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ABSTRACT For a constellation of agile Earth Observation Satellites (EOS), efficiently scheduling image
acquisitions presents a complex decision-making challenge characterized by balancing a multitude of
qualitative and quantitative preferences on the imaging requests while considering a high number of
operational and temporal constraints. Current research predominantly focuses on the scheduling aspect, often
neglecting the fuzzy multi-objective nature of the problem and the near real-time computation requirement.
This study proposes an innovative three-stage solution method. Initially, an a priori multi-criteria scoring
approach, based on the ELECTRE-III method’s fuzzy pairwise evaluation, is employed to value each
potential imaging attempt, addressing the gap in comprehensive pre-scheduling valuation. The problem is
then redefined as a Longest Path Problem in a Directed Acyclic Graph with Interdependent and Allowed
Nodes (DAG-IAN). This re-conceptualization accommodates unique multi-satellite operational needs and
imaging techniques such as stereo and strip acquisitions. We introduce the Extended Longest Path Algorithm
(ELPA) for this purpose, which emerges as a novel solution mechanism. The final stage is a decision support
system designed to guide decision-makers through the satellite operation’s intricate trade-offs, facilitating
iterative enhancements and a deeper understanding of the conflicting objectives through a weight space
analysis and a significance test. Our approach not only demonstrates high adaptability and explainability
but also shows computationally efficient performance. In smaller problem scenarios, the ELPA closely
approximates exact methods while significantly outperforming other approaches in large-scale applications.
The research advances state of the art by offering an intuitive, customizable, and scalable framework in the
preference integration aspect of the Satellite Image Acquisition Scheduling Problem.

INDEX TERMS Satellite image acquisition scheduling problem, agile earth observation satellites, multi-
criteria decision making, directed acyclic graph, longest path algorithm, weight space analysis.

I. INTRODUCTION
Selecting the optimal set of image acquisitions for a constel-
lation of agile high-resolution Earth Observation Satellites
(EOSs) is a complex combinatorial problem incorporating a
high number of operational constraints and qualitative prefer-
ences [1], [2]. In the Satellite Image Acquisition Scheduling
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Problem (SIASP), multiple preference conflicts exist, e.g.,
the trade-off between obtaining as many high-priority images
or high-quality acquisitions as possible. Furthermore, as the
last delivery date nears, the sun elevation lowers, or other
criteria affecting quality decrease, the intricate priority
structure between any two attempts changes dynamically.
A low-priority image request with a due delivery date can
be preferred over a higher-priority image request if they are
conflicting, as the alternative otherwise is a lost customer.
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FIGURE 1. A holistic illustration of the procedure behind an automated
decision-making scheme. In order for a proper automatic decision
process to take place, the four domains should overlap as much as
possible, meaning the preference structure reflects the decision maker
(DM), the problem formulation integrates the preference structure, and
the solution maximizes the objectives through the problem formulation.
See the work of A. E. Vasegaard [7] for a detailed discussion on the
automatic decision procedure.

EOSs has several advantages relative to other image
acquisition approaches, e.g., large acquisition capability in
a relatively short time, worldwide coverage, high revisit
frequency enabling repeated imagery, increasing accessibility
to space, and unlimited airspace borders. Simultaneously,
the growing technical capabilities of satellites such as
agility, memory, communication, or imaging types (passive
or active imagery; s.a., panchromatic, multi-spectral, pan-
sharpened, hyper-spectral, and microwave radiometry; or
synthetic aperture radar, Lidar, radar altimetry, GNSS-R,
and radar scatterometry, respectively) allow for information
retrieval of multiple different objectives, whether it stems
from a purpose of global monitoring of the environment,
earth mapping, urban development, disaster management,
agriculture, maritime surveillance, or Intelligence, Surveil-
lance, and Reconnaissance (ISR) for defense. As a result, the
total number of EOSs launched has increased extensively and
reached 1,184 by January 2023, according to the database at
the Union of Concerned Scientists [3]. Consequently, the high
demand for EOS imagery has led to increased interest from
research communities in the EOS scheduling problem, which,
when omitting the ground station communication, formally is
denoted by the Agile EOS Scheduling problem (AEOSSP)
or the Satellite Image Acquisition Scheduling Problem
(SIASP) [4]. The mathematical problem is equivalent to the
satellite broadcast scheduling problem [5] and even the space
telescope observation scheduling problem [6].

In multi-objective (MO) optimization problems with
real-time execution requirements, adding a decision maker
(DM) to evaluate a high-dimensional Pareto front in operation
is not feasible, so the question is how to deploy a preference
structure, weight setting, or goal such that no matter the
scenario, the DMs will always be satisfied with the solution.
To do this, we must not only focus on objectives but
also consider criteria associated with the image attempts.
Hence, we seek an automated decision-making scheme to be
implemented in this problem domain, omitting the regular
a posteriori approaches and investigating those that a priori
integrates preferences. In doing so, we want to ensure that the
DM has as much control over each domain in the automated
decision-making scheme presented in Figure 1.

FIGURE 2. A map representation of a generated problem scenario and
the corresponding solution. Note the colors of the requests convey
information to the DM of either qualitative, political, or operational
character. E.g., an image request from a high priority customer is colored
purple. See the source codes for the details on the scenario generator.

For the SIASP, the DM faces the great challenge of
balancing the multiple criteria affecting the decision process
such that it aligns with the preferences of all stakeholders
of the satellite operation while resulting in the highest
number of high-quality acquisitions under the uncertainty
of cloud cover, as well as satisfying operational constraints
like maneuverability, energy, memory, reachability, etc. This
is, however, a very difficult task, as the stakeholders of the
satellite operation cover the investors, employees, customers,
executive leadership, and even the greater community. When
utilizing a posteriori MO approach, the DM still faces
complicated comparative tasks in selecting a solution from
the Pareto front, especially when many objectives are
integrated in the evaluation. Similarly, when using standard
a priori approaches, there is difficulty in defining a fitting
preference structure. It is, for example, challenging to state
the direct preference where a high-priority image attempt
with cloud coverage lower than 10 % must be preferred over
any other image attempt through a weight setting scheme.
In addition, not understanding the combined effect of all
criteria when defining rules in the scoring procedure can lead
to unintentional bias.

Therefore, unlike the existing approaches, we formulate
and analyze the SIASP through a three-stage solution
approach that combines a customizable a priori decision
framework with an explainable a posteriori tuning frame-
work. Firstly, a multi-criteria scoring approach that builds on
the MCDM method, ELECTRE-III, is utilized to value each
image attempt. Secondly, due to the complexity of the multi-
SIASP, we formulate the problem as a longest path problem in
a Directed Acyclic Graph with Interdependent and Allowed
Nodes (DAG-IAN). The graph-based representation of the
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satellite network integrates the multi-satellite framework,
stereo, and strip acquisition characteristics. We employ
the Extended Longest Path Algorithm (ELPA) to obtain
a solution. Thirdly, a Weight Space Analysis (WSA) is
conducted to explain the weight setting of the scoring
procedure, while a significance test allows the DM to adjust
their preference structure s.t. it follows the quality objectives,
priority structure, and behavioral aspects. We perform an
extensive simulation study to present the expected outcomes
of the weight space. The overall solution approach for the
SIASP is visualized in Figure 3.

This paper is organized as follows; In Section II, the
research works on MO optimization and the SIASP is
briefly reviewed; Section III explains the model formulation,
utilized methods, performance comparison, as well as the
simulation procedure, WSA, and the significance test;
Section IV discusses the findings and showcases the utility
and application of the system from a managerial perspective,
as well as its relevance for other problem domains; Section V
concludes on the findings.

II. RELATED WORKS
Generally, the SIASP is addressed through a two-phase solu-
tion approach, i.e., a pre-processing segment and scheduling
of candidate attempts with an intrinsic scoring of each
attempt [2], [8], [9]. The pre-processing conducts a discretiza-
tion of the satellite paths, establishes all feasible attempts
based on satellite reachability, decomposes feasible customer
requests, and computes all relevant criteria information on
each attempt. The pre-processing is often trivial and specific
to the solution approach; it is often neglected. The scoring
procedure aligns the expected qualitative value of each
attempt and the value assigned from the satellite operation’s
internal priority structure but is often diminished by only
representing a single objective, e.g., maximizing expected
number of images. In general, the majority of the SIASP
literature focuses on the scheduling procedure and omits the
managerial perspective of integrating preferences [10]. How-
ever, in the last couple of years, the literature has presented a
plethora of multi-objective optimization approaches [11].
When considering multiple objectives and integrating DM

preferences, the literature distinguishes between a priori,
a posteriori, or interactive methods [12], in integrating the
preferences before, after, or during the solution search,
respectively. On the a posteriori side, various methods have
been investigated to showcase the applicability [13], [14],
[15]. In the works by Niu et al. [14], the multi-objective
genetic algorithm, NSGA-II, was applied for rapid response
to natural disasters. The general consensus seems to be
that the SIASP is a many-objective problem. Therefore,
regular a posteriori approaches are not applicable unless a
high number of objectives are omitted; otherwise, a high-
dimensional Pareto front must be obtained and evaluated,
which is computationally expensive and often confusing for
DMs. On the a priori side, and due to the many-objective
aspect of the problem, an objective function combining

multiple viewpoints is often seen constructed with various
levels of systematic reasoning [10], [11]. This could be as
a customized reward function combining quality and the sig-
nificance of a polygon [2], [16], a value function representing
the expected value of profits executed under uncertainties
of clouds [17], a function representing the ‘‘value of
information’’ combining nominal value and profits [18],
or a utility-based function [19], [20]. Additionally, a single
objective is often picked to represent a simplified version of
the DM’s preferences. This could be profit [9], [21], [22],
[23], marginal profit [8], gain of polygons [24], or total
attitude maneuvering time [25], and sometimes, the issue of
defining an objective is completely omitted [26], [27]. Only a
few works have actually implemented a systematic approach
to integrate preferences a priori [28], [29], [30]. Notably,
Hierarchical approaches, which iteratively obtain a solution
given one objective and then constrain the solution space have
shown great promise for real-time scheduling [31]. Similarly,
the works byWang et al. [30] utilize a bargaining mechanism
relying on the theory of Nash equilibrium to evaluate a
bi-objective framework and arrive at a compromise solution.
In the paper by Baek et al. [32], a customizable weighted
scoring approach implementing an array of parameters is
presented in the context of a GUI. Preferences can also be
introduced through an interactive selection stage [19], [33],
but as the real-time requirements and size of the problem
scenarios increase, so does the difficulty of the decision
process, which will leave it impossible for the DM to manage
every selection process.

Because of the issue in integrating preferences, combined
versions of a posteriori, interactive, and a priori approaches
have recently started appearing. The work by Li et al. [34]
showed great promise as the preference-based algorithms t-
NSGA-III are compared with other state-of-the-art MOEAs.
An improved NSGA-III also showcased great results in
integrating both a priori and a posteriori preferences in the
satellite scheduling [35]. However, all this work still relies
on the a posteriori integration of a DM in operation, which
bypasses the possibility of real-time execution. The solution
approach of this paper continues this quest by presenting
a framework where operational preferences are integrated
a priori but tuned a posteriori.

III. SOLUTION APPROACH
In the SIASP, a large set of decisions govern the outcome, e.g.,
how the intricate priority of customers relates to the physical
quality of imaging attempts. Additionally, the decision
environment changes regularly due to new regulations, new
priority structures of the satellite operation, etc. As a proper
preference structure is complex to define, some decisions
and trade-offs are introduced through hierarchical scheduling
or hard constraints to handle differently prioritized customer
requests. However, the proper preference structure is often
neglected or simplified when decisions are imposed by con-
straints, as these decisions are scenario-specific. Ultimately
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the valuation of requests imposed by the defined priority
structure should reflect three aspects of the decision making
in the SIASP:

1) The political agenda reflects the intricate priority
structure of customers relative to other customers

2) The qualitative agenda is imposed on the criteria set to
maximize the quality of the acquired images

3) The operational agenda convey the changing value
of attempts relative to the resoluteness of time until
expiration of requests, the uncertainty of cloud coverage,
willingness to complete requests, multi-strip, or stereo
request completion

Note cross-agenda decisions also exist, e.g., the value of a
high-priority, low-quality acquisition with high uncertainty
relative to low priority, high-quality acquisition with low
uncertainty. This paper introduces a solution approach
where the different agendas are incorporated in the scoring
procedure.

A. MODEL FRAMEWORK
To generate a problem scenario for the SIASP, three important
types of information must be attained: customer-specific
information (e.g., request location, type, area, customer
type), satellite-specific information (e.g., satellite orbit,
planning horizon, maximum off-nadir angle, slew-speed,
memory, or battery capacity), intermediate information of
satellite and customer (e.g., feasible acquisition attempts
and corresponding forecasted cloud cover, uncertainty,
or depointing angle). An example of a generated problem
scenario can be seen in Figure 2. See the source codes for
the details on the scenario generator.

The customer-specific information focusesmainly on the
data generation and is provided in detail in the Supplementary
file S2. Generating customer requests located worldwide
allows for experimentation of the scheduling procedure over
longer periods, ultimately enabling the DM to understand the
long-term effects of deciding between acquiring a request
on different orbits while simultaneously scheduling other
acquisitions.

The satellite-specific information is amultitude ofmostly
fixed data sources, e.g., the planning horizon from UTC
09:40 to 17:40 at the 26th of July 2022 for the two
satellites, SPOT 6 and 7. We found their reference orbits
through the Two-Line-Element set (TLEs) obtained from
www.celestrak.com. Note we discretize the satellite paths
given a temporal resolution variable τ , which indicates the
satellite’s position being considered for every τ seconds.
The lower the resolution τ , the closer the solution will be
to the solution of the continuous version. The size of the
problem scenario will likewise increase when τ is increased.
Additionally, we assume slew-speed to be constant and 2o

per sec [36]. A feasible attempt follows user-given threshold
specifications of off-nadir angle relative to the satellite, sun-
elevation angle, forecasted cloud coverage, and operational
constraints.

The intermediate information of satellite and customer
requests refers to all the relevant information deduced from
knowing a satellite’s position and the location of a customer’s
request. That is, incidence angle, sun elevation, cloud cover
forecasts for the request, and uncertainty of that forecast. The
computation details for the intermediate information can be
found in the supplementary file of Section S-II.

The pre-processing computes the data frame P represent-
ing all feasible attempts and the relevant criteria for the
particular problem scenario. See Table S1 for an example of
a P data frame.

B. DIRECTED ACYCLIC GRAPH WITH INTERDEPENDENT
AND ALLOWED NODES (DAG-IAN)
To model the decisions of the SIASP, we introduce the DAG-
IAN. A general, DAG is a set of nodes connected by directed
edges without the possibility of cycles, see Figs. 4 and 5 for
an example of a SIASP and the corresponding DAG.

In the case of the DAG in Figure 5, a node represents an
imaging attempt of a specific request. Some attempts acquire
the same request, and as we have to ensure the stereo and
strip constraint, we denote a set of nodes representing the
same request as interdependent nodes. That is, a subset of
the DAG where a maximum number of nodes from that set
can be acquired. Similarly, some attempts are stereo attempts
meaning they have to be acquired together. This adds a further
constraint on which subsets from the DAG that must be
acquired together. We denote any set of nodes with such
characteristics as allowed nodes.

G[i, j] =



0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1
0 1 1 1 1 1 1

0 1 1 1 1 1
0 1 1 1 1

0 0 0 1
0 0 1

0 1
0


,

B[r, i] =

1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 1 1 0 0 0
0 0 0 1 0 0 0 1 1 1

 ,

b[r] =

1
2
2

 ,

A[s, i] =

[
0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1

]
,

w[i] =
[
1 1 2 3 2 2 2 2 2 3

]
The longest path in a DAG representation of a satellite

network will yield the schedule that includes the image acqui-
sitions that maximize the stated objective function. However,
as the solution space is constrained by interdependent nodes
and allowed nodes, such a path is not necessarily valid.
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FIGURE 3. A holistic illustration of the solution procedure for the SIASP. The WSA seeks to investigate the
relationship between the input and output of the system. Note the solution approach operates around the
customer management scheme. Optimally, the entire solution procedure is automated, and adjustments are only
made according to recommendations from the WSA.

FIGURE 4. An example of a network representation for some arbitrary
SIASP scenario. The specific scenario characteristics in terms of
maneuverability, stereo attempt pairs, strip attempts, strip request type,
and score are shown in the matrices G, A, B, b, and w . Note that request
1 is a regular request (a single acquisition must be made), request 2 is a
strip request (two different acquisitions), and request 3 is a stereo
request. Also, in this example, it is assumed that the two sets of attempts
{4, 8} and {8, 9} create a complete stereo request acquisition, and it is,
therefore, necessary to replicate attempt 8, which is why 8’ and 8’’ are
present.

By topologically sorting P and consequently the adjacency
matrix G (order in which attempts appear) by first satellite
and second time, the adjacency matrix (feasible maneuvers)
is upper triangular. Ultimately, this permits G to represent
a DAG-IAN constituting all feasible solutions with the
interdependent and allowed nodes represented by the
matrices B and A, respectively, and the maximum number
of interdependent nodes by b, and the abstracted length
illustrated by the vector w.

C. MODEL FORMULATION
We introduce the following operational constraints on the
scheduling procedure:

FIGURE 5. The SIASP scenario presented in Figure 4 represented as a
DAG. The interdependencies and allowed nodes characteristics, which
distinguish it as the DAG-IAN, are indicated by matrix B and A. Note the
start and finish nodes are not necessary for the ELPA to work.

1) The payload of each satellite can only perform one
task/request at a time [2].

2) Maneuvering time and acquisition duration make a set
of attempts infeasible, i.e., some attempts cannot be
performed sequentially if there is not enough time for
maneuvering the attitude of the satellite.

3) A request must only be acquired once within the time
horizon.

4) Requests too large to be acquired in one acquisition are
segmented into multiple strips, jointly representing the
full request [2].

5) We consider two types of requests: mono, where each
area is acquired once; and stereo, where each area
must be acquired twice, but from different angles
(convergence angle between 15o to 20o) [13].

6) Satellites have limited memory and energy, constraining
the schedule. [25].

7) Attempts must be initiated only if conditions are within
some specified quality thresholds (max. off-nadir angle
of 30o, min. sun elevation of 15o, max. forecasted cloud
cover of 60% [36]).

Consequently, the problem can be formulated as a discrete
multi-objective optimization problem with each feasible
imaging attempt as an element in a binary decision variable
xi. If xi = 1, the ith feasible attempt is acquired, and xi =
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0 otherwise. Correspondingly, in the scheduling procedure,
we want to maximize the following objective function:

max
x∈X

Fθ (x) = max
x∈X

g(f1(x), f2(x), . . . , fn(x), θ) (1)

= max
x∈X

∑
i∈N

cixi (2)

where N represents the total number of feasible attempts
within the planning horizon, fn is the nth objective function in
the optimization problem, and ci represents the corresponding
non-negative value of the ith attempt when the a priori prefer-
ences, expressed by the parameter configuration θ regarding
all objectives, are considered by the DM. Additionally, the
function F(.) is consequently a composite function (g ◦

{f1, f2, . . . , fn})(x), where the g(.) function is the mapping
of preferences towards all objectives. This assumes that we
a priori know the preferences of the DM and the behavior of
the Pareto front. Practically, creating a preference structure
and mapping that accurately mirrors the decision maker’s
preferences is challenging, as the landscape of the Pareto
front is unknown until optimization starts. It is therefore
important to include a tuning procedure to align the DM’s
expectations with the outcome. This involves utilizing a
system for decision support, which aids in fine-tuning the
parameters based on DM feedback and preferences. This is
described in detail in Section III-H.
The score, ci, is computed through the ELECTRE-III

approach, which is based on the concept of outranking.
In this method, alternatives are compared pairwise across
multiple criteria. The core intuition is to establish the
extent to which one alternative is at least as good as
another, considering all criteria. The scoring involves two
main elements: concordance, which measures the degree of
dominance of one alternative over another, and discordance,
which assesses the extent of inferiority in certain criteria. This
dual assessment helps in capturing the nuances of preference,
particularly in cases where alternatives excel in different
criteria. Consequently, the final score reflects a balance
between these competing factors. See the Supplementary file
S-I for an extensive explanation of the scoring method [28],
[37], [38].

In extension to this, the set of constraints indicating the
feasible region X can be formulated as:

1) Incorporating the maneuvering feasibility of the sched-
ule involves considering the satellite’s time consumption
for maneuvering between two consecutive attempts and
the acquisition duration of the former attempt. If the
time consumption for the particular maneuver between
two attempts for the same satellite exceeds the available
time, this maneuver is infeasible.

∀{i, j} : Gi,j = 0 ⇒ xi + xj ≤ 1 (3)

Here, the binary matrix G represents all such feasible
pairs of attempts, thus being the adjacency matrix for
the DAG-IAN. Note thatG should be an upper triangular

matrix, as P is ordered with respect to satellites and time
in that order.

Gi,j =


0 if Tmani )j + T acqi < tclockj − tclocki

∧ sat(i) = sat(j)
1 otherwise

(4)

where the maneuvering duration, Tmani )j is computed
based on the rotational speed of the satellite platform
and the angle between the two vectors representing the
line of sight of the satellite for the two acquisitions
i and j in P. T acqi is the acquisition duration for i’th
attempt, and tclocki is the starting time of acquisition i.
The function sat(.) returns the satellite ID of the i’th
attempt. Naturally, a maneuver can only be infeasible if
it is performed by the same satellite.

2) A request can only be acquired multiple times if the
additional acquisitions are due to the request being
a multi-strip or stereo request. A specific number of
each set of interdependent nodes can be included in the
longest path.∑

i∈N

Br,ixi ≤ br ∀r ∈ {1, . . . ,R} (5)

where Br,i is a binary representation of every set r of
unique attempts, and br is the upper limit for the number
of acquisitions for that unique request. Note that R is the
number of unique requests in P.

Br,i =

{
1 if id(i) = Uid(r)
0 otherwise

(6)

where the functions id(.) and Uid(.) represent the request
ID and enumerated unique request ID in P, respectively.

3) Some attempts represent stereo requests, which can only
be acquired together in specific pairs to complete a
request. That is, only specific pairs of these interdepen-
dent nodes are allowed together.∑

i∈N

As,ixi = {0, 2} ∀s ∈ {1, . . . , S} (7)

The binary matrix A represents any allowed pair s of
attempts that jointly represent a complete stereo request.
S is the number of unique pairs of attempts completing
a stereo request.

As,i =

{
1 if id(i) = ID_allowable(s)
0 otherwise

(8)

where ID_allowable(s) = ID’s for the s’th pair of
allowed attempts. Note due to the interdependence
constraint in Eq. (5), it is not allowed for any attempt
to be part of more than one pair of allowed stereo
requests. Therefore, if that happens, an attempt must be
replicated, and the corresponding multiple allowed pairs
relative to that attempt split into each replication, see
Figure 4. Note this is computed in the pre-processing.
If Eq. (7) equals 0, no attempts of that set of stereo
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acquisition are made, and if it equals 2, the complete set
s is acquired [39].

4) The acquisition of a request takes up both storage of
the satellite memory and energy for maneuvering from
the battery. A simplified scenario is considered where
both down-link (increased memory) and sun exposure
(recharging battery) are neglected, and the available
levels are thereby known prior. For a longer scheduling
horizon, this should be modified. We consider the
following: ∑

i∈N

Mi,txi ≤ mt ∀t ∈ � (9)∑
i∈N

Ei,txi ≤ et ∀t ∈ � (10)

where Mi,t represents the memory usage of attempt i of
satellite t . Note � represents the set of satellites, and
mt represents the upper threshold of memory capacity
for that particular time horizon. Ei,t represents the
approximated energy consumption for the maneuver of
attempt i for satellite t , while et represents the available
energy for satellite t in the planning horizon.

5) Lastly, the decision variable is of binary characteristic:

xi ∈ {0, 1} ∀i ∈ N (11)

Note from the perspective ofmodel formulation, Perea et al. [40]
ignored the impact of stereo imaging, memory, and energy
(Eq. (7)-(10)); Wang et al. [41] ignored stereo, strip, energy,
andmemory (Eq. (5)-(10)); Bensana et al. [42], Jang et al. [8],
Xu et al. [43], and Valicka et al. [44] ignored stereo con-
straints. Additionally, the way we introduced maneuvering
feasibility (Eq. (3)-(4)) to consider the reachable request in
near real-time and stereo images (Constraints (7-8)) is also
quite new, and it reduces the computational complexity.

D. EXTENDED LONGEST PATH ALGORITHM
The ELPA has been developed to take advantage of the
inherent structure of the network of attempts in the SIASP.
It requires no parameter tuning, has lower computational
effort, and can easily accommodate the multi-satellite
framework and the stereo and strip imaging characteristics
of the requests. Utilizing a heuristic that uses the graph
representation is not novel; however, designing one that
implements the strip, stereo, and multi-satellite framework
is. The ELPA modifies the classical Longest Path Algorithm
(LPA).

For a regular DAG, it is possible to identify the longest
path by utilizing a topological sorting of the nodes in G
and after that employ the LPA [45]. The computational
complexity of the LPA is O(E + N ), where E and N
are the number of edges and nodes, respectively. The LPA
linearly determines the longest path for each node from one
end to another. This is possible as the topological sorting
sorts the nodes in relation to how they appear in the DAG.
However, as interdependencies exist in the DAG-IAN, this is

Algorithm 1 Extended Longest Path Algorithm for a
Weighted DAG-IAN With Interdependent Nodes
Result: Longest weighted path in the directed acyclic graph with

interdependent and allowed nodes G
1 G:= matrix representation of the topologically sorted DAG-IAN representing

edges between nodes i and j
2 B:= matrix representation of interdependencies between nodes i and j
3 b:= vector representation of the max number of acquisitions for each

interdependent node i
4 A:= matrix representation of all pairs s of allowed stereo attempts i
5 w:= vector representation of the weight for each node
6 α:= depth variable
7 Longest_path:= list w/ longest path for each node
8 path_weight:= list w/ weight of longest path for each node
9 for each node i in G do
10 //identify longest allowable path to i
11 Incomming_paths:= subset of Longest_paths leading into node i, sorted

by path_weight and with no more elements than α

12 if Incoming_neighbours = ∅ then
13 x:= binary representation of the path with only node i
14 if Ax = {0, 2} then
15 Longest_path[i]:= x
16 path_weight[i]:= wx
17 else
18 Longest_path[i]:= []
19 path_weight[i]:= 0
20 end
21 else
22 for each incoming path j ∈ Incoming_neighbours do
23 x:= binary representation of the path j with node i
24 Longest_path_temp:= temporary list w/ longest path for each

path
25 path_weight_temp:= temporary list w/ weight of each path
26 if Bx ≤ b then
27 if Ax ∈ {0, 2} then
28 if j = 1 then
29 Longest_path[i]:= x
30 path_weight[i]:= wx
31 break
32 else
33 Longest_path_temp[j]:= x
34 path_weight_temp[j]:= wx
35 end
36 else
37 //add stereo attempts
38 stereo_i:= node prior to i that completes stereo

request
39 if stereo_i = ∅ then
40 Longest_path_temp[j]:= []
41 path_weight_[j]:= 0
42 else
43 x_stereo:= INSERT(x, stereo_i)
44 Longest_path_temp[j]:= x_stereo
45 path_weight_temp[j]:= w x_stereo
46 break
47 end
48 end
49 else
50 //remove the least contributing interdependent node
51 if node i is not a stereo request then
52 interdep_i:= interdependent nodes in path x

relative to node i
53 min_illegal_node:= smallest weighted node in

interdep_i
54 Longest_path_temp[j]:= REMOVE(x,

min_illegal_node)
55 else
56 illegal_stereo_node:= nodes in A that complete

the same stereo request as node i
57 stereo_inter_n = nodes in A that together with i

complete stereo constraint
58 x:= REMOVE(x, illegal_stereo_node)
59 illegal_stereo_node:= INSERT(x, stereo_inter_n)

60 end
61 end
62 end
63 Longest_path[i]:= highest weighted path in Longest_path_temp
64 path_weight[i]:= weight of Longest_path[i]
65 end
66 end
67 RETURN(highest weighted path in Longest_path)
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TABLE 1. Notation table for problem formulation.

Algorithm 2 Pseudocode Representing How to
Remove a Non-Allowable Node I in a Path p as
REMOVE(p,I )
Result: remove node I in path p

1 p:= list with all nodes in path
2 I := node in G which should be removed from p
3 x:= binary vector representation of path p
4 xI := 0
5 //search for alternative nodes
6 a:= the last node before I included in the path p
7 b:= the first node after I included in the path p
8 r := range of interest, i.e., list of nodes between node a and b
9 F_n:= nodes in the range r that connect nodes a and b relative to G

10 if F_n is empty then
11 RETURN(x)
12 else
13 Longest_path_temp:= temporary list w/ longest path for each alternative

14 path_weight_temp:= temporary list w/ weight of each alternative
15 for each node k in F_n do
16 x_temp:= binary representation of the modified path p′ with

feasible node k and without the removed node I
17 if Bx_temp ≤ b ∧ Ax_temp = {0,2} then
18 Longest_path_tempk := x
19 path_weight_tempk := wx
20 end
21 end
22 RETURN(highest weighted path in Longest_path_temp)
23 end

not sufficient, and the regular longest path algorithm must be
extended to satisfy the additional constraints. A pseudocode
of the proposed extension can be seen in Algorithm 1.

There are three fundamental phases, which the ELPA
iteratively goes through for each node: a ranking phase of
the incoming paths to the current node based on the path
lengths; a correction phase where paths are investigated and
corrected based on the constraint it is violating; and lastly,
a searching phase where another node is sought to be included
as an alternative to the correction made in the previous phase.
The traditional LPA only consists of the ranking phase, and
consequently, the ELPA is a two-loop version of the LPA
in which the correction phase and the path are investigated,
and depending on its state relative to the interdependency
and stereo constraints, a fitting correction procedure can be
determined.

Algorithm 3 Pseudocode Representing How to Add
a Node I to the Path p as INSERT(p,I )
Result: insert node I in path p

1 p:= list with all nodes in path p
2 I := node in G which should be added to path p
3 x:= binary vector representation of path p
4 xI := 1
5 //check for violations
6 if Bx > b then
7 //violating number of interdependent nodes
8 interdependent_n:= nodes in p that are interdependent with node I
9 remove_i:= node with smallest weight in interdependent_n

10 x:= REMOVE(x, remove_i)
11 end
12 if Ax ̸= {0,2} then
13 //violating stereo constraint
14 stereo_inter_n = nodes in p that together with I violate stereo constraint
15 remove_i = node with smallest weight in stereo_inter_n
16 x:= REMOVE(x, remove_i)
17 end
18 if ∃i ∈ N : xi + xI = 2 ∧ (G[i, I ] = 1 ∨ G[I , i] = 1) then
19 //violating maneuverability
20 remove_i = i, which violates the above if-statement
21 x:= REMOVE(x, remove_i)
22 end
23 RETURN(x)

For the ELPA, only one of the following four scenarios is
true for a step-wise generated path when adding node i:
1) Bx ≤ b ∧ Ax ∈ {0, 2} ⇒ The path is acceptable as

it is not violating any constraints. The search phase is,
therefore, omitted.

2) Bx ≤ b ∧ Ax /∈ {0, 2} ⇒ The path is missing a stereo
attempt to yield a complete stereo request.

3) Bx > b ∧ Ax ∈ {0, 2} ⇒ The path incorporates too
many interdependent nodes, and the smallest weighted
interdependent node relative to node i should be
removed.

4) Bx > b ∧ Ax /∈ {0, 2} ⇒ The path is incorporating
another complete pair of stereo attempts, so to fix this,
the pair should be removed, and another stereo attempt
should be included to yield a complete stereo request.

When modifying a path by removing a non-stereo node,
two things must be true: the path will still satisfy the stereo
constraint, and it is possible that another alternative node
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could replace the removed one. The ELPA is designed only
to remove a complete pair of stereo attempts (a complete
stereo request) to include another stereo attempt of the same
request. For that modification, the procedure is the same,
where another node is searched for as an alternative to that
node. Ideally, an entire alternative set of nodes could replace
the removed nodes, but the algorithm omits this as the search
for a set is very computationally expensive.

When inserting a node that does not follow the order
of the DAG-IAN, the maneuverability constraint is not
necessarily preserved. Therefore, one has to check for both
interdependency and stereo constraint. If any constraints are
violated when inserting a node, the responsible nodes in the
path (not the inserted and the last node) are removed, and
an alternative node to the removed node will be searched
for. As the algorithm only goes through two loops when
traversing the DAG-IAN, the optimal path can sometimes
be neglected. This is because the algorithm, in searching for
an alternative node to a removed one, is not allowed to also
search in the set of alternative nodes that violate a constraint.
Doing so would have made the ELPA a three-loop version
of the LPA. If the optimal solution should be ensured, then
by continuing the extension, that version of the ELPA would
have a worst-case complexity of O(NN ).
Moreover, for operational purposes, we have included

a depth variable, which determines the maximum number
of incoming paths that are investigated and modified for
each node. The increasing performance and time complexity
are illustrated for different depth variables in Table S3 of
the Supplementary file. Based on that table, we set the
depth variable to 25. Note the computation of each path is
independent of the others, so it is possible to compute this in
a parallel manner, thereby overruling the need for the depth
variable. For reasons of comparison, this is not done in our
research.

The worst-case computational complexity of the ELPA
is O(mN 3); see the calculation in Section S-IV of the
Supplementary file. The average-case complexity is, how-
ever, expected to be much better, as the investigated set
of nodes in the ELPA when utilizing the remove and
insert operator is between the prior and later node and not
the entire set of nodes. Consequently, We can assess the
ELPA to have a worst-case computational complexity of the
ELPA is O(mNR2), where R is the maximum number of
attempts between any two scheduled attempts. The worst-
case complexity of the ELPA makes it comparable to that of
the dynamic programming algorithm presented in the works
of Lemaitre et al. [2], which have a time complexity of
O(|B|

2
×maxiTi), where B is the number of imaging attempts

in the problem scenario and maxiTi is proportional to the
inverse of the time discretization interval.

For a thoroughly explained example of the ELPA used on
the problem of Figure 5, see Supplementary file S-3. As an
a posteriori check, the solution approach should integrate a
search for the longest path that does not violate the memory
and energy constraint in Eq. (6).

E. GREEDY AND RANDOM SOLUTION ALGORITHMS
For comparison, we use two solution algorithms often applied
in the literature. One is a greedy approach, which iteratively
adds the highest-scored node to the solution and checks
whether the objective function is improved. If improved, the
node is added. The random approach performs the selection
based on a random distribution. To direct the exploration
phase of the approach, the probability distribution is weighted
based on the corresponding score of the nodes relative to the
total score of all nodes.

Due to the constraints and interdependencies on the
solution space, adding a single node will likely make the
solution infeasible. Therefore, the addition of a node is done
based on the principles of the INSERT operator showcased in
Algorithm 3.

F. ALGORITHM PERFORMANCE
The performance of the ELPA and DAG-IAN formulation is
compared with the GNU Linear Programming Kit (GLPK)
implemented in the CVXOPT package, which is widely
used for large-scale mixed-integer linear programming prob-
lems [46]. As version 1.3.0 of the GLPK implementation
offers an exact solution approach, the performance in
objective value is expected to be higher than that of the
ELPA [47]. All simulations are run on a workstation with a
1.6 GHz Intel i5-8250 processing unit.

As seen in Table 2, the deviation in objective value
performance between the exact approach and the ELPA
is maximum 2% [15], [48]. The Random and Greedy
approaches are much more sporadic in performance, as for
large scenarios when the exact approach cannot deliver a
solution, they can be as far as 70 % away from the objective
function value of the ELPA. For small problem scenarios, the
exact approach is the most efficient option. Still, as it almost
randomly stops being able to obtain a solution, it is not useful
for larger problem scenarios. The problem is complexity
depends on the number of nodes |N | but especially the
number of interdependent sets |B|. When |B| is high, the
performance of the ELPA is much higher than that of the
greedy and random approaches.

G. OUTCOME OBJECTIVES
Despite the intuitiveness behind the scoring procedure,
it becomes challenging to ensure the preferences due to
problem complexity and scale, as well as variations in
problem scenarios, cross-agendas, and incompetence in the
operation. Consequently, it is challenging for the satellite
operation to agree on a common preference setting. This
is especially the case, as the input is the weight setting
of the ELECTRE-III, which allow for a high degree of
customizability. Effectively, the outcome objectives provide
the DMs with the ability to integrate a posteriori tuning of
the a priori preference structure.

In other research, the objective function representing the
preferences of the DM is generic or very simple, and
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TABLE 2. Comparison of the computational complexity and relative performance of the scheduling methods. The scenario size is denoted by |N|, |E |, |B|,
and |A| representing the number of nodes (attempts), number of edges (feasible maneuvers), number of interdependent set of nodes (requests), and
number of allowed nodes (set of stereo pairs), respectively. The input for the scenario generator is for reproducibility.

due to the complexity of both the scoring and scheduling
procedure, as well as the uncertainty in the information,
the resulting schedule can very well exhibit preferences that
are different from what the DM intended [49]. Therefore,
we construct outcome objectives that reflect the resulting
schedule both in terms of behavior and performance but
are defined directly on the outcome of the schedule. This
yields a much more precise evaluation, allowing the DM
to have a quantifiable compromise when determining a
common preference structure. We choose the following
simple outcome objectives for performance:
1) Minimize average observed cloud cover
2) Maximize the total number of acquisition

Furthermore, we define these simple behavioral outcome
objectives:
3) Are any priority 2, 3, or 4 requests chosen instead of

a priority 1 request?
4) Are any requests with an age less than 13 days chosen

instead of a 13 or more days old request?
Based on these objectives, the DM effectively seeks a
compromise solution where trade-offs can be quantified
rather than imposed by hard constraints. Note that the
performance objectives are numerical, and the range depends
on the measure of interest. In contrast, the behavioral
objectives are binary, with 1 representing an acceptable
behavior in the schedule and 0 representing an unacceptable
behavior. These outcome objectives are all conflicting, e.g.,

the lowest average observed cloud cover (in the extreme
case) is obtained through the weight setting that leads to
only a single acquisition with the smallest cloud cover to be
scheduled, which contradicts acquiring the highest possible
number of requests. The extensive simulation evaluated with
these objectives provides the DMswith the expected outcome
of their decisions prior to making them.

H. WEIGHT SPACE ANALYSIS (WSA)
TheWSA serves a dual purpose in a decision support context.
First, it includes a simulation study that explores the impact
of different intervals on the feasible weight space. Second,
it incorporates a significance test to identify significant
changes to the current preference structure. This means the
WSA provides the DM with increased understanding of the
decision environment as well as provide suggestions to which
modifications one ought to make.

The inspiration for theWSA springs from the research field
of Stochastic Multi-criteria Acceptability Analysis (SMAA),
which is often applied when criteria and preference infor-
mation are uncertain, inaccurate, or partially missing [50].
It can also be utilized to understand trade-offs, align groups of
DMs, or analyze the robustness perspective of the preference
model parameters by exploring the weight space through
some assumed utility function and stochastic criteria values.

In MCDM literature, the weight space refers to the range
of variable combinations DMs can use to express their prefer-
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TABLE 3. Table representing the WSOI. It holds the range limits for the
different threshold values investigated in the WSA. Note the DM
correspondingly does not assert a specific preference structure but a
range within where their intended preference structure could be.

ences. Our approach extends this by including the threshold
values, which also affect the scoring procedure, making
a specific combination of weights and threshold values
equivalent to theDM’s preference structure. Theweight space
of interest (WSOI) defined by theDM for the threshold values
is shown in Table 3, i.e., the range reflected by the lower and
upper bound for each threshold variable. Note the WSOI for
the weights of each variable is non-trivial as an experienced
DM with pre-existing knowledge of their preferences is
expected to have a more refined (smaller) WSOI.

The interesting aspect of this WSA is to explore how
the outcome objectives behave in the different regions
of the weight space and whether some regions are more
favorable for all objectives. To investigate this, we choose
to separate the ranges of the weights and each criteria range
observed in Table 3 into 10 uniform regions. However,
due to dependencies and the high dimensionality, that
corresponds to 104×9 different combinations of regions,
which is infeasible to analyze. Note for the 10 regions to
investigate, there are four parameters for each of the nine
criteria in the ELECTRE-III model. However, for a large
number of simulations, it is expected that some regions of
the weight space will produce significantly different outcome
objectives compared to other regions of the same criteria. The
average outcome objective for a region l is utilized as a metric
to compare different regions.

µobj1l
=

∑
h∈Hl obj1nl

|Hl |
, (12)

where Hl is the set of instances that fall within region l,
each of the hth observed values of objective-1 in region l
is denoted obj1hl , and |Hl | represents the total number of
instances in region l. Here, suppose we want to obtain an
accuracy κ with a 95% confidence interval. In this case,
we can consider the observations of the simulation to be point
estimators for the outcome objectives of each interval, as well
as assuming the average outcome objectives to be normally
distributed for each interval given the central limit theorem.
Accordingly, the number of simulations required for stated
accuracy in each interval is Z2

α

4κ2
[51], [52]. For an accuracy κ

of 0.025, the number of simulations required for each region
is 1.962

4∗0.0252
= 1537.

FIGURE 6. Heat plot representing the average number of acquisitions
obtained from different ranges seen through 20,000 simulations.

FIGURE 7. Heat plot representing the average cloud cover obtained from
20,000 simulations.

FIGURE 8. Heat plot representing the frequency of following the priority
outcome objective obtained from 20,000 simulations.

For this reason, we conduct 20,000 simulations, where the
scenarios are generated based on 2,000 worldwide-located
customer requests and a two-second temporal resolution
on the satellite path, as well as the information previously
mentioned in Section III-A. The results from the WSA are
empirical and allow the DM to include their experience on the
range and, thereby, the significance of the difference between
measures.

To identify improving modifications on the preference
structure, we compute a significance test that utilizes the
computed experiments and a linear model for both the
continuous and binary response variables. We then define
the predictive variables as categorical variables where the
specific segment that each parameter belongs to yields the
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FIGURE 9. Heat plot representing the frequency of following the delivery
time or age outcome objective obtained from 20,000 simulations.

value. This is due to the knowledge that each parameter
does not necessarily have a linear effect on the objectives.
We report the p-values to represent the significance of each
interval, that is, the null hypothesis that the group means
are not different from the others. By utilizing categorical
variables, the test represents how significant the change
from an assumed base model to another model is. That is,
a specific interval is chosen instead of the one occurring in
the base model. Note the base model refers to the assumed
preference structure. Accordingly, the first segment will be
incorporated into the intercept, and the effect of moving from
one segment to another can be evaluated. Additionally, the
categorical features ensure that two segments of the same
parameter cannot be incorporated at the same time. Before the
simulation is conducted, a base preference structure must be
defined by theDMas the intercept.We assume, for simplicity,
the base preference structure to be the first segment of each
parameter in the WSOI.

Yi = β0 +

N∑
j=1

βjQi,j +
N∑
l=1

βlPi,l +
N∑
m=1

βmVi,m

+

N∑
n=1

βnWi,n

Ri = γ0 +

N∑
j=1

γjQi,j +
N∑
l=1

γlPi,l +
N∑
m=1

γmVi,m

+

N∑
n=1

γnWi,n∀i ∈ I

where Yi is the continuous response variable, Ri is the
binary response variable, β and γ are the linear regression
parameters for the continuous and binary response variable,
respectively, and Qi, Pi, Vi, and Wi are the categorical
variables of each segment i on the WSOI.

IV. RESULTS AND DISCUSSION
The results of the simulation are presented via the heatmaps
in Figures 6, 7, 8, and 9 and the p-values of Table 5, 4, 6,
and 7 indicate the significance of modifying the assumed base
model.

The decision process of the operator can be seen in In
Figure 10, where the input (WSOI, number of intervals,
outcome objectives, and base preference profile) to output
(outcome objectives) relations can be investigated in greater
detail through the WSA. Additionally, the operator also is
suggested significant updates based on the significance test
results.
Consequently, the operator can through the WSA in

Figure 7 obtain the recommendation for minimizing the
average observed cloud cover as the following: set an
indifference value less than 0.2 of the range previously stated
in Table 3, i.e., a value of 20%; preference value of less
than 30%; veto threshold of less than 40%; and surprisingly,
a weight between 0.1 and 0.5 or of more than 0.9. The
preferred ranges of weight are probably due to the fact that
a higher weight will exclude the information stated in the
threshold values. This means the uncertainty information
will be completely excluded. Interestingly, this result mimics
some of the characteristics presented byBraess’ paradox [53].
Furthermore, the angle parameters should be set at a higher
indifference, preference, and veto threshold, where the
indifference threshold, in particular, should be set in between
0.4 and 0.8 of the defined criteria limit. In general, this means
that one should neglect the influence of incidence angle
when minimizing cloud cover. Similarly, if one were to make
changes compared to the assumed base preference structure,
then for the cloud objective, any change in the cloud coverage
parameters would lead to a significant change, as well as the
latter segments of any of the uncertainty and depointing angle
parameter segments. See Figures. 5-7.
For maximizing the number of acquisitions, we can deduce

the following recommendations based on Figure 6: generally
set a high indifference threshold for all criteria (especially
angle and uncertainty); generally set a high preference
threshold and veto threshold; and refrain from setting high
weights for any single criterion and therefore small weights
for the others. This means to set as equal weights as possible.
For this outcome objective, the large multi-dimensionality
becomes a problem, and a smaller WSOI should be analyzed
to uncover it better.
To follow the behavioral objective of always acquiring

priority 1 over priority 2,3, and 4, it can be seen in Figure 8
that the DM should set a higher indifference value for angle,
cloud cover, and age while setting low indifference thresholds
for priority, type, and price; the same pattern applies to the
preference threshold; set high veto thresholds for all criteria
except priority, type, and price; set weights s.t. priority, type,
and price in the range of 0.1 − 0.4 of its limit, while the
others should be in the first part of the range. Note that a
higher priority weight does not necessarily lead to acceptable
behavior; e.g., the weight for priority, type, price, and age
should be either the lower or higher segments of the range.
To follow the behavioral objective of always acquiring

requests with an age of 13 days or more relative to requests
with a lower age, it can be recommended that indifference
thresholds, in general, should be high for all criteria except
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TABLE 4. The p-values of the different segments of the indifference threshold parameters computed for the four objectives; maximizing the number of
acquisitions (UL), minimizing average cloud coverage (UR), accommodating the behavioral priority outcome (LL), and accommodating the behavioral age
outcome (LR), respectively.

age, and the same applies for the preference and veto
threshold. The weight of all other criteria does not affect
the behavioral objective. However, the preferred range for
the weight of age should be 0.1 − 0.3. Due to the timely
delivery requirement, the DM may need to sacrifice the
quality criteria; this is also reflected in Figure 9 where angle,
sun elevation, and even customer type are closely related to
upholding this objective.

It is clear that these outcome objectives are conflicting;
however, when describing the preference structure through
this weight space, it is easier to find trade-offs between the
objectives, as one can quantify and evaluate them based on
informed grounds. For example, for the outcome objectives
of cloud cover, priority, and age, one can observe the general
proposal of setting a high indifference, preference, and veto
threshold for the area, angle, and sun elevation criteria.
Another common trait for these three objectives is to set low
indifference, preference, and veto threshold values for the
priority, type, and price criteria.

Most studies fail to consider the multi-criteria nature
of the problem, and they, therefore, ignore the aggregated
impact of some specifications in the scheduling. From our
analysis, we can observe that the indifference, veto threshold
values, and weights provide the DM with much more
flexibility and allow for the integration of a more robust
preference structure. In general, adding information about the
uncertainty of preferences through fuzzy sets can leverage the
decision-making environment significantly [54].

A. MANAGERIAL IMPLICATIONS
In a typical operational context, to make the best use of
satellite resources, the DM needs to express their preferences
accurately in order for the outcome of the scheduling process
to meet their expectations. To that extent, priorities are
assigned to each request, and scores are computed for
each imaging attempt depending on the criteria given in
Table 3. Previous scoring functions, as devised by the satellite
operation, are most often an average and weak compromise
between the quantity, quality, and timeliness of images

delivered by the system.After the scheduling procedure, DMs
verify the selection of images by investigating the expected
quality of the included and the omitted customer request pool,
and if the scheduling output does not meet their expectations
regarding customer requirements, their options are limited
to changing request priorities, or suspending / re-submitting
requests to influence the subsequent cycles of the scheduling
procedure. The decision process of the proposed approach is
illustrated in Figure 10 and provides the following benefits to
improve satellite operations:

• The MCDM framework (here based on ELECTRE-
III) provides more insight into the different criteria
through indifference, preference, and veto thresholds,
while the weight can be set differently depending on the
type of request, customer, or application. Additionally,
it provides the capability of an intuitive a priori
integration of preferences which is compatible with
future operational requirements.

• The scheduling algorithm based on the ELPA provides
a good compromise between the quality of the schedule
and the run-time performance, such that operators
can quickly get feedback on how their preferences
may translate into a feasible schedule. Additionally,
it incorporates the multi-satellite framework, exploiting
the information symmetry of a centralized approach.
Similarly, it accommodates the stereo and strip request
characteristics.

• The WSA can be performed offline on a number
of typical scenarios to provide critical insight into
how the criteria weights and thresholds actually affect
the resulting schedule performance objectives. The
significance test allows the DM to identify significantly
positive corrections to the preference structure, and the
operators can locate a way to fix the threshold for each
criterion.

B. PERSPECTIVATION
The multi-criteria decision-making framework, the ELPA,
and the decision support information to the DM here
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TABLE 5. The p-values of the different segments of the preference threshold parameters computed for the four objectives; maximizing the number of
acquisitions (UL), minimizing average cloud coverage (UR), accommodating the behavioral priority outcome (LL), and accommodating the behavioral age
outcome (LR), respectively.

TABLE 6. The p-values of the different segments of the veto threshold parameters computed for the four objectives; maximizing the number of
acquisitions (UL), minimizing average cloud coverage (UR), accommodating the behavioral priority outcome (LL), and accommodating the behavioral age
outcome (LR), respectively.

TABLE 7. The p-values of the different segments of the weight parameters computed for the four objectives; maximizing the number of acquisitions (UL),
minimizing average cloud coverage (UR), accommodating the behavioral priority outcome (LL), and accommodating the behavioral age outcome (LR),
respectively.
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FIGURE 10. A holistic illustration of the decision support system for the DM, indicating how the proposed
WSA is developed and how the preference structure can be iteratively improved based on informed
suggestions from a significance test. Essentially, aiding the DM in understanding the intricacies of the
problem scenarios, the system, and the collaborative effect of the multiple criteria affecting the decision
process.

have potential implications beyond the realm of EOS,
as they embody principles applicable to various optimization
problems - especially when integrating multiple objectives.
For instance, in disaster response and relief operations
to compromise the many different criteria efficiently and
in a scalable manner [55], [56], [57]; healthcare resource
allocation for the scheduling of medical staff, equipment, and
patient appointments in hospitals to optimize resource use
and patient care [58]; fleet management for logistics [59],
and urban trafficmanagement to balance themany conflicting
requirements [60]. All of these problem domains require the
modeling of interdependencies in the solution space, as well
as efficient solution approaches that intuitively allow for
preference integration out-of-operation for a fast deployment.

V. CONCLUSION
The proposed three-stage solution procedure increases the
explainability of the system to human operators. It provides
valuable assistance to adequately express preferences and
manage conflicting and fluctuating customer requirements in
an uncertain environment. Although we consider nine differ-
ent criteria, the scoring scheme makes the problem context
analytically simple, as it is possible to neglect the operational
a posteriori integration of preferences or hard constraints
associated with the problem. We also found that the ELPA
approach seems to perform within 2% of the objective func-
tion value compared with an exact solver for smaller problem
scenarios, while it efficiently solves large-scale problems,
as opposed to the exact approach, which fails. Compared
to the random and greedy approaches, the ELPA has
significantly higher performance, which stems from its ability
to manage interdependencies efficiently. The complexity of
the problem is very dependent on the number of nodes |N |,
and especially the number of interdependent sets |B|. When
|B| is high, the performance of the ELPA is much higher than
that of the greedy and random approaches, and when |A| is
high, the runtime is higher for all approaches. Finally, and
most importantly, the WSA and significance test conducted
in the study can always serve as a decision support tool to ease
operation and understanding in both the day-to-day schedul-
ing process and the long-term strategic decision process.

Nonetheless, there exist several limitations to the research.
Some assumptions could be relaxed to reflect more tangible
insights. The price is assumed to remain uniform, which
is inconsistent with commercial EOS imaging. In reality,
it depends on the total size of the area, quality specification,
satellite type, and even the waiting time of customers.
Therefore, one of the next challenges is to integrate the
influence of such industrial practices into the scoring system.
Additionally, behavioral outcome objectives are still difficult
to accommodate through the proposed ELECTRE-III scoring
model. Therefore, it would be interesting to introduce
linear or non-linear extensions to the criterion threshold
or to incorporate reference actions for assigning scores
as the ELECTRE-Score method [61]. Lastly, utilizing the
developed scenario generator and solver in EOSpython to
provide analyses for the design of EOS constellations in terms
of the expected results one can obtain from certain orbit
selections, platform characterstics, sensor types, etc, is of
particularly high interest.
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