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ABSTRACT Cancelable biometric schemes are designed to extract an identity-preserving, non-invertible
as well as revocable pseudo-identifier from biometric data. Recognition systems need to store only this
pseudoidentifier, to avoid tampering and/or stealing of original biometric data during the recognition process.
Stateof-the-art cancelable schemes generate pseudo-identifiers by transforming the original template using
either user-specific salting or many-to-one transformations. In addition to the performance concerns, most of
such schemes are modality-specific and prone to reconstruction attacks as there are chances for unauthorized
access to security-critical transformation keys. A novel, modality-independent cancelable biometric scheme
is proposed to overcome these limitations. In this scheme, a cancelable template (pseudo identifier) is
generated as a distance vector between multiple random transformations of the biometric feature vector.
These transformations were done by grouping feature vector components based on a set of user-specific
random vectors. The proposed scheme nullifies the possibility of template reconstruction as the generated
cancelable template contains only the distance values between the different random transformations of the
feature vector and it does not store any details of the biometric template. The recognition performance of the
proposed scheme is evaluated for face and fingerprint modalities. Equal Error Rate (EER) of 1.5 is obtained
for face and 1.7 is obtained for the fingerprint in the worst case.

INDEX TERMS Template security, cancelable biometrics, random transformations.

I. INTRODUCTION

Biometric recognition systems store the biometric data col-
lected from a user in the database while enrolling the user
for recognition. When the user wants to get authenticated
by the system, he/she will present his/her biometric data
(query) and that will be compared with the one stored in the
database. Hence the storage of biometric information in a
biometric recognition system is essential for the recognition
process [1]. If original biometric data is stored in the database,
impersonation attacks are possible by unauthorized access
to database [2], [3], [4]. Biometric data is one of the most
sensitive personal data as it is constant for a lifetime and
if it is compromised once it cannot be revoked [5]. There-
fore, a reliable biometric recognition system should be able
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to prevent the breach of security and privacy of users by
ensuring secure storage of their biometric information [6],
(71, (81, [91, [10].

Cancelable biometrics is a category of biometric template
protection scheme that is designed to avoid the storage of
original biometric data [11]. Cancelable techniques store
only an identitypreserving, non-invertible as well as revoca-
ble pseudo-identifier extracted from the original biometric
template in the database [12]. The key highlight of such
schemes will be their cancelability property, which ensures
easy replacement of stored pseudo-identifier in the case of
compromise [13]. Existing cancelable schemes are based on
either non-linear transformations or biometric salting [14].
Non-linear transformations include many-to-one mapping
which can lead to loss of distinguishability information and
hence reduction in the matching performance. Biometric
saltingbased schemes depend upon a user-specific key for
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generating a protected template and hence irreversibility of
the method is based on the security of the key [15]. The pro-
posed cancelable template generation scheme can guarantee
minimal loss of distinguishability information and it does not
require securing the user-specific key to ensure irreversibility
(details are given in Section III).

Another disadvantage of existing schemes is that most of
them are designed to protect modality (fingerprint, face, iris,
etc.) specific features (minutiae for fingerprint) [16]. This
limits their usage to a specific biometric modality. In this
work, the proposed protection scheme is designed to protect
log Gabor feature vectors representing the user’s biometric
data [17]. Log Gabor features have already proved to have
good recognition performance in the case of various biomet-
ric modalities like face, fingerprint, iris, finger vein, etc. in the
original domain. Hence the proposed protection scheme is a
generalized technique that can accommodate all the image-
based modalities.

In the proposed scheme, the user’s biometric feature vector
will be transformed into # different forms based on a selected
set of n random vectors, where 15 < n < 30. The Euclidean
distance between these different transformed versions of the
same biometric feature vector will be stored as the final
user template. As we store only a relationship between the
different transformations of a template, essential properties
such as irreversibility, cancelability and non-linkability can
be achieved (Detailed analysis is given in Section I'V).

The major contributions of this work are highlighted
below:

« A generalized cancelable biometric scheme is proposed
using log Gabor features, which is relieved from the
overhead of securing any security-sensitive user-specific
keys or reference templates. The leakage of user-specific
data employed in the scheme (random vectors) will not
affect the overall security of the scheme;

« A novel way of creating the final protected template is
proposed, where distances between different versions
of the biometric feature vector are stored as the final
template. Different versions of a biometric feature vector
are generated based on median filtering with respect to
a set of random vectors;

o Proposed scheme can reduce the dimensionality of the
final protected template to (), where 7 is the number of
random vectors used for creating n different versions of
the feature vector. Optimal range for » is identified as
15 < n < 30.

The rest of the paper is organized as follows. Section II
discusses related works of biometric template security in liter-
ature. Section III describes the proposed template protection
scheme in detail. Details of different experiments conducted
to analyze the efficiency of the proposed protection scheme
are given in Section IV. Section V analyses essential secu-
rity aspects of the proposed protection scheme. Performance
analysis, experimental results and comparisons with state-of-
the-art techniques are discussed in Section VI. Conclusion
and future directions are given in Section VII.
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Il. RELATED WORKS

The two major categories of biometric template protection
schemes in the literature are biometric cryptosystems [18]
and cancelable biometrics [19]. Both of these techniques
store only a transformed version of the original template
and ensure properties such as irreversibility, cancelability and
non-linkability in the transformed domain [20].

Biometric cryptosystems deal with extracting or binding
userspecific key with the original biometric data with the help
of some publicly known information (helper data or auxiliary
data). All biometric cryptosystem-based schemes will have
two functions associated with them. One for encoding the
template during enrolment and the other for decoding during
authentication. Based on the definition of these functions,
biometric cryptosystem-based schemes can be classified as:
(i) key binding schemes [21], [22] and (ii) key generation
schemes [23]. However, both key generation and key bind-
ing schemes require the secrecy of user-specific key to be
maintained for proper authentication. In addition to that, the
complex procedures associated with the encoding and decod-
ing phases of the template make such systems cumbersome.

Cancelable biometrics were introduced to minimize the
complexity of transformations associated with biometric
cryptosystems [24]. Unlike biometric cryptosystems, can-
celable biometrics does not require separate procedures for
encoding during enrollment and decoding during authentica-
tion. Cancelable biometric schemes ensure irreversibility by
performing intentional, repeatable distortions on the biomet-
ric signal and comparison is performed in the transformed
domain which ensures the security of the original biometric
data [14]. Two categories of cancelable schemes in literature
are: (i) biometric salting and (ii) noninvertible transforma-
tions [15].

In the first category (biometric salting), the distortion func-
tion employs a user-specific key for transformation [25], [26].
In the case of orthonormal random projections [27], [28], the
key is a projection matrix whose columns are orthonormal
vectors to each other. As they use orthonormal projection
matrix, the transformation process becomes distance preserv-
ing, which ensures matching performance in the projected
domain [29]. However, the irreversibility depends upon the
secrecy of user specific key and hence it is important to secure
the key. Cancelability and non-linkability can be ensured
by changing the user-specific key. This type of projection-
based transformation technique used for biometric template
security is also known as BioHashing (BH) [30]. Some vari-
ants of biohashing techniques are random convolution [31],
[32], random noise [33] etc., where they employ random
convolution matrix or random noise matrix for performing
the transformation. However, in these schemes also the key
matrix plays an important role which decides the reversibility
of the technique.

In the second category (non-invertible transformations),
most of the schemes use a many-to-one mapping function,
where the multiple predefined blocks/patches of input bio-
metric are mapped to same block or patch in the output.
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Blocks or patches can be defined either at signal level [12],
[341], [35] or at feature level [36], [37]. These schemes do not
depend upon a user-specific key, instead, the contents of the
biometric template itself are used for defining the transfor-
mation function. Irreversibility in such schemes is ensured
by the many-to-one mapping nature of the transformation
function. Cancelability and non-linkability can be ensured by
changing the combination of input and output in the mapping
function. The main drawback of such schemes is information
loss which will lead to degradation of performance [15].

In the recent literature, there were a few cancelable
schemes in which the original template was randomly mod-
ified using some technique to obtain the salting matrix. This
salting matrix is combined with the original template to gen-
erate the protected template. An example of such a scheme
is the generalized salting technique proposed in [38]. In this
Cancelable Biometric based on Random Walk (CBRW)
scheme, random walk method is used to modify the origi-
nal biometric template to generate the random walk matrix
(salting matrix). The operation bitwise XOR is performed
between original template and the random walk matrix to
generate the final distorted template.

Recent literature in biometric template security deals with
certain variations in cancelable template generation; wherein
they store relative relationship of the transformed template.
Random Distance Method (RDM) [39] proposed by Harki-
rat et al. is such a variation of biometric salting technique,
where instead of directly storing a transformed form of
template, they store distance vector between the log Gabor
feature vector of the user and a random user-specific vector.
However, the reversibility depends on the knowledge user
specific random vector and hence there are chances of revers-
ing the template. They claim the irreversibility only by the
median filtering of the distance vector. Random slopebased
method [40] is similar concept where they store the slope
information of the feature vector with respect to a user-
specific random vector.

Another example for storing relative information is given
in [41], where the distance vectors of the template from a set
of n key (reference) images are stored in the form of a graph.
Distance vectors of different modalities (face, fingerprint,
iris) are calculated and an adaptive weighted graph fusion
technique is applied to calculate the fused template. However,
the requirement of storing the key images makes the system
cumbersome and irreversibility of the scheme depends upon
the security of key images. An extension of the same tech-
nique using deep features extracted from different modalities
is given in [42].

The concepts of generating the salting matrix from the
original biometric template and the use of relative infor-
mation for ensuring the security are combined in [35].
Cancelable biometric generation based on Dynamic Salting
of Random Patches (DSRP) is proposed. The biometric image
is divided into Voronoi patches and the difference of the log
Gabor features of each patch with all other patches is used as
the salting matrix. As the division of the biometric template is
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performed in the image domain, random shapes of the patches
give rise to the problem of padding with additional zeros.
This unnecessary increase in dimension can be avoided by
performing the division in feature space as proposed in this
work.

There were some hybrid techniques also in the literature
which combines cancelable techniques with other types of
protection schemes. Cancelable biometrics is combined with
homomorphic encryption in [43] for improved protection in
the case of face recognition. A hybrid protection scheme
combining a partially homomorphic encryption scheme and
a cancelable biometric technique based on random projection
is proposed in [44] to protect gait features.

Biometric recognition systems have been adopting deep
learning techniques widely due to the performance bene-
fits [25], [45]. Security of such schemes was assumed blindly
as the deep learning systems were considered as a black box.
However, recent studies have shown the possibility of recon-
struction of original templates from deep features also using
de-convolutional networks [46], [47]. Hence deep learning
based systems cannot claim the privilege of default security.
There are certain methods proposed for the protection of
deep features also [48], [49]. However, even in such schemes,
there are drawbacks. The scheme proposed in [48] requires
the entire system to be trained again when a new enrolment
happens in the system [50].

In the proposed work, we explored the feasibility of using
the relative distance between different transformations of a
user’s biometric data as the unique cancelable template of the
user. Log Gabor feature vector of the user will be divided
randomly into blocks based on a selected random vector.
In each block, blocklevel distortion will be applied by median
filtering. This process of feature vector transformation will be
repeated n times using n different random vectors, to obtain n
different transformations of the feature vector. The Euclidean
distance between these n transformations will be stored as the
user template, where 15 < n < 30. Hence we are only storing
how these n transformed versions of the user’s feature vector
are related to each other.

llIl. PROPOSED METHOD

In this paper, we propose a cancelable biometric scheme
based on the possibility of representing the same biometric
feature vector in multiple ways by defining a random vec-
tor (non-secret) based irreversible operation. The proposed
transformation deals with randomized median filtering of the
feature vector. Window sizes for median filtering will be
determined by a random vector. Hence if we use n random
vectors, we will get n transformations of the feature vector.
If we can calculate and store the distance between these
n versions, this can be verified each time to enable recog-
nition. As we store only the distance information between
the transformed versions, original feature vector cannot be
computed from the stored template. Cancelability can be
ensured by changing the set of random vectors used for trans-
formation. Hence the proposed method deals with storing
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the relationship between multiple transformed versions of
the user’s feature vector and the scheme is able to guarantee
irreversibility and cancelability properties.

A. LOG GABOR FEATURES

In this work, we used log Gabor feature vector to represent the
biometric data of a user. The log Gabor filter is an advanced
form of Gabor filter where the transfer function is measured
in logarithmic frequency scale [51]. This filter is defined in
the frequency domain and the transfer function can be repre-
sented in polar coordinates (r, 6) as the product of radial and
angular components [52]. For 1 <i <pand 1 <j < ¢, the
log Gabor filter G; j(r, 6) for the scale wi, and the orientation

0 is represented as,
log ((5) —(6-6)°
i {
— | cexp{ ———— 1),
202 p( 20/% ) M

R

G;j(r,0) =exp

where wj; is the center frequency of the filter which is deter-
mined by the value of the wavelength (\). By changing
the wavelength values, filter responses can be obtained in
p different scales. The minimum wavelength )\, is chosen
as 3 pixels. Hence the maximum filter frequency will be
+ = % The orientation angle of the filter is represented
as’.”9j. By changing its values, filter responses for g different
orientations can be obtained. The parameter op represents
radial bandwidth and o4 represents the angular bandwidth.
Radial bandwidth og = 0.65 and angular bandwidth of o4 =
1.3 were used for the experiments in this paper [53], [54].
Forl <i <pand1 < j < g, let G;;(u, v) represent
the log Gabor filter in Cartesian coordinates corresponding
to the Equation 1, where u = rcosf and v = rsin6. The
subscript (i, j) corresponds to p different scales and g different
orientations. In this work, filter responses were calculated
for p = 4 different scales w; = W, where 1 < i <
4 and ¢ = 6 different orientations 6; = 0_61 )", where
1 < j < 6. All these 24 filter responses were concatenated
together to form the final feature vector. These 24 log Gabor
filtered images will be converted into a 24 - (N x N) dimen-
sional feature vector, where N x N is the dimension of the

image.

B. CANCELABLE TEMPLATE GENERATION

The log Gabor features will be extracted from user’s biomet-
ric image of size N x N as explained in Section III-A. Since
magnitude of the filter responses is in a very small range, they
need to be multiplied by a factor such as 100 before further
processing.

Each user will be assigned a set of n random vectors for
performing transformation. The first step in the proposed
cancelable template generation is to perform randomized
median filtering on the feature vector. It can be accomplished
by fixing window sizes randomly while performing median
filtering. Random values in each random vector will decide
the window sizes for median filtering. The feature values
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in each window of the transformed version of the feature
vector will be replaced by the median of feature values in
that window. Hence, for each random vector, there will be a
corresponding median-filtered version of the feature vector.
After constructing n such versions of the feature vector, the
next step is to compute the Euclidean distances between all
possible pairs. This distance vector will be stored as the
cancelable protected template of the user.

Let F = (f1,/f2,...,/1), where fi € R be the log Gabor
feature vector of a user. The set of n random vectors R can be
represented as R = (R, Ra, ..., R,) where,

Ri=(rii,ri2. ... ripy)

Ry = (ra1,r0, ..., 1rop,)

Ri = (ri1, rizs - - Fipy)
an(rnlarnZ’--wrnp,,)v 2)

Pi
such that r;j € Z and Y r;j =1, Vi.
Jj=1
Fori = 1to n, F is transformed to F; using R; as follows.
Let,

mj; = median (fl,fZa o ’ffil)
mjy = median (friHl P vfri1+ri2)
mjp; = median (f(ri1+ri2+“'+rfpr1+1)’ e ,fri|+..<+r,'pi) 3)

Then, i transformed version F ; of the feature vector F
based on the random vector R; can be represented as,

Fi=(mjr,miy, ...,mp, oo Mg, M, ..., M), (4)

ri1 times rip; times

where 1 < i < nand dim(F) = dim (F;) = 1, (dim(-) refers
to length of the feature vector).

An illustration of the transformation process based on
random vectors is given in Figure 1. In the example shown in
Figure 1. four different transformations (n = 4) of the user’s
feature vector (F') are shown. In this case, length of the feature
vector (/) is shown as 25. The length (p;) is selected as 8 for all
the random vectors. Even though we have shown same length
for all the random vectors in this example, it is not mandatory
to have same length for all the random vectors in the set.
In the first transformation shown in the figure, the feature
values in the feature vector F' are grouped by considering
the values in the random vector Ry = (3,2,4,3,2,5,4,2)
as the window sizes. In the transformed vector Fj, it can
be seen that the feature values in each window are replaced
by the median of feature values present in that window.
The grouping of the features and transformation based on
random vectors Ry, R3 and R4 are shown in the remaining
transformations. Like this, sufficiently many transforma-
tions are possible for a user template by changing random
vectors.

This process of grouping enables the method to accom-
modate intra-class variations in the feature vector. As we are
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FIGURE 1. lllustration of feature vector (F) transformations into F; using different random vectors R;.

applying median filtering on the feature vector F' based on
the random vector R;, total number of different feature values
in the transformed vector F; will be equal to the number of
elements in the corresponding random vector R;. Hence F;
will contain p; different feature values, since length of the
random vector R; is p;.

Since, i rij = 1, Vi, the random values 7;; of the random
=1

vector Rijand length p; of the random vector R; are related.
The higher the values of 7;;, the lower will be the length p;
of the random vector and vice versa. Hence optimal values of
rij or p; need to be determined. Conditions were derived to
obtain the optimum values for r;; through experiments. The
optimal values for p; will be obtained when r;; satisfies the
condition,

2 <r; <20. (@)

If the value of r;; is higher than 20, the distinguishing
capability of feature vector may get deteriorated as more
feature values are getting replaced by the median of the
feature values. That is, if the value of r;; is higher than 20, the
number of distinct feature values in the feature vector may
also get reduced which may lead to reduction in recognition
accuracy.

If we select n random vectors, n transformed versions
of the feature vectors (Fy, F», ..., Fj,) can be computed as
explained above. Let dj; be the Euclidean distance between

F;and Fj. That is,
dj=dist(Fi.F), l1<ij<ni#j. (6
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The final cancelable template F is the ('21) dimensional

vector of Euclidean distances between all possible pairs of
n different transformations of feature vector. That is,

I:"z(d,-jzlfi<j§n). @)

The protected template F which represents the Euclidean
distance between the different transformed versions of F will
be stored in the database for user authentication or identifica-
tion. The overall process of generating protected template F
from the user’s feature vector F' is shown in Figure 2.

The size of the final cancelable template (g) is independent
of the size of the input image. Though we can have any num-
ber of transformations satisfying the above conditions, the
optimum range of n to get the maximum accuracy is identified
through experiments. In the experiments, we tried different
values for n, starting from n = 5. However, we were able to
get desirable performance only when n > 15. It was found
that there should be a minimum of 15 transformations to
obtain satisfactory recognition performance for the method.
We continued the experiments with higher values of n. It was
observed that even though the length of the final template
was getting increased, much improvement was not there in
the result after n = 30. Hence the optimal range of n was
identified as 15 < n < 30.

IV. EXPERIMENTS

This section discusses the datasets and experiments con-
ducted to analyze the efficiency of the proposed protection
scheme.
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FIGURE 2. Overall process flow of the protected template generation.

A. DATASETS USED

In the case of face images, CASIA-FaceV5 [55] database
is used for experiments. For each individual (intra-class),
5 images were available with different scales and poses. The
recognition performance of the scheme was analyzed using
the first 150 samples (face images of persons) present in the
database. From the 5 intraclass images of each person, dis-
tance vectors (protected template) corresponding to 3 images
were stored in the database and the remaining 2 images were
used for testing.

As given in Table 1, experiments were conducted using
FVC 2000 [56] and FVC 2004 [57] databases. Fingerprint
templates of first 40 subjects from Db2_a of FVC 2000 were
considered. In the case of FVC 2004, templates of first 40 per-
sons were considered from both DB2_A and DB4_A. Out of
8 fingerprint samples available per person in the database,
5 were used for training and 3 were used for testing. Details
are included in Table 1.

TABLE 1. Datasets used for experiments.

Modality Database No.of No.of samples
subjects per subject
considered

Face CASIA-FaceV5 [55] 150 5 (Training-3,

Testing-2)

Fingerprint FVC 2000 [56] 40 8 (Training-5,

Testing-3)
Fingerprint FVC 2004 [57] 40 8 (Training-5,
Testing-3)

The system was tested for both face images and fingerprint
images by extracting ROI of size 141 x 141 pixels after
preprocessing. Log Gabor filters of 6 different orientations
and 4 different scales were used to extract the features. Hence
the size of the feature vectors is 6 x 4 x 141 x 141 =
477144 (refer to Section III-A). However, the size of the
protected template is the mutual distances between n such
feature vectors which is (’;) Therefore, if we assume that
15 < n < 30, the dimension of the protected template will
lie between 100 and 300.

B. COMPARISON OF FEATURES IN THE ORIGINAL AND
PROTECTED DOMAINS

For an efficient protection scheme, features should be able to
provide intra-class similarity and inter-class differentiability
in both original and protected domains. This is essential
for maintaining the recognition performance in protected
domain. Hence analysis of recognition performance was done
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by computing cosine distance between feature vectors in both
original and protected domains. For a given query image,
cosine distances were computed and plotted for both intra and
inter-class images.

The experiments were done using face and fingerprint
images. In the case of face images, CASIA-FaceV5 [55]
database is used for experiments. In the case of fingerprint
images, experiments were conducted using FVC 2000 [56]
and FVC 2004 [57] databases. Results obtained for inter-
class face and fingerprint images are given in Figure 3 and 4
respectively. Results obtained for intra-class face and finger-
print images are shown in Figure 5 and 6 respectively. Even
though we conducted experiments on the templates as per the
details given in Section IV-A. we considered only templates
of 25 different people (x-axis) in the plot to ensure visual
clarity. The y-axis represents the distance values in the range
Oto 1.

Log Gabor feature vector of each image was compared
with the log Gabor feature vectors of images that were stored
in the database. The plots labeled as ‘Original Domain’
in Figures 3, 4, 5 and 6 represent the dissimilarity val-
ues obtained for query images against the images stored in
the database, without applying the protection scheme. For
analysing the characteristics in the protected domain, the pro-
posed protection scheme was applied on the log Gabor feature
vectors of each user as explained in Section III-B. Same set
of 20 random vectors were used for all users for generating
different transformations (worst case). Hence the protected
template will have a dimension of (220), which is equal to
190. The plots labeled as ‘Protected Domain’ represent the
dissimilarity between protected templates of query images
and database images in the protected domain.

1) DIFFERENTIABILITY PROPERTY AMONG INTER-CLASS
AND INTRA-CLASS TEMPLATES

The capability of the proposed scheme to differentiate
inter and intra-class images was analysed. For one person,
5 intra-class images were considered for analysis. Hence
distance between one of the intra-class images was plotted
against the other four intraclass images. In the first sub-figure
of Figure 3, the distance values between the query image of
person 1 were calculated against the templates which were
labeled in x axis. The x-axis labels 1.1, 1.2, 1.3, 1.4 refer
to the four intra-class images of person 1. The other labels
(2 to 25) refer to inter-class images. From the 5 available
images of each person, the average distance values obtained
for the query image against each class were calculated for the
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interclass images. In the remaining 5 sub-figures of Figure 3,
query images of 5 different persons were considered for
calculating the distance values. Distance values obtained in
original and protected domains for 6 different query templates
were plotted in Figure 3 for face images and in Figure 4 for
fingerprint images.

The global minima in these plots correspond to the dissim-
ilarity values between the intra-class templates of a person.
We can observe that the proposed mechanism can clearly
differentiate between intra-class and inter-class templates.
Further, the green and blue plots have similar shapes which
shows that the differentiability in the original domain is
preserved in the proposed protected domain. The dotted hori-
zontal lines in the plots represent the threshold between intra
and inter-class images in the original domain. The dashed
lines in the plots represent the threshold between intra and
inter-class images in the protected domain. It can be observed
that the separation between the intra and inter-class samples is
more clear and significant in the protected domain than in the
original domain. It can also be seen that the patterns obtained
for different people are different which ensures the inter-class
differentiability between the samples in the protected domain.

2) SIMILARITY OF FEATURE PATTERNS AMONG
INTRA-CLASS TEMPLATES

It is also important to ensure the similarity among the patterns
of intra-class images of a person in the protected domain.
Figure 5 and Figure 6 show the patterns obtained for the
dissimilarity metric in original and protected domains for
intra-class images of two persons. The sub-figures 5a, 5b
and Sc in Figure 5 represent the pattern obtained for Person
1 in the case of face. We can observe from these sub-figures
that intra-class images of person 1 are able to maintain similar
patterns against same set of samples. The subfigures 6a, 6b
and 6¢ correspond to the pattern obtained for Person 1 in the
case of fingerprint. It can be seen that the similarity of patterns
is intact in the case of fingerprint images. The subfigures 5d,
Se and 5f in Figure 5 show that similarity is preserved for
the intra class face images of Person 2 as well. The sub-
figures 6d, 6e and 6f in Figure 6 illustrate the similarity
of patterns in fingerprint in the case of person 2. It can be
observed from Figures 5 and 6 that intra-class images are able
to follow a similar pattern of distances among each other even
in the protected domain.

Sample distance values obtained in original and protected
domains for 6 different people for face images are given in
Tables 2 and 3 respectively. Sample distance values obtained
in original and protected domains for 6 different people for
fingerprint images are given in Tables 4 and 5 respectively.
The column labels (1_0,2_0,3_0,4_0,5_0, 6_0) in the first
row of the tables refer to the query images corresponding to
person 1 to person 6. The row labels in the first column of the
tables refer to four intraclass images of 6 persons. The value
in the cell with column label 1_0 and row label 1_1 represents
the distance between the intraclass images 1_0 and 1_1 of
person 1. From these tables, it can be observed that the query
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TABLE 2. Distance values obtained in the original domain for face.

| 10 2.0 3.0 4.0 5.0 6_0
11| 02076 05420 0.5477] 0.4522| 0.4784] 0.3981
12| 03142 0.4491] 0.4397] 0.3592] 0.5052] 0.4041
13| 0.3277] 0.4275] 0.4253] 0.4672] 0.4313] 0.3682
1.4] 03192 04839] 0.3662] 04754 0.4892] 0.4190
2.1 | 04592] 03142] 0.4929] 0.3975] 0.3786] 0.4313
2.2 | 0.5444] 0.2745] 0.4672] 0.5716] 0.3654] 0.4813
2.3 | 0.5271] 02998 0.3612] 04269 0.3756] 0.3768
2.4 0.4652] 02905 0.3569] 0.4329] 0.3671] 0.3684
3.1 | 0.4203] 04058 0.3287] 0.4644] 0.4005] 0.3537
3.2 | 0.3702] 0.3626] 0.2228] 05023 0.4192] 0.4297
3.3 | 0.3645] 03578 0.2745] 0.5163] 0.3637] 0.3886
3.4 0.3582] 0.3748] 0.3312] 0.5234] 0.5477] 0.4569
41| 04662 05098 0.3835] 0.2745] 0.4397] 0.6549
42| 03776 04716 o0.3528] 0.3277] 0.4253] o0.5781
43| 03597 03625 0.3613] 0.3407] 0.3662] 0.4365
4 4] 03945 04662] 0.6234] 0.3142] 0.4929] 0.3987
51 | 0.3821] 0.3776] 0.4367] 04899 0.2768] 0.6721
52 | 0.4662] 0.3597] 0.3766] 0.3765] 0.2228) 0.4784
5.3 | 0.3776] 0.3945] 0.5318] 0.5477] 0.3312] 0.5052
5.4 | 0.4967| 0.3821] 0.4412] 04397| 0.2076] 0.4313
6.1 | 0.4166] 0.4662] 0.5123] 04253] 0.4672] 0.2838
6.2 | 0.3876] 0.5423] 0.3945] 0.3662] 0.3612] 0.3312
6_3 | 0.4597] 05512] 0.5789] 0.4929] 0.4672] 0.2926
6_4 | 0.4645] 04821 0.6432] 04672] 0.4754] 0.229

TABLE 3. Distance values obtained in the protected domain for face.

10 2.0 3.0 40 5.0 6_0
19 0.2042] 0.6371] 0.7215] 0.6806] 0.6792] 0.4656
12 0.3338] 0.5815| 0.5287) 0.5244]| 0.5529] 0.4764
13 0.3715] 0.5181] 0.5038] 0.5475] 0.5450] 0.5751
14 0.3516] 0.7209] 0.4586] 0.6647| 0.7428] 0.6475
2.1 0.5104] 0.3738] 0.6157| 0.5901] 0.5443] 0.5450
2.2 0.7247| 0.3416] 0.5475| 0.6250] 0.5260] 0.6897
2.3 0.7159] 0.3628] 0.4518] 0.5405| 0.5018] 0.5271
2.4 0.5513] 0.3617| 0.4506] 0.5097| 0.5078] 0.4820
3.1 0.5374] 0.5725| 0.4158] 0.8157| 0.7249] 0.4764
3.2 0.4707| 0.4786] 0.3078] 0.7546] 0.7721] 0.6219
3.3 0.4695| 0.4513] 0.3416] 0.5799] 0.6302| 0.5567
3.4 0.4549] 0.4949] 0.4288] 0.5234] 0.7215] 0.5783
41 0.5408] 0.5866] 0.6061] 0.3715| 0.5287] 0.7854
42 0.4873] 0.6798] 0.4550| 0.4376] 0.5038] 0.6432
43 0.4642] 0.4830] 0.4685| 0.3738] 0.4859 0.5123
44 0.4659] 0.5408] 0.7437| 0.3416] 0.4785 0.4938
5.1 0.4626] 0.4873] 0.4978] 0.5641 0.3606] 0.8012
52 0.5345| 0.4642] 0.4531] 0.4650| 0.4288] 0.6792
53 0.4769] 0.4659] 0.5687| 0.7215] 0.2042] 0.5529
54 0.5638] 0.4626] 0.5123| 0.5287) 0.3271] 0.5450
6.1 0.4893] 0.5345] 0.6438] 0.5038] 0.5475] 0.4099
6.2 0.4892] 0.7534] 0.4786] 0.4659] 0.4518] 0.4288
6_3 0.5923] 0.7844] 0.6822] 0.6157| 0.5475| 0.3714
6_4 0.6123] 05900 0.7598] 0.5475| 0.6647| 0.3087

images are able to maintain minimum dissimilarity against
the intra-class templates in both original as well as protected
domains.

V. SECURITY ANALYSIS

Essential properties of any biometric template security
scheme mainly include three characteristics: (i) irreversibility
of the original features from the protected template (ii) can-
celability of the protected template in case of compromise
and (iii) non-linkability of the intra-class templates generated
using different keys.

A. IRREVERSIBILITY

In the proposed scheme, we store only the distances between
different transformations of a user’s feature vector. That is the
protected template is,

F:(dg:1§i<j§n),where ®)
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TABLE 4. Distance values obtained in the original domain for fingerprint.

10 2.0 3.0 40 50 6.0 7.0
11 0.3517] 0.4522] 0.4563] 0.6806] 0.6792] 0.5716] 0.5716
12 0.3338]  0.6234] 0.5145] 0.5244] 0.5529] 0.4764] 0.5855
13 0.3415 0.5213] 0.4821] 0.5475] 0.5450] 0.5751] 0.5329
14 0.3216] 0.4789] 0.4662| 0.6647] 0.7428] 0.6475] 0.6436
21 0.4922] 0.3745] 0.5423] 0.5901] 0.5443] 0.5450] 0.6432
222 0.5437] 0.3777| 0.5512| 0.6250| 0.5751] 0.6897| 0.5163
23 0.5714] 0.3907] 0.4821] 0.5405] 0.6475] 0.5271] 0.5234]
24 0.4652] 0.3542] 0.4966] 0.5997] 0.5450] 0.4820] 0.5490
31 0.4803] 0.4921] 0.3542] 0.8157] 0.6897] 0.4764] 0.5374]
32 0.4702]  0.4672] 0.3445] 0.7546] 0.5271] 0.6219] 0.4797
33 0.6455 0.4754 0.3839 0.5799 0.6302 0.5567 0.4695
34 0.5821] 0.4975] 0.3497] 0.5234] 0.7215] 0.5260] 0.4549
4.1 0.4662] 0.5716] 0.4536] 0.3715] 0.5287] 0.5018] 0.5443
42 0.4776 0.5855 0.4784 0.3764 0.5038 0.5078 0.5260
43 0.5967] 0.5329] 0.4899] 0.3738] 0.4859] 0.7249] 0.5018
4.4 0.4945| 0.6436] 0.4786] 0.3416] 0.4785] 0.7721] 0.5821
5_1 0.5282 0.6432 0.4754 0.5641 0.3606 0.8012 0.6610
52 0.5662] 0.5163] 0.5839] 0.4650] 0.3288] 0.6792] 0.5776
53 0.4776] 0.5234] 0.5058] 0.7215] 0.2042] 0.5529] 0.5967
5_4 0.4967 0.5490 0.4786 0.5287 0.3271 0.5450 0.4949
6_1 0.5166] 0.5765] 0.4513] 0.5038] 0.5475] 0.3985] 0.4764]
62 0.5876] 0.6477] 0.4949] 0.4659] 0.4518] 0.3288] 0.6219
63 0.5966] 0.4967] 0.5098] 0.6157] 0.5475] 0.3714] 0.5567
64 0.6454] 0.5253] 0.4716] 0.5475] 0.6250] 0.3087] 0.5783
71 0.5821] 0.5662] 0.5625] 0.7899] 0.5405] 0.7428] 0.3754]
72 0.6610] 0.4929] 0.4662| 0.7432] 0.5997] 0.5443] 0.3523
73 0.5776] 0.4672] 0.4776] 0.6334] 0.8157] 0.5260] 0.3456
74 0.5967]  0.6643] 0.4597] 0.5557] 0.7546] 0.5275] 0.3756

TABLE 5. Distance values obtained in the protected domain for
fingerprint.

10 2.0 30 40 50 6.0 7.0
11 04576] 0.5506] 0.6371] 0.5222] 0.6705] 05751 0.5212
12 04142| 0.7432] 0.5815] 05921 0.5997] 0.6475| 0.6543
i3 0.4277] 0.6334] 0.7844] 0.6725] 0.7568] 0.5450] 0.5821
14 0.4021 0.5557 0.5900 0.7539 0.7546 0.6897 0.5966
2.1 0.5804] 0.4616] 0.5572] 0.5975] 0.5799] 0.5271] 0.5132
& 0.7247 0.4647 0.5280 0.5716 0.6123 0.4820 0.5784
23 0.7159] 0.4764] 0.5456] 0.5423] 0.5408] 0.5768] 0.5899
2.4 05131] 04381 0.6032] 05512] 0.5373] 0.6836] 0.5572
31 0.5374] 0.6044] 0.4211] 05052] 0.5042] 0.5369] 0.5280
32 05097| 0.5755| 0.4161] 0.5023] 0.6589] 0.5297| 0.5456
33 06951 0.5847] 0.4352] 05163] 0.5374] 0.6886] 0.6032
34 0.7549] 0.5901] 0.4217| 0.5234] 0.5477] 0.5690] 0.5821
41 0.5408] 0.6501] 0.5181] 0.4764] 0.6705 0.6890] 0.6610
42 05173] 0.6705] 0.7209] 0.4381] 0.5997] 0.5638] 0.7762
4.3 0.7542 0.5997 0.5725 0.4672 0.7568 0.5489 0.5967
44 0.5366] 0.7568] 0.5286] 0.4754] 0.7546] 0.5892] 0.6725
51 0.6256 0.7546 0.5127 0.5123 0.4768 0.5647 0.7529
52 0.6345] 0.5799] 0.5486] 0.5318] 0.4228] 0.5784] 0.5975
53 06890 0.6123] 0.5866] 0.5477] 0.3312] 0.6438] 0.6245
5.4 0.5638] 0.5941] 0.5298] 0.5052] 0.4076] 0.6313] 0.5643
61 05489 0.6650| 0.5830] 0.5716] 0.5097] 0.4892| 0.5572
62 0.5892] 0.7215] 0.5408] 0.6721] 0.6951] 0.3786| 0.5438
6.3 05923] 0.5287] 0.5373] 0.6549] 0.7549] 0.3654| 0.6743
6_4 0.6123 0.5849 0.5042 0.5781 0.5408 0:3975 0.5684
71 0.7567] 0.6586] 0.6589] 0.6643] 0.5173] 0.5838] 0.4269
& 0.7650 0.5616 0.5626 0.6234 0.5716 0.7312 0.4313
73 0.7887| 0.5475] 0.5345] 0.5213] 0.5685] 0.5026] 0.4813
74 0.7574] 0.7899] 0.7534] 0.5789] 0.5329] 0.6296] 0.3768
dj = dist (Fi, F}) . 1 < ij <n.i#]. ©)

If r is any random vector, then
dij=dist(Fi+r,Fj+r), 1 <i,j<n,i#]j (10)

Thus the distance between F; and Fj is same as F; + r
and F; + r for any random vector r. Hence from the stored
template F, which is the vector of distance values dj; between
each pair of transformations of the feature vector, it is infea-
sible to get any information regarding the original feature
vector F of the user.

The following points were the observations from the irre-
versibility analysis performed in the worst-case (where it is
assumed that random vectors are known to the intruder):

o It can be noted that knowledge of the random vectors
will give the idea about the window sizes. However,
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predicting the feature values in the window is not possi-
ble using this information. In addition to this, the log
Gabor feature vectors considered in the experiments
were of length 6 x 4 x 141x 141 = 477144. From
the Euclidean distance between the pair of vectors, it is
infeasible to predict the feature values present in the
vectors.

« Median values will be repeated in the window as median
filtering is applied while transforming the feature vector
based on the random vector. Hence when we consider
two transformed feature vectors F; and F;, many of the
feature values at the corresponding locations of F; and
F; may be same. In that case, distance value between
those feature values may be approximately equal to O.
Even in that case, the presence of at least one feature
vector location with different feature values in the corre-
sponding locations will result in non-zero distance value.
Hence the redundancy of median values will not affect
the irreversibility property of the protection scheme.

B. CANCELABILITY

Cancelability of the scheme deals with the possibility of gen-
erating sufficiently many protected templates from a user’s
original template. In the proposed scheme, if the set of
random vectors Ry, Ry, ..., R, are changed, we will get a
different set of transformed templates and hence the distance
values between them will also be different. Therefore, the
resulting protected template F will be different.

Choosing the set of random vectors R; can be done in suffi-
ciently many ways. It is also not necessary to keep the length
pi of the random vector as fixed for a set of transformations.
We may use different values for the random vectors or for
their lengths to obtain different transformations. We have,

Ri:(}’il,...,l”ijw--’ri[’i)’ (h

where i rij = [,VYiand 2 < r; < 20. Hence the number of
=1
possiblje R; depends on the number of possible partitions of
the non-negative integer / into r;; such that 2 < r;; < 20.
Let P (/) be the number of possible partitions of / into
exactly k parts. Then the total number of possible partitions
of / can be represented in terms of Pk (/) as,

l
P(l) = ZPk(l). (12)

k=1

The recurrence relation for Py (/) can be written as,
Pr(l) = Pr( —k)+ Pg—n( —1). (13)

In our case, length r;; of each of the partition generated
from the feature vector of length / should satisfy the condition
2 < rj < 20. From this, we can calculate the number of
minimum partitions possible for feature vector of length / as
% and number of maximum partitions as % When these are
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assigned to Equation 12, we will get,

1

2
Py = > Pu(l). (14)

=L
k=25

If we assume the value of / as 40, we get P(I) = 5 x 103
and for / = 100, we get P(l) =~ 4 x 10°. Hence for the
feature vector of length 24 x 141 x 141, scheme is able to
generate sufficiently many transformed versions of the user’s
feature vector. We can select any n transformed versions
of the feature vector distance between all possible pairs of
vectors will be calculated. Even if similarity is there between
the transformed feature vectors, we will get a nonzero value
for distance if at least one feature value is different in the
corresponding positions of the feature vectors.

C. UNLINKABILITY

The property of unlinkability ensures that if the same user’s
feature vector is transformed using different user-specific
keys, there will not be any similarity between the resultant
protected templates of the same user. This property ensures
that there will not be any correspondence between the intra-
class templates in protected domain if different keys were
used for transformation. Hence an intruder will not be able to
predict whether two protected templates belong to the same
user or not.

In the proposed scheme, set of random vectors selected for
transformation is acting as the user-specific key. When we
change the set of random vectors, an entirely different form of
protected feature vectors will be obtained. Hence the distance
vectors between them will also differ considerably. As we
store the distances between all possible pairs of transformed
feature vectors as the cancelable template, there will be no
linkable information among the protected templates.

A framework for analysing unlinkability of a biomet-
ric template protection scheme is proposed in [58]. In this
framework, templates are divided into two categories: mated
samples and nonmated samples. Mated samples are pro-
tected templates from same subject using different keys.
Non-mated samples are protected templates from different
subjects using different keys. Matching scores obtained for
pairs of mated samples and pairs of nonmated samples will
be plotted against the normalized frequency. Normalized
frequency refers to number of samples normalised to the
range 0 to 3. If sufficient overlapping is present between the
curves, the scheme can be declared to possess unlinkability
property.

In the proposed cancelable scheme, mated samples were
generated from intra-class images by keeping different sets
of random vectors for transformation. A Set of 15 random
vectors each were used for generating mated samples and
non-mated samples. Random vectors were selected randomly,
and the differentiability was ensured manually by ensuring
different numbers and sizes of windows in the random vec-
tors. Non-mated samples were generated from inter-class
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FIGURE 7. Unlinkability curve.

images with different sets of random vectors. Several pairs
of mated samples and number of pairs of non-mated samples
satisfying a particular match score are calculated. For each
match score value, score distribution of mated and non-mated
samples for the proposed scheme is shown in Figure 7. Since
both the curves of mated and non-mated score distributions
are overlapping considerably, unlinkability is ensured for the
system.

The metric score-wise linkability (D <> (s)) is a local mea-
sure of linkability which is used for evaluating the linkability
of the system at the individual score level. The 16 blue dots
in the Figure 7 refer to the 16 scores selected for calculating
the metric score-wise linkability. It can be calculated as,

D < (s)=PHpls)—PHum|s), 15)

where P (H,, | s) represents the conditional probability of
the templates to belong to mated samples for given score s
and P (H,, | s) represents the conditional probability of the
templates to belong to non-mated samples for given score
s. We can observe from the Figure 7 that for the proposed
system, there is almost equal probability for the templates
to belong to mated or non-mated samples for almost all the
scores. Therefore, D <> (s) =~ 0 for all the scores for the
proposed system. It can be inferred from the plot that there
is no particular score s, where the system shows linkability
between the templates generated from a particular user.

Vi. PERFORMANCE ANALYSIS AND RESULTS

In this section, the recognition accuracy of the proposed
system in the transformed domain for face and fingerprint
modalities is investigated thoroughly. By the term trans-
formed domain, we mean the recognition performance is
evaluated using the protected template computed from the
biometric images as explained in Section III-B.

The values obtained for different performance metrics with
respect to the proposed scheme are compared with the values
obtained in the original domain as well as with four state-
of-the-art template protection techniques in the literature.
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As the proposed template protection scheme is a general-
ized scheme independent of the modality-specific features,
we have considered generalized template protection schemes
for comparison. The four generalized template protection
techniques considered for comparison are Biohashing (BH)
[28], Random Distance Method (RDM) [39], cancelable bio-
metrics based on Random Walk (CBRW) [38] and cancelable
biometrics based on Dynamic Salting of Random Patches
(DSRP) [35].

Biohashing (BH) and its variants are widely accepted tem-
plate protection techniques in the literature which are mainly
based on random distance preserving projections. Hence we
considered BH as one of the methods for comparing perfor-
mance of the proposed scheme. Random Distance Method
(RDM) stores relative distance between the feature vector
and random vector as the cancelable template. Since it also
uses the concept of storing a relative information similar
to the proposed scheme, it was considered for comparison.
Cancelable biometrics based on Random Walk (CBRW) and
cancelable biometrics based on Dynamic Salting of Random
Patches (DSRP) are the other two techniques considered for
performance comparison. We considered them for compari-
son as they are comparatively recent techniques. Out of the
four methods considered for comparison, calculations and
transformations were performed in the feature domain in the
first three methods (BH, RDM and CBRW); wherein division
of image into patches was performed in the signal domain in
the fourth method (DSRP). In the proposed scheme, we have
done the computations and transformations in the feature
domain.

Biometric recognition includes both one-to-one verifica-
tion (1:1) and one-to-many identification (1:N). Hence the
performance of the proposed scheme was analysed for both
of these scenarios and the results are included.

The performance of the proposed method is assessed in
both best and worst-case scenarios to ensure the reliabil-
ity of the method in different situations. In the worst-case
scenario, we assume same set of random vectors for all
users in the proposed scheme and the same set of trans-
formation parameters for all the users in the related works
DSRP, RDM, BH and CBRW considered for comparison.
In the worst-case analysis, we can assess the dependency
of the methods on the user-specific parameters for ensuring
inter-class differentiability. As we use user-specific random
vectors only for grouping the feature values of the users,
differentiability of the biometric data of the users can be
maintained as such in the proposed scheme even in the worst
case.

In the best-case scenario, we assume user-specific set of
random vectors (R) for all users which will be able to generate
sufficient distinguishability between the inter-class templates
while generating the set of transformations. In the best-
case scenarios for each of the four related works (DSRP,
RDM, Biohashing and CBRW) considered for comparison
we assume transformations with distinct user-specific param-
eters for each user.
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A. ONE TO ONE VERIFICATION

One-to-one (1:1) verification is the process of authenticat-
ing the claimed identity of the user. During the process of
enrolment, biometric data of each user of the system will
be stored in his/her access card/token in the protected form.
User specific information required for generation of protected
template will also be stored in this access card/token. Dur-
ing verification, user will provide his/her query biometric
template and system will calculate the protected form of the
query template using user-specific data stored in user’s access
card/token. User will be authenticated based on the matching
result of protected form of the query template against the
protected template stored in his/her access card/token.

1) EVALUATION METHODS

Log Gabor features of the input images were transformed
in n different ways using a set of n user-specific random
vectors. These user-specific random vectors are assumed to
be available with the user in his/her card/token. The distance
between each pair of transformations will be calculated to
obtain the distance vector. For each user, the process was
repeated 5 times with a different set of random vectors in
each round. For the first three rounds, » = 20 random vectors
were used and for the remaining two rounds n = 25 random
vectors were used for making transformations of the feature
vector. The results shown in this paper are the average results
obtained after completing all 5 rounds.

2) EVALUATION METRICS
For one-to-one biometric verification, the commonly used
evaluation metrics are Equal Error Rate (EER) and Decid-
ability Index (DI). Hence the performance of the proposed
method is evaluated in terms of EER and DI in verification
mode.

The most common performance metrics in biometric
recognition are FAR (False Acceptance Rate) and FRR (False
Rejection Rate). The equations of FAR and FRR are,

No. of imposter templates accepted

FAR = -
Total no. of imposter templates tested

No. of genuine templates rejected
FRR =

Total no. of genuine templates tested

The point at which FAR and FRR become equal is defined
as the EER (Equal Error Rate) of the system. For an ideal
system EER will be zero and hence systems with lower EER
value are considered to have better performance. For calcu-
lating the different metrics such as FRR and FAR, a threshold
should be fixed for cosine similarity/dissimilarity. In the pro-
posed scheme, we observed that cosine dissimilarity value
should be less than 0.45 for intra class face images and less
than 0.5 for fingerprint images.

The FAR and FRR values obtained in worst case scenario
for face and fingerprint are plotted in Figure 8a and Figure 8b
respectively. The values obtained for the proposed method
along with the other four methods used for comparison are
plotted. It can be observed that EER of 1.51 is obtained
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TABLE 6. Comparison of matching performance (EER%) and DI at 95% significance level for face images.

Metric — EER (1:1) DI(1:1)

Method | Worst Case Best Case Worst Case Best Case
Original 1.3240.65 — 5.12+1.2 —
Proposed 1.51+0.25 1.35+0.23 4.23+0.75 28.5+2.46
DSRP [35] 1.76 £0.32 1.35+0.23 4.05+0.75 28.5 +2.46
RDM [39] 2.3+0.54 1.6£0.86 3.940.99 25.4+2.24
BH [30] 2.940.34 1.740.54 3.441.25 20.5+0.78
CBRW [59] 3.0+1.32 1.8+1.3 3.142.1 21.3%1.3

TABLE 7. Comparison of matching performance (EER%) and DI at 95% significance level for fingerprint images.

Metric — EER (1:1) DI(1:1)
Method | Worst Case Best Case Worst Case Best Case
Original 1.5140.53 — 5.01+1.5 —
Proposed 1.71+0.25 1.53+0.23 4.5+0.75 24.5+2.46
DSRP [35] 1.85 £0.32 1.59 £0.23 4.024+0.75 26.5 + 2.46
RDM [39] 2.3440.54 1.840.86 3.540.99 25.442.24
BH [30] 2.9+0.34 1.740.43 3.01£1.25 20.1£0.78
CBRW [59] 3.1+1.2 1.85+1.3 29421 19.8+1.3
7 T T I 7 T I
Original Original
6 —+— Proposed | 6 — 4+ Proposed ||
DSRP DSRP
5 —— RDM || 5% —— RDM ||
. . —@— BH —@®— BH
4 0 i —@— CBRW CBRW

False Rejection Rate

©

False Acceptance Rate

(a) ROC Curve in terms of EER% for face (Worst Case)
FIGURE 8. ROC curve (EER%).

for the proposed method in the case of face. For fingerprint
images, EER of 1.7 is obtained. It can be observed from the
figures that the proposed method is able to achieve better
performance when compared to the other four methods.
Another metric used for evaluation is the Decidability
Index (DI), which gives a measure of separability between
genuine and imposter scores. It can be calculated based on
genuine and imposter score distribution using the equation,

Mg — i

/(02 +0?) n

where g, (; are mean values and oy, o; are standard devia-
tions of genuine and imposter scores respectively.

If the value of DI is more, then there is a clear separation
between genuine and imposter scores and hence it can be
inferred that different types of error rates such as FAR and
FRR will also be minimal for the system.

DI = (16)
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The metrics EER and DI were used for analyzing perfor-
mance in the verification mode (one-to-one) and the values
obtained for these metrics for the proposed system when
applied on face and fingerprint images are given in Table 6
and Table 7 respectively. The values obtained for these met-
rics in both worst case and best case are given in the table. The
set of random vectors is assumed to be same for all the users
in the worst case and different for all the users in the best case.
From the tables, it can be noted that the proposed method is
able to obtain almost similar EER value as that of the original
domain in the best case for both face and fingerprint images.

3) EVALUATION METRICS

B. ONE TO MANY IDENTIFICATION

In the identification mode (one to many), the query template
needs to be compared against all the available templates in
the database. The template with maximum similarity value
will be identified as the correct match. In the case of one-to-
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FIGURE 9. CMC curve (RI).

many identification, usually worst-case scenario only will be
considered where the set of random vectors is common for all
users. The size of the templates should be same for computing
the similarity score between them. In order to ensure the
size criteria of the templates while identification, it is usually
assumed that the user-specific parameters are common for all
the users. Hence we assume the worst-case scenario, where
the same set of random vectors (R, R, ..., R,) are used for
all the users in the database.

1) EVALUATION METHODS

Log Gabor features of the input images were transformed in
n different ways using same set of n random vectors for all
the users. The common set of random vectors was assumed
to be available for all users for conducting the experiments.
A total of 5 rounds of experiments were conducted with
5 common sets of random vectors for all the users. For the
first three rounds, n = 15 random vectors were used and for
the remaining two rounds n = 20 random vectors were used
for making transformations of the feature vector.

For one-to-many biometric identification, the commonly
used performance metric is the Recognition Index (RI).
When a query template comes, similarity score for the query
template against registered templates of each of the class
(person) will be calculated. If the highest similarity score is
obtained against correct class (person), then it is considered
as Rank 1 classification. However, if the highest similarity
score obtained for a test image corresponds to a wrong class
(mismatch) and second highest similarity score corresponds
to the correct class, then top two matches are required for
the correct classification and hence this is considered as
Rank 2 classification. The percentage of test images correctly
categorized into the corresponding class using the top 1 match
is known as the Recognition Index (RI) at Rank 1 [60]. It can
be mathematically represented as,

RIat Rank1 = (17)
M

where m is the number of images correctly identified in
top 1 match and M is total number of images tested for
identification.
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The Recognition Index (RI) values obtained for the pro-
posed scheme and related works in identification mode are
given in Table 6 and Table 7 for face and fingerprint respec-
tively. RI value of 94.1 is obtained for the proposed method
in the case of face images and RI value of 92.2 is obtained for
fingerprint images. Identification rates obtained at different
ranks for the proposed scheme and related works are plotted
as the Cumulative Matching Curve (CMC). Figure 9a rep-
resents the CMC curve corresponding to face and Figure 9b
represents the CMC curve corresponding to fingerprint.

In the case of one-to-many identification also EER values
were calculated from computed values of FAR and FRR. The
results obtained for face images were given in Table 8 and the
results of fingerprint images were given in Table 9.

TABLE 8. Comparison of matching performance (EER%) and RI at 95%
significance level for face images.

Metric — EER (1:N) RI (1:N)
Method | Worst Case Best Case Worst Case
Original 1.53£0.45 — 96.7+1.53
Proposed 1.72+0.26 1.55+0.33 94.1+1.5
DSRP [35] 1.88 +£0.25 1.57 +£0.26 93.1 £1.32
RDM [39] 2.4£0.67 1.6+0.86 90.2+1.25
BH [30] 2.9£0.45 1.75+0.54 87+1.65
CBRW [59] 3.1+0.24 2.14+0.57 86.31+2.4

TABLE 9. Comparison of matching performance (EER%) and RI at 95%
significance level for fingerprint images.

Metric — EER (1:N) RI (1:N)
Method | Worst Case Best Case Worst Case
Original 1.63£0.73 — 95.1+1.3
Proposed 1.84+0.29 1.66+0.31 92.1+1.5

DSRP [35] 1.95 £0.26 1.68 £0.31 91.8 £ 1.32
RDM [39] 2.36+0.42 1.85+0.56 89.24+1.25

BH [30] 2.9740.45 1.88+0.44 86.411.65
CBRW [59] 3.224+1.7 1.9£+1.5 86.1+1.5
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TABLE 10. Comparison of sizes of protected templates.

Method Protected Template size Example, Image size = 141 x 141
Proposed (g), where n is the number of representations, indepen- (g) =190, if n = 20
dent of input size
RDM [39] 50% of input size % - (141 x 141) = 9940
BH [30] Based on the size of the projection matrix 141 X m, if projection matrix is of size N X m
CBRW [38] Same as input size (141 x 141) = 19881
DSRP [35] 70% of input size 1—70 - (141 x 141) =~ 13916

C. COMPARISON OF TEMPLATE SIZES

In this section, we compare the proposed template protection
scheme with the related works in terms of the dimensionality
(storage space requirement) of the protected templates. As the
cancelable template generated using the proposed scheme
is dependent on the number of transformations selected (n),
the dimensionality of the protected template can be signif-
icantly reduced. In the proposed method, we assume that
15 < n < 30 and hence the size of the template (g) will
be remarkably less than the input image size 141 x 141.
It can be inferred from the Table 10 that, among the template
protection schemes considered for comparison, maximum
dimensionality reduction is possible in the proposed method.

VII. CONCLUSION AND FUTURE DIRECTIONS
Privacy and security concerns while utilizing biometric infor-
mation for person recognition were always a hindrance in
employing biometric recognition in high-security areas. The
most critical attack in biometric recognition systems is tem-
plate reconstruction attack. A cancelable biometric scheme
is proposed in this work to ensure the security of the bio-
metric template. In the proposed method, distance between n
transformations of a biometric feature vector is computed and
it will be used as the protected template (pseudo identifier).
Hence the scheme can perform an indirect way of recogni-
tion by matching this pseudo identifier extracted from the
biometric data. Irreversibility and cancelability property of
this pseudo identity ensures the security and privacy of users.
Utilizing deep networks for computing different represen-
tations of the input templates is a promising future direction
of the work. Randomness can be introduced by employing
different input parameters in different layers. The relationship
between these different representations will be learned by
the network as the cancelable template. The design of such
a network is a promising future direction for the work.
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