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ABSTRACT Accurate vehicle localization at the level of individual lanes is crucial to ensure the safe and
efficient operation of autonomous vehicles, serving as a cornerstone for the development of future Advanced
Driving Assistance Systems (ADAS). Contemporary localization methods relying on Global Navigation
Satellite Systems (GNSS) often fall short of achieving the necessary precision, necessitating the involvement
of additional systems. These supplementary systems frequently depend on the output of road line detectors,
whose performance can be hindered by various factors, including adverse weather conditions and heavy
traffic, resulting in noisy or sporadically missing data. This study introduces a probabilistic algorithm
designed to precisely estimate the actual lane positioning of a vehicle in the specific context of multi-lane
roads, such as highways, without relying on GNSS data. The proposed algorithm is built upon a Hidden
Markov Model that exploits the output of a generic line detector, a common component of contemporary
driving assistance systems. This model ensures consistent lane localization estimates even when faced with
noisy or intermittently missing data. Experiments demonstrate the algorithm’s effectiveness, providing a
reliable estimate of the vehicle in-lane position in challenging datasets containing highway scenarios with
hundreds of lane changes. This contributes to the enhancement of existing literature, achieving an accuracy
of 86.71% over a segment exceeding 50 km. These results, improving by almost 10% over our previous
efforts, suggest that our approach has the potential to enable new ADAS functionalities and offer a robust
localization scheme for use in the context of autonomous driving scene understanding.

INDEX TERMS Ego-lane-detection, multi-lane roads, lane-localization, vehicle-localization, self-
localization, highway-like scenarios, sequential integration, filtering, road markings, line-detector, faulty
sensor, fault tolerance, hidden-markov-models, transient failure models.

I. INTRODUCTION
Autonomous vehicles require an accurate localization and
perception of their surrounding environment to safely plan
their actions. Indeed, localization and perception are highly
correlated concepts that entail two different strategies. On the
one hand, we can consider metric localization, typically
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conducted by aligning metric maps with centimeter-level
accuracies. Here, general localization can be viewed as
the process of matching the perceived metric information
within the corresponding position on maps. Positioning for
autonomous vehicles cannot rely solely on Global Navigation
Satellite Systems (GNSSs) such as GPS, BeiDou, Glonass,
or Galileo. This is because GNSS signals can be disrupted
by multipath propagation and physical barriers, resulting in
poor position accuracy or even a complete loss of signal (no
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estimate). On the other hand, we can envision a semantic
localization process where a vehicle needs to locate itself
within its perceived surroundings. In an effort to integrate
these two perspectives, navigation modules often combine
GNSS data with information from various sources. These
may include road network graphs and common features
such as buildings, crossing areas, and roundabouts [1],
[2], [3], [4], [5], [6]. These data can be obtained from
cartographic services such as OpenStreetMap, making maps
a valuable resource for enhancing vehicle localization
accuracy. Although methodologies based on GNSSs and
maps, often referred to as lock-on-road procedures, see
e.g., [7] and [8], lead to remarkable improvements in
localization accuracy, they typically do not achieve lane-level
localization, i.e., accuracies on the order of 0.1 m [9]. Lane-
level localization is crucial for the safe and efficient operation
of autonomous vehicles. It encompasses two distinct but
interrelated challenges. On the one hand, it might refer to
identifying the specific i-th lane currently occupied by the
vehicle on multi-lane roads, a problem also known as host-
lane or ego-lane estimation. This information is essential for
higher-level tactical control and maneuver planning, such as
deciding when to change lanes or take an exit, situations
where typical GNSS methods are prone to fail. This is the
case where the role of semantics becomes crucial, paving
the way for safe and reliable autonomous driving along with
the introduction of new Advanced Driver Assistance System
(ADAS), as they could be a Lane PositioningWarning System
or a Lane Change Assist, where the vehicle actively assists
the driver to maintain the correct lane within a traced route.
On the other hand, lane-level localization might also refer
to estimating the vehicle’s lateral or metric position within
its lane or on the road. This is critical for lower-level lateral
control of the vehicle, ensuring it stays safely within its
lane. Lane Departure Warning (LDW) is a common ADAS
designed for this purpose, helping prevent accidents caused
by unintentional lane departures. In both cases, solutions
conceptually involve the optical detection of road lines or
other road markings, using images from onboard vehicle
forward-looking cameras. These detected lines are then
processed to determine the vehicle’s position at the time
of image capture. This work addresses the first category of
problem: the semantic ego-lane identification on multi-lane
roads, particularly highways. While conceptually extending
beyond this specific domain, it’s noteworthy that highways
typically feature a greater number of lanes compared to urban
roads, enabling us to emphasize the temporal integration
feature of our proposal. Equally important, datasets and data
collection contribute significantly to the experimental phase.
A dataset lacking a substantial number of lane changes,
acquired from common city roads with just one or two
lanes per driving direction, hampers our ability to derive
meaningful conclusions. For this reason, highway scenarios
allow us to tackle these considerations, enhancing the
robustness of our study and ensuring a more comprehensive
understanding of our approach. We introduce a novel

probabilistic algorithm for ego-lane estimation that aims to
improve the accuracy and reliability of this crucial aspect
of autonomous vehicle operation. Unlike other approaches
in the literature that address the lane detection problem by
proposing an associated line detection module, our algorithm
is modular and reusable. It was specifically developed with
the idea of being easily integrated with any possible line
detection system, making it highly versatile and adaptable.
Our experiments demonstrate that our approach can enhance
even the latest deep neural-based line detectors while
requiring minimal computational resources. Our algorithm is
based on an Hidden Markov Model (HMM) with a transient
failure model, a key feature that allows it to handle inaccurate
or missing road line detections. This is particularly important
in real-world driving scenarios, where road lines may be
obscured, faded, or outside the camera’s Field of View.
By incorporating a transient failure model into our HMM, our
algorithm can effectively account for these uncertainties and
provide more robust and reliable ego-lane estimation.

The paper is organized as follows. Section II provides a
brief overview of the existing ego-lane estimation literature
and Section III describes the road line detectors we used to
feed our HMM model. Section IV describes the proposed
algorithm and SectionV introduces the experimental configu-
rations and datasets. Finally, Section VI critically presents the
experimental results and is followed by concluding remarks.

II. RELATED WORK
Lane-level localization has been extensively investigated
in the last decades. The first achievements were obtained
by the group of Dickmanns and Mysliwetz [10] by intro-
ducing a road representation model based on clothoids
which was updated with image measurements and Kalman
filters. Starting from these results, active research has been
conducted in the subsequent years [11], [12], [13], [14].
Nowadays, lane localization from image data can be broadly
categorized into two groups based on the use, or not, of deep
learning techniques. Regarding traditional algorithms, one
of the most difficult tasks is detecting the road surface.
Achieving good discrimination of the road surface from
other parts of the observed scene is crucial, as it is the
basis for further processing. These algorithms hinge on
heterogeneous techniques for road line detection, including
parametric, semi-parametric, and non-parametric models.
While faded road markings, unusual or specific weather
conditions, or even light variations might severely affect
road surface detection, the visibility of the road surface
is quite frequently hampered by the presence of other
vehicles, thus requiring different considerations to solve the
problem. To pursue lane-level localization, the authors in [15]
propose to exploit the objects present in the surroundings of
the vehicle and to describe the probabilistic dependencies
between the object measurements using a factor graph
model. A similar approach was proposed by the authors
in [16], where they used a Histogram of Oriented Gradients
(HOG) to align images captured by a front-facing camera
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with road lane markings obtained from a map service like
OpenStreetMap. This technique was used to enhance the
accuracy of vehicle localization. To increase the performance
of ego-lane estimation algorithms many authors propose to
exploit additional road information gathered by map services
as well as information provided by GNSSs. In this regard,
an interesting approach is presented in [17], where the authors
tackled ego-lane estimation as a scene classification problem.
They infer the ego-lane number holistically, leveraging both
spatial information and objects around the vehicle, and finally
training the best classifier with different learning algorithms.
In [18] the author presented a robust lane detection and
tracking algorithm combining a particle filtering technique
for lane tracking and RANSAC for the detection of lane
boundaries. This work detects the boundaries of the left and
right lanes separately, without exploiting fixed width lane
models, and combines lane detection and tracking within a
common probabilistic framework. The authors in [19] and
[20], respectively in highway and urban scenarios, propose to
exploit boosting classifiers and particle filtering approaches.
Similar research was performed by [21], where multiple
pieces of evidence from a visual processing pipeline were
combined within a Bayesian Network (BN) approach. Closer
to our proposal are the works in [22], [23], and [24], where
the authors specifically address the multiple-lane detection
problem. In [22] multiple lane detections are performed after
the first processing phase, where the authors identify the
ego-lane geometry. Adjacent lanes are then hypothesized
and tested, assuming the same curvature and width for all
lanes, a fair assumption for most multi-lane roads. Similarly,
the work proposed in [23] considers highway scenarios
and parallel lane markings, concerning the detected ego-
lane. The authors in [24] proposed a multi-lane detection
algorithm based also on a hypothesis generation and testing
scheme, ensuring an accurate geometric estimation using a
robust line fitting pipeline and vanishing point estimation.
More recently, the authors in [25] and [26] proposed a
set of algorithms leveraging BN approaches to estimate
vehicle localization at different stages. For an updated
survey of state-of-the-art localization methods in highway
scenarios, the reader can refer to Laconte et al. [27], which
excellently extends the survey by Bar Hiller et al. [28].
It is worth mentioning that referenced lane detectors come
with an associated proposal for line detection purposes.
This connection may appear evident, given that the concept
of lanes is inevitably linked to the presence of road
markings. However, it works both ways, meaning that the
contributions are specifically tailored to the characteristics
of the line detection method employed. In contrast, our
approach does not rely on insights derived from a particular
feature detector, providing a more versatile and independent
solution. With the advent of deep learning and Convolutional
Neural Networks (CNNs), the landscape surrounding line
detection, and consequently, lane detection algorithms,
changed dramatically. Traditional ad-hoc schemes for line
detection have been replaced by advanced segmentation

tasks with per-pixel predictions [29] and a plethora of new
algorithms outperformed first-generation approaches. It is
noteworthy that the majority of these algorithms primarily
focus on lane detection by identifying current lane boundaries
concerning adjacent lane markings. This strategy proves
to be especially beneficial for LDW systems. However,
it falls short in situations that require precise tactical control
and maneuver planning on highways. In these instances,
it becomes essential to have a precise understanding of
the vehicle’s exact position within the current lane of the
highway. As a practical example, when preparing to exit a
highway, it is essential to make a lane change to the right
well in advance to ensure a safe and smooth transition. Recent
works, such as the contribution from Xu et al. [30], propose
the CurveLanes dataset. This dataset, along with the CULane
[29], TuSimple [31], LLAMAS [32] and ELAS [33] datasets,
are extensively used as benchmarks for lane detection with
deep-learning techniques. State-of-the-art algorithms from
Tabelini et al. [34], [35], Feng et al. [36], Zheng et al. [37]
and Qin et al. [38] use these datasets for benchmarks. Other
recent advances in the field of line detection include theworks
in [39] and [40]. In these studies, the authors exploit quick
connections and gradient maps for effective learning of lane
line features. Furthermore, they incorporate a hierarchical
semantic segmentation network as the scene feature extractor.
However, it is important to note that all these very popular
datasets contain a limited number of lane changes compared
to the number of frames per dataset. The CurveLanes dataset,
a huge 150K frame dataset recorded in multiple cities in
China by Huawei, is unique in that it contains carefully
picked frames so that almost all images contain at least
one curve [30]. While this avoids an imbalance of images
containing straight lines (such as in TuSimple and CULane)
it means that the images cannot be used as a sequence,
preventing any exploitation of temporal consistency such as
in this work. Finally, the limited number of lane changes
present in other datasets hamper the actual evaluation of our
proposal, which relies on existing line detection algorithms.
Unlike other works that propose entirely new detection
pipelines for ego-lane estimation, our approach represents
a comprehensive and improved iteration of our previous
contribution [41]. This encompasses a meticulously revised
stochastic model with a novel parameterization that alters
how uncertainty is distributed over time. This new work
includes an entirely new set of experiments, incorporating
extreme weather conditions and a diverse range of line
detectors from both computer vision and neural network
algorithms. Our focus extends beyond the improvement of
a line detector. Rather, we emphasize the refinement of the
ego-lane estimation process itself. This enhancement not
only augments the capabilities of virtually any line detector
but also introduces a systematic approach to address lane
identification on multi-lane roads.

Before delving into the core of our proposal and effectively
demonstrating the significance of the proposed probabilistic
model, we present our extensive research aimed at identifying
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freely available line detectors. From a technical perspective,
these algorithms can be categorized into two major clus-
ters. The first group encompasses model-driven algorithms,
including traditional computer visionmodels that break down
the goal into several subcomponents. The second group is
represented by monolithic algorithms falling under the end-
to-end paradigm, predominantly represented nowadays by
Deep Neural Network (DNN) approaches. Regarding the
first group, despite the extensive literature on line detection,
as the problem has been investigated since the beginning of
digital image processing, very few of these algorithms are
freely available. In this context, we present the following two
algorithms that we have identified.

• The proposal by Mohamed Aly [42], which exploits a
robust approach based on a line/bezier tracker and a
RANSAC procedure. This algorithm is able to detect
an arbitrary number of lines on the road surface,
making it one of the most complete and well-performing
algorithms we found. However, the publicly available
software does not include the tracking module, and
the number of tuning parameters is overwhelming
(about one hundred). These aspects make this software
extremely hard to use, and despite our efforts, we have
not been able to find a reasonably good configuration.

FIGURE 1. The figure illustrates a scenario with high contrast, where our
basic line detector faces challenges in identifying a substantial portion of
the road markings.

In conclusion, this option, although very appealing,
could not be used in our experimental activity.

• The solution proposed by Hur et al. [43] (MLD in the
following), which detects a maximum of four lines,
corresponding to the markings of the current lane as
well as of the two neighboring lanes. We were able to
adapt this software to meet our specific requirements
by introducing a procedure for determining whether a
detected line is dashed or continuous.

From a technical perspective, both solutions use a monocular
configuration and rely solely on the extrinsic projection
parameters to determine the distance of each line from
the vehicle, exploiting the BEV/IPM image. Regarding
the DNN-based line detection category, the availability of
open-source solutions is massive. To provide the reader with
an effective example of current state-of-the-art performance,

in the next section, we will briefly introduce a proposal from
the NVIDIA autonomous vehicle software stack.

III. PRE-PROCESSING
This work aims to accurately determine the vehicle’s lane
position using images captured from front-facing cameras.
With this in mind, this section briefly describes the line
detection and tracking algorithms used in the experimental
activity. We refer to these activities as pre-processing to
emphasize the fact that our proposal can be virtually fed using
the output of any road line detector. A line detector, as defined
in this work, is a software component designed to identify
the relative position of both dashed and continuous road lines
with respect to the vehicle. When combined with a method to
associate detected lines across consecutive frames, we refer
to it as a line detector and tracker. Hereafter, we introduce our

FIGURE 2. Line detection outputs using our basic line detector (upper
image) and NVIDIA MapNet (bottom image), which correctly identify both
road markings and road boundaries.

basic line detector and tracker, capable of working with both
stereo and monocular camera configurations. This algorithm,
requiring both intrinsic and extrinsic camera projection
parameters, encompasses the following procedural steps.

• Firstly, our algorithm extracts contours of road mark-
ings from the Bird’s Eye / Inverse Perspective View
(BEV/IPV), discarding those with areas below a param-
eterized threshold. The BEV/IPV image is computed
using a homography matrix based on intrinsic camera
values and extrinsic values concerning the road surface.
Contours in the BEV image are determined using the
algorithm proposed in [44].

• Subsequently, our algorithm fits a fixed number of
lines or clothoids onto the detected contours, aiming to
cover the maximum contour areas. In the presence of a
stereo camera configuration, the algorithm leverages it
to exclude lines or clothoids not lying on the ground
plane. The ground plane equation is computed using
the output of the ELAS [45] stereo algorithm, providing
both monocular and stereo versions of the algorithm.
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• The area of the contour points falling under the line or
clothoid is utilized to determine the line type, whether
dashed or continuous.

• Lastly, the parameters of each line or clothoid are
updated using a Kalman filter.

In addition to per-frame analyses, for each detected line, our
line detector and tracker keeps track of the detection during
the last k = 10 frames. The number of times the line is
detected in consecutive frames is taken as Line Reliability
Index (LRI). Furthermore, once the LRI counter reaches its
maximum value, a flag, hereinafter referred to as ‘‘isValid’’,
is set for each line. To reset the flag, the counting continues
with hysteresis, ensuring the flag is not reset until LRI
goes below a certain fraction of its maximum value. This
basic line detector achieves good performance only under
optimal illumination conditions, and as shown in Figure 1,
dashed lines and shadows are not always handled correctly.
Nevertheless, it allowed us to evaluate the effectiveness of
our main contribution, designed to enhance vehicle ego-lane
estimation based on the measurements from a noisy line
detector.

FIGURE 3. This image shows a typical scene of moderate traffic on Italy’s
A4 highway. Although congestion is only moderate, most road markings
are obscured by vehicles.

We have already emphasized that our proposal stands apart
from the existing lane detection literature and is orthogonal
to the line detection problem addressed by common neural
network approaches. In straightforward terms, our method
is designed to complement existing line detectors, crafted
for achieving ego-lane identification on multi-lane roads.
To offer readers a concrete example of current state-of-
the-art performance, we have opted to utilize the available
software from the NVIDIADrive Perception package, known
as MapNet [46]. This choice enables us to demonstrate the
effectiveness of our approach when seamlessly integrated
with cutting-edge technology. NVIDIA MapNet provides
information about the road markings (solid, dashed, and road
boundary) and uses an internal tracking module that allowed
us to create an LRI value to match our aforementioned
proposal. The results of the NVIDIA proposal, as illustrated
in Figure 2, showcase the technological advancements
which provided by DNN approaches compared to traditional
computer vision algorithms. However, from our view, a trust-
worthy ego-lane estimation algorithm should not solely rely
on line detection modules, even when leveraging cutting-
edge DNN techniques. The reason for this is that the task
of precisely detecting all road lines in real-time, frame by

frame, continues to be challenged by ever-changing road
conditions and traffic dynamics. Therefore, it calls for a
more sophisticated lane tracking component, such as the one
introduced in our proposal, to guarantee robust performance.

IV. PROPOSED ALGORITHM
Together with the road line detections, our algorithm
leverages the plausibility provided by each line to determine
the current vehicle’s lane. Consider, for example, the scenario
depicted in Figure 1, a highway with three lanes L1, L2, and
L3 and, consequently, four lines. Also, consider the situation
where only one line (highlighted in green) is detected and
the line detection algorithm informs us that the lane is at a
distance λ ≈ 5.4 m. By combining this information with
the regulated standard lane width (approximately 3.5 m),
the probabilities of being inside a specific lane L would
be distributed as [0.0; 0.5; 0.5]. The concept of leveraging
the plausibility provided by each line, a process repeated
for all detected lines, combined with our model, enables
us to effectively address the ego-lane estimation problem.
The algorithm is designed to accurately determine the
vehicle’s ego-lane under highway-like conditions. These are
scenarios where the road layout is consistent and unaffected
by elements such as exit ramps or splits. To achieve this
task, the algorithm takes into account the positions of the
detected road lines in relation to the vehicle and the number
of lanes on the current road. This lane count information,
which is essentially an input to our system and for which
we do not take into account potential inaccuracies, can be
obtained from various methods, such as a GNSS device
coupled with a cartographic service such as OpenStreetMap.
Our algorithm employs a probabilistic model to track the
dynamic changes in the vehicle’s lane position over time.
It is designed to handle temporary, intermittent failures of
the underlying line detector, as well as the inherent noise
in its measurements. Designed for versatility, our approach
is agnostic to the particular line detection algorithm in use,
enabling us to assess its performance improvements by
seamlessly integrating it with the outputs of virtually any line
detection system. In fact, the process of ego-lane estimation
can be viewed as a natural outcome of the results generated
by a line detection procedure. The precise positioning of
all road lines relative to the vehicle enables us to derive
ego-lane information through straightforward geometric
calculations, performed on a per-frame basis. However,
it is worth noting that algorithms designed to identify road
lines often face challenges when faced with various adverse
conditions. These challenges can include shadows, faded
road markings, visual clutter from nearby traffic, or adverse
weather conditions as illustrated in the first image of Figure 2
and in Figure 3. To enhance line reliability, we incorporate
line detections with the aforementioned LRI value, which
assesses the trustworthiness of each detection. This index,
in conjunction with our proposed model, allows us to manage
the inherently noisy outputs of the line detectors. We address
the challenge of ego-lane estimation through a probabilistic
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approach, enabling the system to deduce its ego-lane by
leveraging sequential observations over time, even if they are
occasionally incomplete. To achieve this, we propose the use
of anHMMwith a lane variable capable of assuming n values,
corresponding to the known number of lanes on the current
road.

The following subsections provide a comprehensive
description of each component of our proposal. In an effort to
facilitate comparisons with future works, we have published
the core of our proposal in the following public repository:
https://github.com/trigal/egolanecode-paper.

FIGURE 4. An illustrative example demonstrating the calculation of the
tentative vector based on the three detected lines.

A. TENTATIVE VECTOR AND RELIABILITY OF THE WHOLE
DETECTION
To exploit the measurements provided by a generic line
detector and tracker as discussed in Section III, we derived
a probabilistic inverse sensor model that exploits both the
detected lines’ spatial information, i.e., the distances from the
vehicle, and the associated LRIs. The processing pipeline is,
therefore, composed as follows. First, the detected lines are
sorted in ascending order based on their lateral offset with
respect to the vehicle. Then, a vector of counters, sized to
match the number of lanes, is generated and initialized with
zeros. From a technical perspective, each element within this
corresponds to one of the lanes of the current road. We term
this vector of counters as Tentative Vector, representing the
distribution of belief regarding the state based on the obtained
measurements. Essentially, a Tentative Vector aggregates all
the assumptions that we can make with the detected lines.
The values within this vector are determined through iterative
execution of the following steps for all the valid lines, e.g.,
those lines for which the ‘‘isValid’’ flag is set, while also
considering whether each line is dashed or continuous.

• We increment the i-th position of the Tentative Vector
by 1 if it aligns with the measurement, indicating that
the vehicle’s position in the i-th lane is consistent with
the line distance. This step is designed to accumulate the
plausibility of the vehicle being in the i-th lane based on
the detected lines.

• For continuous line detection, an additional Bonus Value
(BV) is introduced to enhance the corresponding Tenta-
tive Vector position, determined by the distance from the
line. This enhancement recognizes that continuous lines
generally provide more reliable information and often
occupy the road’s outermost positions.

Finally, we normalize the Tentative Vector values to sum up
to one. In a manner similar to what was shown in Figure 1,
Figure 4 illustrates an example within a four-lane highway
where the line detector identified three non-continuous lines
out of a total of five. After considering all three detected lines
identified by the red, green, and blue marks, and following
this ordering, the building steps for combining the overall
lane plausibility intuition in the tentative vector are shown
in the upper part of Figure 4. In detail, the detection distance
of the red line is compatible with all four lanes. The detection
of the green line is compatible with lanes L1, L2, and L3.
Lastly, the detection of the blue line is only compatible with
L1 and L2. The normalized sum of these compatibilities
generates the overall Tentative Vector forL1...4, which results
as [3⁄9;3⁄9;2⁄9;1⁄9]. In addition to the Tentative Vector, as we
iterate through all the lines we also accumulate the LRI
counters and subsequently calculate the ratio in relation to
the maximum LRI value obtainable, multiplied by the current
expected number of lines. This calculated value serves as
an indicator of the overall reliability of all line detections
within the current frame, and we refer to this value as the
current Whole Output Reliability (WOR) of the detector.
This, in turn, can be viewed as an assessment of whether
the sensor is functioning correctly or not. It is important to
note that some of these rules may not be suitable for every
line detector. For example, if a particular line detector does
not provide a continuous flag or a reliability index for each
line, the set of rules must be adapted to yield a frame-level
Tentative Vector and an overall WOR.

B. HMM WITH TRANSIENT FAILURE MODEL
To tackle the challenge of ego-lane estimation failures,
referred to as ‘‘sensor failures’’, occurring when the sensor
cannot reliably determine the ego-lane state variable, we have
introduced a filtering algorithm based on an HMM. This
algorithm incorporates a state variable that represents the
sensor’s functionality, allowing it to account for potential
inaccuracies in the sensor’s readings. For more information
on HMMs, readers may refer to [47]. The proposed model
enables us to leverage incomplete and/or noisy road-line
observations in a probabilistic fashion. This allows us to more
accurately predict the current ego-lane while also estimating
whether the sensor is properly working or not. In our
opinion, this additional degree of flexibility, specifically the
explicit modeling of the sensor’s operational state as a hidden
variable, allows for better performances when compared
to the estimation of the ego-lane variable. It provides an
additional layer of adaptability, enabling us to better align the
unknown state variables with the observations. In summary,
the HMM implements a filtering procedure involving discrete
random variables, with each iteration being contingent upon
the specific parameterization of the Equation (1) described
hereinafter.

HMM(n, σ1, σ2, p1, p2, p3, p4, BV) (1)
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Our HMM has four discrete variables, see Figure 5, so for
each time frame we have:

• The hidden Lane variable representing where the
vehicle is currently located. This scalar variable assumes
a discrete value that identifies one of the road lanes.

• The hidden Sensor State variable. A scalar representing
whether the sensor is working correctly or not. The taken
values could be OK or BAD.

• The observable Detector Output variable, which is
homogeneous to the Lane variable and represents an
inverse sensor model.

FIGURE 5. The proposed model, where single-circled variables are
hidden, and the double-circled variables are observable. CPTs are
associated with each of the variables. Temporal
dependencies are indicated with blue arrows.

• The observable Whole Output Reliability (WOR)
variable. Represents a scalar variable taking one value
out of the OK ,BAD possible values.

The dependencies among these variables are described
using Conditional Probability Tables (CPTs), i.e., tables that
outline the probability distribution of a variable based on the
state of its parent variables as shown in Figure 5. In essence,
the CPTs allows us to forward-compute the expected
values of the variables and update them with the current
observations. Table 1 - Lane CPT - describes the dynamics of
the Lane variable, representing the vehicle movement within
the roadway. Our proposal can be summarized as follows:
given a road with n lanes and a Lane value at time t , we model
the Lane variable at time t + 1 using a discretized normal
distribution whose parameters are the i− th Lane at time t as
mean and σ 2

1 as the variance. To better clarify this informal
description, represented by F in the CPT, we provide the
following clarifications. First, we use the normal distribution
to simulate the probability that a lane change will occur in the
next time interval. Therefore, given N (Lanet , σ 2

1 ), we use
the variance σ 2

1 to model how likely is for the vehicle to
change lane during a specific time frame. In essence, a larger
variance suggests a higher likelihood of a lane change in
the subsequent time interval. It is important to note that
σ 2
1 is set according to both the actual speed of a vehicle in

changing lane and the frequency of the ego-lane estimation,
i.e., the image frame rate, which we assume constant in our
experiments. Second, each element of the Table 1 is derived
using the F function formally described in Equation (2),

which depends on the probability density function of a normal
distribution f , see Equation (3).

TABLE 1. Lane CPT.

Table 2 describes the sensor’s dynamics in relation to
its errors, which are, in turn, influenced by the conditions
of the road markings and lighting conditions. Conceptually,
we define that if the sensor is working properly, it will
persist in the proper working state with probability p1, and
transition to produce incorrect outputs with a probability
(1 − p1). Conversely, when the sensor is not operating
correctly, it will remain in such a state with a probability
p2 before transitioning back to the proper working state
with a probability (1 − p2). From a technical perspective,
parameters p1 and p2 aim to emulate the real experience of
a sensor properly working most of the time but occasionally
experiencing consecutive failures.

F(Lanet , Lanet+1) =
f (Lanet+1; Lanet , σ 2

1 )∑n
k=1 f (k; Lanet , σ 2

1 )
(2)

f (Lanet+1; Lanet , σ 2
1 ) =

1

σ1
√
2π

e
−

(Lanet+1−Lanet )2

2σ21 (3)

TABLE 2. Sensor state CPT.

Table 3 describes the Detector Output with respect to the
state of its parents in the HMM: Sensor State and Lane.
To derive each element of this CPT, we introduce two
different functions in a similar way we introduced F for the
Lane CPT: F̃ and U . When Sensor State is in the OK state,
we expect the probability of the detector to identify the correct
lane will follow a normal distribution centered around the
current ego-lane. This behavior is captured by F̃ and differs
from F in two key aspects. Firstly, it uses the output at time
t of the detector instead of Lanet+1. Secondly, it uses the σ 2

2
HMM parameter to represent the accuracy of the sensor in
determining the ego-lane when properly working:

F̃(Lanet , Detectort ) =
f (Detectort ; Lanet , σ 2

2 )∑n
k=1 f (k; Lanet , σ 2

2 )
. (4)

On the other hand, if the Sensor State is BAD, the detector
output becomes independent of the actual lane. As a result,
the values of the CPT follow a Uniform distribution denoted
as U .
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TABLE 3. Detector output CPT.

We can adopt a similar approach to define the CPT for
WOR, which denotes the overall reliability of the sensor’s
output (refer to Table 4). It is worth noting that in our model
the WOR has only one parent but a different model where
WOR depends also on the Lane variable could be considered.
This might be more appropriate for certain situations and/or
line detectors. The parameters p3 and p4 represent the
probability of a correct evaluation of the Sensor State when
the Sensor State is respectively OK and BAD.

TABLE 4. WOR CPT.

Ultimately, all the model parameters described so far need
to be tuned. As the reader can guess, CPT parameters depend
on various factors, including vehicle speed, road congestion
level, and other factors that can influence the performance
of the underlying line detector. Indeed, a primary limitation
of CPT, HMM, and, in general, BN is tied to temporal
dynamics, where the inter-timestep links (the probabilities)
are presumed to remain constant over all time-steps to be
modeled [48]. Given that this assumption can be somewhat
restrictive, addressing temporal variability within BNs is
currently a subject of extensive research. To overcome this
issue, one possible solution is to parameterize the CPT
values to dynamically adapt to specific scenarios that can
be identified, for example, by other situational awareness
modules. Further details about the experimental conditions
are described in the following sections.

C. INFERENCE
To perform inference with our model means to compute the
most probable lane given the Tentative Vector, i.e., the output
of the (inverse) sensor for the Lane and the Sensor State.
Both are in turn based on the outputs of the line detector and
tracker. To compute the belief of the HMM state (i.e., Lane
and Sensor State) at time t + 1, we start from the HMM state
at time t . First, using Table 1 and Table 2, we compute the
expectation at time t + 1 on these variables.

P(Lanet+1 | Lanet ) = P(Lanet ) · Lane-CPT (5)

P(SensorStatet+1 | SensorStatet )
= P(SensorStatet ) · SensorState-CPT (6)

FIGURE 6. The figure depicts an overview of the proposed algorithm. Blue
and green boxes represent the scheme of our ego-lane identification
modules, while the red block includes an existing line detector that we
have incorporated into our system.

FIGURE 7. Vehicle speeds in A4-Italy (above) and A2-Spain (below).
We tried to keep a constant velocity in compliance with traffic conditions,
speed limits, and other constraints.

Then, to incorporate the new evidence carried by the
Tentative Vector and WOR index, we apply the Bayes
formula to obtain the belief of the HMM state at time t + 1.
There are in general two ways to apply the Tentative Vector
and the WOR index as evidence in the inference phase. The
first way is to simply consider the most probable value of
the Tentative Vector and WOR index as ‘‘hard evidence’’
for the belief on the state. Instead, the other way is to consider
the Tentative Vector and the WOR index as ‘‘soft evidence’’
[49]. Since this second way allows for a more complete
representation of the evidence, we have only considered this
approach. Figure 6 visually depicts the schematic diagram of
the proposed model. The blue box is the core of our model,
i.e., the HMM, which is independent of the detector. The
red box is the line detector and tracker, on which we tried
to impose no constraint, keeping our model as general as
possible. Lastly, the green box is the set of rules used to
connect the line detector and tracker output to the HMM.

V. EXPERIMENTAL CONFIGURATION
To effectively validate the enhancements achieved by our
model, we used our dataset collected in real driving
conditions. It is worth noting that our approach significantly
differs from popular datasets described in Section II. While
these datasets’ highway sequences contain only a limited
number of lane changes relative to the number of frames per
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TABLE 5. Statistical analysis of the A4 and A2 sequences, constituting the
dataset employed in our experimental investigation.

FIGURE 8. An image from the A4 dataset showing an annotated lane
change event marked with the crossing flag.

dataset, our vehicle was driven on wide highways with four
and three lanes in Italy and Spain respectively. More statistics
regarding the dataset are available in Table 5. This substantial
number of lane changes is crucial for accurately assessing
our proposal and underscores the thoroughness of our testing
methodology. To the best of our knowledge, no other dataset
is specifically designed for the scope. Our dataset, which
includes Ground Truth (GT) features a Crossing Flag to
denote whether the vehicle is changing lane. This flag is
essential for excluding frames that might introduce ambiguity
in lane assignments, especially during instances of lane
changes (see Figure 8). The first sequence we used was
recorded on the four-lane A4 highway in Italy, spanning from
Bergamo to Milan. The second sequence was recorded in the
surroundings of Alcalá de Henares, Spain, on the three-lane
A2 highway. Both datasets were recorded at 10 fps and have a
resolution of 1312× 540 and 1392× 400 pixels respectively.
As previously mentioned, our model’s parameters depend
on factors such as vehicle speeds and traffic conditions.
We did our best to maintain constant speeds while always
adhering to safety guidelines and country regulations, see
Figure 7. It is important to note that since there is no factor
of non-determinism in the algorithms, a single execution of
the algorithm suffices for our purposes. We believe that the
distance covered in both scenarios is sufficient to evaluate
our work. The experimental setup includes six configuration
settings for each of the two evaluated scenarios, involving
two model-driven algorithms (our basic road line detector
and tracking, and MLD) and one DNN-based approach
(NVIDIA). These twelve configurations are summarized in
Table 6, where we varied the following parameters:

• basic road line detector and tracker (configuration IDs
01-04 and 07-10). Its parameterization includes:

TABLE 6. Experiments configuration.

– Monocular and stereo configuration.
– Feature tracked: line or clothoid.

• MLD [43] with standard parameterization, configura-
tion IDs 05 and 11. We modified the code to include an
analysis of dashed/continuous lines and the LRI counter,
using the same code from our proposed detector.

• NVIDIA Drive Perception, MapNet, configuration IDs
06 and 12. This DNN-based approach has been trained
by NVIDIA to support front cameras with 60° and
120° FoV. Since no camera calibration parameters are
needed, we just adapted the image size accordingly to
the NVIDIA framework specifications.

In addition to their parameters, the first and second
approaches require both intrinsic and extrinsic camera
calibration, which were obtained using standard OpenCV
calibration tools. Our proposal also relies on the parame-
terization of the HMM described in Equation (1). For each
experimental setting, this parameterization was empirically
defined after an optimization phase aimed at identifying
the optimal parameter set with respect to the GT. It is
important to note that the parameters must be distinct for
each experimental configuration since we altered either the
detector configuration (for example, mono/stereo) or the
detector itself. Recognizing the need for further research on
this issue, and to facilitate future researchers in comparing
their work with ours, we have made our datasets and the
associated GT values available online.1

VI. RESULTS
We assessed the localization performances of our proposal
by comparing the ego-lane estimates with GT across twelve
different experimental configurations, including three line
detectors. A glimpse of our results can be seen in Figure 9,
where we showcase a section of the A4 highway along with
qualitative results of our algorithm. This figure compares
the performance of our updated model with our previous
contribution [41]. It also showcases the localization outcomes
derived from our basic detector, indicating the output of
the lane assignment procedure without leveraging the HMM
model. Finally, the figure includes the ground truth for

1The dataset and the annotations are available at
http://www.ira.disco.unimib.it/ego-lane-estimation-by-modeling-lanes-
and-sensor-failures
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FIGURE 9. The image presents a segment of the 4-lane A4 highway in Italy, where areas with more saturated colors indicate a higher probability of being
in a particular lane. The greyed lines visible in all four charts represent transitions between lanes.

FIGURE 10. Ego-lane detection comparison. Black/green colors identify
experiments in Italy(4-lanes)/Spain(3-lanes) respectively. LDT: Lane
Detector and Tracker. TFM: Transient Failure Model.

reference. The effectiveness of our proposal can be quanti-
tatively measured from the 12 experimental results presented
in Figure 10, where the ego-lane classification comparison is
performed between the results of the line detector and tracker
only and the incorporation of the proposed transient failure
model, on a per-frame basis. The numerical results led us to
the following conclusions. Firstly, it is clear that integrating
ourmodel significantly outperforms all stand-alone detectors,
including both model-driven algorithms and DNN-based
approaches. This not only demonstrates the performance of
our approach but also reinforces the need for higher-level
components, even in the era of neural network approaches.
Secondly, from a technical perspective, readers can observe
the performance differences among the three line detectors
used in our experiments. Unsurprisingly, the best results
were achieved using the DNN-based NVIDIA approach.
Conversely, it is noteworthy that the MLD algorithm
encountered significant difficulties estimating the correct
ego-lane on the four-lane highway due to its inherent design
limitations. This becomes evident whenwe examine theMLD
experiments, which demonstrate a substantial performance
improvement. Interestingly, we found that by integrating the

TABLE 7. Comparison with literature and our previous work.

HMM method with any of the evaluated detectors, the final
results were leveled out. This is particularly noticeable in
the MLD experiments, where a significant enhancement in
performance was achieved. In this work, we proposed a
comprehensive set of experimental configurations. Table 7
provides a specific comparison of the performance of this
contribution and the results from Kasmi et al. [26]. Both
evaluations were performed on the same A4 dataset, allowing
for a fair and accurate comparison. Our model, with an
accuracy of 86.71%, outperforms our previous proposal,
which achieved an accuracy of 77.01%. It also improves
upon the proposal from [26] when set up with a comparable
configuration and when a vehicle detection phase is added
into the localization pipeline, where they achieved 78.36%
and 85.35% respectively. The performance enhancement
achieved through our approach is significant, even when
used in conjunction with the NVIDIA line detector approach,
as illustrated in Figure 14. In this figure, we present a
second segment of the four-lane A4 highway. To provide a
clearer understanding of our model’s results, we have opted
to color-code the final output of each approach rather than
the probabilities like we did in Figure 9. It is important to
note that our proposed model effectively refines the already
precise NVIDIA detector at key points, such as the onset
of the first lane change and at its conclusion. Furthermore,
our model enhances accuracy in vacant zones where the
NVIDIA detector chart suggests an equal probability of
occupying more than two lanes. Regarding the NVIDIA
proposal, we tested the performances under challenging
weather conditions as shown in Figure 12. In this sequence,
taken from [50], we analyzed a total of 1651 frames, which
includes one of the few lane changes in over ten recorded
hours. Because of the limited number of lane change events,
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FIGURE 11. Accuracy of lane localization achieved using the line detector alone (a) compared to the improvement observed with the proposed model (b).
Frames in which the detections themselves did not lead to lane estimates are reported as unassigned.

FIGURE 12. An example of NVIDIA line detector output on heavy rain
night conditions.

we opted not to include these statistics in the comparison
with other datasets to ensure a fair assessment. Indeed, the
absence of lane changes in the video sequence suggests
that the model might have incorporated a bias against the
lane change event, making this test of limited significance.
Nevertheless, we gained insights into the functionality of
our model in conditions where line detection reliability was
notably lower compared to the favorable weather conditions
in both our datasets. In a comparison of lane assignment
results, the detector-only approach achieved a mere 22.10%
accuracy, while our model demonstrated a satisfying 93.21%
accuracy. Interestingly, in the dataset recorded in Spain, all
the algorithms and configuration settings resulted in better
performance compared to Italy. This improvement is likely
attributed to the clearer view of the entire road ahead of
the vehicle, which consists of three lanes instead of four.
Further considerations can be made by analyzing results
shown in Figure 11a and Figure 11b. These figures not only
represent the correct classification rate throughout each of
the experiments but also highlight the percentage of frames
in which the detector-only approach fails to produce any
ego-lane estimation, primarily due to missing detections

FIGURE 13. Comparison of configuration ID #03 between the localization
accuracies with and without the BV, using the detector only. The color
code follows Figure 11.

caused by clutter or illumination issues. An example of
this issue can be seen in Figure 9, where the detector-only
part of the figure displays extremely noisy localization
performances, resulting in unreliable ego-lane identification.
In this figure, the detector completely misses the last
transition from Lane1 to Lane2, leaving the vehicle with
almost no ego-lane localization clue. Distances from the
ground truth are also significantly reduced to one-lane-only
distances. While having inaccurate localization is always
undesirable, it is worth noting that being closer to the actual
lane is beneficial. For instance, an ADAS might provide
different suggestions to the driver on how to approach a
highway exit based on this information. Lastly, it is worth
mentioning that, for a production system, the computational
requirements of our proposal are nearly negligible, even for
low computing power devices. For example, processing all
the 9952 frames of the A4 sequence takes only 0.260s on our
testing machines. The training phase of the algorithm, i.e.,
the calculation of the CPTs, depends on the amount of data to
process and the learning algorithm used to train the BN. This
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FIGURE 14. A second section of the 4-lane A4 highway in Italy. In contrast to Figure 9, we illustrate the final output of each presented approach.

phase can be safely carried out offline and, therefore, does not
represent a critical element in a real-time system.

In summary, based on the results of our experiments,
we conclude that:

• In difficult situations that hamper the output of line
detection algorithms, our approach is capable of
delivering a significant enhancement in performance.

• The number of frames from which no estimate can be
computed is almost brought to zero.

• Using a line detector that can classify dashed and
continuous road lines leads to improved performance.
Figure 13 provides an example of how performance
decreases when the BV is not used.

• The proposed model correctly identified the lane transi-
tions even without a complete set of line measurements.

VII. CONCLUSION AND FUTURE WORK
We presented an ego-lane estimation algorithm aimed at
enhancing the reliability of ego-lane estimation in highway-
like scenarios. Differently from other line-detector works,
we propose a method designed to run on top of virtually any
existing line detector, expanding the generic line-detection
capability to a probabilistic ego-lane identification on multi-
lane roads like highways. Even when fed with noisy and/or
occasionallymissing data, our algorithm can achieve accurate
localization, which is a common issue with real-world line
detectors that can be prone to faults and inaccuracies. Our
approach is specifically designed to handle uncertain data
by exploiting an HMM with a transient failure model to
probabilistically interpret road-line observations, improving
the results of even the latest neural network-based line
detectors and providing reliable estimation of the ego-lane
even under less than ideal conditions. We have put our
approach through an extensive testing phase, which included
the use of state-of-the-art neural network approaches on a
challenging dataset containing hundreds of lane changes,
something not possible with currently available datasets
specifically designed for mere line-detection benchmarks
instead of ego-lane identification on multi-lane roads. The
results have demonstrated its ability to provide stable
and reliable lane estimates for approximately 50 km in
two different highway scenarios. Even when faced with
temporary obstructions of road markings due to traffic or
lighting problems, our approach consistently outperformed
our previous contribution [41] as well as existing approaches
in the literature that use both traditional computer vision
and neural network approaches. These results confirm the

effectiveness of our approach in providing accurate and
reliable ego-lane estimation under challenging real-world
conditions. Future work will delve into examining the
usability of the proposed system in diverse driving scenarios,
particularly those encompassing urban settings with a variety
of lane marking categories. Additionally, we aim to explore
the integration of road lane properties obtained from a
service similar to OpenStreetMap, as well as the investigation
of the potential inaccuracies usually associated with these
cartographic services. This future work seeks to enhance
the system’s adaptability and performance across a broader
spectrum of driving conditions, as well as lane attributes and
conditions. Additionally, we will explore further enhance-
ments by integrating additional vehicle properties, such as
lateral speeds, into the HMM, and comparing the results
with other probability distribution methods. We will also
explore the support for dynamic context switching, enabling
the model to dynamically handle varying road congestion
levels and different numbers of lanes.

REFERENCES
[1] P. Ruchti, B. Steder, M. Ruhnke, and W. Burgard, ‘‘Localization on

OpenStreetMap data using a 3D laser scanner,’’ in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2015, pp. 5260–5265.

[2] M. Raaijmakers and M. E. Bouzouraa, ‘‘In-vehicle roundabout perception
supported by a priori map data,’’ in Proc. IEEE 18th Int. Conf. Intell.
Transp. Syst., Sep. 2015, pp. 437–443.

[3] J. M. Álvarez, A. M. López, T. Gevers, and F. Lumbreras, ‘‘Combining
priors, appearance, and context for road detection,’’ IEEE Trans. Intell.
Transp. Syst., vol. 15, no. 3, pp. 1168–1178, Jun. 2014.

[4] A. L. Ballardini, D. Cattaneo, S. Fontana, and D. G. Sorrenti, ‘‘An online
probabilistic road intersection detector,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2017, pp. 239–246.

[5] A. L. Ballardini, S. Fontana, D. Cattaneo, M. Matteucci, and
D. G. Sorrenti, ‘‘Vehicle localization using 3D building models and
point cloud matching,’’ Sensors, vol. 21, no. 16, p. 5356, Aug. 2021.

[6] A. L. Ballardini, Á. H. Saz, S. C. Limeros, J. Lorenzo, I. P. Alonso,
N. H. Parra, I. G. Daza, and M. Á. Sotelo, ‘‘Urban intersection classifica-
tion: A comparative analysis,’’ Sensors, vol. 21, no. 18, p. 6269, Sep. 2021.

[7] I. Parra Alonso, D. F. F. Llorca, M. Gavilan, S. Á. Á. Pardo,
M. Á. Garcia-Garrido, L. Vlacic, and M. Á. Sotelo, ‘‘Accurate
global localization using visual odometry and digital maps on urban
environments,’’ IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4,
pp. 1535–1545, Dec. 2012.

[8] A. L. Ballardini, S. Fontana, A. Furlan, D. Limongi, and D. G. Sorrenti,
‘‘A framework for outdoor urban environment estimation,’’ in Proc. IEEE
18th Int. Conf. Intell. Transp. Syst., Sep. 2015, pp. 2721–2727.

[9] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel,
J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek,
D. Stavens, A. Teichman, M. Werling, and S. Thrun, ‘‘Towards fully
autonomous driving: Systems and algorithms,’’ in Proc. IEEE Intell.
Vehicles Symp. (IV), Jun. 2011, pp. 163–168.

[10] E. D. Dickmanns and B. D. Mysliwetz, ‘‘Recursive 3-D road and relative
ego-state recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 14,
no. 2, pp. 199–213, 1992.

34550 VOLUME 12, 2024



A. L. Ballardini et al.: Ego-Lane Estimation Method With Sensor Failure Modeling

[11] D. Pomerleau, ‘‘RALPH: Rapidly adapting lateral position handler,’’ in
Proc. Intell. Vehicles Symp., Sep. 1995, pp. 506–511. [Online]. Available:
https://ieeexplore.ieee.org/document/528333

[12] M. Bertozzi and A. Broggi, ‘‘GOLD: A parallel real-time stereo vision
system for generic obstacle and lane detection,’’ IEEE Trans. Image
Process., vol. 7, no. 1, pp. 62–81, Jan. 1998. [Online]. Available:
https://ieeexplore.ieee.org/document/650851

[13] C. J. Taylor, J. Malik, and J. Weber, ‘‘A real-time approach to stereopsis
and lane-finding,’’ in Proc. Conf. Intell. Vehicles, 1996, pp. 207–212.

[14] Y. Wang, E. K. Teoh, and D. Shen, ‘‘Lane detection and tracking using
B-Snake,’’ Image Vis. Comput., vol. 22, no. 4, pp. 269–280, Apr. 2004.

[15] F. Kuhnt, S. Orf, S. Klemm, and J. M. Zöllner, ‘‘Lane-precise localization
of intelligent vehicles using the surrounding object constellation,’’ in
Proc. IEEE 19th Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2016,
pp. 526–533.

[16] G. Cao, F. Damerow, B. Flade, M. Helmling, and J. Eggert, ‘‘Camera
to map alignment for accurate low-cost lane-level scene interpretation,’’
in Proc. IEEE 19th Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2016,
pp. 498–504.

[17] T. Gao and H. Aghajan, ‘‘Self lane assignment using egocentric smart
mobile camera for intelligent GPS navigation,’’ in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2009,
pp. 57–62.

[18] Z. Kim, ‘‘Robust lane detection and tracking in challenging scenarios,’’
IEEE Trans. Intell. Transp. Syst., vol. 9, no. 1, pp. 16–26, Mar. 2008.

[19] T. Kühnl, F. Kummert, and J. Fritsch, ‘‘Visual ego-vehicle lane assignment
using spatial ray features,’’ in Proc. IEEE Intell. Vehicles Symp. (IV),
Jun. 2013, pp. 1101–1106.

[20] J. Rabe, M. Necker, and C. Stiller, ‘‘Ego-lane estimation for lane-level
navigation in urban scenarios,’’ in Proc. IEEE Intell. Vehicles Symp. (IV),
Jun. 2016, pp. 896–901.

[21] S. Lee, S.-W. Kim, and S.-W. Seo, ‘‘Accurate ego-lane recognition utilizing
multiple road characteristics in a Bayesian network framework,’’ in Proc.
IEEE Intell. Vehicles Symp. (IV), Jun. 2015, pp. 543–548.

[22] M. Nieto, L. Salgado, F. Jaureguizar, and J. Arrospide, ‘‘Robust multiple
lane road modeling based on perspective analysis,’’ in Proc. 15th IEEE
Int. Conf. Image Process., Apr. 2008, pp. 2396–2399. [Online]. Available:
https://ieeexplore.ieee.org/document/5476151

[23] Y. Jiang, F. Gao, and G. Xu, ‘‘Computer vision-based multiple-lane
detection on straight road and in a curve,’’ in Proc. Int. Conf. Image Anal.
Signal Process., Apr. 2010, pp. 114–117.

[24] S.-N. Kang, S. Lee, J. Hur, and S.-W. Seo, ‘‘Multi-lane detection based on
accurate geometric lane estimation in highway scenarios,’’ in Proc. IEEE
Intell. Vehicles Symp., Jun. 2014, pp. 221–226.

[25] A. Kasmi, D. Denis, R. Aufrere, and R. Chapuis, ‘‘Probabilistic framework
for ego-lane determination,’’ in Proc. IEEE Intell. Vehicles Symp. (IV),
Jun. 2019, pp. 1746–1752.

[26] A. Kasmi, J. Laconte, R. Aufrere, D. Denis, and R. Chapuis, ‘‘End-to-
end probabilistic ego-vehicle localization framework,’’ IEEE Trans. Intell.
Vehicles, vol. 6, no. 1, pp. 146–158, Mar. 2021.

[27] J. Laconte, A. Kasmi, R. Aufrère, M. Vaidis, and R. Chapuis, ‘‘A survey
of localization methods for autonomous vehicles in highway scenarios,’’
Sensors, vol. 22, no. 1, p. 247, Dec. 2021.

[28] A. Bar Hillel, R. Lerner, D. Levi, and G. Raz, ‘‘Recent progress in road and
lane detection: A survey,’’ Mach. Vis. Appl., vol. 25, no. 3, pp. 727–745,
Apr. 2014.

[29] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, ‘‘Spatial as deep: Spatial
CNN for traffic scene understanding,’’ in Proc. AAAI Conf. Artif. Intell.,
Apr. 2018, vol. 32, no. 1, pp. 7276–7283.

[30] H. Xu, S. Wang, X. Cai, W. Zhang, X. Liang, and Z. Li, ‘‘CurveLane-NAS:
Unifying lane-sensitive architecture search and adaptive point blending,’’
in Proc. Eur. Conf. Comput. Vis. (ECCV), A. Vedaldi, H. Bischof, T. Brox,
and J.-M. Frahm, Eds. Cham, Switzerland: Springer, 2020

[31] (2017). Tusimple Competitions for CVPR. Accessed: Sep. 13, 2023.
[Online]. Available: https://github.com/TuSimple/tusimple-benchmark

[32] K. Behrendt and R. Soussan, ‘‘Unsupervised labeled lane markers using
maps,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW),
Oct. 2019, pp. 832–839.

[33] R. F. Berriel, E. de Aguiar, A. F. de Souza, and T. Oliveira-Santos,
‘‘Ego-lane analysis system (ELAS): Dataset and algorithms,’’ Image Vis.
Comput., vol. 68, pp. 64–75, Dec. 2017.

[34] L. Tabelini, R. Berriel, T. M. Paixão, C. Badue, A. F. De Souza, and
T. Oliveira-Santos, ‘‘PolyLaneNet: Lane estimation via deep polynomial
regression,’’ in Proc. 25th Int. Conf. Pattern Recognit. (ICPR), Jan. 2021,
pp. 6150–6156.

[35] L. Tabelini, R. Berriel, T. M. Paixão, C. Badue, A. F. De Souza, and
T. Oliveira-Santos, ‘‘Keep your eyes on the lane: Real-time attention-
guided lane detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 294–302.

[36] Z. Feng, S. Guo, X. Tan, K. Xu,M.Wang, and L.Ma, ‘‘Rethinking efficient
lane detection via curve modeling,’’ in Proc. IEEE/CVFConf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 17041–17049.

[37] T. Zheng, Y. Huang, Y. Liu, W. Tang, Z. Yang, D. Cai, and X. He,
‘‘CLRNet: Cross layer refinement network for lane detection,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 888–897.

[38] Z. Qin, P. Zhang, and X. Li, ‘‘Ultra fast deep lane detection with
hybrid anchor driven ordinal classification,’’ IEEE Trans. Pattern Anal.
Mach. Intell., early access, 2022.

[39] Y. Zhang, Z. Lu, D. Ma, J.-H. Xue, and Q. Liao, ‘‘Ripple-GAN: Lane line
detection with ripple lane line detection network and Wasserstein GAN,’’
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3, pp. 1532–1542, Mar. 2021.

[40] P. Lu, C. Cui, S. Xu, H. Peng, and F. Wang, ‘‘SUPER: A novel lane
detection system,’’ IEEE Trans. Intell. Vehicles, vol. 6, no. 3, pp. 583–593,
Sep. 2021.

[41] A. L. Ballardini, D. Cattaneo, R. Izquierdo, I. Parra, M. A. Sotelo,
and D. G. Sorrenti, ‘‘Ego-lane estimation by modeling lanes and sensor
failures,’’ in Proc. IEEE 20th Int. Conf. Intell. Transp. Syst. (ITSC),
Oct. 2017, pp. 1–7.

[42] M. Aly, ‘‘Real time detection of lane markers in urban streets,’’ in Proc.
IEEE Intell. Vehicles Symp., Jun. 2008, pp. 7–12.

[43] J. Hur, S.-N. Kang, and S.-W. Seo, ‘‘Multi-lane detection in urban driving
environments using conditional random fields,’’ in Proc. IEEE Intell.
Vehicles Symp. (IV), Jun. 2013, pp. 1297–1302.

[44] S. Suzuki and K. Abe, ‘‘Topological structural analysis of digitized binary
images by border following,’’ Comput. Vis., Graph., Image Process.,
vol. 29, no. 3, p. 396, Mar. 1985.

[45] A. Geiger, M. Roser, and R. Urtasun, ‘‘Efficient large-scale stereo
matching,’’ in Proc. Asian Conf. Comput. Vis. (ACCV), 2010, pp. 25–38.

[46] NVIDIA Drive Perception. Accessed: Jan. 13, 2022. [Online]. Available:
https://developer.nvidia.com/drive/drive-perception

[47] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. London, U.K.: Pearson Education, 2003, sec. 15.5.

[48] C. A. Pollino and C. Henderson, ‘‘Bayesian networks: A guide
for their application in natural resource management and policy,’’
Landscape Logic Library, Centre Environ.—Univ. Tasmania,
Australia, Tech. Rep. 14, 2010, pp. 1–84. [Online]. Available: https://
www.utas.edu.au/environment/publications/landscape-logic-library

[49] J. Bilmes, ‘‘On virtual evidence and soft evidence in Bayesian networks,’’
Dept. Elect. Eng., Washington Univ., Seattle, WA, USA, Tech. Rep.
UWEETR-2004-0016, 2004.

[50] Lonely Midnight Drive on Rainy Highway. Accessed: Dec. 18, 2023.
[Online]. Available: https://www.youtube.com/@RainMan_JP

AUGUSTO LUIS BALLARDINI was born in
Buenos Aires, Argentina, in 1984. He received the
M.Sc. and Ph.D. degrees in computer science from
Università di Milano - Bicocca, Italy, in 2012 and
2017, respectively. Following two years of post-
doctoral activities with the IRALAB Research
Group, in 2019, he joined the INVETT Research
Group, Universidad de Alcalá, Spain, where he
was awarded theMarie Skłodowska-Curie Actions
Research Grant. In 2022, he received a Research

Grant within the Maria Zambrano/NextGenerationEU Project from the
Spanish Ministry of Science, Innovation, and Universities. His current
research interests include autonomous vehicle localization and data fusion
systems, leveraging heterogeneous data sources, such as digital maps,
LiDAR, and image data, combined with computer vision and machine
learning algorithms.

VOLUME 12, 2024 34551



A. L. Ballardini et al.: Ego-Lane Estimation Method With Sensor Failure Modeling

DANIELE CATTANEO (Member, IEEE) received
the M.Sc. and Ph.D. degrees in computer science
from the Università di Milano - Bicocca, Milan,
Italy, in 2016 and 2020, respectively. He is
currently a Junior Research Group Leader with
the Robot Learning Laboratory, University of
Freiburg, Germany. His research interests include
deep learning for robotic perception and localiza-
tion, with a focus on label-efficient learning, cross-
modal matching, domain generalization, sensor

fusion, and combining learning-based methods with established geometric
and robotic techniques.

RUBÉN IZQUIERDO received the bachelor’s
degree in electronics and industrial automation
engineering, the M.S. degree in industrial engi-
neering, and the Ph.D. degree in information and
communication technologies from the University
of Alcalá (UAH), in 2014, 2016, and 2020,
respectively. He is currently an Assistant Professor
with the Department of Computer Engineering,
UAH. His research interests include the prediction
of vehicle behaviors and control algorithms for

highly automated and cooperative vehicles. His work has developed a
predictive ACC and AES system for cut-in collision avoidance successfully
tested at Euro NCAP tests. He was awarded with the Best Ph.D. Thesis
on Intelligent Transportation Systems by the Spanish Chapter of the ITSS,
in 2022, and the Outstanding Award for the Ph.D. Thesis by UAH, in 2021.
He also received the XIII Prize from the Social Council of UAH for the
University-Society Knowledge Transfer, in 2018, and the Prize to the Best
Team with Full Automation in GCDC, in 2016.

IGNACIO PARRA received the M.S. and Ph.D.
degrees in telecommunications engineering from
the University of Alcalá (UAH), in 2005 and
2010, respectively. He is currently an Asso-
ciate Professor with the Computer Engineering
Department, UAH. His research interests include
intelligent transportation systems and computer
vision. He received the Master Thesis Award
in eSafety from the ADA Lectureship at the
Technical University of Madrid, Spain, in 2006.

ANDREA PIAZZONI received the M.Sc. degree
in computer science from the Università di
Milano - Bicocca, Italy, in 2016, and the Ph.D.
degree from Nanyang Technological University,
Singapore, in 2023. He is currently a Research
Fellow with the Centre of Excellence for Test-
ing and Research of Autonomous Vehicles—
NTU (CETRAN), Energy Research Institute,
Nanyang Technological University, Singapore.
His research interests include virtual simulation,

robotic perception and decision-making, and probabilistic graphical models.

MIGUEL ÁNGEL SOTELO (Fellow, IEEE)
received the degree in electrical engineering from
the Technical University of Madrid, in 1996, the
Ph.D. degree in electrical engineering from the
University of Alcalá (UAH), Alcalá de Henares,
Madrid, Spain, in 2001, and the Master in
Business Administration (M.B.A.) degree from
the European Business School, in 2008. He is
currently a Full Professor with the Department of
Computer Engineering, UAH. He is the author of

more than 300 publications in journals, conferences, and book chapters.
His research interests include self-driving cars, prediction systems, and
traffic technologies. He was a recipient of the Best Research Award in the
Domain of Automotive and Vehicle Applications in Spain, in 2002 and
2009, and the 3M Foundation Awards in the Category of eSafety, in
2004 and 2009. He served as a Project Evaluator, a Rapporteur, and a
Reviewer for the European Commission in the field of ICT for intelligent
vehicles and cooperative systems in FP6 and FP7. He was a recipient
of the IEEE ITS Outstanding Research Award, in 2022, the IEEE ITS
Outstanding Application Award, in 2013, and the Prize to the Best Team
with Full Automation in GCDC, in 2016. He has served as the General
Chair for the 2012 IEEE Intelligent Vehicles Symposium (IV’2012), Alcalá
de Henares, Spain, in June 2012. He is the former President of the IEEE
Intelligent Transportation Systems Society. He was an Editor-in-Chief of
IEEE Intelligent Transportation Systems Magazine, from 2014 to 2016,
an Associate Editor of IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION

SYSTEMS, from 2008 to 2014, a member of the Steering Committee of IEEE
TRANSACTIONS ON INTELLIGENT VEHICLES, since 2015, and a Editorial Board
Member of The Open Transportation Journal, from 2006 to 2015.

DOMENICO GIORGIO SORRENTI (Member,
IEEE) received the Maturità Classica degree (high
school degree with literature and philosophy
orientation) from Liceo G. Carducci, Milan, Italy,
in 1981, and the Laurea (master’s) degree in elec-
tronic engineering and the Ph.D. degree in com-
puter and control engineering from Politecnico di
Milano, Milan, in 1989 and 1992, respectively.
In 1994, he was a Research Associate with King’s
College London, U.K. Since 1995, he has been an

Assistant Professor of computer science with Università di Milano, Milan.
In 1999, he moved to the Università di Milano - Bicocca, Milan, where
he started the Robotic Perception Laboratory and has been an Associate
Professor of computer engineering, since 2005. He has been teaching
computer architecture, embedded systems, computer and robot vision,
robotics, and Bayesian filtering, for the bachelor’s, master’s, and Ph.D.
programs in computer science, and advanced human–machine interfaces for
the master’s in artificial intelligence for science and technology. His research
interests include computer and robot vision, mainly for autonomous vehicles.
He is a member of the Robotics and Automation Society and the Intelligent
Transport Systems Society.

Open Access funding provided by ‘Università degli Studi di Milano Bicocca’ within the CRUI CARE Agreement

34552 VOLUME 12, 2024


