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ABSTRACT Algal blooms are a common problem in inland waters, which raise growing awareness on
monitoring lakes’ conditions. The on site monitoring is expensive and requires large human resources efforts.
This work proposes remote monitoring techniques using satellite images and machine learning algorithms to
predict chlorophyll α concentration in water bodies and identify algal blooms. The training and test dataset
used in this study includes diverse range of lakes in Baltic countries. The lake spectral features obtained from
Sentinel-2 satellite images are used as predictors for proposed deep neural network models. The prediction
of chlorophyll α concentration with MAE 7.97 mg/m3 and bloom vs. non-bloom classification with 71.6 %
accuracy was achieved. The use of Bèzier curves for smoothing the point-wise prediction is proposed for
identification of algal bloom characteristics: the bloom start date, end date, and duration. The results showed
lake type impact on the blooming time. The experimental data and code are released with paper.

INDEX TERMS Satellite image processing, chlorophyll α prediction, deep neural networks, remote sensing,
Bèzier curves.

I. INTRODUCTION
Algal and cyanobacterial blooms are a natural phenomenon
that are caused by sudden proliferation of algal and cyanobac-
terial biomass. These organisms take up carbon dioxide
and release oxygen during photosynthesis. Additionally,
they are food to zooplankton and fish. However, human
pressures such as increased discharge of pollution and
alterations of water bodies [13] cause more intensive algal
and cyanobacterial blooms. These blooms result in low water
transparency and limit light penetration to deeper water
layers, thus ecosystem structure changes and benthic plants
may disappear. Increased turbidity also causes changes in
fish communities. Algal blooms decrease oxygen levels and
cause fish suffocation. In addition, a large part of intense
blooms globally are toxic [14], thus they are called harmful
algal blooms (HABs). Toxins produced by some algae and
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cyanobacteria are not only dangerous to fish and other
organisms in water but also to people’s health. The various
toxins produced by algae and cyanobacteria can lead to
allergies, increased risk of illnesses, and death [17]. Algal
blooms have been reported in various locations across the
world - in tropical [40], temperate regions [4], [6], and since
2000s they have been often observed in the northern latitudes
in the arctic lakes [21].

Climate change brings more challenges to ecosystems
and water use to people as increased temperatures, longer
stratification periods, decrease of ice cover will lead to
more suitable conditions for algal and cyanobacterial blooms
across the world [17]. In addition, increasing trends in algal
bloom frequency have been observed in 467 lakes with
an area larger than 1 km2 over almost 40 year period;
however anthropogenic factors had a higher impact than
climatic drivers to algal bloom intensification [8]. Thus it
is important to observe algal blooms, their frequency, onset,
length, intensity, and extent [45]. Complementing in situ data
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with satellite data can also improve the reporting of algal
blooms by member states to European Union as now they are
under-reported [45].

Cyanobacterial blooms occur in a number of lakes, in a
large Kaunas reservoir and cyanobacteria hyperblooms in
the Curonian lagoon [56]. Cyanobacterial orders produce
harmful toxins [20]. A study based on satellite data and
226 lakes in Lithuania revealed that 42 lakes are frequently
affected by algal blooms [12]. In Estonia 15% of lakes
were reported to be affected by cyanobacterial blooms [47].
However, a larger scale research that would include all the
larger lakes in these countries is missing.

Algal blooms have been observed from space from
1970s when first satellites were launched. Algal blooms
were observed in oceans as due to their specific optical
characteristics they change water colour. Current satellite
sensors allow to observe even small water bodies and spot
water circulation patterns that are enhanced by algal biomass
distribution in larger lakes and seas.

Algal blooms can be described by many parameters,
including the total biomass, the biomass of different orders,
the number of cells in mL; however, from satellite data the
closest parameter that we can use to define the algal bloom is
the concentration of chlorophyll α – the pigment common for
all algae and cyanobacteria. The concentration of 10mg/m3 is
considered as increased algal biomass and posing a risk [44],
it is used as alarm level 1 [39], and is also recognised as a
lower range of concentrations that can be detected using some
satellite data-based algorithms [1].
There are two approaches for deriving water quality

parameters from satellite data – the model-based approach
that model remote sensing reflectance in terms of inherent
optical properties of water using radiative transfer modelling
and the second approach – empirical approach finds a
relationship, often using linear regression, between in situ
measured water quality parameter data and remotely sensed
data [36]. Recently a lot of empirical site and sensor-specific
algorithms have been developed [30], [36], [41]. In the case
of waters in which one type of optically active substance
is prevalent, such as chlorophyll α in the Case I – ocean
waters [38], the algorithms that use shorter wavelengths
(blue and green) work fine [43]. However, in the case of
presence of other optically active substances in water (Case II
waters), such as, suspended matter and coloured dissolved
organic matter that do not covary with chlorophyll α, simple
algorithms may fail to work well due to the interfering signal
of these substances [25]. In such cases it is better to group the
similar waters together and compose algorithms for distinct
water types [37], [53]. In addition, more complex algorithms,
such as, machine learning-based algorithms, that can extract
relevant information from multi-dimensional data, provide
better results [48], especially when used with hyperspectral
data [22]. In addition, machine learning algorithms can
account for complex interactions among variables, thus
machine learning algorithms, such as, boosted regression
trees and random forest algorithms showed better predictive

skill of chlorophyll α concentration than multiple linear
regression in American lakes [32]. However, models based
on artificial neural networks often show the best accuracy in
satellite data analysis [27], including the retrieval of water
quality parameters from remotely sensed data [29], [33], [34],
[50], [59]. The feed forward/backpropagation artificial neural
networks have been used for retrieving concentrations of
chlorophyll α [49], suspendedmatter, yellow substances [54],
turbidity [29], and inherent optical properties [18]. Moreover,
a combination of artificial neural networks has been used to
perform atmospheric correction, retrieve inherent optical, and
derive water constituents [2], [5].

Recently, there have been developments in the field of deep
learning and new artificial neural network configurations
may increase the accuracy of retrieval of concentrations of
optically active substances even more. Thus the aim of this
study was to use advanced deep learning models to separate
the blooming waters from non-blooming waters using only
satellite data and then quantitatively estimate the intensity of
blooms using the derived chlorophyll α concentration from
satellite data. In addition, to cover a wide variety of water
bodies, the dataset used in this study is from three Baltic
states: Lithuania, Latvia, and Estonia and comprises data
from 742 monitoring sites across these countries. The main
contributions of this paper are:

a) Developed novel neural network model was able to
achieve state of the art classification of bloom accuracy
71.6%, and 7.97 mean absolute error for chlorophyll α

concentration;
b) The proposed methodology to identify blooming start

and end times by smoothing point-wise chlorophyll α

predictions using Bèzier curves.
The paper is organized as follows: first, results of the

created algorithms for classification of bloom presence, sec-
ondly, the discussion of results are presented, thirdly design
and setup of our experiment environment are presented and
conclusions close the article. The usedmathematical methods
are described in Appendix.

II. METHODS
A. STUDY AREA AND IN SITU DATASET
The Baltic states according to Koppen climate classification
are in Dfb zone that is characterised by humid continental
climate with warm summers. The annual mean daily tem-
perature in Lithuanian continental meteorological stations is
7.9 C, in Latvian – 7.8 C, and in Estonian continental stations
it is 8.2 C, while in maritime stations the annual temperature
is 5.8 C, in Latvian – 6.6 C, and in Estonian maritime stations
it is 5.3 C [19]. The countries lie in the western part of East
European plain. Diffuse pollution from agricultural fields
is the main pressure on surface water in the region.

The lakes and ponds included in this study are a part of
the national monitoring programmes in the Baltic countries.
There are 357 lakes and ponds in Lithuania, 276 lakes and
ponds in Latvia, and 80 lakes and ponds with 109 monitoring
sites in Estonia (Figure 1), in total 742 monitoring sites. Most
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D. Grendaitė, L. Petkevičius: Identification of Algal Blooms in Lakes

of the lakes are larger than 0.5 km2. We collected in situ data
from the years of 2017-2021 of chlorophyll α concentration
and water transparency from national environmental agencies
of Lithuania, Latvia, and Estonia (Table 1).

The data analysis was also carried out considering lake
type that is defined based on mean and maximum depth of
a lake. The lake typology is defined by Lithuanian Ministry
of Environment [7]. The type 1 lakes are shallow (average
depth < 3 m or average depth > 3 m and maximum depth <
11 m), the lakes of type 2 are medium deep (average depth >
3 m and maximum depth 11–30 m), and type 3 are deep lakes
(maximum depth > 30 m).

For deeper analysis we selected 105 measurement sites
that were in 99 lakes, as these measurement sites had six to
30 in situ observations during the years of 2017-2021. The
68 lakes were in Lithuania, 14 in Latvia, and 23 measurement
sites were in Estonia, fromwhich 7were in Lake Peipsi. There
have been 62 shallow lakes (59%), 35 medium deep (33%),
and 8 deep lakes (8%).

FIGURE 1. The location of monitoring sites (grey), points that were used
for model training and testing (pink), points that were both in
training-test set and for deeper analysis (green), and points that were not
in training-test set but were used for deeper analysis (blue) in Lithuania,
Latvia, and Estonia.

B. SATELLITE DATASET
We used optical Sentinel-2 MultiSpectral Imager (MSI) data.
We extracted pixels around monitoring sites using Google

Earth Engine python API [10]. Sentinel-2 MSI has 13 bands
in visible (443-665 nm, B1-B4), near-infrared (705-865 nm,
B5-B8A), and short wave infrared range (940-2190 nm,
B9-B12) with spatial resolution of 10, 20, and 60 m. The
dataset was then filtered retaining the pixels that were flagged
as water by scene classification algorithm used in Sen2Cor.
Also, we removed all the spectra where surface reflectance
was higher than 0.0215 in the shortwave 1610 nm (B11) band
and the spectra where reflectance in the blue band (B2) where
lower than 0.001 to avoid the spectra that where not water but
were missed by the Sen2Cor algorithm.

Our training-test dataset comprised of 1346 corresponding
in situ and satellite observations across 477 monitoring
sites in the Baltic lakes and ponds. The chlorophyll α

concentration range in the dataset was 0.2-167.2 mg/m3

(mean = 15.6 mg/m3, sd = 20.3 mg/m3).The observations
were considered corresponding when there was no more
than three days time (backwards or forward) difference
between in situ measurement and satellite acquisition. The
44% of observations were affected by light to strong algal
blooms More than half of observations included in train-test
dataset were in Lithuania (55%), while a similar number of
observations were from Latvian (20%) and Estonian lakes
(25%) (Table(1). Algal bloom was defined when chlorophyll
α concentration was 10 mg/m3 or higher.

C. THE CALCULATION OF BLOOM PARAMETERS
We analysed data from 105 measurement sites that were
selected based on in situ data availability, that in turn show
correspondence model vs. in situ measured values. The
105measurement sites were in 99 lakes and had 6 to 30 in situ
measurements during the five-year period (2017–2021). For
these 105 measurement sites we analysed the duration of
blooms for years 2017 to 2021. For year 2017 we had no data
for 9 lakes. Also, since the year 2017was a rather cloudy year,
thus therewere fewer observations available andwe used only
those cases where there were at least five satellite data points
in a year, thus, additionally 37 lake data were removed as
insufficient.

We calculated bloom characteristics from the modeled
and smoothed data: the start date, end date, duration, mean
chlorophyll α concentration, and maximum chlorophyll
α concentration. The bloom start and end dates were
determined when chlorophyll α concentration rose higher
than 10 mg/m3, usually in spring or early summer time, and
when it went down and dropped below 10 mg/m3 in late
summer or autumn time. In some occasions there were a few
such periods during a year. In these cases the duration of
bloom in a lake in that year was calculated as the sum of
blooming episodes.

D. MACHINE LEARNING METHODS
Machine learning techniques and algorithms are capable
of capturing trends in data and using them for estimation
and decision making tasks [9]. In this research we will use
supervised learning – algorithms which use data sets of
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TABLE 1. Characteristics of train-test dataset by country.

associated pairs of input features and output values target.
Depending on the output type of the algorithm they can
be further divided into classification and regression tasks.
In our binary classification task the given feature vectors are
assigned a discrete enumerated value zero or one. Formally,
supervised learning can be formulated as search of operator f ,
where y = f (x|θ ) : Rdx → Rdy , where x – input values with
dimension of dx , y – output values of dimension of dy and
θ ⊂ 2 ∈ Rdθ – unknown parameters of operator. In deep
learning the unknown parameters estimation (learning) is
conducted by optimizing some objective function L, with
respect to unknown parameters, which evaluate the difference
between ground truth target values and values generated by
the algorithm. In our experimental setup the Cross-entropy
loss function is used for the binary-class problem and mean
square error for regression problem [9].

The classical machine learning models were used for cre-
ation of benchmark models (See Section II-H). The custom
deep neural network models were created as our experi-
ments demonstrated they performed significantly better than
baseline models. We constructed custom neural networks
using fully connected, dropout, batch normalization, feature
selection, attention mechanism, and wide and deep layers.
All details about those neural networks transformations are
described in the Supplementary Material.

E. DATA PREPROCESSING FOR MACHINE LEARNING
MODELS
The dataset was divided into three parts (training, validation
and testing) based on different lakes to avoid data leakage
problem. The 14 variables were used by ML/deep learning
models as input (independent) variables and the chlorophyll
α as output (dependent) variable to be inferred by the
models. For machine learning the package pycaret was
used to benchmark classical ML models. In experimentation
models removed multicollinearity with threshold T =

0.4. K-fold with 10 folds were used to run benchmark
models. Equivalently the dataset was used in deep learning
models. No specific feature engineering, data preprocessing
or normalization was applied.

F. CLASSIFICATION MODEL PERFORMANCE METRICS
In the study we used the following performance measures for
evaluation of accuracy of bloom classification models [9]:
accuracy, precision, recall, and F1-score. All of these
statistics can be calculated from the classification table which

pivot predicted and actual observed conditions. We denote
shorter notations as True positive (TP), False negative (FN),
False positive (FP) and True negative (TN). Classifica-
tion accuracy shows how accurately the model predicts
investigated bloom/non-bloom classification Accuracy =

(TP + TN)/(TP + FN + FP + TN). Precision and recall are
also used as classification accuracy metrics. Precision shows
the ratio of TP between all positively predicted samples, while
recall is the ratio of TP between all truly positive samples
Precision = TP/(TP + FP),Recall = TP/(TP + FN). One
more measure F1-score, is a so-called weighted mean of
precision and recall where, F1-score is treated as harmonic
mean of the precision and recall and is expressed as
F1-score = 2TP/(2TP + FP + FN).

G. REGRESSION MODEL PERFORMANCE METRICS
In the study for regression model evaluation we used
the following metrics: mean absolute error (MAE), mean
squared error (MSE), root mean squared error (RMSE) and
determination coefficient (R2). All of these metrics can be
calculated using the ground truth and predicted values of
the target variable. The MAE is the average of the absolute
differences between the predicted and actual values. The
MSE is the average of the squared differences between the
predicted and actual values. The RMSE is the square root
of the MSE. The R2 is the proportion of the variance in the
target variable that is predictable from the input variables. The
R2 is a value between zero and one, where zero means that a
model explains none of the variability of the response data
around its mean, and one means that the model explains all
the variability of the response data around its mean. The R2 is
also known as the coefficient of determination.

H. ARTIFICIAL NEURAL NETWORK MODELS
1) A MODEL FOR ALGAL BLOOM IDENTIFICATION
We labeled observations as ‘bloom’ (class value 1) when
the chlorophyll α concentration was equal to or higher than
10 mg/m3 and lower concentrations as ‘non-bloom’ (class
value 0). For binary classification further we investigate the
various machine learning classifiers. Twenty nine models
were developed for distinguishing bloom and non-bloom
lakes from satellite aggregated features. The experiment
was designed to have some benchmark machine learning
models and later create custom new neural networks to
improve the predictions. For benchmark models pycaret
package was used. Package contains the list of 15 machine
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learning models (Gradient Boosting Classifier, Random
Forest Classifier, Light Gradient Boosting Machine, Ada
Boost Classifier, Extra Trees Classifier, Extreme Gradient
Boosting, K Neighbors Classifier, Linear Discriminant Anal-
ysis, Ridge Classifier, Logistic Regression, Decision Tree
Classifier, Naive Bayes, SVM – Linear Kernel, Dummy
Classifier, Quadratic Discriminant Analysis), which were
used as benchmark for the experiment.

The custom neural network models were created by
experimenting with various new layers, and optimizing the
proposed architectures. The dropout of 0.2 was used in many
layers to ensure robustness of solution [9]. The 14 models
were proposed, out of which some outperformed the machine
learning benchmark models.

Training and test data sets contained 70% and 30%
of total separate lakes to avoid data leakage of having
some measurements on the same lake. The 477 lakes
were separated to 333 for model creation (training) and
independent 144 unseen for model lakes were left for
independent testing. Data sets then contained 909 and 437
lake measurements in subset splits, respectively.

We used surface reflectance of the 490-865 nmwavelength
bands (B2-B8A), band ratios: R705/R665, R560/R490,
R560/R665, R560/R705, band difference (BD) that is based
on the difference between the R705 and the average of
R665 and R740 [55], the empirical equation derived for
Lithuanian lakes that use R705 and R665 (Eq_diff) [11], and
Apparent Visible Wavelength (AVW) [57], that represents
colour parameter from visible wavelength bands (B2 (R490),
B3 (R560), and B4 (R665)).

In this study, multiple configurations of neural networks
architectures were considered, the default classification
threshold T = 0.5 was used in model creation. Experi-
mentally, the best classifying models for bloom classification
were identified. The architecture of those models are
presented in Table 2. For all models, training was carried
out by monitoring test loss with epoch size up to 50, with
early stopping parameter of 20 epochs and batch size of 16.
The binary cross-entropy loss function and Adam [9], [24]
optimizer with learning rate 0.001 was used for neural
network parameters estimation.

2) A MODEL FOR CHLOROPHYLL α RETRIEVAL
We used chlorophyll α observations as regression targets
in regression models. As in classification experiments we
bench-marked the ML models. In the experiment setup using
Pycaret package 19 regressionmodels (PassiveAggressive
Regressor, Huber Regressor, Orthogonal Matching Pursuit,
Lasso Regression, Elastic Net, Bayesian Ridge, Ridge
Regression, Dummy Regressor, Least Angle Regression,
Linear Regression, Gradient Boosting Regressor, CatBoost
Regressor, Extra Trees Regressor, Random Forest Regressor,
K Neighbors Regressor, Light Gradient Boosting Machine,
Extreme Gradient Boosting, Decision Tree Regressor,
AdaBoost Regressor) were tested. The data splitting and
experimentation setup, was equivalent as in the classification

experiments. Since we created multiple deep neural network
regression models, we investigated multiple loss functions.
What we found and used in the final experimentation was
the Huber loss function [16]. The Huber loss function is less
sensitive to outliers in data than the Mean Squared Error loss
function. The Huber loss function is defined as:

Lδ(y, f (x)) =


1
2
(y− f (x))2 if |y− f (x)| ≤ δ

δ(|y− f (x)| −
1
2
δ) otherwise

where y is the true value and f (x) is the predicted value. The
parameter δ = 10 is the threshold value. The selection of
Huber loss penalised lower errors than Mean Squared Error
loss function. In practice this allowed to have more precise
predictions for the chlorophyll α on low concentrations.
In practice we witnessed that to precisely identify level-1
alarm was more important than precisely predict very large
concentrations of chlorophyll α.

3) PREDICTIONS SMOOTHING USING BÈZIER CURVES
The results of classification model were used to filter
chlorophyll α concentrations obtained with regression model
in order to synchronise results – when classification model
showed non-bloom conditions, chlorophyll α concentration
should have not been higher than 10 mg/m3 and when bloom-
ing conditions were determined by classification model, the
higher chlorophyll α concentrations than 10 mg/m3 were
expected. The 9.6% of data were filtered out in this way
before further analysis.

The machine learning predictions are often noisy due to
the fact that we make predictions on independent satellite
data. Due to clouds and atmospheric conditions, the model
predictions may be noisy. However, we can improve the
robustness of predictions by smoothing the machine learning
predictions. The temporal data during the year does not
change rapidly, in such the smoothness of the prediction can
improve the robustness of estimates. In our study we propose
to use Bèzier curves [15], [51]. Bèzier curves are a family
of parametric curves used in computer graphics and related
fields. The curve is defined by a set of selected points and a
parameter τ that varies between 0 and 1.
The Bèzier curve is a linear combination of the selected

points, where the weights are defined by the Bernstein
polynomials. Let’s assume that we have a set of points wk =

(tk , yk ), where y – represents prediction, t – yearly time,
k = 0, 1, · · · ,m. Then them-th order Bèzier curve is defined
as f (τ ): where τ ∈ [0, 1] using m+ 1 points,

f (τ ) = w0b0m(τ ) + w1b1m(τ ) + · · · + wmbmm(τ )

=

m∑
i=0

wi · bim(τ ),

where wi prediction point, and bim(τ ) =
(m
i

)
τ i · (1 − τ )m−i

Bernstein base. The derivative of Bèzier curve df (τ )
dτ

are
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TABLE 2. Configurations of classification models.

FIGURE 2. Bèzier smoothing for Lake Latežeris (LT). The dotted blue line represents machine learning
predictions, while the solid brown line represents Bèzier curve. In situ measurements are shown as
red dots.

intersect points p(1)i = m · (pi+1 − pi). An example of Bèzier
curve in our experiments is shown in Figure 2.
The main benefit which prediction smoothing enables is

to investigate the data within the region of interest. In situ
measurements are rare and sparse due to diversified data
collection (Figure 3). On the other hand, the smoothing
enables to interpolate predictions’ values on daily level.
This enables to discover new patterns like, start and
end of blooming timings, dependencies on chlorophyll α

changes.

III. RESULTS
A. MODEL FOR SEPARATION OF BLOOM FROM
NON-BLOOM CONDITIONS
The extensive investigation of multiple deep learning models
was carried out. Each deep neural network (DNN) model was
trained, and saved for independent performance evaluation
on test set. The best performing Gated Residual Network
with Variable Selection and Multi-Head attention layers
model MGRN ,VS,MHA was able to classify 84% of bloom
samples and 63% of non-bloom samples of the test set
(Table 3). The mean chlorophyll α concentration of the true

positives (TP, blooming samples) was 31.4 mg/m3 (sd =

24.3 mg/m3), while of the false positives it was 16.6 mg/m3

(sd = 6.8 mg/m3), thus the blooming samples that were
further from class border were classified correctly. The
mean transparency of the FP samples was higher (2.5 m,
sd = 1.2 m) than that of the TP (1.2 m, sd = 0.7 m).
In some cases features’ values of the FP were more similar
to the values of the FN than to the TP, thus, they were
misclassified. Feature overlap due to spectral similarities and
strict border set between the bloom and non-bloom waters
caused misclassification of 27% of samples. For example,
the mean value of R705/R665 of the FP (0.87) was more
similar to the value of the TN (0.94), rather than to the
value of the TP (1.17) (Table 4). Usually the R705/R665
ratio is positive when water is blooming due to chlorophyll α
absorption at the wavelengths around 665 nm and due to some
backscattering at the wavelengths around 705 nm. Our model
was able to classify a part of cases that did not have such a
clear spectral peak at the wavelengths around 705 nm, thus
our model is advantageous over simple band or band ratio
models. Similarly, a part of cases where a clear spectral peak
was observed in samples which were labelled as non-bloom
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TABLE 3. The classification of bloom from non-bloom conditions models performance metrics on the test set.

due to low chlorophyll α concentration, were classified as
blooming (FN). These cases might show monitoring sites
that are not representative of those lakes as they miss the
blooming conditions or these lakes are characterised by low
coloured organic dissolved matter (CDOM) content and thus
the CDOM does not mask the signal of the relatively low
chlorophyll α concentration and it is clearly pronounced in
the spectra.

The MGRN ,VS,MHA was selected out of top tier based
on Area under the curve (AUC) statistics (Table 3). The
selection of best model could also be considered based on
F1 or accuracy statistics; however since we do not have
imbalanced data classes the AUC covered both type of errors
minimization. While model have large number of unknown
model parameters, to be robust models were trained using
small batch sizes (B = 16) and dropout (p = 0.2). Also,
we noticed that some of the classical algorithms like Random
Forest, Extra Trees Classifier while demonstrating similar
results were over-fitted on training set (100%) thus, they
would not generalize well over large amount of new unseen
data.

B. MODEL FOR CHLOROPHYLL α CONCENTRATION
RETRIEVAL
We used mean absolute error (MAE) and mean mean squared
error (MSE) as quality metrics to analyze the performance of
ML models to predict the chlorophyll α concentration. The
wide investigation of ML models for regression problem by
estimating the concrete value of chlorophyll α was delivered.

The best performing model for regression Residual deep
neural network with Multi-Head Attention model MR,MHA
have achieved MAE = 7.97 mg/m3 (Table 5). The results
show that the best model by selected metrics did not always
point to the same ML model as it was in the case of classi-
fication. This is due to the fact that the regression problem
is more complex and models are more sensitive to the data.
The low values of determination coefficient including the
best 0.55 shows high variation within the data. The widest
range of errors have appeared in non-blooming shallow and
medium depth lakes (Table 6). In bloom conditions mean
error was higher than in non-bloom conditions; however,
mean absolute percentage error (MAPE) was much lower
during blooming, therefore, the model was able to predict
the higher chlorophyll α concentrations much better than the
lower ones (during non-bloom conditions) (Table 6).
The best performing model MR,MHA was selected based

on MAE statistics criteria (Table 3). In comparison MSE or
MAPE increase the squared penalty on large errors, while
MAE does not, in such model weights more errors in low
concentration areas, which is key in our study. In contrast
Extra Trees Regressor or Extreme Gradient Boosting models
reached 0 MSE error, and over-fitted on training set, while
MR,MHA demonstrated good generalization skill.

C. THE CHARACTERISTICS OF ALGAL BLOOMS
Most of the lakes among the analysed 105 experienced
light to strong algal blooms during the years 2017-2021.
In 90 lakes higher concentrations than 10 mg/m3 was
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TABLE 4. Mean values ± standard deviation of the false negatives (FN, false non-bloom), the false positives (FP, false bloom), the true negatives (TN, true
non-bloom), and the true positives (TP, true bloom) in the case of the best performing classification model (Gated Residual Network with Variable
Selection and Multi-Head attention layers model).

TABLE 5. The regression problem models’ performance metrics on the test set and a number of model parameters.

observed at least once during this time period as measured
in situ. Similar information was obtained using satellite
and modeled data, also the time step of satellite data
was more frequent as there were five to 40 observations
per year in a lake. Algal blooms were identified in
92 lakes according to satellite data. The start, end dates,
and duration of blooms were calculated based on the
approximated Bèzier curve applied on satellite observations
(Figure 4).

Shallow lakes that constituted the largest group of lakes
in the dataset (59%) often experienced algal blooms. In all
the lakes algal blooms were observed either using in situ (57
lakes) or satellite data (61 out of 62 lakes). The concentrations
reaching as high as 175.5 mg/m3 were observed using
modeled data that was very similar to the 172.4 mg/m3 value
measured in situ. The average start of blooms was the 27th
of April (date of year, doy = 117) (Table 7), nonetheless,
in different years the mean start was earlier (doy = 106) – the
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D. Grendaitė, L. Petkevičius: Identification of Algal Blooms in Lakes

TABLE 6. Statistics of model error (mg/m3) by lake type.

TABLE 7. Main algal bloom characteristics by lake type: N – number of year+lake combinations, mean start date (date of year, doy) of the bloom,
standard deviation (Sd) of start date (days), mean end date (doy), standard deviation of bloom end date (days), mean bloom duration (days), standard
deviation of bloom duration (days), mean date of chlorophyll α maximum (doy), standard deviation of chlorophyll α maximum date (days), mean
maximum chlorophyll α concentration, mg/m3, standard deviation of mean of maximum chlorophyll α concentration, mg/m3.

FIGURE 3. The chlorophyll α values probabilistic distribution collected
in situ, and using smoothed interpolated values. The y-axis represent
aggregated monthly data, x-axis chlorophyll α values. The graph panels
are arranged in descending order from 2017 at the top to 2021 at the
bottom.

16th of April (year 2019) or later – the 17th of May (year
2017). The mean start of the bloom in Lithuanian lakes was
the 26th of April (doy = 116), while in Latvian lakes blooms

started on average 2 days earlier (doy= 118), and in Estonia –
9 days later (doy = 125) than in Lithuania.
On the other hand, in shallow lakes the mean end of the

bloom was the 2nd of October (doy = 276) and varied from
the 14th of September (year 2020) (doy = 258) to the 14th
of October (year 2019) (doy = 288). On average the end
of bloom was on the 6th of October in Lithuania (doy =

280), whereas the end of bloom was earlier in Estonia (the
19th of September, doy = 262), nonetheless in Latvian lakes
the blooming season ended on average a day later than in
Lithuania (doy = 281). The year of 2019 was distinguished
by earlier start and later end of blooms, thus the duration
of blooms could have been longer by two months in lakes
where the bloomwas continuous. However, in some cases the
blooms started later in the season, therefore, the mean bloom
duration in a lake varied from 6 days to 196 days (mean =

150 days, sd = 56 days) (Figure 5).
There were 35 lakes in medium depth lake group, in 31 of

them algal blooms occurred during 2017-2021 time period,
while 10-26 of them were blooming during various years
of 2017-2021. The start of the algal blooms in these lakes
were on average seven days later than in shallow lakes (the
4th of May, doy = 125) see Table 7. Similarly to shallow
lakes, in medium deep lakes earlier start of algal blooms
was observed in year 2019 and later than the average in year
2018 and 2020. In Lithuanian lakes the start of algal blooms
was later than on average (the 26th ofMay, doy= 146), while
in Estonia and Latvian lakes the model showed earlier start of
the blooms in mid and late April. The mean date of the end
of algal blooms were earlier by two days in medium deep and
deep lakes than in shallow lakes. The duration of blooms on
average was shorter in medium deep lakes than in shallow
lakes by 27 days (mean = 123, sd = 64) (Figure 5).
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FIGURE 4. The distribution of chlorophyll α concentration, algal bloom start and end dates as determined from smoothed predictions.

FIGURE 5. The bloomimg duration distribution based on lake type (Shallow/Medium/Deep lake).
The mean and standard deviation values are presented. The differences are significant between all
pairs with p-values ∗ − p.v < 0.05,∗ ∗ ∗ − p.v < 0.001 using t-test.

In deep lakes the algal blooms are rather rare, five out of
8 of our analysed lakes experienced light algal blooms with
concentrations reaching up to 27.2 mg/m3. Algal blooms in
these lakes occurredmostly inMay andAugust and continued
for 8 to 96 days (mean = 44, sd = 42).
The maximum chlorophyll α concentrations most often

were observed in August (28.5% of bloom cases) and
hereafter in September and October (18.7% of cases in
each month). On average in shallow lakes the maximum
concentration (mean = 35.3 mg/m3) was reached on the 13th
of August, in medium deep lakes it occurred 8 days earlier
(mean= 25.8 mg/m3 on the 5th of August), and in deep lakes
a day earlier than in shallow lakes (mean = 12.3 mg/m3 on
the 12th of August).

The most intensive and the longest algal blooms were
mostly observed in shallow lakes. There were 12 lakes in
which during algal blooms mean chlorophyll α concentration
was higher than 50 mg/m3 and/or maximum chlorophyll

α concentration was up to 100 mg/m3 indicating intensive
algal blooms. These lakes exhibited different patterns of
algal bloom development. Most of these lakes experienced
higher than 10 mg/m3 (our bloom threshold) chlorophyll α

concentrations already in the beginning of the season in April
(Figure 6). However, in Lake Ūdrija chlorophyll α concentra-
tion was much higher already in the beginning of the warm
season. The mean chlorophyll α concentration in this lake
(100.4 mg/m3) was the highest of all analysed lakes through-
out the five-year period (2017-2021). Most of the lakes expe-
rienced steady increase of concentrations during April-June
months and the maximum was reached in July or August.

The created models enable to obtain chlorophyll α data
for all the lakes in Lithuania, Latvia, and Estonia that
are routinely monitored by local environmental protec-
tion agencies. Using satellite data and models increases
observational frequency from 4-6 in situ observations to
up to 40 observations in a lake in a year (Figure 7).
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FIGURE 6. The mean chlorophyll α concentration in 12 lakes with high mean (>50 mg/m3) and or high maximum (>
100 mg/m3) chlorophyll α concentraion.

FIGURE 7. The distribution of mean chlorophyll α concentration in July (2017-2021) when algal blooms commonly occur. The concentrations
obtained using in situ measurements (left panel) and retrieved from Sentinel-2 satellite and models (right panel) in Baltic states.

In addition, satellite data and created models allow us to
observe spatial distribution of chlorophyll α concentration
(Figure 8). Kaunas reservoir is known for strong annual
cyanobacterial blooms; however, Lithuanian Environmental
Protection Agency carries out measurements in one point that
is in the northern part of the reservoir. Spatial information
provided by satellite shows that in that area chlorophyll α

concentration is often significantly lower in the monitoring
site than in a few other locations in the western part and
middle part of the reservoir (Figure 8). Thus, the selected

monitoring site is not representative of cyanobacterial blooms
in this reservoir.

IV. DISCUSSION
In this study we created a deep neural network-based
classification model to separate algal blooming conditions
from non-bloom conditions and a regression model to
estimate the intensity of the bloom through chlorophyll α

concentration. The models can be used on their own when
different informationmay be needed – the classificationwhen

VOLUME 12, 2024 27983
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FIGURE 8. The natural colours RGB composite (left) and the spatial distribution of chlorophyll α concentration in Kaunas reservoir
(area=63.5 km2, Lithuania) on the 5th of August 2019 (right).

only the fact of bloom or non-bloom conditions is required,
and regression when more specific information on algal
bloom is required, such as, the intensity of bloom. In addition,
the application of Bèzier curve on observations allow to
gather information between the observations and obtain start
and end dates, as well as, the duration of algal blooms.

Satellite data can complement the traditional in situ data
with more frequent and large areas covering observations.
However, the preparation of satellite retrieved dataset requires
a lot of attention. Even though we prepared our dataset by
removing data affected by clouds or cloud shadows and
filtered it using shortwave infrared band (central wavelength
1610 nm) we came across some unusual chlorophyll α values
in a few lakes in the beginning of the season. The visual check
of satellite images revealed that lake Peipsi was partially
frozen in April 2018 and thus our model predicted unusually
high values (100 mg/m3 and higher). This could be solved
by selecting later dates; however, in this case we started
in April as in the southern part of our analysed region,
lakes were without ice and some of them showed as high
as 50 mg/m3 chlorophyll α concentrations. The detected
unusual values were removed before further analysis. When
model is applied elsewhere, it is important to examine the
local conditions, such as freeze and ice break up dates.
In addition, chlorophyll α model gave a few negative chla
values, that were caused by very low reflectance values due
to low sun angle, thus, it is important to remove these values
before carrying out further analysis.

Moreover, model results might be affected by high
suspended matter content in spring time, thus, in some cases
the start of the bloom could have been determined earlier (for
example Latvian lakes in 2019) than it started.

In this study we analysed the algal and cyanobacterial
blooms without specifying whether algae or cyanobacteria
are the cause of the bloom. We used Sentinel-2 MSI data that
are not as good for cyanobacteria observation as other satellite

sensors, such as, Ocean and Land Colour Instrument onboard
Sentinel-3 that have a spectral band at the wavelengths of
620 nm for detection of absorption of cyanobacteria-specific
pigment phycocyanin [46]. Moreover, since more than half
of lakes in the region are smaller than 1 km2 we used data
from a satellite with higher spatial resolution (Sentinel-2)
as opposed to 300 m resolution Sentinel-3. Also, in our
case only concentrations of a common to both algae and
cyanobacteria pigment chlorophyll α were available, thus,
only for approximate estimation equations derived by other
authors [52] could be used.

In this study the best classification model gave F1 score
of 0.72 and regression model is able to predict chlorophyll
α concentration with mean absolute error of 8.22. In other
studies, such as recent Mozo et al. [39] study, authors
predicting chlorophyll α concentration from water tempera-
ture, pH, electrical conductivity, and system battery obtained
lower mean absolute error (3.962-5.246), and a similar F1
score of 0.737-0.667 for bloom classification (triggering the
level 1 alarm). In contrast, we achieved competitive results
on regression task on predicting chlorophyll α, and better
blooming classification results from satellite data only. This
is a significant improvement in comparison to a necessity to
have in situ data like pH. In addition, we demonstrate the
model performance on a much larger dataset that contains
105 lakes in comparison to one reservoir in Mozo et al. [39]
study.

Our model was constructed using a relatively small dataset
comprising 909 match-up points. Within the dataset, 40%
exhibited concentrations surpassing 10 mg/m3, while only
6% exceeded 50 mg/m3 concentrations. Given the underrep-
resentation of high concentrations in our dataset, the addition
of new observations is anticipated to enhance the overall
performance of the model. Moreover, we employed an
automated cloud removal methodology grounded in Sentinel-
2 Level 2 scene classification. It is noteworthy that in certain
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instances, this approach may not have effectively eliminated
clouds or cloud shadows. Consequently, the adoption of an
enhanced cloud removal algorithm holds the potential to
contribute to the generation of a more representative training
dataset. Moreover, we relied only on Sentinel-2 data, that has
a limited spectral resolution. For future enhancements of the
model, data from multiple satellites could be used; however,
such approach necessitates more data preprocessing.

The creation of custom artificial neural networks for
solving classification and regression tasks is a very active
field of research. The creation of deep neural networks in our
study was done by analysing state-of-the-art transformations
in the field [23], [42]. In such we do not expand on the
details of creation of the model, but rather focus on the results
and the analysis of the results. The biggest challenge in the
creation of the model was to find the right balance between
the number of parameters in the model and the ability of
generalization of the model. In our study we demonstrated
that classical machine learning models like random forest
or extreme gradient boosting have tendencies to overfit,
and thus, we do not recommended them as a good choice
for classification tasks. We trained the DNN models, using
dropout techniques [9], and using small batch sizes [35] to
not overfit the training set. The work can be expanded in
future by incorporating additional environmental factors or
adding additional spectral bands to the model from additional
satellites.

The created models can be applied in other mid-latitude
regions in waters with similar properties and intensities of
algal and cyanobacterial blooms. In the cases of absorbing
lakes, such as those with high coloured dissolved organic
content, the model might underestimate the chlorophyll α

and a separate model is needed for this type of lakes. The
models help to collect more information on bloom start, end
dates, duration, and intensity of the bloom via chlorophyll
α concentration. The obtained spatial information of algal
bloom extent and patterns complement in situ measurements
and can help to choose the monitoring sites for in situ
measurements to get a more representative data of larger
water bodies.

V. CONCLUSION
Our results showed the advantage of deep neural network-
based models over simpler machine learning models such as
decicion trees-based models that over-fitted on our training
dataset. The best performingMGRN ,VS,MHA model with AUC
= 0.805 was able to classify most of the algal bloom events
from our dataset (84%). However, the accuracy of classifying
non-bloom conditions was lower (63%) partially due to cases
where waters were more complex and other optically active
subtances, such as suspended matter, were present.

Our created model for estimation of intensity of algal
bloom was able to retrieve chlorophyll α concentration
with mean absolute error of 7.97 mg/m3. The results are
comparable to predictions of the soft sensor models, which
require on site hardware and human resources.

Finally, we proposed methodology to identify blooming
start and end dates by smoothing point-wise chlorophyll
α predictions using Bèzier curves. While identification of
algal bloom start and end dates is difficult from irregular
in situ measurements, the analysis of smoothed chlorophyll
α concentration predictions allow the identification including
multiple algal bloom periods in a year. This led to first
analysis of the blooming time comparing over Baltic region
lakes. Our results also showed the impact of lake type on the
blooming time.

Our results also demonstrated that experts in environmen-
tal agencies can use the proposed model on pixel-by-pixel
basis (see Figure 8) to identify the bloomingwaters in specific
lake. This could be used to identify the new pollution sources,
sudden changes or for selection of monitoring sites for in situ
measurements.
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Results analysis, visualization, writing-original draft prepa-
ration, writing-review and editing, funding acquisition. All
authors have read and agreed to the published version of the
manuscript.

APPENDIX
MATHEMATICAL MODELS
A. DEEP NEURAL NETWORKS
The deep neural network (DNN) is a fully-connected neural
network [9], with each deep layer transformation is defined:

hl+1 = f (θlhl + bl), (1)

where hl ∈ Rdl , hl+1 ∈ Rdl+1 are the l-th and (l+1)-th hidden
layer, respectively; θl ∈ Rdl+1×dl , bl ∈ Rdl+1 are unknown
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model parameters for the l-th deep layer, which are estimated
from the data; and f (·) is the activation function.

B. CONVOLUTIONAL NEURAL NETWORKS
A CNN is constructed by several convolution and pooling
operations, usually followed by one or more fully connected
layers. The weight is a four dimensional tensor, one
dimension (F) being the number of feature maps of the
convolutional input layer, another (Fp) is the number of
feature maps of the convolutional output layer. For a given
layer n, the convolution operation:

a(t)(l)f l =

∑Fl−1

f ′=0
K (o)f
f ′ h(t)(l)f ′ ,

where o characterizes the o+1 convolution and K - learnable
kernel in the CNN. Here l denotes the l’th hidden layer of the
network (and thus belongs to J0,N −1K), and f ∈ J0,Fl+1 −

1K, l ∈ J0,Nl+1−1K. This followed by the activation function

h(t)(l+1)
f = g

(
a(t)(l)f

)
,

Finally, the output is computed as in a DNN

a(t)(N−1)
f =

FN−1∑
f ′=0

K (o)f
f ′ h(t)(N−1)

f ′ , h(t)(N )
f = o

(
a(t)(N−1)
f

)
,

where as in a DNN, o is final activation.

C. NEURAL NETWORKS WIDENING LAYER
The wide transformation generalize the linear model of the
form y = θT x + b [60]. Where y is the prediction, x =

[x1, x2, . . . , xd ] is a vector of d features, θ = [θ1, θ2, . . . , θd ]
are the model parameters and b is the bias. The input
covariates set is enriched by transformed covariates. Most
often its done by cross-product transformation:

φnew(x) =

d∏
i=1

xcii ci ∈ {0, 1} (2)

where ci is a indicator that is 1 if the i-th feature is part of
the new covariate φnew, and 0 otherwise. In linear model it’s
known as covariates interactions.

1) NEURAL NETWORKS COMBINATION LAYER
The combination layer concatenates the outputs from multi-
ple hidden layers and feed the concatenated vector to a new
transformation:

hl+1 = f (θl[hTl1 , h
T
l2 ] + bl), (3)

where hl1 ∈ Rd1 , hl2 ∈ Rd2 are the outputs from any two
different hidden layers, θ ∈ R(d1+d2) is the new weight vector
for the combination layer.

2) NEURAL NETWORKS CROSSING LAYER
The crossing transformation in neural network [60] is by
applying explicit feature crossing. The crossing is composed
of cross layers, with each transformations:

xl+1 = x0xTl θl + bl + xl = f (xl, θl, bl) + xl, (4)

where xl, xl+1 ∈ Rd are feature vectors denoting the outputs
from the l-th and (l + 1)-th cross layers, θl, bl ∈ Rd are
the unknown weights and bias parameters of the l-th layer.
The cross layer additionally add its input after a covariates
crossing f , where activation function f : Rd

7→ Rd used to
the residual of xl+1 − xl estimation also known as residual
learning [9].

3) NEURAL NETWORKS GATING LAYER
In order to determine the best individual input covariate trans-
formation formachine learningmodel, some non-linear trans-
formations can be done before passing to fully-connected
layers. One of the possible input data transformation layers
is Gated Residual Network (GRN) [31]. The GRN takes in a
primary input x and an additional vector c:

GRN (x, c) = Norm (x + GLU(h1)) ,

h1 = θ1 h2 + b1,,

h2 = ELU
(
θ2 x + θ3 c+ b2,

)
, (5)

where ELU is the Exponential Linear Unit activation func-
tion [3], h1 ∈ Rd , h2 ∈ Rd are intermediate transformations,
Norm is layer normalization of [26]. The GLU:

GLU(γ ) = σ (θ4 γ + b4) ⊙ (θ5 γ + b5), (6)

where σ (.) is the sigmoid activation function, γ ∈ Rd , θ(.) ∈

Rd×d , b(.) ∈ Rd are the model parameters and biases, ⊙ is
the element-wise Hadamard product, and d is the hidden state
size. GLU allows to identify the significance of feature by
opening/closing gate of using value based on input values,
as commonly done in recurrent neural networks [9].

4) NEURAL NETWORKS VARIABLE SELECTION LAYER
Variable selection layer proposed by Lim et al. [31]
measures the significance of variables by applying Softmax
normalisation within the hidden layers.

Let h(j) ∈ Rd , be some transformation of hidden layer
(or GRN), then combination of all variables followed by a
Softmax layer:

α = Softmax
(
[h(1), .., h(j), .., h(d)]

)
, (7)

At each variable additional layer of non-linear processing
is applied by processing each h(j) through its own GRN:

˜h(j) = GRN
(
h(j), c

)
, (8)

where ˜h(j) is the processed hidden vector and c is join shared
weight vector. We note that each hidden layer has its own
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GRNh(j) . Processed hidden layers are then weighted by their
selection weights:

h̃ =

∑d

j=1
α(j) ˜h(j), (9)

where α(j) is the j-th element of vector α.

5) MULTI-HEAD ATTENTION LAYER
Themulti-head attention layers were proposed in transformer-
based architectures [28], [58]. In general, attention mecha-
nisms scale learnable values V ∈ Rn×dV based on learned
dictionary relationships between keys K ∈ Rn×d and input
representations queries Q ∈ Rn×d :

Attention(Q,K ,V ) = A(Q,K )V , (10)

where A() is a scaled dot-product attention [58],Q,K ,V - are
linear transformation of data:

A(Q,K ) = Softmax(QKT /
√
d). (11)

Equivalently to layers stacking [9], in attention the
multi-head attention is proposed in [58], it repeats attention
of mechanism on transform attention heads:

MultiHead(Q,K ,V ) = [H1, . . . ,HmH ] θH , (12)

Hh = Attention(Q θ
(h)
Q ,K θ

(h)
K ,V θ

(h)
V ), (13)

where θ
(h)
K ∈ Rd×d , θ

(h)
Q ∈ Rd×d , θ

(h)
V ∈ Rd×dV are

head-specific weights for keys, queries and values, and θH ∈

R(mH ·dV )×d linearly combines outputs concatenated from all
heads Hh.
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