle’s location
always takes precedence, and for the same service request,
boarding always precedes alighting. The detailed routes for
two simultaneous service requests are as follows:

1st : (Lveh → OL1→DL1 → OL2 → DL2),

2nd : (Lveh → OL1→OL2 → DL1 → DL2),

3rd : (Lveh → OL1→OL2 → DL2 → DL1),

4th : (Lveh → OL2→OL1 → DL1 → DL2),

5th : (Lveh → OL2→OL1 → DL2 → DL1),

6th : (Lveh → OL2→DL2 → OL1 → DL1)

As the number of simultaneous service requests increases,
the number of possible route options likewise surges expo-
nentially. Depending on the number of simultaneous service
requests, the available route options are as follows: 1 route
option for 1 simultaneous service request, 6 route options for
2 simultaneous service requests, 90 route options for 3 simul-
taneous service requests, 520 route options for 4 simultaneous
service requests, 113,400 route options for 5 simultaneous
service requests, and a 7,484,400 route options for 6 simulta-
neous service requests.
Utilizing a simple Exact method to identify the shortest

path between links and derive the optimal route invari-
ably results in long computation time and necessitates large
storage space for learning. Previous studies on the vehicle
routing problem used the Reinforcement Learning (RL)-
based algorithms, which provide prompt service based on
pre-experienced dynamic routes [24], [25], [26], [27]. For
instance, Lu et al. demonstrated an innovative lane-level
traffic control approach in connected vehicle environments,
optimizing traffic flow and safety using an RL algorithm [28].
RL algorithms have also been applied in other fields,
including chemical process design [29] and network traf-
fic management [30], showcasing their broad applicability

beyond the transport sector. Nonetheless, the accumulation of
learning data, engendered from a variety of scenarios (states),
mandates substantial storage capacity. Further complicating
matters, the time associated with loading this copious learn-
ing data induces constraints in the real-time guidance of
dynamic routes.
To evaluate the effectiveness and practicality of the RL-

only model, we analyzed its performance over a range of
training episodes. The environment of the KNUT campus
(Section IV-A) was utilized, featuring a single shuttle bus
agent. The models were trained across three incremental
demand scenarios: up to 3 simultaneous random service
requests, 4 to 6 simultaneous random service requests, and
7 to 10 simultaneous random service requests. Performance
metrics were gathered every 1,500 episodes. Notably, the
model was programmed to randomly select actions when
encountering inexperienced states during the exploitation
phase. The results are presented in Fig 3.

FIGURE 3. On-Demand boarding guidance algorithm.

In the low-demand scenario (0-3 requests), the RL-only
model demonstrated a proficient learning curve, converging
after approximately 25,000 episodes. This indicated a strong
capability for the model to rapidly adapt and make effective
decisions under conditions of low demand. However, when
the number of simultaneous service requests increased to 4-
6 request scenario, the model did not converge even after
100,000 episodes. The issue was even more severe in the
higher demand scenario (7-10 requests). The performance
was not stable, characterized by significant fluctuations
throughout the training episodes. The inconsistent outcomes
indicate that the RL-only model might face challenges in
efficiently handling high service demands. The RL approach
requires extensive learning periods to adapt to a wide range of
scenarios and deduce the most efficient route plan, especially
in high-demand environments.

To address these challenges, we integrated the Genetic
Algorithm (GA) into our approach [31]. GA, a metaheuris-
tic inspired by the principles of natural evolution, is adept
at rapidly generating a range of potential solutions [32].
It operates by creating a diverse ‘population’ of solutions
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and then iteratively applies evolutionary processes, such as
selection, crossover, andmutation. This approach enables GA
to explore a wide array of solutions effectively, making it
particularly efficient in identifying routes that are reasonably
optimal in a short time frame, especially in high-demand
situations.

While RL excels in incrementally refining solutions
through iterative interaction with the environment, it may
not be the most time-efficient method for immediate
decision-making in dynamic and high-demand contexts.
GA’s ability to quickly assess and propose multiple poten-
tial solutions becomes essential. In our combined RL and
GA approach, GA serves as a rapid and effective initial
problem-solver in scenarios not adequately explored by
the RL agent. This integration forms a powerful synergy,
enhancing route optimization in high-demand scenarios. The
hybrid approach combining Reinforcement Learning and the
Genetic Algorithm is presented in Table 1, explaining the
general flow of the proposed method.

In the RL algorithm, the Q-value formula is used to evalu-
ate the fitness, and it is defined as follows:

Q (Ln,Ln+1)

= Q(Ln,Ln+1) + α[rn + γQ(Ln+1, a) − Q(Lt ,Lt+1)] (1)

where,

Q(Ln,Ln+1) the desirability of choosing the route
between link n+1 to follow link n;

rn the current reward;
a all the available links between link n+1 to

follow link n;
α learning rate;
γ discounting factor.

To elaborate, the algorithm doesn’t just prioritize the most
convenient or nearest service request. Instead, by setting the
discount factor (γ ) to 0.95, the algorithm also weighs in the
potential rewards of future actions. Additionally, the learning
rate, α, determines howmuch new information will overwrite
old information. If α is set to 0, the Q-values are never
updated, thus nothing is learned. If α is set to 1, the new
information completely overwrites the old information. The
decay function of the learning rate will be applied in this study
to allow the model to explore widely at the early stages of
learning. As the learning progresses and the Q-values become
more reliable, the learning rate decays, thus the agent relies
more heavily on the learned Q-values for decision making.
This ensures a balance between exploration and exploitation.

αk = e−k·λα (2)

where,

αk learning rate at episode k;
k The number of current episode k;
λα the decay rate for learning rate α.

TABLE 1. Pseudo-code of Route Optimization Algorithm.

The reward value (rn) can be calculated as the sum of the
immediate reward and the global reward, according to the
following mathematical formula.

rn = β

(
1

N · d(Ln,Ln+1)

)
+ (1 − β)Rglobal (3)

where,

β a parameter controlling the balance between
the local and global actions;

N the number of existing service requests to be
served;

d(Ln,Ln+1) the cost of travelling from Ln to Ln+1;
Rglobal the global reward (= average fitness of the

last M solutions).
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The parameter β is used to balance between immediate,
local actions and global actions. Immediate actions refer to
actions that yield a reward directly related to the current
state, such as the cost of travelling from Ln to Ln+1, while
global actions are more concerned with the overall states,
represented byRglobal . The parameter β with a decay function
controls the balance between these two types of rewards.
Initially, at the start of the learning process, β is set to a small
value to give more weight to immediate rewards, as the agent
doesn’t havemuch information about the global environment.
This encourages the agent to explore the environment and
learn about the immediate effects of its actions. As the agent
gains more experience and learns more about the environ-
ment, β gradually increases through a decay function, shifting
the balance towards global rewards.

βk = 1 − e−k•λβ (4)

where,

βk a parameter of balancing between the local and
global actions at episode k;

k The number of current episode k;
λβ the decay rate for parameter β.

As previously mentioned, the vast array of potential route
options in Many-to-many DRT, particularly during peak
demand periods, may challenge the feasibility of using
Q-values derived from reinforcement learning. To address
this issue, a select number of routes, informed by learned
Q-values, will serve as the initial population for a Genetic
Algorithm. This algorithm then follows standard GA proce-
dures, where new generations are produced through crossover
and mutation processes [32].

In each generation, offspring chromosomes are created by
selectively combining elements from parent chromosomes.
This process generates candidate vehicle route options, which
are then compared with the existing parent chromosomes.
Through iterative refinement, the algorithm proposes an opti-
mal route. The quality of the proposed route is evaluated using
a fitness function, ensuring its effectiveness.

F (Route)

=

N∑
k=1

(twalkk + twaitk + tboardk + t invehk + talightk ) (5)

where,

F (Route) the fitness function of a bus route in GA
twalkk the walking time of service request k from

origin to boarding location;
twaitk the waiting time of service request k at board-

ing stop;
tboardk the time taken to board for service request k;
t in_vehk the in-vehicle time from boarding stop to

alighting stop for service request k;
talightk the time taken to alight for service request k .

Currently, the algorithm prioritizes minimizing costs from
the user’s perspective in route selection, as the costs related
to service provision (like vehicle operating and administrative
costs) are yet to be determined. The impact of a passenger’s
service request on the system’s overall efficiency is quantified
using a specific mathematical formula in the fitness function.

In cases where multiple autonomous shuttle buses are con-
currently operational, and a new service request is initiated,
the determination of the most suitable vehicle to the request
becomes paramount. When a new request is received, the
algorithm undertakes a comprehensive evaluation to deter-
mine the most suitable vehicle to fulfill this request. After
computing the fitness function for each vehicle, consider-
ing the inclusion of the new service request, the algorithm
compares these sums across all vehicles. The selection of
the vehicle to handle the new request is based on which
one has the lowest fitness function sum, as this indicates a
route that efficiently minimizes disruptions to service times.
Choosing the vehicle with the most efficient route ensures
that the new request is accommodated in the most optimal
way, keeping the disruption to other passengers at a minimum
and upholding the overall efficiency of the service.

IV. SIMULATION
This study selected a specific study area. By focusing our
research within this defined service zone, we test and refine
our algorithms using data reflective of a realistic operational
environment.

A. STUDY AREA
For this study, we have selected the Chungju campus of the
Korea National University of Transportation (KNUT) and the
adjacent local community area as the testbed. This study area
was chosen deliberately, as it provides a controlled environ-
ment, facilitating the initial stages of testing and validation for
our proposed algorithm. By initiating our experimentations
in this specific context, we aim to address and pre-emptively
identify any potential scalability issues, establishing a solid
foundation for future adaptations of our algorithm to larger
and more complex network settings.

According to the KNUT’s statistical yearbook [33], 6,372
students are currently enrolled, and 917 staff members on
the campus. The total area under study is 777,363 m2, which
encompasses the 629,083 m2 campus and the local commu-
nity area of 148,280 m2.

Given that not all areas are drivable for an autonomous
shuttle bus, this study specifically designates those paths that
are suitable for autonomous shuttle operation. These paths,
known as the Operational Design Domain (ODD), are par-
ticularly designed to function for autonomous shuttle buses.
Fig. 4 represents the study area where service requests can be
placed, along with the ODD defined for the autonomous shut-
tle buses. The ODD includes parallel running roads allowing
bidirectional traffic. This layout enables the shuttles to cater
to passenger pick-ups and drop-offs from either direction.
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FIGURE 4. Study area.

There is a total of 6 left/right turning intersections, 3 round-
abouts, and 2 U-turn points. Based on the locations of the
turning points, the ODDwas partitioned into a total of 32 dis-
tinct links. Subdividing the ODD allows for the efficient
management of multiple service requests. Excluding a 50m
radius around the turning points, autonomous shuttle buses
can stop and allow passengers to board or alight. The com-
position of the link lengths used in the simulation is listed in
Table 2.

TABLE 2. Link Lengths within the Testbed.

In the simulation, the average driving speed of the
autonomous vehicles is set at 25 km/h. Additional time delays
have also been factored into the model to ensure a realistic
representation of a typical journey. Specifically, a delay of
10 seconds is incorporated at turning points such as U-turns
or left/right turns. Moreover, the model accounts for the time
taken for passenger boarding and alighting. A static delay of
30 seconds is presumed every time the vehicle comes to a
stop for passengers boarding or alighting. In addition to this,
a time allowance of 5 seconds per passenger is made for the

processes of boarding or alighting. The autonomous shuttle
bus in the simulation is modelled with a maximum capacity
of 15 passengers. While these parameters and assumptions
enable a structured and thorough simulation, they can bring
limitations that could impact the generalizability of our
results. The settings used in our model, such as the vehicle
speed and time delays, are based on general standards, but
they may not encapsulate all real-world variations. Hence,
future research and applications of our findings should con-
sider these limitations and take into account the potential
variability in real-world scenarios.

B. SERVICE REQUEST (DEMAND) DATA
The spatial-temporal data used in this simulation is based
on the usage patterns of shared electric bicycles currently
available around the KNUT. The initial rental location of
the bicycle becomes the service request location, with the
closest link in the ODD designated as the pick-up point.
Similarly, the bicycle’s return point is presumed to be the final
destination, and the nearest link within the ODD becomes the
drop-off point.

The data period for shared bicycle rental usage covers a
full year, from 14 September 2021 to 13 September 2022.
Bicycle usage instances where both the rental and return
locations fall within the sameODD link are excluded, as these
would entail passengers getting on and off at the same links.
Additionally, the highly variable weekend rental data was
omitted. This leaves a total of 120,255 shared bicycle rental
history expected for the autonomous shuttle bus service.

After identifying the appropriate links for each service
request point, we calculate thewalking distance to the pick-up
point to determine whether service can be provided within a
5-minute (400m) on foot. The distribution of service requests
is detailed in Table 3. All service requests could be accom-
modated within a 400m walking distance of a pick-up point,
except two in the link 27/28.

In the simulation, the walking time was estimated by tak-
ing into consideration the average walking speed of older
adults, which is typically around 1.3 m/s [34]. This provides
sufficient time for passengers of all ages to comfortably
reach their designated boarding locations. To maintain the
efficiency of our operation, any passengers who do not arrive
at the boarding point within the allocated time are categorized
as no-show service requests. This mechanism ensures that
our service continues to run smoothly, accommodating the
majority while addressing the challenges of timely passenger
coordination.

In the training phase, episodes commence with the shuttle
bus agent randomly placed, and service requests are gener-
ated to reflect real-world scenarios. These requests, including
their origins and destinations, are based on historical data
from shared bicycle rentals. This approach ensures a realistic
representation of service demand, reflecting actual spatial
and temporal patterns rather than a uniform campus-wide
distribution.
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TABLE 3. Spatial Information of Service Requests.

Each training episode spans a 30-minute interval, shifting
the start time by 5 minutes for each subsequent episode. For
example, following an 8:00 to 8:30 interval in one episode,
the next uses data from 8:05 to 8:35. This approach helps
replicate the dynamic nature of service demands through-
out the day. An episode is terminated once all passengers
have been served and delivered to their destinations. This
method allows us to replicate the spatial and temporal pat-
terns observed in the bicycle rental history. Time periods
without shared bicycle rental history are excluded, result-
ing in a total of 45,817 unique episodes for one complete
experiment. Through conducting 1,000 such experiments, the
system accumulates experience and progressively improves
its performance.

For validation, three simulation scenarios were devised.
In Scenario 1, we examine the case where a single
autonomous shuttle bus is tasked with handling all service
requests. This scenario allows us to identify any time points
at which the service demands exceed the single vehicle’s
capacity to deliver services within the 20-minute timeframe.
We selected this timeframe as a benchmark because it
matches the maximum walking duration across the campus.
Additionally, it corresponds to the time taken for a round
trip by the shuttle across the campus. Our hypothesis is that
user interest in the shuttle service might wane if the travel
time exceeds 20 minutes. Following the results of Scenario 1,
Scenario 2 is developed. In Scenario 2, additional vehicles
are deployed during the problematic time periods identified
in Scenario 1. This round of simulation assesses the improved
efficiency of the service with the added vehicle.

In our study, we did not compare the shuttle service’s
simulation results with the shared bicycle rental history due
to the distinct nature of their usage patterns. Bicycle rentals

are often used for leisure or exercise, which significantly
differs from the primarily transport-focused purpose of our
shuttle service. Our main goal was to ensure that the shuttle
service offered a time-efficient alternative to walking, thereby
meeting the campus-wide need for accessible transportation.
Consequently, to test our algorithm under more unpredictable
conditions, we designed Scenario 3.

Scenario 3 introduces additional complexity to our simu-
lations. Additional service requests were generated randomly
with a 5% chance of occurrence, and all service requests were
assigned randomwalking distances. These distances followed
a normal distribution based on bicycle rental records (an
average= 76.7 & a standard deviation= 29.6). This scenario
is crafted to simulate an environment with fluctuating demand
and varying passenger needs, providing a robust test for the
adaptability and resilience of our algorithm across different
operational environments.

C. RESULTS
The simulation outcomes were assessed using two key indi-
cators: ‘Request to Pick-up Time’ and ‘Request to Drop-off
Time’. ‘Request to Pick-up Time’ represents the time inter-
val from the moment of a service request to the moment a
passenger successfully boards the autonomous shuttle bus.
Additionally, ‘Request to Drop-off Time’ represents the total
time duration from the service request until the passenger
reaches their final drop-off point.

Results from the first scenario are presented in Fig. 5 with
daily average values. There were two periods of high volumes
of service requests: from October to December 2021 and
from March to June 2022. In contrast to the RL-only model
(Fig. 3), our hybrid approach algorithm, which integrates
Genetic Algorithms (GA), was more effective in handling
these high-demand service requests. While the RL-only
model managed the high-demand service requests with an
average ‘Request to Drop-off Time’ of 23 minutes, the hybrid
algorithm model significantly reduced this time to approxi-
mately 18 minutes.

FIGURE 5. Scenario 1 results (daily average).

Fig. 6 presents a detailed comparative analysis, delineating
the performance of the Fixed Route, Greedy algorithm, RL-
only algorithm and our hybrid approach algorithm. The Fixed
Route approach, which involves the shuttle stopping at all
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links, consistently resulted in higher ‘Request to Drop-off
Times’, reflecting its inflexibility to adapt to varying service
demands. The Greedy algorithm showed some improve-
ment, yet it was unable to consistently match the more
dynamic demands efficiently. While the RL-only strategy
marked an improvement over the Greedy algorithm during
low demand seasons, it did not maintain consistently better
results, showing variability during peak seasons. In contrast,
our hybrid algorithm outperformed the other methods, main-
taining lower ‘Request to Drop-off Times’. It’s evident from
the performance trends that our hybrid approach consistently
achieves lower ‘Request to Drop-off Times’, demonstrating
its robustness in optimizing shuttle routes more efficiently
than the conventional methods.

FIGURE 6. Performance comparison of fixed route, greedy and RL+GA.

Despite the hybrid algorithm achieving the daily average
‘Request to Drop-off Time’ within the 20-minute target,
a standard deviation of 3.8 minutes indicates notable incon-
sistencies. The service quality fluctuates, with certain days
and times experiencing significantly longer drop-off times
than the average. This inconsistency in service times has
implications for passenger satisfaction and the reliability per-
ception of the shuttle service.

Table 4 presents the percentages of passengers whose
‘Request to Drop-off Times’ exceeded 20 minutes. A darker
black cell background indicates a higher proportion of pas-
sengers experiencing ‘Request to Drop-off Times’ beyond
20 minutes. Except for the month of June, most passengers
were serviced within 20 minutes during the early morning
hours (0-8 AM). However, after 8 AM, service requests
noticeably increased, leading to a higher frequency of
‘Request to Drop-off Times’ exceeding the 20-minute thresh-
old. This trend was particularly prominent from October
to December 2021 and from March to June 2022, during
which over 30% of passengers failed to receive their trans-
port services within 20 minutes. This significant proportion
of service delays during these periods indicates a need for
additional operational shuttle buses.

In a further simulation of Scenario 2, the proposed vehicle
dispatch schedule was implemented and tested. As illustrated
in Fig. 7, a substantial reduction in both ‘Request to Pick-
up Time’ and ‘Request to Drop-off Time’ was recorded.
This improvement is attributable to the concurrent operation

TABLE 4. Percentage of Passengers with ‘Request to Drop-off Times’
Over 20 Minutes.

of two vehicles during peak demand periods. In the month
of June, the operation of a single vehicle resulted in an
average ‘Request to Drop-off Time’ of over 18 minutes.
However, the strategic dispatch of an additional vehicle effec-
tively decreased the average ‘Request to Drop-off Time’ to
11 minutes.

FIGURE 7. Scenario 2 results (daily average).
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Our findings indicate the significance of dynamic demand
patterns in shaping operational strategies. During peak peri-
ods, over 30% of passengers experienced ‘Request to Drop-
off Times’ beyond 20 minutes from the result of simulation
Scenario 1. This observation reinforces the need for transit
agencies to consider temporal variations in demand while
planning their services. The introduction of an additional
shuttle during peak demand periods in Scenario 2 not only
reduced the average ‘Request to Pick-up Time’ and ‘Request
to Drop-off Time’, but also decreased the variation in these
metrics. The standard deviation of ‘Request to Pick-up Time’
was reduced from 2.7 in Scenario 1 to 1.8 in Scenario 2, and
the standard deviation of ‘Request to Drop-off Time’ was
reduced from 3.8 to 2.4. This reduction in variability suggests
a more consistent and reliable service. By implementing our
proposed method, agencies could better align their vehicle
deployment with demand patterns, thereby improving service
efficiency and user experience.

In response to more fluctuating demand, Scenario 3 was
designed to evaluate our algorithm. Fig. 8 showcases the
actual daily counts of randomly generated service requests
under this scenario. From October 2021 to December 2021,
a high level between 10 and 15 random service requests
was generated daily. A notable spike in the random service
requests was also observed around June 2022. There exists a
distinct correlation between days of higher original demand
and days with more counts of random service requests.

FIGURE 8. Randomly generated service requests (daily count).

Consistently, the metrics ‘Request to Pick-up Time’ and
‘Request to Drop-off Time’ were used to evaluate the sim-
ulation results of Scenario 3. These results are illustrated in
Fig. 9. Compared to Scenario 2, a noticeable difference was
observed during periods with a high level of random service
requests. During these periods, there was an increase in both
‘Request to Pick-up Time’ and ‘Request to Drop-off Time’.
The introduction of a stochastic variable relating to the walk-
ing distance for all service requests in Scenario 3 could have
added a layer of intricacy to the service dynamics, potentially
causing service delays.

When faced with a surge in random service requests,
requires more time to process and fulfill these requests. Such
findings found that the algorithm’s performance constraints
and its adaptability in handling a large volume of unpre-
dictable demands. Notably, even if the top level of random

FIGURE 9. Scenario 3 results (daily average).

service requests were generated in June 2022, the ‘Request to
Drop-off Time’ was managed under 17 minutes. During this
month, two vehicles were deployed for the whole day. This
data is instrumental for refining the algorithm, particularly in
strategizing vehicle deployment to guarantee optimal service
delivery.

V. DISCUSSION AND CONCLUSION
The increased interest in autonomous vehicles has stimu-
lated their exploration as a potential solution for many-to-
many Demand-Responsive Transport (DRT) services. In this
research, we devised an operational system for autonomous
shuttle buses to coordinate service requests from an array of
passengers, each with differing pick-up and drop-off points.
The aim was to enhance efficiency and passenger satisfaction
while maintaining cost-effectiveness.

Our study developed two algorithms. The ‘On-Demand
Boarding Guidance Algorithm’ was designed to manage
service requests based on their location and closeness to
operational areas, ensuring convenience and viability. The
‘Route Optimization Algorithm’, a more intricate compo-
nent, employed a hybrid model that combined a Genetic
Algorithm (GA) with Reinforcement Learning (RL) to
establish the most efficient route considering multiple simul-
taneous service requests. These algorithms were crucial in the
development of an operational system that could optimally
manage the dynamic demand patterns that characterizemany-
to-many DRT services.

Our simulations were conducted within the Chungju cam-
pus of the Korea National University of Transportation
(KNUT) and the adjoining local community area. Over
30% of passengers experienced ‘Request to Drop-off Times’
beyond 20 minutes with the deployment of a single shuttle.
The periods with high service demand necessarily require
additional vehicles during peak times. When additional shut-
tles were deployed during high-demand periods, substantial
improvements in both ‘Request to Pick-up Time’, which was
maintained below 4minutes, and ‘Request to Drop-off Time’,
kept under 12 minutes. This enhancement could be attributed
to our algorithm’s ability to efficiently manage new service
requests. As new requests came in, the algorithm determined
the most suitable shuttle based on a fitness function. The
shuttle with the lowest fitness function sum was selected to
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service the new request, thus optimizing efficiency for both
new and existing passengers. This strategic approach not only
validated our methodology but also highlighted the adapt-
ability of our shuttle allocation system in meeting dynamic
service demands.

Our research has significant implications for transit
agencies, urban planners, and policymakers interested in
harnessing autonomous vehicles to meet public transit needs.
The proposed approach is expected to boost the service
efficiency of autonomous shuttle buses in a many-to-many
DRT context, making them a viable solution for the future
public transport system. As we progress towards implement-
ing higher levels of autonomous vehicles (SAE levels 4 and
5) in urban mobility, the potential risks of cyberattacks in
connected and automated vehicles were critically analyzed
by previous studies [35], [36], [37]. The vital role of artificial
intelligence was emphasized by Nascimento et al. to enhance
autonomous vehicle safety [38]. Our approach, combining
reinforcement learning and genetic algorithms, aligns with
this progression but necessitates improved against cyber
threats in future works.

Our experiments were conducted using historical data from
shared rental records. While this data provided a substantial
basis for our simulations, it may not fully align with the
demand patterns associated with autonomous shuttle bus ser-
vices. Recognizing this potential discrepancy, we have under-
taken additional scenario analyses, introducing randomly
generated service requests and a variety of walking distances
to boarding locations. When faced with a peak of random ser-
vice requests in June 2022, the algorithm efficiently managed
the ‘Request to Drop-off Time’ within 17 minutes. Despite
these efforts to demonstrate the adaptability of our algorithm,
it is imperative that future research continues to test and
validate the applicability of our algorithm across different
operational contexts.

This study does come with certain limitations. Future stud-
ies could seek to develop models that are capable of learning
and adapting in response to real-time changes in demand
and circumstances. It is essential to confirm the algorithm’s
effectiveness and robustness in future studies, particularly
in situations where data quality might vary. Additionally,
it is important to note that our study is conducted within the
unique context of the KNUT campus, characterized by an
absence of local roads, leading to stable and easily predictable
vehicular traffic conditions. Nonetheless, for applications in
more complex urban environments, future research should
focus on developing robust models capable of learning and
adapting in real-time to fluctuating traffic conditions and
other unforeseen events to maintain a consistent level of
service efficiency.

Incorporating prior information about service request pat-
terns at different Origin-Destination Descriptions (ODDs)
could significantly enhance the route optimization process.
Future studies should explore the integration of historical
demand data, which could provide the algorithm with a pre-
dictive edge, allowing for proactive rather than reactive route

planning. This could be particularly beneficial in optimiz-
ing routes by anticipating high-demand locations and times,
thereby improving service reliability and efficiency.

REFERENCES
[1] J. Cregger, M. Dawes, S. Fischer, C. Lowenthal, E. Machek, and

D. Perlman. (2018). Low-Speed Automated Shuttles: State of the Practice
Final Report. [Online]. Available: https://rosap.ntl.bts.gov/view/dot/37060

[2] M.Mahmoodi Nesheli, L. Li, M. Palm, and A. Shalaby, ‘‘Driverless shuttle
pilots: Lessons for automated transit technology deployment,’’ Case Stud.
Transp. Policy, vol. 9, no. 2, pp. 723–742, Jun. 2021.

[3] M. Azad, N. Hoseinzadeh, C. Brakewood, C. R. Cherry, and L. D. Han,
‘‘Fully autonomous buses: A literature review and future research direc-
tions,’’ J. Adv. Transp., vol. 2019, pp. 1–16, Dec. 2019.

[4] C. Iclodean, N. Cordos, and B. O. Varga, ‘‘Autonomous shuttle bus for pub-
lic transportation: A review,’’ Energies, vol. 13, no. 11, p. 2917, Jun. 2020.

[5] J. Ainsalu et al., ‘‘State of the art of automated buses,’’ Sustainability,
vol. 10, no. 9, 2018, Art. no. 3118.

[6] M. W. Savelsbergh and M. Goetschalckx, ‘‘A comparison of the efficiency
of fixed versus variable vehi,’’ J. Bus. Logistics, vol. 16, no. 1, p. 163, 1995.

[7] A. L. Erera, M. Savelsbergh, and E. Uyar, ‘‘Fixed routes with backup
vehicles for stochastic vehicle routing problems with time constraints,’’
Networks, vol. 54, no. 4, pp. 270–283, Dec. 2009.

[8] C. M. Novoa, ‘‘Static and dynamic approaches for solving the vehicle
routing problem with stochastic demands,’’ Ph.D. dissertation, Dept. Ind.
Syst., Lehigh Univ., Pennsylvania, PA, USA, 2005.

[9] A. Bucchiarone, S. Battisti, A. Marconi, R. Maldacea, and D. C. Ponce,
‘‘Autonomous shuttle-as-a-service (ASaaS): Challenges, opportunities,
and social implications,’’ IEEE Trans. Intell. Transp. Syst., vol. 22, no. 6,
pp. 3790–3799, Jun. 2021.

[10] L. Davison, M. Enoch, T. Ryley, M. Quddus, and C. Wang, ‘‘Identifying
potential market niches for demand responsive transport,’’ Res. Transp.
Bus. Manage., vol. 3, pp. 50–61, Aug. 2012.

[11] M. Enoch, S. Potter, G. Parkhurst, and M. Smith, ‘‘Why do demand
responsive transport systems fail?’’ in Proc. Transp. Res. Board 85th Annu.
Meeting, Washington, DC, USA, 2006.

[12] L. Ferreira, P. Charles, and C. Tether, ‘‘Evaluating flexible transport
solutions,’’ Transp. Planning Technol., vol. 30, nos. 2–3, pp. 249–269,
Apr. 2007.

[13] N. Walker, P. Harbutt, and J. Morris, ‘‘Addressing access and mobility
issues in rural and regional Victoria,’’ in Proc. 27th Australas. Transp. Res.
Forum (ATRF), Adelaide, SA, Australia, 2004.

[14] L. Davison, M. Enoch, T. Ryley, M. Quddus, and C. Wang, ‘‘A survey
of demand responsive transport in great Britain,’’ Transp. Policy, vol. 31,
pp. 47–54, Jan. 2014.

[15] X. Yan, X. Zhao, Y. Han, P. V. Hentenryck, and T. Dillahunt, ‘‘Mobility-
on-demand versus fixed-route transit systems: An evaluation of traveler
preferences in low-income communities,’’ Transp. Res. A, Policy Pract.,
vol. 148, pp. 481–495, Jun. 2021.

[16] R. Cervero, Paratransit in America: Redefining Mass Transportation.
Westport, CT, USA: Greenwood, 1997.

[17] J. D. Nelson, S. Wright, B. Masson, G. Ambrosino, and A. Naniopoulos,
‘‘Recent developments in flexible transport services,’’ Res. Transp. Econ.,
vol. 29, no. 1, pp. 243–248, Jan. 2010.

[18] L. Fu, ‘‘A simulation model for evaluating advanced dial-a-ride paratransit
systems,’’ Transp. Res. A, Policy Pract., vol. 36, no. 4, pp. 291–307,
May 2002.

[19] F. Cavallaro and S. Nocera, ‘‘Flexible-route integrated passenger–freight
transport in rural areas,’’ Transp. Res. A, Policy Pract., vol. 169, Mar. 2023,
Art. no. 103604.

[20] A. Anburuvel,W. U. L. D. P. Perera, and R. D. S. S. Randeniya, ‘‘A demand
responsive public transport for a spatially scattered population in a devel-
oping country,’’ Case Stud. Transp. Policy, vol. 10, no. 1, pp. 187–197,
Mar. 2022.

[21] Ç. Koç, G. Laporte, and Í. Tükenmez, ‘‘A review of vehicle routing
with simultaneous pickup and delivery,’’ Comput. Oper. Res., vol. 122,
Oct. 2020, Art. no. 104987.

[22] A. El-Geneidy, M. Grimsrud, R. Wasfi, P. Tétreault, and
J. Surprenant-Legault, ‘‘New evidence on walking distances to transit
stops: Identifying redundancies and gaps using variable service areas,’’
Transportation, vol. 41, no. 1, pp. 193–210, Jan. 2014.

VOLUME 12, 2024 26941



S. Yoo et al.: Combining RL With GA for Many-To-Many Route Optimization of Autonomous Vehicles

[23] J. Chia, J. Lee, and M. Kamruzzaman, ‘‘Walking to public transit: Explor-
ing variations by socioeconomic status,’’ Int. J. Sustain. Transp., vol. 10,
no. 9, pp. 805–814, Oct. 2016, doi: 10.1080/15568318.2016.1156792.

[24] R. S. Sutton and A. G. Barto, Introduction To Reinforcement Learning,
vol. 135. Cambridge, MA, USA: MIT Press, 1998.

[25] S. Yoo and J. B. Lee, ‘‘Revising bus routes to improve access for the
transport disadvantaged: A reinforcement learning approach,’’ J. Public
Transp., vol. 25, 2023, Art. no. 100041.

[26] J. J. Q. Yu,W. Yu, and J. Gu, ‘‘Online vehicle routing with neural combina-
torial optimization and deep reinforcement learning,’’ IEEE Trans. Intell.
Transp. Syst., vol. 20, no. 10, pp. 3806–3817, Oct. 2019.

[27] S. Yoo, J. B. Lee, and H. Han, ‘‘A reinforcement learning approach for
bus network design and frequency setting optimisation,’’ Public Transp.,
vol. 15, no. 2, pp. 503–534, Jun. 2023.

[28] W. Lu, Z. Yi, Y. Gu, Y. Rui, and B. Ran, ‘‘TD3LVSL: A lane-level variable
speed limit approach based on twin delayed deep deterministic policy
gradient in a connected automated vehicle environment,’’ Transp. Res. C,
Emerg. Technol., vol. 153, Aug. 2023, Art. no. 104221.

[29] A. Khan and A. Lapkin, ‘‘Searching for optimal process routes: A rein-
forcement learning approach,’’ Comput. Chem. Eng., vol. 141, Oct. 2020,
Art. no. 107027.

[30] M. S. Sheikh and Y. Peng, ‘‘Procedures, criteria, and machine learning
techniques for network traffic classification: A survey,’’ IEEE Access,
vol. 10, pp. 61135–61158, 2022.

[31] A. Seyyedabbasi, R. Aliyev, F. Kiani, M. U. Gulle, H. Basyildiz, and
M. A. Shah, ‘‘Hybrid algorithms based on combining reinforcement learn-
ing and metaheuristic methods to solve global optimization problems,’’
Knowl.-Based Syst., vol. 223, Jul. 2021, Art. no. 107044.

[32] J. H. Holland, ‘‘Genetic algorithms,’’ Sci. Amer., vol. 267, no. 1, pp. 66–73,
1992.

[33] KNUT. (2022). Statistical Yearbook. [Online]. Available:
https://www.ut.ac.kr/prog/schulStatsDta/kor/sub01_02_07/list.do

[34] R. W. Bohannon, ‘‘Comfortable and maximum walking speed of adults
aged 20–79 years: Reference values and determinants,’’ Age Ageing,
vol. 26, no. 1, pp. 15–19, 1997.

[35] M. Girdhar, Y. You, T.-J. Song, S. Ghosh, and J. Hong, ‘‘Post-accident
cyberattack event analysis for connected and automated vehicles,’’ IEEE
Access, vol. 10, pp. 83176–83194, 2022.

[36] U. Alvi, M. A. K. Khattak, B. Shabir, A. W. Malik, and S. R. Muhammad,
‘‘A comprehensive study on IoT based accident detection systems for smart
vehicles,’’ IEEE Access, vol. 8, pp. 122480–122497, 2020.

[37] J. Cui, G. Sabaliauskaite, L. S. Liew, F. Zhou, and B. Zhang, ‘‘Collabora-
tive analysis framework of safety and security for autonomous vehicles,’’
IEEE Access, vol. 7, pp. 148672–148683, 2019.

[38] A. M. Nascimento, L. F. Vismari, C. B. S. T. Molina, P. S. Cugnasca,
J. B. Camargo, J. R. de Almeida, R. Inam, E. Fersman, M. V. Marquezini,
and A. Y. Hata, ‘‘A systematic literature review about the impact of arti-
ficial intelligence on autonomous vehicle safety,’’ IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 12, pp. 4928–4946, Dec. 2020.

SUNHYUNG YOO received the Ph.D. degree
fromTheUniversity of NewSouthWales (UNSW)
with a focus on transportation planning and opti-
mization. He has since furthered his commitment
to the field as a Research Associate with UNSW.
His primary research concentrates on the intri-
cate optimization of bus routes, aiming to enhance
accessibility for the transport disadvantaged. His
research interests include urban transit planning,
sustainable mobility solutions, and the integration

of technology in public transport.

HYUN KIM is currently a Professor with the
Department of Transportation and Energy Conver-
gence, Korea National University of Transporta-
tion, and the Director of the Transportation and
ICT Convergence Research Center. His research
interests include technology, ITS, autonomous
vehicles, AI, and big data and its interaction with
mobility.

JINWOO (BRIAN) LEE received the Ph.D.
degree in civil engineering from the University
of Toronto, Canada. He is currently an Associate
Professor in city planning with The University of
New South Wales, Sydney. He led a number of
research and industry projects on transport plan-
ning in Australia and Canada. His research inter-
ests include transport planning, travel behavior,
active transport, integrated transport infrastruc-
ture, and land use planning. His current research

focuses on exploring how to improve transport planning practices by
integrating transport infrastructure and land use planning and enhanced
understanding of travel behavior for sustainable and loveable cities.

26942 VOLUME 12, 2024

http://dx.doi.org/10.1080/15568318.2016.1156792

