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ABSTRACT Medical image synthesis has emerged as a promising solution to address the limited availability
of annotated medical data needed for training machine learning algorithms in the context of image-based
Clinical Decision Support (CDS) systems. To this end, Generative Adversarial Networks (GANs) have
been mainly applied to support the algorithm training process by generating synthetic images for data
augmentation. However, in the field of Wireless Capsule Endoscopy (WCE), the limited content diversity
and size of existing publicly available annotated datasets adversely affect both the training stability and
synthesis performance of GANs. In this paper a novel Variational Autoencoder (VAE) architecture is
proposed for WCE image synthesis, namely ‘This Intestine Does not Exist’ (TIDE). This is the first VAE
architecture comprising multiscale feature extraction convolutional blocks and residual connections. Its
advantage is that it enables the generation of high-quality and diverse datasets even with a limited number of
training images. Contrary to the current approaches, which are oriented towards the augmentation of the
available datasets, this study demonstrates that using TIDE, real WCE datasets can be fully substituted
by artificially generated ones, without compromising classification performance of CDS. It performs a
spherical experimental evaluation study that covers both quantitative and qualitative aspects, including a
user evaluation study performed by WCE specialists, which validate from a medical viewpoint that both the
normal and abnormal WCE images synthesized by TIDE are sufficiently realistic. The quantitative results
obtained by comparative experiments validate that the proposed architecture outperforms the state-of-the-art.

INDEX TERMS Clinical decision support systems, endoscopy, gastrointestinal tract, image synthesis,
variational autoencoders.

I. INTRODUCTION
Gastrointestinal (GI) tract diseases constitute a signifi-
cant cause of mortality and morbidity, resulting in adverse
economic effects on healthcare systems [1]. Early-stage
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approving it for publication was Inês Domingues .

detection and precise diagnosis of pathological conditions,
such as inflammations, vascular conditions, or polypoid
lesions, are critical for preventing such diseases. Among the
methods facilitating the screening of the GI tract, Wireless
Capsule Endoscopy (WCE) is one of the eminent options
mainly due to its non-invasive nature. Contrary to conven-
tional techniques, such as Flexible Endoscopy (FE), WCE is
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performed using a swallowable, pill-sized capsule equipped
with a miniature camera. The capsule traverses throughout
the GI tract recording an RGB video, which is subsequently
reviewed by specialized endoscopists. Since such a video
is typically comprised with more than 60,000 frames, its
assessment is demanding. The evaluation of the recorded
WCE videos usually requires 45-90 minutes, and it is prone
to human errors even by experienced clinicians. Aiming to
mitigate the risk of such errors, various image-based Clinical
Decision Support (CDS) systems have been proposed [2],
[3], [4], [5], [6]. A significant aspect concerning the perfor-
mance of CDS systems is their generalization ability. The
availability and diversity of training data directly impact
the generalization capability of such systems [2]. Although
there are several publicly available annotated datasets for
non-medical applications, many of which are quite large,
e.g., ImageNet [7], in the medical imaging domain, privacy
regulations, such as the General Data Protection Regulation
(GDPR) [8], make medical data acquisition challenging, even
when their use is destined for research. Moreover, the amount
of time and the cost of medical data annotation adversely con-
tribute to their availability [2]. Regarding WCE, the existing
open annotated datasets are still limited, they are generally
smaller than other datasets, often characterized by low diver-
sity, as they contain many similar images with a narrow range
of abnormality types, and in most cases, they are highly
imbalanced [9]. Consequently, the use of such datasets for
training of contemporary deep learning-based CDS systems
limit their effectiveness for detection and characterization of
abnormalities [9].

To address these issues, conventional image augmentation
techniques, enriching the datasets with rotated, translated,
and scaled versions of the training images, have been
employed to enhance the generalization ability of CDS sys-
tems [10]. More recently, approaches relying on deep neural
networks have been investigated to increase the number of
training images further by generating synthetic images. Gen-
erative Adversarial Networks (GANs) [11] are considered
as a standard option for image synthesis tasks. In appli-
cations such as natural images or portrait synthesis, where
data availability is not an issue, the performance of GANs is
remarkable [12], [13], [14]. However, in many cases, where
data availability is limited, the applicability of GANs implies
various training problems, including mode collapse, uncon-
vergence and instability [15].

Current studies [16], [17], [18], [19], indicate that still the
problem of endoscopic image synthesis is far from being
resolved. In most cases, synthetic images include artifacts
attributed to imbalanced or insufficient training data [10],
whereas the plausibility of the resulting synthetic images
remains the main challenge [20]. Currently, synthetic images
produced by GAN models tend not to naturally depict the
structure of endoscopic tissue, and in some cases [17], [19],
not to reasonably reproduce the texture and color characteris-
tics [10]. Another issue in endoscopic image synthesis is that

the appearance of lesions varies, making it difficult for the
generative algorithms to learn and reproduce their character-
istics using small datasets. For example, some lesions, such
as inflammations are usually flat or excavated, characterized
by soft or more intense color gradations, whereas others,
such as polypoid lesions may be flat, sessile or pedunculated.
In fact, most of the current studies [10], [16], [17], [19],
[21], [22] focus on polyp image synthesis. However, the exist-
ing results indicate that most methodologies struggle with the
natural integration of pathologies into the endoscopic back-
ground. Although, in current studies the artificially generated
images are considered sufficient to assist data augmentation
in classification and detection tasks, they often lack clinical
evaluation by endoscopy experts [16], [17], [19], [21], [22]
which does not validate their diagnostic/clinical value. Aim-
ing to cope with these issues, in this study a novel approach to
the generation of synthetic WCE images is proposed, based
on the concept of Variational Autoencoders (VAEs) [23]. Its
contributions can be summarized as follows:

• It proposes a novel VAE architecture named ‘This
Intestine Does not Exist’ (TIDE), which combines mul-
tiscale feature extraction and residual learning, to cap-
ture feature-rich representations of the input volume,
enabling training on a small number of samples. To the
best of our knowledge the combination of multiscale
feature extraction with residual learning has never been
used in the context of VAEs for image synthesis.

• It applies TIDE in the context of WCE image synthesis
aiming to fully substitute real training sets with synthetic
ones. Studies from other researchers [24] have investi-
gated WCE image synthesis only in the context of data
augmentation, where just a subset of the training set was
composed of synthetic images.

• It performs a spherical experimental evaluation study
that covers quantitative and qualitative aspects, includ-
ing a user evaluation study performed by WCE special-
ists, which verified that it is very hard to distinguish the
synthetic datasets from the real ones.

Alongside this study, a demonstration website,1 has been
created aiming to present the performance of the TIDE
openly, and to become the first publicly available real-time
intestine dataset generation platform. It is worth noting that
the platform was developed using the Algorithm-agnostic
architecture for Scalable Machine Learning (ASML), that we
proposed in [25].

The rest of this paper is organized into four sections.
Section II outlines the contribution of generative models in
the medical imaging domain emphasizing the synthesis of
endoscopic images. Section III presents the proposed VAE
architecture for image generation. Section IV describes the
evaluation methodology and includes comparative results
obtained from the conducted experiments. Insights of this

1https://this-intestine-does-not-exist.com
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study are discussed in Section V, and in the last section,
conclusions are drawn, and future directions are suggested.

II. RELATED WORK
In medical imaging, synthetic image generation has stim-
ulated great scientific interest and several studies have
been conducted in a variety of contexts, mainly using
GANs. Most of the renowned GAN architectures have been
applied for medical image synthesis. For instance, deep
convolutional GANs have been used to generate plausible
brain MRI images [26]. In the spirit of conditional image
generation, Mahapatra et al. [27] expanded the Pix2Pix
framework [14] for the production of realistic-looking
chest X-ray images with nodules, based on manually seg-
mented regions. Jin et al. [28] expanded that framework
for synthesizing 3D nodules in CT images. Another widely
used adversarial framework, called Progressive Growing
GAN (PGGAN) [29], was trained for the generation of
convincing dermoscopic images with skin lesions [30].
A multiscale GAN was proposed in [31], aiming to the
fusion of different MRI modalities into a single synthetic
image with richer diagnostic information for the clinicians.
That study showed that multiscale information can signif-
icantly enhance the quality of the generated images. The
adversarial learning scheme proposed in [32], called Cycle-
GAN, has been used for cross-modality medical image
synthesis in [33], where it was applied for unpaired image-
to-image translation between MRI and CT modalities of
brain images. Cai et al. [34] modified the standard Cycle-
GAN framework for supporting simultaneous 3D synthesis
and segmentation between MRI and CT modalities of car-
diac and pancreatic images, while preserving the anatomical
structures. In [35], the Unsupervised Image-to-image Trans-
lation (UNIT) VAE-GAN framework [36] was applied to
generate eye fundus images from segmented vessel trees.
Hirte et al. [37] applied another variation of a hybrid VAE-
GAN model [38], to generate realistic MR brain images
with improved diversity. Another architecture, called Resid-
ual Inception Encoder-Decoder Network (RIED-Net) was
inspired by U-Nets [39]. In that work the residual connections
improved the fusion of images from two different modali-
ties, aiming to assist breast cancer and Alzheimer’s disease
detection.

In the field of endoscopy, generating realistic images has
proved to be a more challenging task [10], [20], [40]. This can
be explained by the fact that no specific patterns are inherent
in endoscopic images [10], nor can their content be described
by well-defined structures, as in the case of CT, MRI or
other medical imaging modalities. The work of [19] pre-
sented a GAN conditioned on edge-filtering combined with a
mask input to synthesize images. That study was focused on
polyp image generation, aiming to improve polyp detection
in colonoscopy videos. However, it reported limitations that
include deterministic polyp generation, and insufficient vari-
ation of generated polyp features in terms of color and texture.

In [17], a patch-based methodology was adopted to incorpo-
rate gastric cancer findings in normal gastroscopy images.
However, as commented in [16], the positioning of the polyps
in that methodology is performed manually otherwise the
result can be unnatural, especially with respect to the polyp
features, such as color and texture. He et al. [16] introduced a
data augmentation technique based on theGANmodel of [41]
by following an adversarial attack process. Lately, in the work
presented in [22], the generative framework proposed in [42]
was adapted to produce random polyp masks, which were
then combined with normal colonoscopy images to construct
a conditional input. The formulated conditional input, was
leveraged for training a CycleGAN model [32] to synthesize
polyp images. In [43] a variation of CycleGANwas proposed
to enhance of the images of a surgical simulator to resemble
real intraoperative endoscopic images. In [21], a dual GAN
framework conditioned on polyp masks was presented for
augmenting polyp findings in colonoscopy images. However,
the synthesis results in both [22] and [21] depended on the
positioning of the polyp masks, which were only sometimes
naturally blended with healthy endoscopic images. Recently,
StyleGANv2 [13], which is a GAN architecture originally
introduced for face synthesis, was used to enhance the train-
ing datasets for the detection of polyp lesions in endoscopic
videos [10]. Although, that work produced realistic images
in the context of polyp image synthesis, the reproducibility
of its results is difficult as it relied on a private database with
thousands of images available for training.

Fewer studies are dedicated to WCE image generation.
In WCE, the images are of lower resolution, and the number
of abnormal images is usually smaller, since the endoscopist
cannot control the capsule endoscope to capture several
frames of the lesions found, as in the case of FE [9]. Also,
WCE is more commonly applied for the examination of
the small bowel, which is very difficult to be approached
by FEs, and it is invaluable for the evaluation of Inflam-
matory Bowel Disease (IBD), and especially of the Crohn’s
disease (CD) [44]. Moreover, the incidence of small bowel
malignancy/neoplasia – although increasing over the last
decades – remains markedly lower than colorectal or gastric
neoplasia [45].
In the context of WCE image generation, Ahn et al. [24]

adapted the hybrid VAE-GAN framework originally pro-
posed in [46], to augment an existing WCE dataset, so as to
improve the generalization performance of an image-based
CDS system for small bowel abnormality detection. Nev-
ertheless, the results were only indicative, not specifying
the target pathological conditions, and the synthetic images
suffered from blurriness, making them easily distinguishable
from the real ones.

In the more complex framework of synthesizing WCE
images of the small bowel, containing various inflamma-
tory conditions, a non-stationary Texture Synthesis GAN
(TS-GAN) was presented in [47]. However, the generated
images had artifacts, which degraded the quality of image
synthesis. These weaknesses can be partially attributed to the
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limited number of training samples since the performance of
GAN models typically relies on both the quantity and the
diversity of the training data. To deal with this drawback,
a conventional VAE, named EndoVAE, was proposed in [48]
for WCE image generation. That model was composed of
convolutional layers with single-scale filters in a sequential
arrangement.

In this paper we propose a different VAE architecture for
WCE image generation that unlike the previous ones it incor-
porates a multiscale feature extraction scheme and residual
connections, aiming to provide WCE images of enhanced
quality.

III. METHODOLOGY
The novel VAE architecture proposed in this study, named
TIDE, incorporates modules, which to the best of our knowl-
edge, have not been previously combined, in the context of
variational image synthesis. The design of TIDE is based
on three main principles tightly coupled with endoscopic
imaging: a) Multiscale feature extraction, because the in a
sequence of endoscopy images, the same or similar tissue
structures appear at different scales, as the endoscope travels
throughout the GI tract lumen; b) Preservation of detail in
image representation, aiming to the reproduction of image
features characterizing smaller lesions; c) Model variability,
aiming to capture as much as possible of the high diversity
characterizing the endoscopic image content.

TIDE uses a series of multiscale blocks (MSBs) that
extract features under multiple scales, aiming to capture a
feature-rich representation of the input. It is complemented
by residual connections to further enhance the feature extrac-
tion scheme, and tackle the problem of vanishing gradient,
encountered in deep learning models. An MSB is illustrated
in Fig. 1. The purpose of these modules is twofold. Firstly,
they aim to abstract image information from an input volume
at various scales. Secondly, they realize a learnable fusion
of the extracted information to capture more diverse rep-
resentations of the input volume. Each module receives a
volume of feature maps as input, which is forwarded to three
parallel convolutional layers. Each of these layers has the
same number of filters, and extracts features from different
scales by performing convolution operations using 3×3, 5×5,
and 7×7 kernel sizes with stride 1. Thus, small, medium, and
large features can be extracted from the input volume. The
parallel output of these layers is concatenated depth-wise, and
passed forward to two additional consecutive convolutional
layers, forming, in this way, a feature-rich representation of
the input volume. The first of these two convolutional layers
consists of a number of filters equal to the sum of the filters
of the concatenated feature maps, and it performs a pointwise
convolution operation, effectively facilitating the aggregation
of the concatenated feature maps. into a compact represen-
tation. The purpose of the pointwise convolutional layer is
to map the cross-channel correlations [49], within the con-
catenated feature volume which contains information from
different levels of detail. The last convolutional layer of the

FIGURE 1. Multiscale feature extraction module.

MSB module consists of the same number of filters used in
the parallel convolutional layers and performs 3×3 convolu-
tional operations. This layer serves as a bottleneck, effectively
reducing the number of feature maps, and consequently, the
dimensionality along the depth axis of the input volume; thus
enabling efficient feature extraction [50]. These consecutive
convolutional layers perform convolutional operations with
stride 1. The activation functions of all layers mentioned are
the Rectified Linear Units (ReLUs).

The entire architecture of the TIDE model is illustrated
in Fig. 2. It comprises two parts: an encoding network and
a decoding network. The encoder receives an input volume
of RGB endoscopic images with a resolution of W×H pix-
els, either normal or abnormal, denoted as x. The proposed
encoder consists of convolutional layers destined to perform
pooling operations, and to extract multiscale features. Specif-
ically, the architecture of the encoder sequentially includes a
convolutional layer with 16 filters followed by four MSBs.
The first MSB consists of 32 filters, which is doubled
for every next module. Convolutional layers are interposed
between the consecutiveMSBs to perform pooling operations
by reducing the size of the intermediate feature volume to
half. Those layers are composed of 64, 128, and 256, fil-
ters and perform convolutional operations with a kernel size
of 3 × 3.
Residual connections are employed to preserve the features

extracted from shallower feature extraction modules. There-
fore, the input feature map volume of each module undergoes
a convolutional operation with a 3 × 3 kernel size and a
number of kernels in accordance with the number of filters
leveraged by the convolutional layers of this module. The
resulting feature map is aggregated with the output volume
of each feature extraction module by an addition operator.
Finally, the output of the residual connection is promoted
to a pointwise convolution layer, preserving the number of
filters of the previous convolutional layer. All the convolu-
tional operations performed in the encoder use ReLU as an
activation function.

While residual connections have been used in the past in a
variety of CNN architectures, such as ResNet [51], primarily
to battle the problem of vanishing gradient, they typically
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FIGURE 2. TIDE architecture.

skip just one or a few layers. In TIDE architecture, the
residual connections transfer higher-level features (in case of
the encoder) and lower-level features (in case of the decoder)
between the MSB modules, which enable the network to
battle not only the vanishing gradient problem, but also to
stabilize the KL divergence. Our experiments showed that
shortening the residual connections lead to rapid or exploding
KL divergence while training. Regarding the MSB modules,
while a similar multi-scale feature extraction technique has
been used in architectures such as GoogLeNet [52], using the
Inception module, they typically extract features under 2 dif-
ferent scales. The MSB modules used in TIDE architecture
aim to capture features under 3 different scales using parallel
feature extraction methodology. Parallel feature extraction
procedures have also been used in CNN architectures such
as ResNeXt [53], yet they extract features under a single
scale. The MSB module of TIDE enables the network to
capture a feature-rich representation of the input volume,
which is important especially in the case of training on a
small number of training samples. MSB extracts the same
number of features per scale, whereas the Inception module
extracts a different number of features per scale aiming to

keep the free parameters of the network low in favor of
computational efficiency. However, this has a negative effect
on the learning capacity of the module. In the case of MSB,
by keeping the same number of free parameters per scale,
the learning capacity for the feature extraction process is not
affected, enabling more features to be extracted, which are
then efficiently reduced by the last trainable bottleneck [50]
layer of MSB that completes the process. The combination of
large residual connections and multi-scale feature extraction
increase the generation capabilities of the proposed architec-
ture, as it can be observed by the results of this study, when
compared to conventional VAEs [36], [46], [48].

The encoder network is tasked to compress the input
volume, i.e., the endoscopic images, to two different latent
vectors corresponding to the statistical parameters, mean µ

and standard deviation σ , of a Gaussian distribution. There-
fore, the output volume of the convolutional part of the
encoder is flattened and directly enters a fully connected layer
with 256 neurons, followed by two separated fully connected
layers connected to the previous one. Each of these two layers
comprises 6 neurons with no activations that estimate the
parameters µ, σ of the latent space distributions.
Following this, the decoder network randomly samples a

six-dimensional vector z from the distribution approximated
by the encoder. Thus, the decoder, considering the latent
representation z, reconstructs the input volume. At the top
of the decoder’s architecture, a fully connected layer resides,
having 36,864 neurons. Next, the decoder adopts the archi-
tecture of the encoder, yet with an opposite order of the
MSBs that, in the case of the decoder, are separated with
transposed convolutional layers for performing up-sampling
of the intermediate feature volume. At the end of the decoder,
a transposed convolutional layer is placed, with 3 filters
to predict the reconstructed RGB input volume. The spa-
tial dimensions of the output of the decoder correspond to
those of the initial volume x of endoscopic images. Conse-
quently, the proposed VAE architecture synthesizes images
of the same resolution received in the input. All the transpose
convolutional operations are conducted with kernels of size
3 × 3 and ReLU functions as neural activations, except from
the prediction layer that adopts the log-sigmoid activation
function.

According to the total loss backpropagated to train a VAE
model can be formulated as follows:

L (ϑ, ϕ; xi) = Eq(z|xi;ϕ) log p(xi|z; ϑ)

− KL (q(z|xi; ϕ)||p (z; ϑ)) (1)

where the first term corresponds to the reconstruction error of
the decoder, and the second term approximates the Kullback-
Leibler (KL) divergence. The KL-divergence is employed to
ensure that the encoder compresses the input volume into a
latent representation that follows a prior distribution p (z; ϑ).
The prior distribution p (z; ϑ) is formulated as a multivariate
Gaussian distribution N (z; 0, I). We let the true intractable
posterior distribution p(z|xi; ϑ) be an approximation of the
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Gaussian with an approximately diagonal covariance that is
estimated according to Eq. (2):

log q(z | xi; ϕ) = logN (z; µi, σ
2
i I) (2)

where µi and σ 2
i are the outputs of the encoder part of VAE.

Thus, Eq. (1) is formulated as follows:

L (ϑ, ϕ; xi) ≃
1
2

J∑
j=1

(
1 + log σ 2

i,j − σ 2
i,j − µ2

i,j

)

+
1
L

L∑
L=1

log p(xi|zl; ϑ) (3)

where

zl = µi + σ i ⊙ ϵl and ϵl ∼ N (0, I) (4)

J denotes the dimensionality of the underlying manifold,
L refers to the sample size of the Monte Carlo method
sampling from the approximate posterior distribution of the
encoder, ϕ represents the parameters of the encoder network,
ϑ represents the parameters of the decoder network, and, and
symbol ⊙ represents the Hadamard product operation.

IV. EXPERIMENTS AND RESULTS
A. DATASETS AND TRAINING OF THE GENERATIVE MODEL
Considering the clinical utility of WCE and its importance
for evaluating inflammatory conditions of the small bowel,
two datasets, namely KID Dataset 2, and the Kvasir-Capsule
dataset, were used for experimentation [54], [55]. To the
best of our knowledge these datasets are the only publicly
available annotated WCE datasets that include inflammatory
lesions, such as erythemas, erosions, and ulcers. Both datasets
are anonymized, not containing any information that would
enable either patient identification or distinction between
different patients. KID [54] is a WCE database designed
to assess CDS systems. It includes 728 normal images and
227 images with inflammatory lesions of the small bowel,
with a resolution of 360 × 360 pixels. The images were
acquired using Mirocam® (IntroMedic Co., Seoul, Korea)
capsule endoscopes. The Kvasir-Capsule [55] is a video cap-
sule endoscopy dataset which includes 74 unlabeled videos
and annotated image frames extracted from 43 labeled videos.
The annotated images illustrate normal findings, anatomi-
cal landmarks, and various pathological findings for which
bounding boxmasks are provided. It includes a total of 34,338
normal images and 1,519 images of inflammatory lesions,
with a resolution of 336 × 336 pixels. The images were
acquired using an Olympus EC-S10 endocapsule. Despite
the relatively larger size of this dataset, it contains many
images that are similar to each other. To reduce frame redun-
dancy, while maintaining the two datasets equivalent in size,
a subset of 728 normal and 227 abnormal representative,
non-overlapping WCE images from the whole dataset, was
sampled using the image mining methodology described
in [56] (the filenames of the sampled images are provided
as supplementary material). Different TIDE models were

trained separately, on normal, and abnormal subsets of the
KID and Kvasir-Capsule datasets, respectively, i.e., a TIDE
model was trained to generate normal images, and another
onewas trained to generate abnormal images, per dataset. The
two datasets were not considered jointly because they were
acquired using different types of capsule endoscopes. The
implication of using such a joint dataset for training TIDEwas
experimentally investigated, and the results are presented in
the next subsection. Regarding the training process, no other
data augmentation techniques were applied on the training
sets, as it was affecting the appearance of physiological
structures. TIDE was trained using early stopping, with a
maximum limit of 5,000 epochs, using batches of 128 sam-
ples. Considering its effectiveness in relevant applications,
the Adam optimizer [57] was selected to train the model,
using a learning rate initially set to 0.001.

For the training of the networks, we used a GPU NVIDIA
RTX 3090 with 24GB GDDR6X RAM, 10,496 CUDACores
and base clock speed at 1.8GHz. Inferences were performed
on the same GPU, with an average rate of 15 milliseconds per
image. Inferences are time-efficient also on CPUs. For exam-
ple, the demonstration website of TIDE1, executes inferences
with an average rate of 67milliseconds per image, on a single,
not dedicated CPU core, of an Intel Core i5 processor with
4 cores, 3.8GHz and 8GB of RAM.

B. QUANTITATIVE EVALUATION
The main goal of this experimental study is to investigate
if a WCE dataset composed solely of synthetic images can
be effectively used to train a classifier, so that it accurately
learns to discriminate real abnormal from real normal images.
Therefore, the classification performance can be considered
as a representative index for quantitative evaluation of the
synthetic WCE datasets generated using TIDE [58]. The
classification performance was quantified by examining the
Receiver Operating Characteristic (ROC) curves, considering
that the WCE datasets are imbalanced, and that the classifi-
cation problem is binary. ROC curves indicate the diagnostic
ability of a classification system by illustrating a trade-
off between True Positive (TPR) and False Positive (FPR)
Rates using various decision thresholds. The Area Under
ROC (AUC) measure [59], was computed to assess the per-
formance of the trained classificationmodels, because, unlike
other measures, such as accuracy, sensitivity and specificity,
which are obtained using only a single decision threshold, it is
insensitive to imbalanced class distributions [59], [60].

Considering that the extensive experimental work required
for this study is computationally demanding, we selected LB-
FCN light classifier [61], as a computationally more efficient
version of LB-FCN, which is a state-of-the-art classifier pro-
posed for improved classification of endoscopic images [62]
that has been previously used in relevant studies [47], [48].
The experimental procedure can be outlined as follows:

1) a reference performance of LB-FCN light per real dataset
was estimated for the classification of each dataset into
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normal and abnormal (inflammation) classes; 2) the trained
TIDE models were used to randomly generate different sets
of synthetic normal and abnormal WCE images; 3) for each
dataset, the same LB-FCN light classifier was trained solely
on the synthetic normal and abnormal images, and tested,
exclusively on the respective real images.

Aiming to a fair comparison between the classification
performance results obtained using the KID and Kvasir-
Capsule datasets, the same number and proportion of normal
and abnormal images was considered (i.e., 728 normal
and 227 abnormal synthetic images). In all experiments,
a stratified 10-fold cross validation approach was adopted to
alleviate a potential selection bias. More specifically, both the
synthetic dataset and the dataset with the real images were
split into ten subsets that were fully disjoint, from which,
nine subsets of the synthetic dataset were used for training,
and a subset from the real dataset was used for testing. The
process was repeated ten times, selecting different training
and testing subsets, until all the real subsets were used for
testing. The training settings of LB-FCN light are the ones
suggested in [48]. Considering that the generation of the syn-
thetic images was random, the whole experimental procedure
was also repeated ten times and average results with standard
deviations were recorded.

TABLE 1. Classification results (AUC %) on real images using either real
or solely synthetic training images.

The results of the quantitative experimental evaluation of
the TIDE model, were compared with the results obtained by
relevant state-of-the-art models for WCE image generation,
i.e., TS-GAN [47], and EndoVAE [48]. The respective classi-
fication performances are summarized in Table 1, which also
includes the reference results obtained per dataset using the
real images. It can be noticed that TIDE offers an improved
classification performance over all the compared models, and
more importantly, it is comparable to the reference one. This
validates the hypothesis that real training images can be sub-
stituted by synthetic ones, without sacrificing classification
performance.

It should also be noted that we have also experimented
using methods that have been previously applied for the gen-
eration of FE images, including CycleGAN [32] and Style-
GANv2 [13]. Training these architectures was challenging,
mainly because of problems deriving from the small number
of the available WCE training samples. Such issues include,
low-quality image generation, lack of diversity, presence of

artifacts and more importantly mode-collapse [63]. Initially
we tried to take advantage of pre-trained models (on Ima-
geNet [7]) for weight initialization. However, both networks
could not converge, resulting in mode collapse, early on
training. Training CycleGAN and StyleGANv2 from scratch
resulted in images that, while in some cases resembled WCE
images, theyweremostly unnatural, with noise artifacts being
prevalent. This is reflected in the lower classification perfor-
mance obtained using the datasets generated by CycleGAN
and StyleGANv2, as indicated in Table 1.

Aiming to further enhance the classification performance
we have also investigated the aspect of training the TIDE
architecture on a joint dataset composed of both KID and
Kvasir-Capsule datasets. TIDE architecture was trained once
on the normal joint subsets of the two datasets, and then it
was retrained on the abnormal joint subsets. Then, the syn-
thetic images generated from TIDEwere used for training the
LB-FCN light classifier, whichwas tested on the real datasets,
by following the same experimental procedure described
in this section. However, the synthetic images generated after
this joint training of TIDE architecture significantly degraded
the classification performance of the LB-FCN classifier on
the KID and Kvasir-Capsule datasets, which in terms of AUC
it was 69.3% ± 3.1% and 73.9% ± 3.9%, respectively. This
is likely due to the differences between the two real training
datasets in the representation of tissues, e.g., in color and
texture, since they have been acquired with different capsule
endoscopes.

C. QUALITATIVE EVALUATION
A qualitative, visual, comparison between the real images
of the KID and Kvasir-Capsule datasets, and representative
images generated by TIDE, can be performed by examining
the images of Fig. 3 and Fig. 4, respectively. Real normal
images from the small bowel illustrate healthy mucosa which
presents circular folds attributed to the folds of the lumen.
The texture of the real endoscopic tissue varies due to the
existence of intestinal villi. Real abnormal images contain
inflammatory lesions which are flat or excavated erosions
on the surface of the mucosa characterized by soft or more
intense color gradations and sometimes they are covered by
a tiny fibrin layer. Figures 3 and 4 show that TIDE generates
realistic endoscopic images with a diversity resembling that
of the real images. Particularly, it can be noticed that in the
synthetic images generated by TIDE, the visible characteris-
tics of the real tissues are preserved, including color, texture
and shape. The lesions generated in the case of the abnormal
images, not only look like the ones in the real abnormal
images, but they are also naturally positioned and blended
with the normal tissue. Furthermore, the generated images
include realistically reproduced bubbles and debris, which are
common in real WCE images.

Figures 5 and 6 provide a comparative visualization
of normal and abnormal images, respectively, generated
using different state-of-the-art generative models, namely
TS-GAN [47], CycleGAN [32], StyleGANv2 [13], the hybrid
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FIGURE 3. Real and synthetic endoscopy images illustrating small bowel
tissue from KID dataset. (a) Real normal images. (b) Normal images
generated by TIDE. (c) Real abnormal images. (d) Abnormal images
generated by TIDE.

VAE/GAN model proposed in [46], UNIT VAE-GAN [36],
and EndoVAE [48]. More specifically, with respect to the
synthetic normal images in Fig. 5, from a medical view-
point, TS-GAN (Fig. 5(a)) provides rather realistic-looking
synthetic images but with a marked granularity of the image
and pixelation that is not common in the usual small-bowel
capsule endoscopy images; CycleGAN (Fig. 5(b)), provides
an entirely pixelated set of images that, together, the degree
of haziness, does not allow any safe observations to be
performed with that set; the images generated by Style-
GANv2 (Fig. 5(c)) compared with CycleGAN, represent a
much-improved version but still suffer from marked image
haziness and an outcome that points toward a non-realistic
set of normal small bowel images; the hybrid VAE/GAN
model (Fig. 5(d)) synthesizes pixelated normal small bowel
images with color artifacts that fail to capture the internal
circular folds of the small bowel intestine; UNIT VAE-GAN
(Fig. 5(e)) provides a blurry set of images in which the
anatomy of the small bowel is not realistically reproducible.
Also, it can be noticed that UNIT VAE-GAN modifies the
boundaries of the images. EndoVAE (Fig. 5(f)) generated a
set of realistic normal small-bowel images, which, despite
the marked improvement as compared with the results of
the previous models (even with TS-GAN), the amount of
haziness and the presence of ultra-white artefacts give it

FIGURE 4. Real and synthetic endoscopy images illustrating small bowel
tissue from Kvasir dataset. (a) Real normal images. (b) Normal images
generated by TIDE. (c) Real abnormal images. (d) Abnormal images
generated by TIDE.

away as a non-real dataset; the images generated by TIDE
(Fig. 5(g)) are characterized by clarity and higher definition
as compared to the previous ones, with only scarce presence
of artifacts; the additional water/air bubble interface helps in
providing extra realistic features.

Regarding the abnormal images in Fig. 6, all GAN-based
(Fig. 6(a-c)) and hybrid GAN-VAE based (Fig. 6(d-e)) meth-
ods show non-realistic abnormalities of the small bowel.
Although TS-GAN is an early model for WCE image gen-
eration, it provides images with a rather clear impression of
possible mucosal infiltration/induration by a relevant process.
However, the images lack clarity, including some artifacts,
and they cannot be used to deduct diagnostic conclusions.
The UNIT VAE-GAN model provides images with inflamed
tissues, but, despite that, they suffer from marked haziness
and blurriness which expose their artificial origin. On the con-
trary, the last column includes images of mucosal ulceration,
characterized by a realistic texture that approximates that of
real images and they can be used for clinical training and other
functions.

To validate the visual observations with respect to the
diversity of the generated images a complementary exper-
imental study was conducted. The exponential of the
Shannon entropy of the eigenvalues of a kernel similar-
ity matrix was considered as a generic domain-independent
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FIGURE 5. Synthetic normal WCE images produced by different generative models. (a) TS-GAN [47] (b) CycleGAN [32]
(c) StyleGANv2 [13] (d) hybrid VAE/GAN [46] (e) UNIT VAE-GAN [36] (f) EndoVAE [48] (g) TIDE.

FIGURE 6. Synthetic abnormal WCE images produced by different generative models. (a) TS-GAN [47]
(b) CycleGAN [32] (c) StyleGANv2 [13] (d) hybrid VAE/GAN [46] (e) UNIT VAE-GAN [36] (f) EndoVAE [48] (g) TIDE.

measure [64]. Let us consider a collection of independent
samples x1, x2, ...,xn∈ X , K ∈Rn×n a positive semi-definite

kernel similarity matrix with Ki,i = 1 for i ∈ {1, . . .n}, and
λ = (λ1, λ2, ...,λn) a vector with the eigenvalues of K

/
n.
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The diversity of this collection of samples can be defined as:

δ = exp

(
−

S∑
i=1

λi log λi

)
(5)

Different kernel similarity matrices can be utilized to
capture the visual or semantic similarity of the samples to
be evaluated. In this work both pixel-based and feature-
based similarity kernels were considered, aiming to quantify
the diversity with respect to the image details and seman-
tic content, respectively. Pixel-based similarity is measured
as the cosine similarity between pixel vectors, and it cap-
tures differences related to low-level image features, such
as the brightness and color of the images compared. The
feature-based similarity is calculated as the cosine similarity
between high-level features of the images. The last pooling
layer of an Inception-v3 model trained on ImageNet was
selected as a perceptually-relevant feature extractor, which
has also been effectively applied in the context of WCE
image representation [65]. Additionally, an indicative texture
similarity kernel based on Local Binary Patterns (LBP) [66]
was selected to assess the degree to which the textural fea-
tures of the original images is preserved. The texture-based
similarity was calculated as the cosine similarity between the
texture vectors extracted as in [64]. Ultimately, the diversity
δg of a generated dataset should be approximately equal with
the diversity δr of the respective real dataset, i.e., δg=δr .
We consider the relative diversity, as a more meaningful
measure defined as δ̃ = δg

/
δr , because it provides a diversity

score that is independent from the diversity of the real dataset
used to train the generative model, enabling direct compar-
isons among different datasets; therefore, this measure is
maximized for δg=δr , i.e., δ̃ = 1. Figure 7 illustrates the
relative diversity over all the datasets generated in this study.
Considering the feature-based similarities, in that figure it
can be noticed that those generated by the two VAE-based
models and TS-GAN have higher relative diversities than
CycleGAN and StyleGANv2. The improved performance of
TS-GANover StyleGANv2 and CycleGAN is possibly due to
the patch-based synthesis it employs, that favors the learning
of texture patterns of endoscopic images. Considering the
pixel similarities, the results of all models are comparable to
each other, except from the abnormal dataset generated by
TS-GAN, which exhibits a significantly higher relative diver-
sity. However, TIDE outperforms EndoVAE with respect to
the feature-based diversity observed in the normal datasets.
Considering the texture-based similarity, from the results
presented in Fig. 7 it can be inferred that the VAE-based
models, i.e., TIDE and EndoVAE, can reproduce the textural
features of the endoscopic tissue with a higher fidelity than
the GAN-based methodologies.

Figure 8 presents indicative examples of the images gener-
ated by TIDE when trained on the joint dataset composed of
both KID and Kvasir-Capsule datasets. As it can be observed,
TIDE synthesizes images that are vaguer with a somewhat

FIGURE 7. Relative diversity, based on pixel feature and texture similarity
kernels, of the (N)ormal and the (A)bnormal samples of all the synthetic
datasets produced by different generative models.

FIGURE 8. Normal (first row) and inflammatory (second row) images
generated by TIDE architecture when trained on the joint dataset
composed of both KID and Kvasir-Capsule datasets.

distorted content, indicating that the texture of the original
endoscopic images is not sufficiently preserved.

Another qualitative study was performed to investigate
if the detection of abnormalities in synthetic and real test
images is based on similar cues, since this would pro-
vide additional evidence on their resemblance. To this end,
a well-recognized model-agnostic post-hoc methodology
enabling the interpretation of a classifier’s outcome, called
Grad-CAM [67], was employed. This methodology cre-
ates heatmap visualizations highlighting the areas with the
higher influence on a machine learning model’s prediction.
A WCE specialist visually validated that the interpretations
obtained from the application of Grad-CAM on the LB-FCN
light classifier (trained on synthetic images as described in
section IV-B) focus on the inflammatory lesions, i.e., the
heatmaps are overlapping with the lesions, in both the syn-
thetic and real KID and Kvasir-Capsule datasets. Therefore,
also from the perspective of machine learning interpretability
the synthetic images generated by TIDE resemble the real
ones. Furthermore, the focus of the interpretations on the
inflammatory lesions also in the synthetic images, indicates
the preservation of the relevant clinical characteristics of
the real lesions. Indicative Grad-CAM interpretations are
illustrated in Figs. 9-12. These figures show representa-
tive heatmaps interpreting the classification of the abnormal
images of Fig. 3(c), 3(d) and Fig. 4(c), 4(d) respectively.
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FIGURE 9. Real WCE images with inflammatory conditions from the KID
dataset (first row) and their corresponding heatmaps (second row)
generated using the Grad-CAM [67] methodology on the trained LB-FCN
light classifier [61].

FIGURE 10. Synthetic WCE images with inflammatory conditions from the
KID dataset (first row) and their corresponding heatmaps (second row)
generated using the Grad-CAM [67] methodology on the trained LB-FCN
light classifier [61].

FIGURE 11. Real WCE images with inflammatory conditions from the
Kvasir-Capsule dataset (first row) and their corresponding heatmaps
(second row) generated using the Grad-CAM [67] methodology on the
trained LB-FCN light classifier [61].

FIGURE 12. Synthetic WCE images with inflammatory conditions from the
Kvasir-Capsule dataset (first row) and their corresponding heatmaps
(second row) generated using the Grad-CAM [67] methodology on the
trained LB-FCN light classifier [61].

It can be noticed that in most cases the higher activation
areas (yellow/red colored) of the heatmap overlap with the
inflammatory lesions.

D. USER EVALUATION
Based on the above, the datasets generated by TIDE result in a
classification performance that is equivalent to that obtained
using the respective real WCE images. Also, the images of
the TIDE datasets have both a more realistic appearance and
they are clearer than the datasets produced by the compared
generativemodels. To investigate if the TIDE datasets are suf-
ficiently realistic also for endoscopists specialized in WCE,
a series of Visual Turing Tests (VTTs) was conducted. More
specifically, three tests were performed using normal images
and images depicting inflammatory conditions from the small
bowel, automatically generated by TIDE. The first and sec-
ond tests included 55 images each, with the first one having
only real images from the KID database and the second one
containing only synthetic ones generated by the TIDE archi-
tecture. The last test combined the two, including 110 images
in total. The tests were then given to three endoscopists with
10 to 30 years of experience who were called to distinguish
the synthetic from the real images. It is important to note that
to avoid any selection bias, the proportion of the real and fake
images in the all the tests was undisclosed to the participated
experts. Informed consent was obtained and the outcomes of
each VTT were not announced to them until the completion
of this study.

Table 2 summarizes the results of all the VTTs conducted
by the three endoscopists. In the first VTT consisting of only
artificially generated images produced by the TIDE archi-
tecture, the average accuracy obtained by the endoscopists
was 46.1±7.3% (ranging between 38.2% and 52.7%). For
the second VTT, which consists of only real images, the
mean accuracy was 66.1±8.6% (ranging between 56.4% and
72.7%). The third VTT contained real and artificially syn-
thesized images generated by the proposed methodology; the
average obtained accuracy was 50.0±1.8% (ranging between
48.2% and 51.8%). Considering the real images as positive
predictions and the synthetic ones as negative predictions,
the mean sensitivity and specificity were 65.5±10.1% (rang-
ing between 56.4% and 76.4%) and 34.6±6.5% (ranging
between 27.3% and 40.0%), respectively (Table 3). The above
results validate that the endoscopic images generated by
TIDE are hard to distinguish from the real ones.

TABLE 2. Summary of all visual turing test results.

V. DISCUSSION
The limited availability of annotated datasets in medical
imaging is a barrier to essential progress in developing
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TABLE 3. Mean sensitivity and specificity in the case of the 3rd VTT.

image-based CDS systems. Particularly in the domain of
WCE the need for such progress is urgent, as the diagnostic
yield remains low, and WCE specialists reach their limits
by trying to maintain their concentration undistracted while
examining several thousands of images [2]. This study was
motivated by the need for publicly available benchmark-
ing WCE datasets that will trigger productive competition
among image analysis researchers to effectively improve
their methods for use in clinical practice. We proposed a
multiscale residual VAE architecture capable of generating
synthetic WCE images, and showed, using publicly avail-
able datasets, that such images can replace the real ones
for training machine learning systems for the detection of
abnormalities. The range of abnormalities that can be found in
the small bowel, where WCE is mainly applicable, is broad.
As a proof-of-concept, this study focused on inflammatory
lesions, which represent a range of abnormalities associated
with diseases, such as IBD and CD, affecting millions of
individuals worldwide [1].
During the last decade, image generation methods have

been proposed in various medical and non-medical domains.
GANs and their variants have had a tremendous success
mainly in generating synthetic images of human faces, and
several studies have reported exceptional results in the gen-
eration of medical images [26], [28], [33], [34]. However,
important factors of success in these studies constitute the
large number of diverse training data, and the relatively
aligned content of the training images, e.g., the face images
are aligned with respect to the facial features, and CT or
MRI images can be aligned with respect to the depicted body
structures. On the other hand, the generation of synthetic
endoscopic images of the GI tract is more challenging, since
their content is more diverse without features that could be
considered for alignment. Related studies (Section II) have
reported results based on significantly larger, usually not
publicly available, training sets. These studies have also indi-
cated issues with respect to the application of GAN-based
generative models. For example, it is worth noting that [21]
reports that a contemporary classification system, trained
with images generated by a GAN model, reached saturation
in performance improvement after a certain point, even if
more synthetic polyp images were added to the training
set. This was attributed to the fact that the GAN model
was unable to introduce new unseen features. The GAN

was only manipulating the existing features in the training
set, trying to reuse the same set of features to generate
new-looking synthetic polyps. This is a common limitation
of GAN-based image generation models, and it could also
justify the results of TS-GAN in our study. Although that
model managed to generate more plausible images than the
other compared GANmodels, with a relatively high diversity,
the generated dataset was not sufficient to provide a classifi-
cation performance equivalent to that of the respective real
datasets.

The classification performance using synthetic datasets
generated from the KID database was generally higher than
that observed using synthetic datasets generated from the
Kvasir-Capsule dataset, regardless of the type of the gen-
eration model. This could be attributed to the fact that the
real Kvasir-Capsule images generally include smaller lesions
than those of the real KID dataset. It is worth mentioning
that in the case of inflammatory image synthesis, there are
some cases where TIDE architecture generates images with
lesions that are not readily discernible. Although one can
consider this as a weakness of the model, this can be partially
attributed to the fact that the real datasets include images
with inflammatory conditions, e.g., erosions, which are hard
even for experts to distinguish. Thus, in some cases TIDE
architecture generates variations of these images that may be
even harder distinguishable.

The results obtained from the two VAE architectures com-
pared in this study, namely EndoVAE and TIDE, indicate that
although they can both generate quite realistic images, the
improved diversity, and the higher definition of the depicted
structures in the images generated by TIDE, play a significant
role in the improvement of the classification performance.
The improved performance of TIDE can be attributed to
the use of multiscale blocks which enable more diverse
features to be encoded and decoded from and to the latent
space [52]. This feature diversity gives the opportunity to
create a swallower architecture, minimizing the number of
free parameters, without compromising the generative per-
formance and as a result enables the network to be trained
on smaller datasets [68]. Also, the qualitative results vali-
date that multiscale information can enhance image quality,
which has also been observed in the context of multiscale
GANs [31]. The fact that multiscale representations can pro-
videmore detailed content characterizations’ in the context of
endoscopic image analysis has also been noted in the recent
review study of Ali [69]. In addition, the residual connections
introduced in this paper, allow the gradient to be propagated
easily throughout the network, further enhancing the quality
of the extracted features. Furthermore, the VAE-based learn-
ing avoids the adversarial optimization process followed in
GANmodels, which demands a large amount of data in order
to be properly trained [15].

The user-evaluation study validated the clinical relevance
of the images generated by the proposed TIDE architec-
ture. Evaluating synthetic medical images in the context
of unconditional generation, in which there are no explicit
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pairs of ground truth and synthetic data, is still a chal-
lenge [70]. Contrary to the assessment of synthetic natural
images, e.g., natural scenes and human faces, in the complex
context of evaluating synthetic medical images, the issue
of domain-specific image quality metrics that capture the
clinical relevance of the generated images, has yet to be
addressed [71]. A limiting factor is that the existing measures
require a rather large reference dataset or distribution over
samples in order to be properly estimated [58], [64]. The
score used in our study is independent of such a requirement
and therefore, it can be applied to any generative model and
data domain for a given similarity measure [64].
In practice, TIDE could be used to generate synthetic anno-

tated WCE datasets based on real, anonymized datasets, and
the real datasets can be securely kept, within the premises of
the healthcare provider. The synthetic datasets can be shared
publicly with the (technical) research community, without
raising any legal or ethical concerns, since they are not real,
originating from statistical processing that does not allow
identification of any personal information. A limitation of
the proposed methodology is that TIDE generates images
belonging to one class, and to generate images belonging
to multiple classes, it needs to be trained separately with
data from each different class. This is in agreement with
the observation made in [72] indicating that deep learning
algorithms for WCE tend to be more accurate when trained
independently on different classes of abnormalities than on
multiclass data. While we tried to divide the latent space so
that it can capture more classes, the network was becoming
unstable, and the quality of the results was affected. This is
possibly due to the nature of endoscopy images which present
a high inter-class similarity [73], making it more difficult for
the network to distinguish their differences. Efficiently dis-
entangling the latent space of VAE models is still a research
challenge, and to the best of our knowledge, there are no
relevant studies dedicated to the generation of endoscopy
images using VAEs.

This study investigated the post-hoc interpretability of
inflammatory lesion detection through visual interpretation
of synthetic image classification. The qualitative assessment
of the results in comparison to the results obtained using real
images provided additional indications on the resemblance of
the synthetic with the real images. This is a first approach
towards the use of machine learning interpretability in the
context of image synthesis. There are still other aspects to
this direction that have yet to be further investigated, such
as the development of interpretable generative models. Cur-
rent methodologies for the generation of endoscopic images,
including TIDE, are lacking interpretability in that sense, and
this could be considered as a limitation for their adoption.
The interpretation of endoscopic image synthesis at that level
could shed light on the internal processes that lead to the
generation of different parts of the synthetic images con-
sidering the different properties of tissues, e.g., color and
texture, depicted in respective real images; thus, enhancing
the clinicians’ trust in the generative systems.

VI. CONCLUSION
This paper presented TIDE, a novel VAE architecture for
the generation of synthetic WCE images that incorporates
multiscale feature extraction and residual learning in the
context of variational image synthesis. A proof-of-concept
case study was investigated addressing the generation of
normal and abnormal images of the small bowel in the
context of image-based CDS systems for the detection of
inflammatory small bowel lesions. More specifically, in the
study conducted, the performance of the proposed TIDE
architecture was evaluated quantitatively and qualitatively
following similar experimental procedures used in relevant
studies presented in Section II. All the experimental evalua-
tionwas performed on publicly available endoscopic datasets.
For the quantitative assessment, the synthetic image datasets
produced by the proposed TIDE architecture were solely
employed to train a state-of-art classifier for the recognition
of inflammatory conditions. The performance of the trained
classifier was then evaluated on real image datasets. Apart
from TIDE, various generative models, such as VAEs, GANs
and hybrid VAE/GAN models, were tested in endoscopic
image synthesis containing inflammation conditions. Hybrid
VAE/GAN based methodologies have not previously been
evaluated in that context. Furthermore, the synthesis perfor-
mance of the proposed TIDE architecture was investigated
after being trained on a joint dataset. A qualitative compari-
son was performed to evaluate the diversity of the synthetic
datasets produced, and a user evaluation study was conducted
to assess the clinical relevance of the images generated by
the proposed architecture. The results of the experimental
evaluation of TIDE lead to the following main conclusions
about the proposed architecture:

• It enables the generation of synthetic images of
enhanced clarity and diversity, suitable to fully substitute
real training sets for WCE image classification.

• It accomplishes effective and realistic WCE image
synthesis even using a limited number of training
samples.

• The synthetic images generated by TIDE are difficult to
distinguish even by experienced WCE specialists.

Future research directions include the application of the
proposed framework for generating images from the entire GI
tract with various abnormalities and pathological conditions.
To this direction, we are planning to extend the TIDE archi-
tecture to enable multi-class training and investigate methods
for joint/cross-dataset image synthesis using VAEs. Further-
more, the generality of the proposed architecture makes it a
candidate solution for generating synthetic images of other
medical imaging modalities. Finally, a promising direction
is the investigation of interpretable/explainable generative
models and their application to GI endoscopy.
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