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ABSTRACT Synthetic data has been widely applied in the real world recently. One typical example is the
creation of synthetic data for privacy concerned datasets. In this scenario, synthetic data substitute the real
data which contains the privacy information, and is used to public testing for machine learning models.
Another typical example is the unbalance data over-sampling which the synthetic data is generated in the
region of minority samples to balance the positive and negative ratio when training the machine learning
models. In this study, we concentrate on the first example, and introduce (a) the Howso engine, and (b) our
proposed random projection based synthetic data generation framework.We evaluate these two algorithms on
the aspects of privacy preservation and accuracy, and compare them to the two state-of-the-art synthetic data
generation algorithms DataSynthesizer and Synthetic Data Vault. We show that the synthetic data generated
by Howso engine has good privacy and accuracy, which results in the best overall score. On the other hand,
our proposed random projection based framework can generate synthetic data with highest accuracy score,
and has the fastest scalability.

INDEX TERMS Synthetic data generation, privacy preservation, regression, classification.

I. INTRODUCTION
To successfully apply artificial intelligent approaches (e.g.
machine learning & deep learning algorithms) in the real
world application, data has became the most important part to
support these algorithms. However, many types of data have
privacy concerns and limited in terms of publicity [1], [2].
This causes the issue on training the machine learning models
on these regions since thesemodels require support from huge
training data.

To mitigate this issue, synthetic data has been widely
studied to substitute the real data. Synthetic data is the
fake data points which generated by the generative model
with the information from the real data points [3], [4], [5].
To evaluate the real world application of synthetic data,
privacy preservation is one of the critical measurements
which checks if identities from the original dataset can be
detected or recognized in the synthetic data [6], [7], [8].
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Similarity is another measurement since the synthetic data
need to capture the information from the original data [9],
[10]. Moreover, another important measurement is to check
if the synthetic data can be used to substitute the real data on
training the models [11], [12].

In this study, we evaluate a new data synthesis method
called recursive random projections. Initially developed
for optimization, recursive random projection uses the
FASTMAP [13], [14] technique to recursively bi-cluster the
data into numerous small leaf clusters. An optimizer then
samples just N = 2 points per leaf. But after reading the
data synthesis literature [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12] we began to wonder if recursive random projection
could also be a data synthesis algorithm just by sampling
much more than N = 2.

To check this, we perform the study described in this paper.
As described in §IV, random projection is augmented with
mutation and crossover operators to generate synthetic data
points per leaf cluster. This is then compared to state-of-
the-art synthetic data generation algorithms such as (a) the
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DataSynthesizer [15], (b) the Synthetic Data Vault [16], and
(c) the Howso engine [17].

To structure this inquiry, we ask these questions:
• RQ1: When considering the privacy, which synthetic
data generation algorithm can generate the synthetic
data with the highest privacy preservation score?

• RQ2: Which synthetic data generation algorithm can
generate data that has higher similarity to the original
data?

• RQ3: When the machine learning model is trained on
the synthetic data, can the model achieve compatible
performance with those trained on the original data?

• RQ4: Which algorithm has the best scalability?
• RQ5: What suggestions can we provide from analyzing
the conclusions in RQ1 to RQ4?

The contributions of this paper are
• We proposed a random projection based synthetic data
generation framework.

• We made an empirical experiment to compare our
proposed method, Howso engine, and two state-of-the-
art synthetic data generation algorithms in different
aspects such as (a) privacy preservation, (b) statistical
measurements, (c) marginal probability, and (d) perfor-
mance on training the machine learning models.

• We found random projection based framework and
Howso engine outperform state-of-the-art methods in
some of the aspects.

• The random projection based framework, in terms of
scalability, can run significantly faster than Howso
engine, and have similar runtime comparing to state-of-
the-art methods, while outperform on more metrics than
state-of-the-art methods.

The rest of this paper is constructed as follow: Section II
illustrates the background of synthetic data generation,
privacy& accuracy, and literature review on the synthetic data
generation. Section III presents the Howso engine. Section IV
illustrates our proposed random projection based synthetic
data generation framework. Section V shows two state-of-
the-art synthetic data generation algorithms DataSynthesizer
and Synthetic Data Vault. Section VI presents the summary of
benchmarks, evaluation metrics, and statistical analysis used
in our experiment. SectionVII shows our experimental results
and our analysis to the results. We also discuss the threat
to validity of our experiment in Section VIII, and make a
conclusion to this study in Section IX.

II. BACKGROUND
A. SYNTHETIC DATA GENERATION
Synthetic data is used to substitute the real data which cannot
be shared to public due to privacy concerns. It is usually
generated by the generative model which learns the patterns
of data from the original dataset. More specifically, the data
synthesize process usually can be described as follow:

Given a dataset D which some of the features
{fi, fj, · · · , fk} have privacy concerns, the generativemodel
M learns the statistical properties p for each feature

and the correlation c between different features from the
original dataset D. Then the generative model M(p, c)
will generate the synthetic dataset D′ that similar to D,
but no original identity can be detected by the synthetic
value in the features {fi, fj, · · · , fk}.

Researchers mainly focus on the (a) privacy preserva-
tion [6], [33], [34] and (b) model accuracy [35], [36] to
judge if the synthesized data is both informative and safe to
share. As we will discuss later in this paper, we evaluate the
synthetic data in our study through both privacy preservation
score and model performance score, as well as the statistical
distribution score.

B. RELATED WORK
Synthetic data generation and evaluation has been widely
studied in the past few years. The literaturemainly split in two
directions. One direction is the development of new synthetic
data generation algorithms such as [15] and [16]. Another
direction is applying well-established generation methods
to different datasets in various domains, and evaluating the
results through different metrics [30].

We search the literature in Google Scholar for what has
been published in top venues1 then summarize the related
work in Table 1. To our best knowledge, recent literature
on synthetic data can be mainly split into two regions. The
studies in the first category develops the new generation
algorithm, and the studies in the second category mainly
evaluates the utility of synthetic data generated by different
models through different metrics. In our study, we introduce
Howso engine and our proposed random projection based
synthetic data generation framework, so we compare these
two methods to the algorithms proposed in the literature in
the first category. We choose our comparison objects with
following rules:

• First, the study goal should focus on the tabular data
since all benchmarks in our study are tabular based.

• Second, the implementation should be based on Python
to compatible with our inputs.

This means we focused on (a) the DataSynthesizer [15]
and (b) the Synthetic Data Vault [16]. Hence, in our study,
we compare Howso engine and random projection based
framework to DataSynthesizer and Synthetic Data Vault.

III. HOWSO ENGINE
Howso Engine is developed by Howso.2 It is an AI engine
which supports the synthetic data generation. Specifically,
Howso Engine utilizes the k-nearest neighbors to synthesize
data with both global and local distributions [37]. The
algorithm contains three parameters to control the search, and
the best combination of the parameters is found by the grid
search. Since there is only two parameters that need to be
explored, the grid search is very fast.

1As defined by Google Scholar metrics.
2https://www.howso.com/
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TABLE 1. Literature review on recent synthetic data studies. The literature can be described in two categories: (a) The design of new synthetic data
generation algorithms (synthetic data generation), and (b) The implementation of synthetic data generation algorithms and the evaluation on different
utility metrics (utility validation). Some of long titles are not fully shown in the first column. For the entire title please refer to the specific reference.

• The Minkowski coefficient p ∈ [0.1, 2.0] which
controls the calculation of distance.

d(x, y, 1) = (
n∑
i=1

1(xi, yi)p)1/p (1)

• Iteration parameter l = 6 which is used to find the
parameter for distance calculation.

• The number of neighbors k ∈ [5, 22] during the
execution of k-nearest neighbors algorithm.
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In the distance calculation, 1 is the specific function to
measure the distance between two variables. Howso Engine
implements the Lukaszyk-Karmowski metric (LKmetric) for
the Laplace distribution [17]. Specifically,

1(xi, yi) = |xj − xi| +
1
2
e−

|xj−xi|
b

(
3b+ |xj − xi|

)
(2)

The Laplace distribution is preferred here since it makes
entropy-minimizing assumptions about the underlying data,
and more performant than Gaussian distribution. In the above
calculation, b is the surprisal that needs to be found through
multiple iterations for each dataset. Specifically, the initial
b is set to 1/k where k is the number of neighbors used
in k-nearest neighbor algorithm. The first iteration finds the
local neighbors by traditional Minkowski distance since no
information in the initial round. In the end of the initial round,
we can update the surprisal b:

• For the numerical feature k , Howso Engine uses mean
absolute deviation (MAE):

b =
1
n

n∑
i=1

|xi − µk | (3)

• For the symbolic feature, Howso Engine uses mode and
accuracy instead of mean and MAE.

Once the value of b is stabilized (which we found b tends
to stable in 6 iterations), Howso Engine iteratively picks one
random feature to synthesize. Specifically,

• The values in the first picked feature will be synthesized
on the basis of the global histogram (for nominal fea-
tures) or the global Laplace distribution (for continuous
features).

• For all subsequent features, values are generated based
on the distribution in the k nearest neighbors to the
partially synthesized cases.

The above process is done m times per feature where m is the
number of synthetic instances that request to be generated.

IV. RECURSIVE RANDOM PROJECTION
Recursive random projection, as its name shows, projects
the high-dimensional data into different low-dimensional
clusters by using the random pivot selection procedure
recursively [38]. In the synthetic data generation, the
relationships between different features are hard to capture.
Previous literature uses causal graph [15] or covariance
metrics [16] to explore the connections between different
features. In this study, we adopt the random projection to split
the data into different clusters, which each cluster capture the
data points that have similar feature patterns. In this section,
we will introduce our design of random projection framework
from the following two aspect:

• First, the cluster algorithm which split the data into
different clusters.

• Second, the mutation & crossover operators which
mutate the data points in the same cluster to generate
synthetic data points that have strong connection to the
original data points.

The cluster algorithm aims to split the data points into
different clusters, which each cluster will contain data
points with similar patterns. To achieve that, we utilize the
FASTMAP random projection algorithm [13]. With a set of
data points, FASTMAP uses the cosine rule to project the
data points into the hyperplane formed by two farest points.
More specifically, with two farest points a and b, any third
point c from the set of data points can be mapped into the line
connecting a and b by

x = (a2 + c2 − b2)/(2c) (4)

Algorithm 1 shows the recursive clustering procedure, which
in each function call, the algorithm first check if the number
of current candidates in D less than the threshold t (line 1).
If the number does not reach the threshold, then stop the
recursive. Otherwise, the split function will bi-cluster the
current candidates, and perform the cluster algorithm again
to the two sub-clusters (line 2-5). Algorithm 2 illustrates
in detail how the split function works. More specifically,
it firstly picks a random pivot, and finds two farest points
based on the random pivot (line 1-4). After that, as we stated
above, it uses the cosine rule tomap all other data points to the
line formed by two farest point (line 5-10). Finally, it returns
two subsets based on the distance calculated by cosine rule
(line 11-13).

Algorithm 1 cluster: The Overall Recursive Clustering
Structure Inside the Random Projection. D is the Set of
Candidates and t is the Stopping Criteria. It Outputs a Tree
Structure T That the Nodes in the ith Depth are Bi-Clustered
into the (i+ 1)th Depth
Require: D, t , T ,N
1: if |D| > t then
2: Deast , Dwest = split(D) ▷ bi-cluster
3: N .left.value,N .right.value = Deast , Dwest
4: cluster(Deast , t , T ,N .left.value) ▷ left node recursive
5: cluster(Dwest , t , T ,N .right.value) ▷ right node recursive
6: end if

Algorithm 2 split: Split a Set of Candidates D into Two
Subsets by Using the FASTMAP Technology [13], [14]
Require: D
1: rand = random(1, |D|)
2: pivot = D(rand) ▷ pick a random point as pivot
3: pE = mostDistance(D, pivot) ▷ farthest point to pivot
4: pW = mostDistance(D, pE ) ▷ farthest point to east
5: c = distance(pE , pW ) ▷ Similarity measure as distance
6: for idx = 1 : |D| do
7: a = distance(D(idx), pE )
8: b = distance(D(idx), pW )
9: D(idx).d = (a2 + c2 - b2) / (2c) ▷ cosine rule

10: end for
11: sorted = sort(D.d) ▷ Sort all points via distance
12: DE = D[:0.5*size(sorted)]
13: DW = D[0.5*size(sorted):]
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Traditional clustering algorithms require O(N 2) calcula-
tions to fully split the data. However, random projection can
achieve that in O(2N ), which is much faster than traditional
clustering algorithms. This is the intuition we use random
projection to reduce the scalability on generating synthetic
data.

After the random projection returns the clusters, we then
utilize the mutation and crossover operators used in the
differential evolution algorithm to generate the synthetic
data [39]. In the differential evolution algorithm, a better
solution can be found in the current region of data points by
mutating the data points as follow

ynewi =

{
x1i + F ∗ (x2i − x3i ), if ri < CR or k = R
xoldi , O.W.

(5)

where xoldi is the point from the original set of candidates,
and x1, x2, and x3 are three other random points from the set
of candidates. F is the difference scaling factor from 0 to 1,
and CR is the crossover probability that also from 0 to 1.
Large F indicates more scaling on the difference of two
data points during the mutation, and large CR indicates more
probability the new candidate has a new value in each index.
R is a random index such that the value in that index must
be mutated. This can prevent the duplicated new candidate
when CR is very small. We hypothesis that the synthetic data
generated by this mutation and crossover operator can capture
the feature information from the original data in each cluster
since each cluster includes the data points that are close to
each other.

V. EXPERIMENTAL METHODS
In this section, we will briefly explain two state-of-the-art
synthetic data generation algorithms we compared to.

A. DATASYNTHESIZER
DataSynthesizer is proposed by Ping et al. [15]. Their frame-
work can handle two different attribute mode. One is
independent attribute mode, which each feature is treated
individually. Another one is correlated attribute mode, which
the causal graph is used to describe the relationships between
each feature. First of all, DataSynthesizer implements a
module called DataDescirber to capture the data type for each
feature, as well as its distribution and correlation. Also, it will
add the noise to the data distribution to preserve the privacy.
Secondly, DataGenerator module will generate the synthetic
data based on the attribute mode.

More specifically, for the independent attribute mode,
DataDescriber performs the frequency-based estimation
of the unconditioned probability distributions of each
attribute [15]. To preserve the privacy, the noise Lap( 1

nϵ ) will
be added to the distribution where n is the size of the inputs
and ϵ is set to 0.1 by default. DataGenerator will then uses the
distribution to generate the synthetic data for each feature.

On the other hand, the correlated attribute mode is
quite different to the independent attribute mode. The

GreedyBayes algorithm is utilized to construct the causal
graph for all the features. GreedyBayes is a kind of greedy
selection algorithm that select the highest correlated feature
which maximize the mutual information to the subsets of
features that have been visited. The noise Lap( 4(|A|−k)

n·ϵ ) will
also be added to preserve the privacy. After the causal graph
is generated, the algorithm will then use the knowledge from
causal graph and the distribution to generate the synthetic
data.

B. SYNTHETIC DATA VAULT
Synthetic Data Vault (SDV) is proposed by Patki et al. [16].
The basic intuition behind SDV is to use the Gaussian Copula
as the generative model to synthesize the data based on
the distribution and the covariance of the features. More
specifically, with a dataset that has columns {c1, c2, · · · , cn},
we use {f1, f2, · · · , fn} to express the cumulative distribution
function for those columns. The Gaussian Copula will
calculate the inverse cumulative distribution functions φ of
the Gaussian distribution applied to the original cumulative
distribution function {f1, f2, · · · , fn}. Algorithm 3 shows how
to use the Gaussian Copula to calculate the covariance matrix
when given the dataset.

Algorithm 3 Gaussian Copula: The Gaussian Copula
Algorithm for Analyzing the Distribution and Covariance of
the Dataset [16]. Return the Covariance Matrix 6

Require: D = {d1, d2, · · · , dp}, F = {f1, f2, · · · , fn}
1: for di in D do
2: Yi = [8−1(f0(di0)), 8−1(f1(di1)), · · · , 8−1(fn(din))]
3: end for
4: 6 = computeCovariance({Y1,Y2, · · · ,Yn})

To generate synthetic data, for a given row, SDV will
generate the synthetic value based on the feature distributions.
Moreover, if there is information on the other features, then
the covariance information calculated from Gaussian Copula
will also be used along with the feature distribution to
generate the synthetic data.

We use the SDV public API3 to implement the SDV
in our study. Note that their online API also includes the
Machine Learning based generative model and the GAN
based generative model. Hence, in our study, we compare our
methods to both three SDV generative models.

C. COMPUTATIONAL COST
As to the computational cost of the above, this divides into
(a) the generation cost and (b) the cost of using the generated
data during machine learning. In all our studies, we generated
data of similar size to the original data. This explains why,
in these studies, the learning cost was observed to be similar
for the original and the synthetic data.

As to the generation cost, that varied wildly depending on
the synthesis method. For example, recursive random projects

3https://github.com/sdv-dev/SDV/tree/main
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TABLE 2. Summary of benchmarks used in our experiment.

ran in nearly constant time across all these data sets while
anything using GAN exhibited a runtime that was exponential
on model size.

For more details on the computational cost of generation,
see the results of RQ3.

VI. EXPERIMENTAL SETUP
In this section we will illustrate following things: (a) the
benchmarks, (b) the evaluation metrics, and (c) the statistical
analysis procedure.

A. BENCHMARK
Table 2 shows 10 machine learning datasets from the
Penn Machine Learning Benchmark (PMLB) datasets4 [40].
To select those ten datasets, we firstly counted the number of
instances in all datasets in PMLB. After that, we group those
datasets in the 10 clusters based on the number of instances,
and randomly pick one dataset from each cluster. This step
can ensure that the benchmarks used in our experiment
have different size, and thus we can analyze the runtime of
each synthetic data generator more empirically. Moreover,
we manually inspect the selected datasets, and replace some
of them to the one with more privacy concerns. Please
note that the ‘‘privacy concerns’’ means some features are
very informative to identify the individuals. In this case,
the datasets with those features will not be able to share
in the real world. As we stated in the Introduction section,
the synthetic data is designed to replace those datasets
with sensitive information, and that is the reason we will
make this replacement to our selected benchmarks. However,
some datasets we used may not have sensitive features, and
there is no equivalent one to replace with, then we will
keep using these datasets and assume they have the privacy
concerns as other datasets have. The last point is that we
also keep some datasets which the task is either multi-class
classification or regression, to compare the synthetic data
generation performance in both regression and classification
task. The summary of our selected benchmarks is shown in
Table 2.

B. EVALUATION METRICS
TheMetric(s) column in Table 1 shows differentmetrics have
been used in the past literature. In our study, we consider the

4https://github.com/EpistasisLab/pmlb

most general case of data synthesis which the original data
is used to train the machine learning models but cannot be
shared due to the privacy issue. In this scenario, we consider
privacy metric to evaluate privacy issue, information coef-
ficients metric and distribution metric to evaluate the data
distribution, and model comparison metric to evaluate the
quality of synthetic data.

• Privacy metric which evaluates the privacy preserva-
tion of the synthetic data.

• Informational coefficients metric which evaluates the
statistical information of the synthetic data.

• Distribution metric which evaluates the synthetic data
through joint distribution.

• Model performance metric which build the machine
learning models on the original data and the synthetic
data and test their performance on the original test data.

In our study, we evaluate each algorithm through these
four metrics. The details of each metric is explained in the
following subsections. All these metrics are used to validate
the synthetic data.

1) PRIVACY PRESERVATION
Privacy preservation evaluates the privacy of synthetic data.
It checks if the distance from a synthetic data point to the
density of the region of its nearest original neighbor is small
or not. More specifically, to evaluate the privacy preservation
score of a synthetic data point xsyn, we first find its nearest
original neighbor xori, and calculate the distance from xsyn
to xori as d . After that, we find k-nearest original neighbors
of xori, and calculate the minimum distance dmin between any
two of the points in the group of that k-nearest neighbors. The
final score of privacy preservation is the minimum distance
ratio of distance d and the distance dmin. Though larger score
indicates better privacy preservation, the minimum distance
ratio of 1 already indicates that the synthetic point is located
outside of the density region of its nearest original neighbor.
Hence any value greater or equal than 1 can indicate a good
privacy preservation.

2) STATISTICAL SIMILARITY
Statistical similarity compares the synthetic data to the
original data through statistical measurements. The statistical
measurements are split into three parts.

• Central tendency which includes mean, mode, median,
25th percentile, 75th percentile, minimum, and maxi-
mum.

• Variability of dispersion which includes entropy, Kur-
tosis, mean absolution deviation, standard deviation,
skew, and variance.

• Frequency distribution which describes the unique-
ness of the data.

All those metrics are calculated in both the synthetic
dataset and the original dataset. For all pairs of score in
{Sori, Ssyn} for a certain feature, we calculate the SMAPE.
Specifically, SMAPE is the symmetric mean absolute
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percentage error which is an accuracy measure based on
relative error [41], and is calculated as follow

SMAPE =
1
n

n∑
t=1

|ssynt − sorit |

(|sorit | + |ssynt |)/2
(6)

where ssynt and sorit are the scores of statistical measurement
t in synthetic data Ssyn and original data Sori. The final
statistical similarity score is the average SMAPE of all
features. The smaller score in this metric means less
difference between synthetic data and original data on the
statistical measurements.

3) MARGINAL DISTRIBUTION SIMILARITY
Marginal distribution similarity evaluates the synthetic data
through the marginal distribution. The marginal distribution
of the numeric feature is estimated through the KNN density
estimation and the marginal distribution of the nominal
feature is estimated using normalized value counts. The
score of marginal distribution similarity is then calculated by
comparing the estimated distributions using Jensen-Shannon
divergence. Specifically, Jensen-Shannon divergence mea-
sures the similarity between two probability distribution [42],
and is calculated as follow

δJS (P,Q) = δKL(P||M) + δKL(Q||M) (7)

where M = (P + Q)/2. In the above formula, δKL
is the Kullback-Leibler divergence [43] which measures
the distance of probability distribution P to the reference
probability distribution Q by

δKL(P||Q) =

∫
∞

−∞

p(x) log (
p(x)
q(x)

)dx (8)

The smaller Jensen-Shannon divergence value indicates that
two probability distributions are similar.

4) MODEL COMPARISON
Model comparison evaluates the quality of synthetic data
on training the machine learning models. More specifically,
both the original data and synthetic data is split into 80% of
training set and 20% of test set. After that, the LightGBM
classification model or regression model is trained on the
synthetic training set, and test on the original test set.
For the regression task, we report RMSE, R2, and Spearman
correlation coefficient. Specifically

• RMSE is the root mean square error which measures the
average difference between the predicted values from
a regression model and the actual values [44]. It is
calculated as follow

RMSE =

√∑N
i=1(ŷi − yi)

N
(9)

• R2 (or say coefficient of determination) represents how
well the data fit the regression model [45]. Specifically,
let y be the mean of all observation y, and ŷ be the

predicted value from the model, R2 is calculated as
follow

R2
= 1 −

∑N
i=1(yi − ŷi)2∑N
i=1(yi − y)2

(10)

• Spearman correlation coefficient is the statistical
measure which check the linear correlation between two
populations [46]. Given a pair of same feature from
original dataset and synthetic dataset Xori and Xsyn, the
score of Spearman is calculated by

ρXori,Xsyn =
E((Xori − µXori )(Xsyn − µXsyn ))

σ (Xori)σ (Xsyn)
(11)

where µ is the mean and σ is the standard deviation
of the population. The overall score of Spearman is
the geometric mean of all features. We expect higher
Spearman value since score 1 means two populations
perfectly fit the linear correlation.

And for the classification task, we report accuracy, precision,
recall, and Matthews correlation coefficient. Specifically,
in the classification task, we notate TP, TN , FP, FN as the
value of true positive, true negative, false positive, and false
negative returned from the confusion matrix,

• Accuracy evaluates the ratio of number of correct
predictions over the total number of predictions.

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(12)

• Precision evaluates the ratio of number of correct
positive predictions over the total number of predicted
positive cases.

Precision =
TP

TP+ FP
(13)

• Recall evaluates the ratio of number of correct positive
predictions over the total number of actual positive
cases.

Recall =
TP

TP+ FN
(14)

• Matthews correlation coefficient evaluates the predic-
tion performance by summarizing the entire confusion
matrix.

MCC=
TN ∗ TP−FN ∗ FP

√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

(15)

For all those classification metrics, the value close to 1 will
indicate the better performance.

C. SCOTT-KNOTT ANALYSIS
To perform significant test, we utilize the Scott-Knott
Analysis. We choose Scott-Knott analysis since (a) it is fully
non-parametric and (b) it can reduce the potential error during
the analysis with only at most O(log2(N )) statistical tests for
the O(N 2) analysis.
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TABLE 3. Privacy preservation score. Higher values are better. The dark gray cell marks the algorithm in the highest rank by Scott-Knott analysis, and the
light gray cell marks the algorithm in the second highest rank.

TABLE 4. Statistical similarity score. The overall score is evaluated through SMAPE in equation 6. Smaller values are better. The dark gray cell marks the
algorithm in the highest rank by Scott-Knott analysis, and the light gray cell marks the algorithm in the second highest rank.

In our experiment, we repeat each synthetic data generation
algorithm 10 times since they are stochastic. With a list of
candidates C , where each candidate ci is a list of results from
10 repeats for a certain synthetic data generation algorithm,
Scott-Knott recursively partitions C into two sub-lists C1 and
C2. The split is based on the expected mean value before and
after the division, which the goal is to maximize the expected
mean value [47], [48], [49]. The delta of expected mean value
before and after the split is calculated as follow:

E(1) =
l(C1) · |µ(C1) − µ(C)| + l(C2) · |µ(C2) − µ(C)|

l(C)
(16)

where l is the length function to count the length of each list.
After the split is finished, Scott-Knott will then utilize

the Cliff’s Delta procedure to check if two sub-lists differ
significantly by

Delta =

∑
x∈C1

∑
y∈C2


+1, if x > y
−1, if x < y
0, if x = y

|C1||C2|
(17)

More specifically, Cliff’s Delta estimates the probability that
a value in the sub-list C1 is greater than a value in the sub-
list C2, and then minus the reverse probability [50]. If Cliff’s
Delta is equal or greater than 0.147 (i.e. Delta ≥ 0.147) then
it is not a small effect [51].

VII. RESULTS
In this section, we present our experimental results, and
answer RQs based on the results.

RQ1: When considering the privacy, which synthetic data
generation algorithm can generate the synthetic data with the
highest privacy preservation? To evaluate the synthetic data
in terms of privacy, we implement the Privacy Preservation
metric to evaluate the privacy score. As we described in
Section VI-B, privacy preservation evaluates the distance
from the synthetic data point to the density of the region
of the k-nearest neighbors of the closest original data point.
We calculate such distance ratio for all synthetic data
points, and take the geometric mean as the final privacy
preservation score for the synthetic dataset. As mentioned in
Section VI-B1, higher score refers to better privacy. However,
the score of 1 already indicates that the synthetic data lies
out of the density region of its closest original data point.
Hence, in this research question, we consider an approach
with good privacy preservation if its score is greater or equal
than 1. Table 3 presents the experimental results. At first
glance, DataSynthesizer has higher raw values than any other
algorithms. However, those methods with score equal or
greater than 1 will not induce the privacy issue in the real
world application. Hence, if a method is not in the highest
rank through statistical testing but its raw value is equal or
greater than 1, we still consider it as a good method and
marked them with grey color in Table 3.

As we can see, synthetic data generated by DataSynthe-
sizer has the highest privacy score. After that, Howso engine
has promising performance on 6 case studies. SDV and
recursive random projection do not perform well in terms of
privacy preservation. Hence, our answer to RQ1 is

DataSynthesizer and Howso engine are two promis-
ing algorithms that can generate synthetic data with
good privacy preservation score. If we only consider
privacy, the result would recommend DataSynthesizer.
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TABLE 5. Marginal distribution similarity score. The overall score is the mean of the Jensen-Shannon divergence scores calculated by equation 7 through
all features. The dark gray cell marks the algorithm in the highest rank by Scott-Knott analysis, and the light gray cell marks the algorithm in the second
highest rank.

However, as we will discuss in the RQ5, the evaluation
of synthetic data cannot only concentrate on the privacy,
and therefore, we recommend Howso engine more than
DataSynthesizer.
RQ2: Which synthetic data generation algorithm can

generate data that has higher similarity to the original data?
Similarity is another important measurement on checking if
synthetic data can provide same information as original data
does. We implement statistical similarity score and marginal
distribution similarity score to evaluate the synthetic data.
Specifically,

• Statistical similarity score evaluate the synthetic data by
comparing its statistical measurements to the original
data for each feature.

• Marginal distribution similarity score evaluates the
synthetic data from the estimated marginal probability
distribution of each feature.

Table 4 shows the statistical similarity score, which
is calculated by evaluating the SMAPE of 14 different
statistical measurements in synthetic data and original data
(described in §VI-B2). From this table, we can find Howso
engine and recursive random projection algorithm have better
performance in more case studies than any other algorithms.
This indicates that the synthetic data generated by Howso
engine and recursive random projection algorithm can better
capture the statistical patterns in the original data. More
specifically, the large SMAPE scores on DataSynthesizer
reduce its advantage on the privacy preservation since the
synthetic data generated by it does not follow the statistical
patterns in the original data.

Table 5 presents the marginal probability distribution
similarity score, which is calculated by Jensen-Shannon
divergence. Specifically, the marginal distribution is esti-
mated through the KNN density estimation in numeric
features and normalized value counts in categorical features.
Different to the statistical similarity, this metric concentrates
more on the estimated local probability distribution of each
feature and check if the probability distribution of the same
feature from synthetic data and orignial data is similar or not
through Jenson-Shannon divergence. As we can see, most of
the algorithms get good scores except DataSynthesizer, which
is also shown to have worse score in statistical similarity
score.

FIGURE 1. Runtime of different synthetic data approaches.

For all other algorithms except DataSynthesizer, we prefer
Synthetic DataVault withGaussian Copula, recursive random
projection, and Howso engine since they both perform
well in two similarity metrics. Hence, our answer for RQ3
is

Considering two different similarity measurements,
Synthetic Data Vault with Gaussian Copula, recursive
random projection, and Howso engine achieve good
performance in both two metrics. Thus, we recommend
these three algorithms when evaluating the similarity.
RQ3: When the machine learning model is trained

on the synthetic data, can the model achieve compatible
performance with those trained on the original data? The
model performance score is a very important indicator to
evaluate the synthetic data. We split both the original data
and the synthetic data to 80% training set and 20% test set.
Then we use the model trained on the synthetic training
data to predict the test set split from the original data.
As stated in Section VI-B, for the classification task we
collect accuracy, precision, recall, and Matthews correlation
coefficient, and for the regression task we collect RMSE, R2,
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TABLE 6. Model comparison score. Classification tasks are evaluated by accuracy, precision, recall, and MCC, while regression tasks are evaluated by
RMSE, R2, and spearman. The dark gray cell marks the algorithm in the highest rank and the light gray cell marks the algorithm in the second highest rank.
Due to space reason, DataSynthesizer is simplified to DS, synthetic data vault is simplified to SDV, and recursive random projection is simplified to RRP.

and Spearman correlation coefficient. Table 6 shows the
scores of these metrics. As we can see, in all metrics,
Howso engine and recursive random projection framework
get significant higher performance than other two state-of-
the-art algorithms. Therefore, we conclude that the synthetic
data generated by these two algorithms can be applied to
the real world machine learning models without loss on the
information. Based on above, our answer to RQ3 is:

Howso engine and recursive random projection
algorithm can generate synthetic data that does not loss
any original information when training on the machine
learning models.
RQ4: Which algorithm has the best scalability? To answer

this question, we record the runtime of each generation
algorithm. Figure 1 shows the runtime for each generation
algorithm. To visualize the scalability, we first record
the actual runtime for each algorithm in each case study.
The scatters shows the point (x, y) where x is the size of the
dataset, and y is the runtime. After that, we plot the best fitting
polynomial curve, which presents the trending of the runtime
when the size of the dataset is increasing. Aswe can see, when
the size of the dataset is small, all algorithms have similar
runtime. However, when the size of the dataset becomes

larger (e.g. 40k+ rows), the runtime of Howso engine and
GAN based algorithm increases exponentially (i.e. the blue
line and the pink line). To the contrary, our proposed recursive
random projection algorithm, along with DataSynthesizer
and Synthetic Data Vault with Gaussian Copula, have better
efficiency, which the best fitting curve of runtime is close
to linear with low slope even though the size of the
dataset goes exponentially large. Hence, our answer to RQ4
is:

Our proposed recursive random projection frame-
work, along with DataSynthesizer and Synthetic Data
Vault with Gaussian Copula have the best scalability even
when the size of the dataset is very large.
RQ5: What recommendation can we provide from ana-

lyzing the conclusions from RQ1 to RQ4? Evaluating
synthetic data needs to consider multi-dimensional criteria.
To empirically evaluate all performance from RQ1 to RQ4,
we transfer each criteria to a 0-1 range and use the radar chart
to visualize the performance. Specifically

• For privacy preservation, all scores greater than 1 are
treated as 1, and all other values will not be modified.
The overall score of an algorithm will be the geometric
mean of its scores in 10 case studies (If an algorithm
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FIGURE 2. Radar chart of scores in multi-dimensional criteria.

has score 0, then we use 0.001 when calculating the
geometric mean).

• For statistical similarity and marginal distribution
similarity, the scores are 1 minus the values in Table 4
since smaller is better in these two metrics. The overall
score is also the geometric mean through 10 case studies.

• For model comparison, the negative correlation coeffi-
cient will be treated as 0.001 since negative value means
no correlation. We first calculate the geometric mean
of each algorithm for each individual metric, and then
calculate the geometric mean again for 7 metrics.

• For scalability, we transfer the actual runtime by
minmax scalar in each case study. Then the overall score
will also be the geometric mean through 10 case studies
for each individual algorithm.

We select 4 algorithms to be presented in our chart.
The first one is the correlation mode of DataSynthesizer.
We do not choose independent mode since it is worse than
correlation mode in privacy preservation, and similar to
correlation mode in other metrics. The same procedure is
applied to Synthetic Data Vault and the Gaussian Copula
mode is selected. Hence in the chart, we have above two
algorithms plus recursive random projection and Howso
engine.

Figure 2 presents the radar chart of (a) DataSynthesizer
with correlated mode, (b) SDV with Gaussain Copula,
(c) Recursive Random Projection, and (d) Howso Engine.
As we can see, the area covered by DataSynthesizer and
SDV (blue dash line and orange dash line correspondingly)
are obviously less than the area covered by Recursive
Random Projection and Howso Engine. Hence, we offer two
recommendations based on the analysis, and answer RQ5:

• As seen in Figure 1, runtime between different
methods does not differ too much. Hence, if the
scalability is not an issue, then we recommendHowso
Engine since it can achieve higher accuracy score and
promising privacy preservation score.

• However, if the dataset that needs to be synthesized is
very large, and scalability becomes more important,
we recommend our proposed Recursive Random

Projection since it scales very fast and generate high
accurate synthetic data.

VIII. THREAT TO VALIDITY
A. CONSTRUCT VALIDITY
mainly related to the different parameters setting and model
constructionwhich causes the different outcome. In our study,
the threat of construct validity can happen in (a) the parameter
choice in different generation models and (b) the choice
of settings when evaluate the synthetic data. For example,
the cluster size in our proposed random projection based
framework can influence the performance of generating
synthetic data. We empirically evaluate the different sizes of
cluster and choose 12 as the parameter in our experiment.
For another example, when we evaluate the synthetic data
by training the machine learning model on it, we use the
80% train test split on both original data and synthetic
data. Different train test split ratio may cause different final
outcome. The train test split ratio we used is the default
setting which highly used in other machine learning studies.
To reduce the threat, we build our experimental scripts as
a python package, and allow researchers to replicate our
experiment with their own parameter choice.

B. CONCLUSION VALIDITY
refers to the threat that caused by applying different
evaluation metrics when make the conclusion. To mitigate
this threat, we apply four metrics (privacy preservation,
descriptive statistics, marginal probability, and model com-
parison) which include most of the evaluation aspects of
synthetic data in the past literature. Researchers may expect
different conclusion when applying different metrics on our
methods.

C. INTERNAL VALIDITY
focuses on the correctness of treatment caused the outcome.
To reduce the effect caused by this threat, we collect ten
highly used machine learning benchmarks from PMLB and
run all algorithms on those ten benchmarks. Also, we control
the size of synthetic data and make it equal to the size of the
original data.

D. EXTERNAL VALIDITY
indicates the threat of applying this experiment to other fields.
To mitigate this threat, the experimental goal of our study
focuses on the machine learning object, which is one of
the most well-known regions in the real world application.
Moreover, our replication package can be applied to different
datasets, which allows researchers to explore other real world
application with our scripts.

IX. CONCLUSION
In this study, we explore the synthetic data generation
algorithms and discuss the different validation metrics.
We proposed recursive random projection based genera-
tor, and compare it to (a) two state-of-the-art generation
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algorithms DataSynthesizer and Synthetic Data Vault, and
(b) theHowsoEngine from our industiral partner.We evaluate
those synthetic data generators from (a) privacy preservation,
(b) statistical similarity and marginal probability distribu-
tion similarity, (c) model performance comparison, and
(d) scalability.

In privacy measurement, we find DataSynthesizer has the
highest privacy preservation score through all case studies.
Howso engine ranks behind the DataSynthesizer. However,
when considering the similarity measurements and model
comparison score, Howso engine and recursive random
projection based framework get far more higher score than
DataSynthesizer. Hence, we conclude that DataSynthesizer
adds too much noise to the synthetic data which the fake
points lie out of the original distribution and patterns.

By conducting the empirically analysis to five evaluation
criteria, from the radar chart in RQ5, we offer two
recommendations:

• If scalability is not an issue, then we recommend Howso
Engine which has highest accuracy performance and
promising privacy score.

• However, when the dataset is large enough, which will
cause the scalability issue, we recommend recursive
random projection based framework since it scales fast
and can achieve highest accuracy performance.

In the future work, we will explore more synthetic data
generation algorithms, as well as more benchmarks. More-
over, current recursive random projection based framework
does not particularly add differential privacy operators. In the
future, we will design such operators based on the condition
in each cluster, and improve its privacy preservation score.
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