
Received 19 December 2023, accepted 12 February 2024, date of publication 14 February 2024, date of current version 26 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3366455

Enhancing Analytical Select Statements
Using Reference Aliases
MICHAL KVET 1, (Member, IEEE), AND JOZEF PAPAN 2
1Department of Informatics, University of Žilina, 010 26 Žilina, Slovakia
2Department of Information Networks, University of Žilina, 010 26 Žilina, Slovakia

Corresponding author: Michal Kvet (Michal.Kvet@uniza.sk)

This work was supported
in part by the Erasmus+ Project under Project 2022-1-SK01-KA220-HED-000089149, in part by the Project title: Including EVERyone
in GREEN Data Analysis (EVERGREEN) funded by the European Union, and in part by the VEGA 1/0192/24 Project—Developing
and applying advanced techniques for efficient processing of large-scale data in the intelligent transport systems environment.

ABSTRACT Data analytics is an inseparable part of the current information systems. Various tools can
provide the analysis and produce results in any graphical form, enclosed by the complex filtering. Behind
the scenes is a data layer and methods for accessing, manipulating, and processing data. SQL language and
databases can serve that. This paper deals with data processing and performance optimization by focusing on
function processing and reference. It points to the existing syntax and statement execution steps but provides
various enhancements and performance optimization. Existing feature management solutions include result
caching, function-based indexes, virtual columns, materialized views, or optimization of the functions to be
directly applicable in SQL or PL/SQL limiting context switches. Oracle Database 23c introduced various
performance enhancements and a new approach to column and expression aliases. Our proposed solution
focuses on identifying and extracting aliases, storing the references in the memory and database layer,
optimizing the transfer between them by swapping, as well as checkpointing and function call migrations.
It provides a robust layer and complex architecture enclosing the management by the transactions. Each layer
is critically discussed by pointing to the performance, structural advantages, and limitations. Complexly, our
proposed architecture brings significant performance benefits for complex analytical queries but can also be
applied in online transaction processing.

INDEX TERMS Analytical databases, column aliases, function references, indexing, performance.

I. INTRODUCTION
Data analysis is an important part of information technology.
It refers to the process of getting raw data and converting it
into information [1], which is then used for reporting, pattern
detection [2], decision-making [3], or making prognoses [4].
Currently, data is collected hugely, and structures and rela-
tionships are becoming more and more complex [5]. There
are many tools for supervising the data analysis process, like
PowerBI, Oracle Analytics, R, etc. The main advantage of
these tools is pre-prepared wizards, so anybody can perform
analysis, even those who are not professionals in this field.
These tools can be deployed on-premises or in the cloud.

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Asif Naeem .

Currently, developers and data managers are more oriented
towards cloud technologies [6], which move the environment
and technical background management to the cloud vendor.
Thus, there is no need to worry about the hardware, patching,
and updating, but mostly the solution’s scalability. Pay-as-go
principles further emphasize this because users pay only for
the actual use of the resources, dynamically as needed [7].
Thus, complex data analysis can be performed. The main

advantage of the mentioned tools is the ability to process and
provide any result based on the input data. Users do not need
to focus on the data layer, just the provided outputs. The
focus is on the results, not the process of obtaining them,
calculations, and data access. This can, however, have many
disadvantages in terms of performance [8]. Namely, there
are two crucial aspects – data layer and Select statement

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 27311

https://orcid.org/0000-0003-3937-7473
https://orcid.org/0000-0001-8118-7513
https://orcid.org/0000-0001-6785-7875


M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

execution, generated behind the scenes [9], [10]. SQL is
a powerful language for manipulating data and providing
complex evaluations, querying, and reporting, operated by
the Select statements. This paper focuses on the performance
of the data analysis in the Oracle Database environment by
pointing to the column, expression, and function aliases and
their applicability through the execution to make the process
easier, but mostly more powerful by reducing the costs and
processing time demands. The aim is to extract the aliases
and make them usable across the whole process by enhancing
pre-fetched function results.

This paper is structured as follows. Section II deals with the
background of the data analysis and environment description.
In section III, performance and data reference problems
are stated with the reflection on the order of steps and
execution plan of the statement. Section IV deals with the
existing solutions and related techniques. Section V describes
proposed solutions, followed by the performance evaluation
study depicted in section VI.

II. BACKGROUND
Relational databases were introduced at the beginning of the
sixties of the twentieth century. Throughout history, massive
development, tuning, improvements, and extensions have
been undergone. They were initially used for conventional
data management by emphasizing data structures and nor-
malization. The relational paradigm is based on the entities
interconnected by the relationships. Applying this concept
properly, including data integrity, consistency, and overall
performance, is crucial. Limiting duplicates and anomalies
brings reliability, data layer optimization, storage properties,
and demands. Therefore, data models are encapsulated by the
normalization process and covered by transaction support.
Database transactions are important for data management,
taking ACID properties [11] – atomicity (A) ensuring the
transaction is executed as a single inseparable unit, so either
the whole or nothing is applied. The consistency (C) aspect
checks all the constraints are applied. Thus, it is impossible
to approve the transaction and make it durable if any
constraint is violated. Isolation (I) ensures that only approved
transaction data are spread and visible across the ecosystem.
Running transaction data is secured and visible by that
transaction only. The durability (D) aspect guarantees that the
effect of the approved (committed) transaction is permanent,
even after the system failure. Thus, transaction definition
is a milestone of database technology, delimited by the
transaction logs, which describe the whole data management
process using change vectors. Transaction data processing is
an operational unit that treats and evaluates data from the
external system through the database input layer. Data are
considered, filtered, and stored in the transaction-oriented
database as operation data. In the past, they were mostly
related to the conventional layer. Thus, only current valid
states were treated. In the eighties of the 20th century, the
first primitive temporal paradigm was introduced [12], based
on the object-identified extension by the validity time frames.

Although the evolution and timeline reference could be done,
practical implementation and storage efficiency was limited
because each change operation forced the system to release
a new object state, covering all attributes. And even in those
situations, when only one attribute or generally a subset of the
tableś attributes are changed. Consequently, many duplicate
tuples were stored.

An autonomous transaction database, which is part of
cloud technologies, was introduced by Oracle Corporation.
Thanks to autonomous processing, database administration,
patching, upgrading, securing, and continuous availability,
it is shifted to the cloud vendor’s responsibility. There
are two other database types among transaction databases:
JSON–oriented and data warehouses. Our proposed solution
is mostly analytically oriented (Fig. 1). However, it can be
fully deployed on any database. In this paper, we focus on the
Oracle Database for several already introduced reasons. From
the architecture point of view, the most significant reason
relates to the complexity and enhancements of this database
type so that these features can be used as a reference for
performance evaluation and comparison. The most powerful
database system – Oracle database 23c – is used for the
performance evaluation reference to declare the performance
of the entire solution and its comparison in real application
practice.

FIGURE 1. Oracle autonomous database types.

Oracle’s autonomous data warehouse is the worldś first
and only autonomous database directly optimized for analytic
workloads, starting with data warehouses [13], including data
marts, lakes, and data lakehouses. It is an ideal solution
for any user type – business analysts, database specialists,
managers, and nonexperts can rapidly discover business
insights and manage scalable systems to analyze the data.
It runs on Exadata architecture, which lowers the costs by an
average of 63% [14], [15].

The background of the data analytics relates to data
access and evaluation. SQL language is a standard for
database creation, operation, and manipulation. Itś the most
often used approach for data management in this era. The
first commercial relational database system using SQL was
released in 1979 by Relational Software, Inc. (currently
branded by Oracle). The SQL language soon became an
inseparable part of most relational database systems. In 1986,

27312 VOLUME 12, 2024



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

the ANSI institution standardized the SQL language under
the designation SQL-86. A year later, in more or less
unchanged form, this standard was also ratified by the ISO
organization (SQL-87). In 1989 and 1992, revisions were
designated SQL-89 and SQL-92 (also SQL-2). Significant
changes came in 1999, when the SQL:1999 (SQL-3) standard
included recursive queries, triggers, regular expressions,
non-scalar data types, object-oriented properties, etc. The
SQL:2003 [16] version mainly supported XML, standardized
sequences, columns with automatically generated values,
and so-called window functions. Among the standardization,
many enhancements and extensions are applicable for the
specific system through its local dialect. One of them is
associated with the column, expression, and function call
aliases stated in the Select clause of the statement. Applying
SQL standards makes it impossible to refer to the aliases
in the same statement, in clauses Where, Group by, and
Having, because these clauses are evaluated for extracting
expressions in the Select clause. Hence, they are unknown to
the database processor in those phases. However, Oracle uses
another approach and enables alias references anywhere in
the statement in Oracle 23c, released in April 2023 [17], [18],
[19]. This approach is used as a reference for our proposed
solution, declaring the performance and limitations. The next
section deals with the Select statement definition, followed by
its execution, index references, execution plans, and function
processing.

A. PROBLEM DEFINITION RELATED TO THE EXECUTION
PLAN
The data analysis aims to get data insights, get the data,
analyze them, and provide results. It is done by obtaining the
data from the database, evaluating them, and building outputs
as a result set. In SQL, it is done by the Select statement. The
next block shows its syntax and individual clauses [10], [20]:

• Select clause deals with the list of columns (attributes),
expressions, and function calls, representing the data
provided in the result set. By default, the names of the
attributes are copied from the definition, so the output
headers do not need to conform to the expectations.
Therefore, the aliases specified just after the definition
can enhance each attribute, expression, and function
call, forming the header for the result set or consecutive
processing. In addition to the formal side, an alias
also has other properties. First, it hides the definition
and method of calculation and processing of the given
expression, as well as the possibility of easier reference
during further processing. Lastly, an alias may be
necessary due to association with a view, table or
materialized view.

• From clause specifies the source tables or views,
optionally defined by the join operations delimited by
the interconnection conditions. The ANSI joins are
recommended to make the joining process clear. The
join order can either be left to the database optimizer to
select the most appropriate join plan based on statistics.

The second solution is to apply the order from left to
right as specified in the query. The approach is based on
the system selection or query hint can be used to navigate
the processing.

• Where clause is used to hold conditions filtering the
records, it extracts only rows that fulfill all conditions.
The logical sum or count interconnects multiple condi-
tions – AND or OR.

• Group by clause is primarily associated with the
aggregate functions calculated for each defined group.
This clause takes all rows with the same value of the
set into one group. In the result set, each group is
represented once. Therefore, the number of rows is
reduced to the number of groups.

• Having by clause is a specific filter variant executed at
the end of the processing. Thus, it is used for conditions
based on aggregate functions. Although generally, any
condition can be placed there, it is not recommended
because of postponing filtering and requesting to process
larger data sets than necessary.

• Order by clause takes the obtained result set and sorts
it based on the criteria. Without that, data are not sorted
and produced in the order in which they were accessed
in processing.

• Limit clause reduces the the size by getting only a portion
of data instead of the full result set, which fulfills all
the conditions stated in the Where and Having clause.
Thus, the number of columns remains, but the result set’s
cardinality is reduced.

FIGURE 2. Select statement procesing steps.

When the statement is defined, it is necessary to execute it
by locating the data, joining, filtering, sorting, and producing
the result set. Select and From clauses are mandatory; the rest
are optional. The data retrieval execution requires individual
clauses to be handled. Fig. 2 shows the order of evaluation of
individual clauses. It starts with the source tables, which are
merged and filtered. Individual tables can be interconnected
using the ANSI join specified in the From clause, which is
preferred due to the readability and reliability to ensure the
connection’s correctness and completeness. But in principle,
the From clause can state only a list of tables, and the
connection details are then specified in the Where clause as
a conventional condition. One way or another, the goal is
always to reduce the amount of data for further processing as
much as possible. Therefore, if not stated explicitly, the order
is based on the estimated cardinality. There are two hints –
Ordered (the order of table joining is strictly defined in the
Form clause) or Star – the order is based on table cardinality
(the largest table is joined at the end) [21], [22], [23].

VOLUME 12, 2024 27313



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

Group by definition is optional, defining the Group
for which the aggregate function is calculated. Aggregate
function can also be used for the filter. After applying
groups and calculating aggregate functions, a Having clause
is applied, considering the additional filter. After all previous
phases (joining, filtering, grouping), the Select clause is
processed by identifying the structure of the result set. In this
clause, aliases can be defined. Typically, users want formatted
data, like date element extraction, concatenating string,
rounding, etc. Such data, however, can be used as filters,
consecutively placed to the Group by clause. It requires
copying the definition since the alias stated in the Select
clause cannot be generally used in the Where, Group by,
or Having clauses because those clauses are evaluated before
treating the Select clause. This limitation can lead to many
errors and bring additional coding demands.

Furthermore, if an expression or function call is stated
multiple times in the query, it is calculated several times,
even with the same parameters. Thus, it brings additional
processing time demands and costs, mainly caused by the
content switches between SQL and PL/SQL function calls.
Oracle 23c brought the ability to reference aliases anywhere
in the Select statement, discussed in section IV.

The execution plan represents individual operations
performed by the SQL query processor. Whereas SQL
language is declarative, many alternative ways of executing
a given query with widely varying performance usually
exist. Database optimizer prepares various access paths,
from which the heuristics select the best option. The input
data for the decision-making are descriptional, covered
by the database statistics, comparing the estimated and
sequential block processing costs. This execution plan is then
temporarily stored in the Shared pool of the instance memory,
so repeated use of a given query can use a pre-calculated plan.

One of the key decisions of the database optimizer
highlighting the execution plan relates to the index usage [24],
[25]. Index is an optional database object associated with the
table to speed up the search process for a specific record.
By default, B+trees are used, but bitmap indexes are also
hugely used in the data warehouse environment because the
bitmap operations are fast so data access can be strongly
beneficial. On the other hand, any change in the data usually
requires complete bitmap index reconstruction. Indexes can
refer to the table attributes from the expression and function
call reference, but expressions and functions can also be
indexed. The data retrieval process can benefit if the functions
are treated in the index by reflecting the parameters usage –
pair – function and results.

Fig. 3 shows the B+tree index structure, consisting of one
root node, internal nodes, which hold the index key values
and pointers to consecutive layers, and a leaf layer, which
consists of the addresses of the rows (ROWID) for each key
value. Table Access by Index Rowid method is the fastest
way to locate and obtain a row from the database because
it directly navigates to the data file, block, and row position
inside the block. ROWID takes 10 bytes [10]. Although it is

FIGURE 3. B+tree index structure.

a precise address of the row, the referenced data block often
does not hold the data of interest, which is caused by the data
migration. Namely, after the change operation, the original
row size can be extended and does not need to be able to be
placed in the referenced block. Therefore, the original block
takes a pointer to another repository – the block in which
the row resides. Generally, the path to locate the row can
containmultiple blocks, and overall performance is degraded.
To limit such a situation, it is necessary to reconstruct the
indexes regularly to eliminate data migrations.

Indexes are also necessary for table joining to ensure
smooth data merging among the regular data access.
Typically, tables are joined together based on the primary
and foreign keys, but generally, any set of attributes, even
expressions, can be used for serving the join. There are three
methods: operating the overall workload and estimated costs.
The most suitable option is a Merge join, which benefits from
the join key indexes enhancing both tables, so the input data
are pre-sorted. The Nested loop is based on one table-taking
index; the second must be fully scanned. If that table is small,
additional performance impacts are not huge compared to the
task of dynamic index creation.

On the other hand, for large tables, it is beneficial to
divide them into smaller portions – buckets, done by the hash
function getting the bucket assignment. The hash function is
called before the statement processing, so instead of scanning
the whole table, only one bucket needs to be sequentially
scanned. Besides, the database optimizer selects the most
appropriate hash function, so the bucket is not too large for
the scanning.

Moreover, it can be done in parallel [10], limiting the
additional demands. On the other hand, it is always necessary
to build buckets and make data assignments. The last method,
available in the Oracle Database, is an adaptive join, which
combines techniques of the Nested loop and Hash Match.
Changing the access method dynamically is possible based
on the estimated and real costs. It is used when the computed
statistics are not correct and up to date - the amount and
structure of the data are significantly different compared to
the stored assumptions.

27314 VOLUME 12, 2024



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

SQL language is a non-procedural language, so the
database optimizer must select the most suitable option to
locate, access, andmerge data sets to provide outputs reliably,
in the proper format, and at a suitable time. Therefore,
indexes were developed to simplify the scanning process by
limiting the necessity of sequential scanning and memory
loading. As evident, individual data access paths and join
methods are treated in the initial phases. In this phase,
individual functions can be called defining the filtering. Thus,
any column aliases should be identified before to enable
the benefits of using them among the whole statement.
It could, however, influence the execution plan and data
methods. The next section summarizes existing solutions by
highlighting function management, content switches related
to the PL/SQL code processing, and techniques to observe
function results.

III. EXISTING SOLUTIONS AND RELATED TECHNIQUES
Even with the advent of databases and the SQL language,
many techniques and attempts existed to optimize queries and
speed up processing. The relevant techniques were usually
expanded and generalized, becoming part of the SQL stan-
dard, which continuously evolved over the decades. On the
other hand, each database system creates its dialect and comes
up with different techniques, enhancements, and extensions.
The Oracle database will be used for evaluation and
reference purposes since it applies all relevant techniques to
optimize the performance in dynamic systems. Furthermore,
Oracle Database 23c brought various performance-enhancing
techniques focusing on the SQL language. In this section,
the relevant techniques and existing approaches related to
function processing are referenced. They will also be used in
the performance computational study to focus on the usability
and applicability of the proposed solutions and point to their
limitations. This section is divided into multiple streams.

FIGURE 4. Database system architecture overview.

A. RESULT CACHE
The architecture of each database system consists of the
database - data layer holding the physical data and man-
agement system called instance (Fig. 4). Oracle database is
stored in the permanent storage, either in the files system
operated by the operating system or in raw data sources
(ASM segment), which is self-managed by Oracle [26]. The
database instance is defined by the memory structures and

background processes operating the memory and database
themselves. Inside the Shared Global Area of the database
instance, the Buffer cache and Shared pool are relevant for the
function calls inside the statements. Buffer cache is a work
area for executing SQL statements. The block itself is the
finest processed granularity inside the relational databases,
which must be transferred from the database into the instance
memory for the evaluation and building result set. The system
must locate a particular data block (done sequentially or using
an index), which is then placed in the buffer for processing
by I/O loading. If the function call enhances the processing,
its parsed definition needs to be obtained first. To prevent
repeated reading, the data dictionary cache of the Shared pool
memory structure serves the metadata of the recently used
object definitions. Besides, Oracle Database 11g, introduced
in 2007, brought a new feature to store the results of the
functions in the Result cache part of the Shared pool. It limits
the necessity to execute the same query multiple times. Each
query is identified by the statement identifier (Plan hash
value) for the consecutive reference. This structure holds the
whole statement. There are three modes – auto, manual, and
force [27]:

The default option is manual, by which the query hint can
enhance the statement to navigate the system to store the
execution plan in the Result cache:

Part of the Result cache points to the function calls and
stores pairs – functions with the defined parameters and their
results. Admittedly, those functions must be deterministic,
so for the input parameters, the same result is always
obtained, which is declared by using the Deterministic
keyword specified in the function header.

Oracle ensures an intelligent aspect of the Shared pool, so if
the definition of any object is changed, referenced values are
automatically invalidated.

The data loading into the instance memory Buffer cache is
supervised by the Server process associated with the client
session. For each query, the database optimizer calculates
the execution plan. The query definition itself is hashed to
obtain the Plan hash value, which is, among the result cache
reference, also used for identifying parsed queries stored
in the Library cache of the Shared pool. Similarly, if the
definition, structure, or index set is changed, precalculated
plans are invalidated. Furthermore, existing execution plans
are continuously reevaluated to ensure the best suitable
execution process [23], [26].

Fig. 5 shows the query execution processing steps related
to the instance monitoring and caching. Concluding, enabling
result caching reduces the amount of repeated execution
of the same code, as well as multiple calls of functions
with the same parameters. In this case, the aliases specified
in the Select clause are not directly applicable in the

VOLUME 12, 2024 27315



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

FIGURE 5. Query execution steps.

Where condition, and thus, a repeated definition is required.
However, at the execution level, the function will not be
called repeatedly, but the already precalculated and stored
value in the instance’s memory space will be used. Naturally,
it is necessary to ensure sufficient capacity of this structure
to cover different parameter variants. On the other hand,
a smaller capacity brings additional costs for locating and
referencing record results. The limitation of this approach is
based on the definition itself. Since the hashes are calculated,
it is important to specify the function in the same manner.
Namely, any change in the format causes a change in the hash
value, so the pre-stored value would not be mapped, forcing
the system to calculate the result on the fly.

B. FETCHING FUNCTION RESULTS USING VIRTUAL
COLUMNS
In Oracle Database 11g Release 1, virtual columns were
introduced by associating expressions with the table def-
inition. Thus, when querying, virtual columns look like
ordinary stored columns, but their values are derived rather
than physically stored in the database. Although the virtual
column values are calculated on the fly, it mainly benefits
because the values from the virtual columns are stored in the
Result cache like ordinary columns; its definition is directly
stored in the table definition and obtainable through the
system table metadata. So, there is no additional need to
reference function results and calculate function call hashes.
Furthermore, suppose the virtual column is not based on
unique values. In that case, the calculation of the virtual
columns can be fetched in the private area for the query
by using the mapping table – virtual column input and
result value. From the performance point of view, it provides
better results since the data are grouped within one structure.
The comparison of the architecture of the virtual column
management and function call caching is depicted in Fig. 6.

In this solution [10], [28], [29], it is still impossible to
refer to the aliases in other clauses of the Select statement.
However, virtual columns act very similarly to the function
call aliases. At the same time, the definition is stated only
once, although located externally from the data themselves,
placed in the table description metadata. The syntax is stated
in the following code block:

In conclusion, the virtual column’s main advantage is stor-
ing the pure table data and function call calculations through
the virtual columns together, inline in the query Result cache,

FIGURE 6. Function call vs. virtual column management.

compared to the function call management, in which two
separate structures must be referred to in the Shared pool.
Individual rows are interconnected to the function results via
connector pointers. This solution’s limitation relies on the
function Result cache capacity and the eventual necessity of
swapping records to disk. Swapping may also be necessary
in the case of a virtual column, but the entire record in one
structure is swapped with no other references.

C. MATERIALIZED VIEWS
Materialized view (snapshot) is a table segment in which
content is periodically refreshed [10], [30], [31], [32], [33].
Similarly to the table, it physically stores the data originating
from data table sources, enhanced by the function calls and
results, directly stored within the data. Thus, there is no need
to call the functions, since the results are directly present
within the data set. Materialized views can refer to the
query as well as functions. Tables can be local or remote;
tables using database links can also be applied. Although
primarily intended for data replication in the data warehouse
environment, it brings sufficient power for the complex,
function-based enhanced queries in transactional and analytic
environments. The keyword defines it as Materialized in the
view header. The refresh can be done for each transaction
end–commit or on demand. There are three refresh types –
fast (a fast incremental refresh is attempted. It requires a
materialized view log to be present for the referenced tables.
If not defined, the creation of the materialized view fails).
Complete refresh asks for truncating the existing view and
creating a new one. The force option is the default. A fast
refresh is done if possible (materialized view log is defined).
If not, a complete refresh is done. The syntax is following:

A materialized view log is a schema object that records
changes to the master table data by allowing the refresh of
the materialized view immediately. It works similarly to the

27316 VOLUME 12, 2024



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

transaction log, but it points only to the particular tables. It is
created on the table level, and addressing is expressed by
the primary keys. The architecture of the materialized view
management is in Fig. 7.

FIGURE 7. Materialized view and log architecture enabling fast
refresh [34].

Materialized views enhanced by the logs bring sufficient
power for dealing with complex calculations in an analytic-
oriented environment. To make materialization reliable, data
must be refreshed to ensure actuality, not only read-only
historical snapshots describing the static data portion. Thanks
to the definition, calculated data are directly part of the
structure, so there is no need to point to another repository,
nor is any calculation and context switch necessary. Thus,
data management is fast and reliable if the materialized
view logs are defined for the source table, giving the ability
to refresh data in a fast mode. Otherwise, there can be
huge costs for the complete refresh, mostly in the dynamic
transaction-oriented system, where many changes occur. The
main limitation of this approach relates to the additional
storage capacity demands, whereas the data are physically
stored in the database. Namely, data are covered by the core
source tables and indexes and shaped in the materialized
views. Managing the consistency of these states is an integral
part. However, the database system itself takes care of that.

D. REFERENCING FUNCTIONS IN SPECIFIC DATABASE
REPOSITORY—GROUPING BASED ON STATEMENT ID
As stated, database systems allocate the space for storing
function results in the instance memory. Thus, if a particular
reference is already present in the Result cache structure
of the Shared pool, there is no necessity to reload that
function and calculate it multiple times. Instead, the stored
result is directly taken, reflecting the prerequisite that the
function is deterministic [35]. The problem with this solution
is associated with the memory requirements. To serve the
requests, the huge capacity of the instance memory must
be considered. Namely, if the Result cache is full, available
memory capacity can be dynamically reallocated, and the
Shared pool can be extended. However, memory capacity
is limited, so that it will be filled sooner or later due
to the number of data, extended requirements, and more
complex analytics. There may be better solutions than
expanding and increasing the available memory. Namely,
in the on-premise world, it is impossible to expand the

memory indefinitely; the hardware configuration, available
sources, and limitations determine it. Deployment in the
cloud environment is more straightforward. However, CPU
and memory are the most cost-demanding, compared to the
storage. Therefore, additional techniques were developed to
serve as the repository for the function calls. The advantage
of this approach is that it is based on storing data in the
database instead ofmemory; thus, after the instance of failure,
such data are still present and accessible. Moreover, storage
capacity is easier to extend; disc prices are low for the on-
premises cloud capacities, and offers are widespread and
cheap.

The architecture of that solution is formed as a multi-
index organized table. There are two levels of keys. The
first key acts as a partition definer, delimited by the function
identifier and marked by the method ID provided by the
database system during the compilation. The second key
forms the B+tree. It consists of the parameters for the
particular function, enhanced by individual values. The leaf
layer takes the return value of that function. Thus, for each
function (partition), a separate local index is created because
of the parameters, which generally differ across the functions.
Similarly, the output values can have various formats.

Additionally, there is a mapping function object consider-
ing the function hash values. Namely, after the transfer into
another system, method identifiers are changed. To make the
module relevant and usable after import, only the mapping
module is recalculated, and the core structure remains the
same.

The defined solution is robust and can easily cover any
function call. Reflecting the architecture and B+tree orienta-
tion, a particular result segment can be easily identified. Any
function call not indexed automatically extends the structure
to ensure consecutive calls can take the already calculated
value without executing the function multiple times with the
same parameters. It would, however, require index rebalanc-
ing, while the B+tree is always balanced [35]. That would
influence the performance of the query. Therefore, to limit
additional costs, applying new function calls and resulting
values to the index are done in a separate autonomous
transaction and do not synchronize with the main transaction.
After applying a new value to the index, the transaction ends
by reaching commit automatically.

The described architecture allows you to manage any func-
tion call by invoking each functionwith the defined parameter
set only once. However, what about retention? With that
approach, disc storage demands would continuously rise;
even functions invoked only once would be permanently
stored. Therefore, several techniques were proposed to limit
disc storage demands [36]:

• Time retention – the function remains in the storage
reference module for a minimum of seconds. The
definition remains if there is still free storage capacity;
otherwise, it is freed. The time reference point can be
either the timestamp of the node creation (first call of
the method) or it can refer to the last invoke.

VOLUME 12, 2024 27317



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

• Call retention – it defines a minimum number of other
function calls to allow freeing its definition. Each time
the function is called, the counter is restarted.

• History retention evaluates the number of times the
function with the defined parameters was invoked,
correlated with the total number of invokes. Thus, if the
function is hugely used, it is more preferred. On the
other hand, it also considers the time flow. The use of
the function can change over time.

• Baseline – storing function in a baseline ensures
unlimited accessibility through the stored object andwill
never be freed.

These stated methods define the priority queues influenc-
ing the data portions to be flushed, due to the capacity of the
structure.

The selection can be done on the system, schema,
or function level:

If the maximal capacity is reached, no more functions
results are collected before freeing it.

Although it is impossible to refer to the expression alias
in the same statement, the described solution limits invoking
a particular function multiple times. Any retention policy
ensures that the stored object frame covers functions used in
one statement.

E. LIMITING CONTEXT SWITCHES
SQL statement can consist of the PL/SQL code called a
function. SQL code calling a function must pass the function
call to the PL/SQL engine for the execution. The results are
fetched and passed back to the SQL calling environment.
Hence, two context switches are present for one function
call. Generally, multiple functions can be executed, optionally
enhanced by various parameters. This is a consequence
of calling procedural language compiling source code into
byte code to be interpreted from the non-procedural SQL
environment. In the past, there were multiple embedded SQL
parsers for different uses and environments. Starting from
Oracle 8i, a standardized common SQL parser accepting any
workload is available. Although it is always recommended
to use native SQL functions whenever possible, there
are plenty of circumstances where your code must be
invoked.

Pragma UDF (User Defined Function) navigates the
compiler to consider the parsing of PL/SQL function
primarily used in SQL statements. Based on [37], it can
bring performance improvement, reducing costs and context
switches. The definition is part of the function declaration
section. The syntax is stated in Fig. 8.
Pragma UDF optimization feature was introduced in

Oracle 12c in 2012. Based on the performance evaluation

FIGURE 8. PRAGMA UDF syntax.

study defined in [38], PL/SQL Pragma UDF function can
reduce the total demands by up to 76%, compared to
the traditional PL/SQL. On the other hand, native SQL
always brings the best suitable solution. For the data type
conversion function, embedded Oracle functions reduce the
processing demands by 63% on average (compared to the
function definition with the Pragma UDF definition). Con-
sidering traditional PL/SQL and native SQL, taking available
existing functions lowers the processing time demands by
up to 91% [38].

F. FUNCTION-BASED INDEXES
The function-based index does not cover direct column
values, but it is created on PL/SQL functions and expressions,
forming the lookups on columns referenced by PL/SQL
functions [39], [40], [41]. It can invoke any function which
is recognizable in SQL. User-defined functions must be
deterministic and stated explicitly in the function header.
When a query that could benefit from that index is passed
to the server, the query is rewritten to allow the index to
be used. Indexing original column values leads to using the
Table Access Full method, forcing the system to perform
sequential data block scanning. The Index Range Scan
method, followed by the Table Access by Index Rowid,
uses a function-based index. The function-based index can
consist of any number of columns or function calls and can
be concatenated. Remember, function-based indexes require
more effort to maintain than regular indexes, so having
concatenated indexes in this manner may increase the
incidence of indexmaintenance compared to a function-based
index on a single column.

Advantages of function-based indexes:

• A function-based index speeds up the query by giving
the optimizer more chance to perform an index range
scan instead of a full one. Note that an index range scan
has a fast response timewhen theWHERE clause returns
fewer than 15% of the rows of a large table.

• A function-based index reduces computation for the
database. If you have a query that consists of an
expression and use this query many times, the database
has to calculate the expression each time you execute
the query. To avoid these computations, you can create
a function-based index with the exact expression.

• A function-based index helps you perform more flexible
sorts.

Limitations:

• The database has to compute the result of the index in
every data modification which imposes a performance
penalty for every write.

27318 VOLUME 12, 2024



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

• The query optimizer can use a function-based index for
cost-based optimization, not for rule-based optimiza-
tion. Impact of implicit conversions is discussed in [42].

G. IDENTIFYING AND APPLYING COLUMN ALIASES
The Oracle Database significantly changed the alias man-
agement and handling concept in April 2023. Oracle 23c
introduced an interlayer responsible for extracting column
and expression aliases specified in the Select clause of the
statement at the beginning of the execution [43]. Thanks to
that, aliases are visible across the whole statement, making
them referencable in any clause. The extended process of the
statement execution is shown in Fig. 9. It is done by direct
mapping and statement rewriting – aliases are extracted,
and the definition is placed to any occurrence. It generally
allows one to refer to the alias anywhere in the statement,
even in the Select clause, making the function call nesting
easier for the definition. However, it simplifies the user
experience and definitions; before processing, aliases are
replaced by the original definition, resulting in the same,
already stated problem – one function is placed in the
query multiple times. Referring to the Result cache can only
partially solve the problem, while locating the return value
for the function call with the defined parameter set is always
necessary [44].

FIGURE 9. Extended select statement execution process.

FIGURE 10. Select statement transformation example.

Fig. 10 shows an example of the statement transfor-
mation used for the flight monitoring system and flight
information region (FIR) assignment to calculate flight
efficiency and impacts on the environment, fuel consumption,
gas, etc.

The limitation of this approach is just the usability
and efficiency of the whole process. Namely, it brings
an additional step in the execution. Before evaluating and
extracting data sources and merging them, the database

manager must wait to proceed with aliases and referencing
them. It increases costs and processing time demands, even
in cases where no aliases are used in the statement. After
all, such an approach does not allow nesting, and aliases
are visible only for the particular query and its superior
types.

H. MAKING ALIASES VISIBLE
The above solution uses the pointers to the definition stated
in the Select clause of the statement, which is physically
interpreted as a rewrite of the query before it is processed.
This may result in not finding a matching existing execution
plan identifier. Additionally, if different alias expressions are
used, the statement would be written differently, and again,
the mapping association between the statement and existing
execution plans would not be recognized, resulting in the
necessity to perform a hard parse.

This approach extends the pure concepts, and aliases are
treated only as a logical unit forming the result set. This brings
a significant generalization of the statement, making it further
applicable. Namely, extraction of the aliases is done in the
first phase; however, during the execution, column aliases are
treated only as logical units, and the physical shape of the
output is defined at the end of the processing, just after the
result is set is completely formed, even sorted, if specified.
Logical aliases are obtained by the hash function, which
gets the definition of the column, expression, or function.
It consequences in getting the same hash identifier for the
statement execution plan identification, even if the aliases
(and therefore the form of the statement, as well) are
different. The architecture and process flow are expressed
in Fig. 11.

FIGURE 11. Architecture and process flow.

I. REFERENCING SELECT CLAUSE IN THE GROUP BY
SECTION USING POSITIONAL NOTATION
The preceding parts mainly focused on data source man-
agement and filtering using Where clauses. The data
aggregations and partitions define another optimization
option by highlighting the group management and conditions
based on the aggregate functions placed in the Having
clause. In previous releases, it was necessary to repeat
full expression and function call references in the Group
by and Having sections. From Oracle 23c onward, it is
possible to use column aliases and positional notations in

VOLUME 12, 2024 27319



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

the Group by and Having clauses [45]. The same principles
of identification compared to the solution stated in G are
used, but the management is enhanced by the positional
references, which require additional modules. To make
positional references applicable, session-level parameter
group_by_position_enabled must be set:

By tracing the final statement for the execution, positional
references are replaced by the original calls:

It is evident that fully qualified names are used in
addition to rewriting references through positions and aliases.
Furthermore, ANSI join is rewritten to the Cartesian product
specified in the From clause. The joining condition is
extracted and treated in the Where clause. This allows further
optimization during the source table data access, extraction,
filtering, and merging.

IV. PROPOSED SOLUTION
The proposed solution aims to optimize the performance
of the alias management in synergy with the user experience.
The solution cannot negatively affect the definition of the
query. Existing queries must remain in the original structure
even in the expanded environment - without changing the
statement. Thanks to this, the solution can be deployed in
any environment without intervening in the existing code,
which would be practically impossible in a real environment
- it would bring significantly increased costs and the need
for integration tests and solution verification. Moreover,
the proposed solution would not be applicable if we only
had access to the final code compilation. Therefore, when
implementing our solution, we focused on preserving the
non-procedural nature of the statement definition as the basis
of the SQL language.

The proposed solution is based on existing approaches,
which are taken as a basis. Still, it introduces its own
architecture and data structures to make aliases not only
generally identifiable in the query but also applicable and
identifiable in individual clauses, whether of a direct Select
statement or in individual nested query branches. The aspects
of query usage prioritization, generic local addressability,
dynamic migration, command-based partitioning, and reflec-
tion within the private part of session memory (Private Global

Area (PGA) are introduced. All these aspects are step-by-step
defined in the following subsections.

The proposed solution architecture influences the whole
processing therefore, wewill introduce and discuss individual
modules step-by-step:

A. IDENTIFYING AND EXTRACTING ALIASES
Usually, column, expression, and function call aliases were
extracted and treated during the execution of the Select clause
of the statement. It was primarily used to shape the column
format in the result set. Later, however, queries became
more and more complex and nested, formed by analytics and
reporting, attempting to refer to the aliases in a wider form.
Oracle 23c extracts the aliases in the first phase, so the rest of
the query execution waits to finish the extraction. This can,
however, bring various limitations, especially in cases where
the extracted aliases are not later used and referenced. Our
proposed solution introduces a new background process –
Query Alias Extractor Master (QUAM) process, which is a
supervisor for the whole activity and balances the workload
activity across the set of the worker processes – Query Alias
Extractor Worker (QUAWn). There is one master (control)
process. There can generally be an unlimited number of
workers, which can be, in addition, created and released
dynamically based on the ratio of the queries, number of
aliases used there, etc. Their aims are to detect and extract
aliases from the defined query and create a list of them for
the references, as stated in the B and C subsections of this
section.

FIGURE 12. Query extraction process flow.

At least one worker process must be present to enable
the extraction process. Still, the master process aims to
start the extraction immediately by assigning the worker
process to the query. Furthermore, multiple workers can be
allocated to a single query if there is a nested statement
definition. Thus, for each Select clause, one worker can
be assigned. The process of query extraction is marked in
Fig. 12. If the query is to be executed, the QUAM process
is notified by identifying the depth of the query – number of
nesting and complexity of the query, followed by the creation
of the data structure holding list of extracted aliases and
their visibility and applicability. Then, available (free) worker

27320 VOLUME 12, 2024



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

processes are assigned for each Select clause. Generally, one
worker process can be assigned to multiple clauses if not
enough workers are available. In that case, nested queries
are processed sequentially based on the query definition and
references. The created structure supervisor is notified if
the particular clause is fully searched. Finally, if the worker
finishes their work, its status is changed to available and is
autonomously routed to the available worker pool. QUAM
process is not notified, limiting its contention (overloading).

As evident, alias extraction and management are done
separately, and original statement execution is not influenced.
If aliases are present and referenced during the source table
merging process, their definitions and mapping would be
attempted to be located in the created structure, managed
by the master process. If the definition already appeared in
it, the processing could continue directly. On the contrary,
if the given alias had not yet been defined, the database
optimizer would decide and select the next action - either by
changing the execution plan or by waiting for the alias to be
processed.

Fig. 12 shows the architecture, relevant database objects,
processes, and data flow. Designations 1m, 2m, 3m, and 4m
refer to the original statement execution flow, while marks
1-5 delimit alias management extension. The structure for
holding a list of identified aliases is marked as Query Alias
Manager Structure.

Compared to the existing approach, it is important to
mention that the original statement is not redefined by
applying aliases; instead, they are treated dynamically during
the execution of individual clauses, not the whole query.

B. LISTING ALIASES
In the preceding architecture description, Query Alias Man-
ager Structure has been introduced. It is directly associated
with the query and, thus, part of the private memory
interconnected with the session – Private Global Area (PGA).
Whereas it is just devoted to the query definition, it is not
shared in any way. Internally, it is organized by the B-tree
data structure; the key is the whole function definition in a
pure way, or its hash can be used, consisting of the parameter
references. It does not use B+tree, while thereś no reason to
sort data on the leaf layer in any way.

One of the proposed enhancements is to use multi-
index – the first layer is a partition key defined by the
function definition. The second layer is a separate index
associated with each node of the preceding layer – function
definition—the key of the index list of parameters. The
architecture of the multi-index function reference is depicted
in Fig. 13.

The limitation of the multi-index is just the second layer.
Namely, many variants of the function calls can be enhanced
by the optional parameters, default values, and overloading in
the packages. To ensure general applicability, the following
rules are used:

• each function is expanded to its full definition; missing
values are replaced by the default values,

FIGURE 13. Multi-index function reference.

• any overloaded function is ordered and treated as
a separate definition (with no relationship to other
overloaded functions).

The above rules shape parameters into a common format,
which can be treated as an index key.

C. LOCAL QUERY REPOSITORY
The proposed Query Alias Manager Structure is in the
instance memory in a private region associated with the
session and query. After the statement is done, such
a structural reference can be released. In that solution,
we generally aim to postpone the release operation to the
end of the transaction or session itself (if it does not exceed
the assigned PGA capacity). It assumes that a particular
query can be later used in the original definition. Thus,
the already extracted aliases and references can be used.
The same query identification relies on the hash value
calculated for each Select statement, which is also used
for the execution plan identification and reference-plan
hash value.

Query Alias Manager Structure is private and not shared
across multiple users or sessions. However, various streams,
applications, or logged users can launch the same query.
Therefore, one of the proposed enhancements is to move
the original Query Alias Manager Structure to the global
repository, called Global Query Alias Manager Structure.
It is shifted to the shared memory of the instance. It uses
a key pair–plan hash value and a set of aliases with
their definition as the B-tree. Various techniques were
used to limit the capacity of that structure – by number
of references, complexity, total costs of the processing,
periodicity of the statement call, workload, etc. Based on
our other preliminary evaluation study, the most promising
solution is just the frequency of calls of the given function.
If there are several such functions, then the complexity
of the query and the number of extracted aliases is
monitored.

The list of extracted aliases is interconnected and shared
with the execution plan based on the common Plan hash
values (Fig. 14). The pointer direction is from the Global
Query Alias Manager Structure to Execution plan storage.
This limits dangling pointers in case of releasing memory
for the alias references. Moreover, adaptive execution plans
can use the same set of aliases for the same query
definition.

VOLUME 12, 2024 27321



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

FIGURE 14. Alias extraction management.

D. STRUCTURE SWAPPING
Global Query Alias Manager Structure is located in the
instance memory and shared across the query users to serve
the global workload. The size of it is dynamic, and the
existing Memory Manager background process, which is
always active in the database system (forming the core of
the instance), sets the right value based on the workload
and capacity. However, it is infeasible to expand the size
unlimitedly. Sooner or later, it would be necessary to release
some stored references and aliases extracted from the query.
As stated, several approaches can be used to select the right
record to be released from the structure. However, instead of a
physical delete operation, it is possible to apply only logical
operations. Namely, before the delete, the particular record
is stored in the archive repository located in the database.
And there, the same rules can be applied to limit the storage
capacity, but generally, disc storage has significantly lower
prices.

Furthermore, if released in the cloud, various storage
types and parameters can be provisioned to balance the
performance and costs. Alias Archiver background is,
therefore, introduced to ensure records are stored in the
database repository before deletion from the global instance
memory area. The architecture and record management are
shown in Fig. 15.

FIGURE 15. Structure swapping.

E. TREATING FUNCTIONS—IDENTIFYING FUNCTIONS, NOT
ONLY ALIASES, LOADING DEFINITION
The overall investigation and proposed solutions were
primarily inspired by Oracle 23c, enabling reference aliases
generally in any clause of the Select statement. The

introduced extensions were limited to using aliases extracted
before the statement processing. The original query was
practically rewritten by replacing the aliases with direct
definitions. If the function calls were referenced, instead
of calling them multiple times, calculated results were
cached, either locally for the query or globally, stored in the
Result cache instancememory structure. A different situation,
however, occurs if the aliases do not encapsulate the function
calls. Precisely, function definitions are not extracted in that
case. If the Result cache is not explicitly set for the session
or the statement, one function can be called multiple times.
To sharpen the problem, if the statement is complex and
contains nested queries, one function can be called multiple
times. Our proposed solution enhances alias management
by function calls. Namely, an alias is automatically created
before treating a function, which is then treated in the same
manner as described before. Thus, if the alias does not
encapsulate a function call, it is created automatically before
the statement execution. It consequences in the following
facts:

• each function is identified by the alias definition,
calculated from the function definition hash,

• each function is called only once,
• statement is rewritten in the initial phases.

The performance of the statement processing is ensured
from the perspective of the function calls. However, it has one
significant drawback devoted to the third point stated above
– the statement is rewritten. The principles are expressed in
the following code snippet. The original statement is changed.
However, the Hash plan value is calculated from the enhanced
query, resulting in processing different inputs. So, multiple
Hash plan values can be calculated for one statement because
it can be preprocessed to multiple formats and, thus, multiple
input shapes. To make the user aware of the consequence of
processing and expanding the query through the generation
of aliases, a new session (or system) parameter must be
introduced:

There are four options for the generate_function_alias
parameter:

• restricted – additional alias generation for the function
calls is restricted thus the statement remains original and
is considered as an input for calculating Hash plan value,

• ignore – semantics for treating multiple Plan hash values
is ignored and the generated alias encapsulates each
function call,

• map – even though the function aliases can be defined
in the original query, they are always replaced by
the generic definition obtained by the hash. Thus,
the original statement is always mapped to the same
format. Consequently, regardless of whether aliases
have been defined, the Hash plan value is always
the same,

27322 VOLUME 12, 2024



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

• force – the alias definition must explicitly delimit each
function.

The principles are expressed in the following code snippet:

F. FUNCTION CALL MIGRATIONS
Structures holding the data, extracted aliases, and function
references can consist of hundreds of statements, their aliases,
various functions, overloading, parameter variants, etc. There
can be enormous work done to create, maintain, and fill
those structures, either located in the memory or placed at
least partially in the database through the alias archiving
process. One way or another, securing those data and making
them available after the instance restart or any failure is
always useful. Although this structure’s possible loss or
damage will not cause data loss or cannot violate integrity,
the costs of re-creating it and restoring the content may be
too high. Therefore, the Query Alias Manager Structure can
be encapsulated and actively treated within the transactions.
However, be aware such transactions are autonomous and do
not impact the original data. The transactions automatically
record any new row to be loaded into the repository,
which can be approved for each row. This would, however,
degrade the performance by always reaching transaction
ends. Therefore, in bulk, only REDO is generated and shifted
to the UNDO tablespace (located in the physical database
repository). While the statements do not evolve, there is no
update operation for the alias management since it would
generate a different execution plan and Plan hash value. Thus,
there is no need to reconstruct the historical (original) state,
and UNDO’s operation can be limited. Thanks to that, after
any failure, it is still possible to reconstruct the structure
as it existed directly before the failure, but the additional
transaction management does not impact on the overall
performance.

Furthermore, such transaction logs are grouped together
and optionally handled by the log archiving process, just
like standard database transactions. The enhanced transaction
management for the Query Alias Manager Structure is shown
in Fig. 16, reflecting the reduced transaction management
by attempting to reach only the REDO structure. REDO
generation is in the first phase, then, the new row is stored in

FIGURE 16. Enhanced transaction management.

the Query Alias Manager Structure. In parallel, the generated
log is stored in the database.

Another proposed approach is to refuse the alias man-
agement structure’s transaction management completely.
This brings significant savings in costs and resources.
The transactions do not cover changes; thus, there are no
additional costs to the database transaction manager. There
is no need to generate and save the REDO structure, and the
archiving process does not need to be applied. Instead, all
changes in the structure are written directly to the database.
In principle, it is done as mirroring at the disc level. Thus,
even in disc collapse, restoring data from the surviving
structure is possible. Moreover, it should be emphasized that
the Query Alias Manager Structure does not store any special
data, and the entire content can be re-extracted from the
source data, although often at a considerable cost.

To ensure data consistency and resistance to change and
failures, file versioning on the database layer for the alias
management structure is enabled.

The drawback of refusing transactions and managing the
data physically in the database lies in the duplicates. A new
row is created and stored in the memory, but a copy is stored
in the database. From the storage efficiency point of view, the
most relevant data is stored and treated twice.

G. RELAXED RULE IN TRANSACTION CORE
ENVIRONMENT
As introduced, Query Alias Manager Structure can be in
the instance memory, either in a private area or shared
across the users. In that case, transaction REDO operations
must be present to ensure restoring ability. Otherwise, the
whole structure would be lost after the instance failure or
generally after the restart of the server. On the other hand,
if the transactions do not supervise the management, the
whole structure is stored in the database, and I/O loading is
necessary. Furthermore, additional demands exist, whereas
part of the structure is copied from the database to the instance

VOLUME 12, 2024 27323



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

memory. Finally, each new row must be primarily stored
in the database to make its applicability and restorability
after the instance failure.

The proposed intersolution between storing Query Alias
Manager Structure only in memory and the physical data
layer delimited by the swapping is related to the relaxed rule
in the transaction core environment. The data in the memory
is not covered by the transactions, but the swapped records
are stored physically. Most data are covered and protected
in the event of a system failure, whereas they are stored in
physical storage. However, which records are stored in the
memory that are not protected? Well, the most important
records are placed there – the newest records, as well as the
most frequently used. Therefore, omitting its protection can
cause a loss of performance and relevance.

Such a premise of getting better performance by limiting
REDO generation does not bring sufficient power in case of
failure.

FIGURE 17. Checkpointing.

H. CHECKPOINTING
During the optimization of the Query Alias Manager
Structure and swapping between memory and disc storage,
we have been investigating optimization techniques to
ensure availability and recoverability, but without specific
transaction support. The proposed solution introduced in this
section is based on memory checkpointing. The proposed
architecture is shown in Fig. 17. The memory part of the
Query Alias Manager Structure is block-oriented; however,
it is a logical concept rather than physical. To be precise, each
block takes only one statement extraction. The block contains
a flag, which can be clear, empty, or new. Empty blocks are
free and can be directly used. They are most preferred for
holding new tuples or loading from the storage. Although
clear blocks hold the data, they can be directly rewritten since
they hold only the data part of the database snapshot. Blocks
marked as new hold the data, which needs to be released into
the database snapshot. Thus, in case of instance failure, such
records would be lost. In principle, these records have been
created recently by defining new statements for processing
and extracting aliases and functions. To concentrate them by
applying them to the new snapshot, those blocks are linked
together, forming a linear list. The Alias Checkpointer points

to the first occurrence of the new block flag. Some new blocks
are copied to the database snapshot in a defined frequency,
and particular blocks are marked as clear. Alias Checkpoint
is also shifted to the next set of blocks. The introduced Alias
Swapper process does this activity. The following parameters
influence it:

• check_freq – how often the alias checkpoint is invoked,
defined by the time frame or dynamic. Time frame
frequency is in seconds. Dynamic option means, that
the frequency depends on the ratio between clear, empty
and new blocks aiming to have free (empty, new) blocks
always available.

• check_ratio – defines number of blocks to be swapped.
The parameters can be set on the system level by using the

alter system command:

The percentage ratio defines the ratio between all new
blocks and those that will be backed up (using a swapping
operation).

In addition, the checkpoint can be invoked manually:

Incorrectly set parameters could cause block contention.
In that case, if there is no available free block, even
new blocks can be rewritten to serve a new statement.
However, it causes performance degradation because for the
same query, the already extracted aliases and function call
references are lost, and it would be necessary to parse them
hard and extract them again in the future execution (at the
next processing).

I. PROPOSED SOLUTION SUMMARY
This paper provides several techniques and enhancements
to build a robust proposed solution extracting and covering
column, expression, and function call aliases. It aims to
limit calls to identical functions in different parts of the
query, not only one by itself but also reflected by binding
to nested and correlated statements. However, more than this
alone might be required, as aliases may not delimit specified
functions. That’s why we introduce our own identifiers and
logical alias frames for function calls, thanks to which it is
possible to directly reference such functions and process them
analogously as if an alias was given. However, naturally, this
is only a logical definition, which will not be reflected in the
format of the resulting set.

The proposed solution starts with identifying and extract-
ing the aliases placed in the Select clause of the statement,
followed by listing aliases. To serve that, a new back-
groundmaster (QUAM) process supervisingworker activities
(QUAWn) is introduced. The extracted aliases and function
calls are placed in an optimized data structure – Query Alias
Manager Structure, primarily located in the instance memory.
Based on the evaluation study, we concluded that reaching it
only in memory is infeasible due to the resource demands

27324 VOLUME 12, 2024



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

and memory capacity. In contrast, it was shifted from the
private area to the shared repository, allowing sharing of
the same execution plans and extracted elements. Therefore,
a local query repository was introduced, defined by swap-
ping between the instance memory and database storage.
Transaction coveragewas initially used to ensure consistency,
reliability, error-prone, and recoverability after the failure.
However, it brought additional processing demands, limited
by extracting the alias and function call management to the
separate autonomous transactions. Besides, we introduced
related transaction rules and alias management checkpointing
to ensure performance and robustness. The schema of the
whole solution is in Fig. 18. Individual modules were
explained in detail in the previous section. The next section
provides a computational study of the performance impacts
delimited by the costs, storage demands, and processing time.

FIGURE 18. Schema of the whole solution.

V. PERFORMANCE EVALUATION STUDY
Several research and performance evaluation studies have
been done on the existing solutions. They focus on statement
execution, query hash management, and execution plan
optimization, followed by storing them in the Library cache
of the Shared pool memory structure. Namely, caching results
of the function calls can bring benefits if a particular function
is executed multiple times with the same parameters by
allowing the map function call definition directly to the
result set. Based on the evaluation study, automated result
caching brings fewer benefits. Instead, complex functions
should be extracted by evaluating the processing time and
costs of the execution. In [46], function results are delimited
by the virtual columns, not stored physically. Function
mapping simplifies the whole execution process since the
pre-fetched values are associated. Based on the complexity,
it can lower the processing time demands by up to 30%.
Context switch reduction is discussed in [47] and [48]. Using
PRAGMA_UDF optimizing function execution for the SQL
usage gets only tiny improvements since the parsed function
is in the instance memory for the evaluation [49].
The most promising existing solution relates to the

function-based indexes. It is B+tree oriented; the key is the
function call itself, enhanced by the various columns. The leaf
layer can refer to the results. The structure is composed based
on the assumption of the deterministic function reference.
Themain advantage is directly mapping the function call with
the defined parameters.

FIGURE 19. Data model.

A dataset getting flight monitoring over Europe was
used for this computational evaluation study of the exist-
ing approaches. It consisted of 500 000 flights extracted
from 2015 to 2018. It stores individual flights, flight
positions, flight parameters, flight information region (FIR)
assignment, FIR parameters (evolving over time), and
weather conditions identifying extreme days. The data model
is shown in Fig. 19. Most of the descriptional parameters –
flight data, FIR parameters are stored in the JSON format.
Compared to the analogous XML definition, a 5% saving is
identified on average. It is caused by the necessity of structure
and XML schema verification, which is not present in JSON.
However, if the JSON structure needs to be supervised by
the format definition, an additional 3% were identified. The
JSON structure for the flight consisted of 50 parameters, and
FIR was delimited by the positional data in an array format
plus ten other parameters.

The parameters of the server used for the evaluation are:
• Processing unit: AMD Ryzen 5 PRO 5650U, 2.30 GHz,
Radeon Graphics

• Memory: Kingston, DDR4 type, 2 × 32GB, 3200MHz,
CL20

• Storage: 2TB, NVMe disc type, PCIe Gen3 × 4,
3500MB/s for read/write operations

• Operating system: Windows Server 2022, x64
• Database system: Oracle Database 21c Enterprise Edi-
tion Release 21.3.0.0.0 Production Version.

Tab. 1 provides a summary of the existing solutions,
dealing with the total costs of the processing. Whereas the
absolute values do not provide sufficient performance image,
caused by the versioning, memory structure references, and
resource competitions, values are expressed in percentage
to declare the differences. The core solution with no
enhancements is treated as a reference, providing 100%. Tab.
1 deals with the virtual columns, referencing function results
in a specific database repository located in the database,
context switches, and function-based indexes. The depicted
results are related to the airplane monitoring during the
flight. Individual date and time elements are extracted from
the definition and are treated separately on the second
granularity. The stated solutions are used as a benchmark for
the proposed solutions consideration. Calculated costs form
the metrics for evaluating the quality of the solution. They
are provided during the execution of the statement. Estimated
costs are also used for comparing various execution plans,

VOLUME 12, 2024 27325



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

to identify the best suitable option. The optimization of the
costs stated in the Tab. 1 is based on enhancing function
access through the indexes and pre-storing results in the
Result cache memory structure.

TABLE 1. Results – existing approaches.

The results show two competitive streams – Result
cache and Virtual column. The result cache stores multiple
functions temporarily and reflects the various parameters and
mapped results. Thus, not all combinations of the parameters
used for the particular function are stored. On the other
hand, the virtual column takes all the occurrences but only
one function. It is impossible to combine multiple functions,
while virtual columns always relate to one function only.
There is only a tiny difference between those two solutions
– 0.64%. However, by combining those two solutions and
referencing function values by the virtual columns, which
can be directly obtained using the Result cache, total
cost demands are reduced by more than 12% to 64.52%.
By enhancing the environment to store the whole function
set reference in the specific database repository, the total
cost demands are 61.62%. Compared to the original solution,
it refers to the improvement by 38.38%. It is, however, worth
mentioning that all function references are stored, even if
they are no longer used later. This results in significant
demands on disk space, database, and I/O operations. Based
on our computational study, the total requirements are more
than 10-fold for flight monitoring, date extraction, and
tracking of aircraft parameters. If the storage is reduced to
at least three uses, the costs are 62.74%, which is still better
than combining the Result cache and virtual column. The
difference (1.12%) refers to the additional requirements to
execute a function with the same parameters multiple times.

Context switch reduction provides only a tiny improve-
ment. Namely, in our environment, there is only a small
set of used functions, which differ in complexity and used
parameters. Mapping the definition to the memory and
dynamic SQL reflection can bring power and reliably reduce
the impact of the context switch.

The function-based index obtained the best solution, while
it is not a flat structure but rather a B+tree. Searching
across the set is far more effective than the virtual column
or pure Result cache. By enhancing it with the Result
cache, processing costs are dropped from 55.12% to 50.47%.

Furthermore, if it is a memory Buffer cache located,
demands can be lowered to 46.01%. However, this approach’s
limitation is related to the reliability of the processing and
data type mapping. Namely, it requires precise data type
specification on both sites of the condition - both data types
must be the same to ensure proper performance. If not,
an implicit conversion is automatically applied behind the
scenes to serve the execution frame. It, however, means that
the original function-based index cannot be used since the
conversion function should enhance it. The total processing
costs rise to 92.01%, which reflects a significant increase
compared to the original function index, which requires
55.12% and 50.47%, respectively. The index cannot be used;
if enabled, the definition and processing can relate only to
storing values in the Result cache. A specific enhancement
can be applied if the condition consists of the function on
one side and the second side is not covered by the function
(referring to the constant or ordinary table column); then, the
function can remain original, and the conversion function is
done on the ordinary value. In that case, it can be enhanced
by the non-convert function hint. Let’s consider the following
example:

The left part of the condition produces a character string,
while the numerical representation denotes the right side. The
no-convert hint navigates the system to convert the original
column value, not to embed function call in the function call:

The function-based index can continue to be used by
applying a no-convert hint. Furthermore, the conversion
function can be treated as a common function and refer to the
Result cache. Consequently, the additional processing cost
demands range from 2% to 3%, depending on the original
and destination data types.

The above experiment aims to monitor the whole flight,
getting its parameters and FIR assignment. There are various
functions to sharpen the performance – getting date and
time elements, getting flight data operated by the function
call transforming JSON into a relational form (textual
representation), and checking weather impacts. The function
obtains all those property calls:

The second evaluation stream deals with the existing
alias management and provides enhancements in Oracle 23c.
It uses five solutions for referring function calls and alias

27326 VOLUME 12, 2024



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

references. The REF solution does not consider aliases,
and the particular functions are referenced multiple times,
enhanced by the Result cache, so the function is called for
the defined attribute set just once. SOL1 uses statement
nesting by calculating the function outputs in the first step,
followed by their direct usage in the outer query. Thus,
individual clauses of the outer query refer to the direct
values like ordinary attributes obtained from the database.
SOL2 is based on pre-processing using dynamic view (with
clause extensions introduced in Oracle Database 12c Release
allowing subquery factoring clause enhancements, like sub-
query factoring, deterministic keyword hint, or PRAGMA
UDF). SOL3 uses a materialized view for each table. The
materialized view logs incrementally (fast) refresh them.
SOL4 uses alias usage enhancements introduced in Oracle
Database 23c, offering to refer to the defined aliases in any
clause of the same statement. Tab. 2 shows the processing
time results and the implicit conversions’ impact on character
strings and numerical values. The implicit conversion impacts
range from 6.28% to 13.47%:

TABLE 2. Results – implicit conversion impacts.

Existing solutions provide a relevant performance layer
for data management and function references. Most of the
described solutions improve performance in processing time
drops, except for the SOL1, based on the statement nesting.
First, it requires parsing, processing, handling, and evaluating
additional queries. However, the most significant drawback
of this approach is extracting the Where condition to the
separate processing phase. Therefore, the data reduction
factor cannot be immediately applied, and huge data sets
need to be processed, even in case of later refusal by the
conditional processing. SOL2 and SOL3 use views. The best
solution relates to thematerialized view, in which the function
results are already calculated. However, it applies only to
the data retrieval process (Select statement). For any change
operations, the materialized view log for the table must be
filled to ensure the data correctness. Furthermore, the man
transaction processing the data must also supervise the fast
refresh of the materialized view itself. SOL4 expands the
SQL language principles by offering alias referencing in any
statement clause. There is no necessity for query nesting, nor
pre-calculations. Instead, the alias definitions are extracted

before the statement processing by associating it initially with
the flat table structure.

The next computational study evaluation part focuses
on the performance of the proposed solutions, emphasizing
two aspects – monitoring the whole flight from the departure
to the landing, taxi, and parking position on one side (ES1)
and getting a snapshot of the aircraft positions at a defined
time on the other side (ES2). It also aims to get the flight
parameters, status, FIR assignment, and weather situation.
The used data set and environment parameters remain the
same.

Tab. 3 shows the results of the ES1 phase by emphasizing
the main profiles of the proposed solutions. Each evaluation
was done ten times for 100 flights. The results express the
average values. The reference solution was considered the
extended alias management introduced in Oracle Database
23c, enhanced by the Result caching 20% of the most often
called functions. By reflecting on our previous preliminary
results, it seems that adding a higher percentage for storing
results does not bring any significant benefit because of the
size demands (10% of Result caching requires approximately
9.5GB) because of the data description complexity provided
as an output. Too high value for the Result caching soon
hits the capacity of the whole memory. However, the Result
cache of the Shared pool memory structure is just a small
part of the required instance memory. Since its size can be
set dynamically, it results in limiting Buffer cache, so the
function calls are pre-fetched. Still, the ordinary data inputs
are not forming the system’s bottleneck. The individual parts
of the evaluated solutions follow each other; that is, each
subsequent module takes the properties of the previous one,
as mentioned in the description of the proposed solutions
and concepts of improving performance, availability, and
reachability. There are four stages for the evaluation:

• stage 1 – identifying, extracting and listing aliases,
• stage 2 – local query repository,
• stage 3 – swapped alias and function extration structure
between instance memory and database, operated by the
QUAM and its workers. The whole structure is shared
across the sessions in a whole instance.

• stage 4 – enhancing the system by the virtual logical
aliases treating functions.

TABLE 3. Results – ES1 performance results - stages.

ES2 extracted the same number of flights (100) at the
defined times (10). Thus, the same data portion compared to
ES1 was processed, the same number of the data, however,
treated in a different format and shape. As evident from
Tab. 4, processing time demands are almost the same, the

VOLUME 12, 2024 27327



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

differences between individual techniques and stages are
analogous.

TABLE 4. Results – ES2 performance results - stages.

Stage 1 is the initial phase for the storage reposi-
tory extracting, listing, and maintaining aliase, getting an
improvement of 4% for ES1 and almost 7% for ES2. Storing
data locally does not bring reliable benefits since the same
queries, execution plans, and functions can be shared across
multiple users. A significant processing cost drop is reflected
in stage 3, defined by the swapping. Namely, for ES1, it refers
to the 13.41% compared to stage 2. Globally, it represents
a processing cost drop of 18.45%. Analogously, for ES2
it refers to the 12.61% processing cost drop compared to
stage 2. Reflecting the reference solution introduced inOracle
23c, it gets a drop of 20.13%. The last stage is the most
promising in case the alias definitions do not encapsulate
the functions. Based on the evaluated environment, Virtual
logical aliases can improve up to 33.36% for ES1 and 36.74%
for ES2. Graphical representation of the reached results is
depicted in Fig. 20.

FIGURE 20. Performance evaluation results.

The limitation of the above-proposed solutions lies in
reliability and consistency. Namely, if the function is shared
across the whole instance, it must be always checked the
reference and owner of that function to ensure the correct
call is performed. Owner reference is always stored in the
proposed data structure to serve that. However, more than that
would be needed since the function header can be enhanced
by the authorization scheme definition, which is not directly
present when parsing the query. Thatś one of the streams to
be considered in the future research and development.

There are a bunch of streams, possibilities, and directions
within the proposed research.

There are many future strategies to investigate, like the
impact of checkpointing, setting the right rules to minimize
possible function references after the instance restart, ensur-
ing proper performance, and shifting between the instance
memory and physical storage. Further investigation will
also be done on stage 2, which needs more improvements.
However, when dealing with multiple authorization schemes,
combining shared structure properties and local query
reflections would be necessary. Another stream points to the
scalability of the whole solution by creating data partitions.
Finally, we aim to investigate data distribution techniques
across multiple servers, calling remote functions, etc. In that
distributed environment, we would like to place our alias and
function extraction techniques to pre-fetch the results and
investigate two parts of the performance impacts – executing
remote functionalities and distributing created data structures
across the servers by aiming to create a general methodology
of sharing and distributing.

VI. CONCLUSION
Complex data analytics is an inseparable part of current infor-
mation technology. Data warehouses, marts, lakes, or any
other variants are created to serve the environment for data
management and storage. Autonomous Oracle Database in
the cloud environment even sharpens the problem by making
it available and easily reachable. Inside the analytical-
oriented environment, complex queries are present, which
need to be optimized to ensure performance and limit used
resources. Oracle database system provides one of the most
performant solutions and many technical enhancements. This
paper deals with the function and alias references in the Select
statement. Currently, the Oracle 23c version goes beyond
the SQL standardization and allows the usage of the defined
aliases at any query level. This, naturally, requires changes
at the query processing stage level and the creation of the
framework for identifying, treating, and referencing aliases
to make them applicable. Furthermore, behind the scenes,
it causes the query transformation to refer to the definition
associated with the aliases. This can have a significant impact
on the performance and function references.

This paper summarizes existing techniques and approaches
, focusing on the function performance, context switches
between SQL language and procedural (PL/SQL) interface,
virtual columns holding function results, materialized views,
and functions covered by the index layer. Besides, column
aliases and positional notation management proposed in
version 23c are discussed, making the user query definition
far easier. On the other hand, as stated, parsing and query
evaluation phases must be enhanced. These solutions are also
discussed in the performance evaluation section, serving as
the reference layer for our proposed solutions reflection.

Architectures are methods when dealing with the proposed
techniques, and they are always modular solutions with
multiple optimization stages. Firstly, column aliases are
introduced and extracted, followed by optimizing the access
layer by making the alias references. Such a layer was

27328 VOLUME 12, 2024



M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

primarily stored locally and associated with one query in a
private session area. However, in a practical environment,
multiple users and sessions can attempt to execute the same
source codes, same queries, and call the same functions,
so it is relevant to share the content. This makes the
structure more complex and more storage-demanding since
it is not later associated with only one query duration.
Therefore, techniques for swapping data between thememory
and database storage layer were proposed to ensure data
availability and limit storage demands and I/O operations.
The key concept proposed in this paper deals with function
management generally, delimited not only by the specified
aliases. Thus, virtual logical aliases are introduced, allow-
ing to reference functions. By applying Result caching,
additional memory, and storage structures operated by the
introduced master process supervising worker activities,
overall costs can be dropped to less than 67%, based on
the workload activity. This paper used a positional flight
dataset to monitor the flight and FIR assignment. Based on
the results, the provided solutions bring a strong additional
power by reducing processing time and costs. However, they
require additional storage capacity and shifting between the
database and memory. However, in the currently widespread
cloud environment, the main focus is on the performance and
demands of the complex queries, mostly expressed by the
processing time. Individual storage resources are now cheap
and easily provisionable.

Existing approaches, developments in the field, and pro-
posed extensions in this paper open up further possibilities for
research and performance optimization. During the project’s
next phases, we will emphasize priority handling, so not
all extracted aliases and function references will be stored.
Instead, there will be a set of rules to ensure accessibility on
one side and limit storage demands on the other. This can
invoke a release rule to manage the data structure based on
the current capacity and extractability optimization. Another
research stream relates to migration techniques, exports, and
correct mapping. Although some research strategies have
been already done in this area, and we also partially address
the issue in this paper, there are still a lot of possibilities for
improvement.

ACKNOWLEDGMENT
Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the
European Union or the Slovak Academic Association for
International Cooperation (SAAIC). Neither the European
Union nor SAAIC can be held responsible for them.

REFERENCES
[1] H. Cai, Z. Qian, and J. Jiang, ‘‘Application of association rule algorithm

in distributed new SQL database design,’’ in Proc. IEEE Int. Conf.
Integr. Circuits Commun. Syst. (ICICACS), Feb. 2023, pp. 1–5, doi:
10.1109/ICICACS57338.2023.10100098.

[2] S. Pendse, ‘‘Oracle database in-memory on active data guard: Real-time
analytics on a standby database,’’ in Proc. Int. Conf. Data Eng., Apr. 2020,
pp. 1570–1578, doi: 10.1109/ICDE48307.2020.00139.

[3] J. Janàček and M. Kvet, ‘‘Adaptive parameter setting for public service
system design,’’ in Proc. 15th Int. Conf. Strategic Manage. Support Inf.
Syst. (SMSIS), Jan. 2023, pp. 161–168.

[4] G. Rani, T. Sharma, and A. Sharma, ‘‘Future database technologies
for big data analytics,’’ in Proc. Int. Conf. Intell. Syst. for Commun.,
IoT Secur. (ICISCoIS), Feb. 2023, pp. 349–354, doi: 10.1109/ICIS-
CoIS56541.2023.10100525.

[5] R. Chauhan and E. Yafi, ‘‘Big data analytics for prediction mod-
elling in healthcare databases,’’ in Proc. 15th Int. Conf. Ubiqui-
tous Inf. Manage. Commun. (IMCOM), Jan. 2021, pp. 1–5, doi:
10.1109/IMCOM51814.2021.9377403.

[6] Q. He, F. Zhang, G. Bian, W. Zhang, D. Duan, Z. Li, and C. Chen,
‘‘Research on data routing strategy of deduplication in cloud
environment,’’ IEEE Access, vol. 10, pp. 9529–9542, 2022, doi:
10.1109/ACCESS.2021.3139757.

[7] E. Roske, T. McMullen, and G. Schwartzberg, Look Smarter Than You
Are With Oracle Analytics Cloud Standard Edition. NC, USA: Lulu Press,
2017, p. 740.

[8] S. V. Oprea, A. Bara, V. Diaconita, C. Ceaparu, and A. A. Ducman,
‘‘Big data processing for commercial buildings and assessing flexibility
in the context of citizen energy communities,’’ IEEE Access, vol. 9,
pp. 168715–168730, 2021, doi: 10.1109/ACCESS.2021.3137352.

[9] S. M. N. Mustafa, M. U. Farooq, S. S. Zehra, and J. P. T. Noronha,
‘‘A comparative study of the performance of real time databases and
big data analytics frameworks,’’ in Proc. 7th Int. Multi-Topic ICT
Conf. (IMTIC), May 2023, pp. 1–7, doi: 10.1109/IMTIC58887.2023.
10178651.

[10] D. Kuhn and T. Kyte, Expert Oracle Database Architecture. New York,
NY, USA: Apress, 2021.

[11] M. Kvet, ‘‘Enhanced data locking to serve ACID transaction properties
in the Oracle database,’’ in Proc. 34th Conf. Open Innov. Assoc.
(FRUCT), pp. 73–80. Accessed: Dec. 13, 2023. [Online]. Available:
https://ieeexplore.ieee.org/document/10328165

[12] M. Kvet, ‘‘Developing robust date and time oriented applications in Oracle
cloud a comprehensive guide to efficient data and time management in
Oracle cloud,’’ Packt Publishing, Tech. Rep., 2023, p. 464.

[13] H. Liu, Q. Chen, N. Pan, Y. Sun, Y. An, and D. Pan, ‘‘UAV stocktaking
task-planning for industrial warehouses based on the improved hybrid
differential evolution algorithm,’’ IEEE Trans. Ind. Informat., vol. 18,
no. 1, pp. 582–591, Jan. 2022, doi: 10.1109/TII.2021.3054172.

[14] D. Kuhn and T. Kyte, Oracle Database Transactions and Locking
Revealed: Building High Performance Through Concurrency. New York,
NY, USA: Apress, 2020.

[15] B. M. Sharma, K. M. Krishnakumar, and R. Panda, ‘‘Oracle autonomous
database in enterprise architecture: Utilize Oracle cloud infrastructure
autonomous databases for better consolidation, automation and security,’’
Packt Publishing, 2022.

[16] SQL 2003 Standard Support in Oracle Database 10G, 2003. [Online].
Available: https://www.oracle.com/technetwork/database/sql-2003-twp-
129141.pdf

[17] Oracle-Base—Oracle 23c Articles. Accessed: Dec. 13, 2023. [Online].
Available: https://oracle-base.com/articles/23c/articles-23c

[18] Database 23c | Oracle. Accessed: Dec. 13, 2023. [Online]. Available:
https://www.oracle.com/database/23c/

[19] Oracle Database 23c: The Next Long Term Support Release. Accessed:
Dec. 13, 2023. [Online]. Available: https://blogs.oracle.com/database/
post/oracle-database-23c-the-next-long-term-support-release

[20] R. Cornejo, ‘‘Dynamic Oracle performance analytics: using normalized
metrics to improve database speed,’’ Apress, Tech. Rep., 2018.

[21] J. Li and J. Wang, ‘‘Index design of electronic medical record
database using blockchain,’’ in Proc. 5th Int. Conf. Mech., Control
Comput. Eng. (ICMCCE), Dec. 2020, pp. 2003–2008, doi: 10.1109/ICM-
CCE51767.2020.00438.

[22] L. Bulysheva, A. Bulyshev, and M. Kataev, ‘‘Visual database design:
Indexingmethods,’’ inProc. 6th Int. Conf. Enterprise Syst. (ES), Oct. 2018,
pp. 25–29, doi: 10.1109/ES.2018.00011.

[23] R. Yadav, S. R. Valluri, and M. Zaït, ‘‘AIM: A practical approach
to automated index management for SQL databases,’’ in Proc. IEEE
39th Int. Conf. Data Eng. (ICDE), Apr. 2023, pp. 3349–3362, doi:
10.1109/icde55515.2023.00257.

[24] M. M. Rovnyagin, S. O. Dmitriev, A. S. Hrapov, A. A. Maksutov,
and I. A. Turovskiy, ‘‘Database storage format for high performance
analytics of immutable data,’’ in Proc. IEEE Conf. Russian Young
Researchers Electr. Electron. Eng. (ElConRus), Jan. 2021, pp. 618–622,
doi: 10.1109/ElConRus51938.2021.9396453.

VOLUME 12, 2024 27329

http://dx.doi.org/10.1109/ICICACS57338.2023.10100098
http://dx.doi.org/10.1109/ICDE48307.2020.00139
http://dx.doi.org/10.1109/ICISCoIS56541.2023.10100525
http://dx.doi.org/10.1109/ICISCoIS56541.2023.10100525
http://dx.doi.org/10.1109/IMCOM51814.2021.9377403
http://dx.doi.org/10.1109/ACCESS.2021.3139757
http://dx.doi.org/10.1109/ACCESS.2021.3137352
http://dx.doi.org/10.1109/IMTIC58887.2023.10178651
http://dx.doi.org/10.1109/IMTIC58887.2023.10178651
http://dx.doi.org/10.1109/TII.2021.3054172
http://dx.doi.org/10.1109/ICMCCE51767.2020.00438
http://dx.doi.org/10.1109/ICMCCE51767.2020.00438
http://dx.doi.org/10.1109/ES.2018.00011
http://dx.doi.org/10.1109/icde55515.2023.00257
http://dx.doi.org/10.1109/ElConRus51938.2021.9396453


M. Kvet, J. Papan: Enhancing Analytical Select Statements Using Reference Aliases

[25] G. Arora, S. Kalra, A. Bhatia, and K. Tiwari, ‘‘PalmHashNet:
Palmprint hashing network for indexing large databases to boost
identification,’’ IEEE Access, vol. 9, pp. 145912–145928, 2021, doi:
10.1109/ACCESS.2021.3123291.

[26] Y. Zhou, Z. Chen, and K. Li, ‘‘Second-level buffer cache management,’’
IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 6, pp. 505–519, Jun. 2004,
doi: 10.1109/TPDS.2004.13.

[27] B. Rosenzweig and E. S. Rakhimov, ‘‘Oracle PL/SQL by example,’’ Oracle
Press, Tech. Rep., 2023, p. 480.

[28] I. Stanoi, C. A. Lang, and S. Padmanabhan, ‘‘Hint and run: Accel-
erating XPath queries,’’ in Proc. 9th Int. Database Eng. Appl. Symp.
(IDEAS05), 2005, pp. 253–262, doi: 10.1109/ideas.2005.33.

[29] M. Hassan, R. Aihajj, M. J. Ridley, and K. Barker, ‘‘Database selection and
keyword search of structured databases: Powerful search for naive users,’’
in Proc. IEEE Int. Conf. Inf. Reuse Integr. (IRI), Jul. 2003, pp. 175–182,
doi: 10.1109/IRI.2003.1251411.

[30] A. Gupta and I. S. Mumick,Materialized Views: Techniques, Implementa-
tions, and Applications. Cambridge, U.K.: MIT Press, 1999, p. 589.

[31] Alka and A. Gosain, ‘‘A comparative study of materialised view selection
in data warehouse environment,’’ in Proc. 5th Int. Conf. Comput. Intell.
Commun. Netw., Sep. 2013, pp. 455–459, doi: 10.1109/CICN.2013.100.

[32] S. U. Khan, ‘‘Data warehouse enhancement manipulating materialized
view hierarchy,’’ in Proc. 8th Int. Conf. Digit. Inf. Manage. (ICDIM),
Sep. 2013, pp. 369–372, doi: 10.1109/ICDIM.2013.6694037.

[33] S. Kurzadkar and A. Bajpayee, ‘‘Anatomization of miscellaneous
approaches for selection and maintenance of materialized view,’’ in Proc.
IEEE 9th Int. Conf. Intell. Syst. Control (ISCO), Jan. 2015, pp. 1–5, doi:
10.1109/ISCO.2015.7282236.

[34] M. B. Roeser, ‘‘Create materialized view log,’’ Oracle Press, Tech. Rep.,
2012.

[35] M. Kvet, ‘‘Dangling predicates and function call optimization in the Oracle
database,’’ in Proc. Commun. Inf. Technol. (KIT), Oct. 2023, pp. 70–79,
doi: 10.1109/kit59097.2023.10297114.

[36] M. Kvet and J. Papan, ‘‘The complexity of the data retrieval pro-
cess using the proposed index extension,’’ IEEE Access, vol. 10,
pp. 46187–46213, 2022, doi: 10.1109/ACCESS.2022.3170711.

[37] R. Cornejo, Dynamic Oracle Performance Analytics: Using Normalized
Metrics to Improve Database Speed. Apress, 2018.

[38] M. H. Durneková and M. Kvet, ‘‘Optimization of the SELECT statement
containing window functions,’’ in Proc. Int. Conf. Inf. Digit. Technol.
(IDT), Jun. 2023, pp. 267–272, doi: 10.1109/idt59031.2023.10194457.

[39] M. Yu, C. Chai, and G. Yu, ‘‘A tree-based indexing approach for diverse
textual similarity search,’’ IEEE Access, vol. 9, pp. 8866–8876, 2021, doi:
10.1109/ACCESS.2020.3022057.

[40] S. Zhang, S. Ray, R. Lu, andY. Zheng, ‘‘Efficient learned spatial indexwith
interpolation function based learned model,’’ IEEE Trans. Big Data, vol. 9,
no. 2, pp. 733–745, Apr. 2023, doi: 10.1109/TBDATA.2022.3186857.

[41] M. Kvet, ‘‘Identifying, managing, and accessing undefined tuple states
in relational databases,’’ in Proc. Int. Conf. Smart Syst. Technol. (SST),
Oct. 2022, pp. 165–172, doi: 10.1109/sst55530.2022.9954691.

[42] M. Kvet, ‘‘Referencing validity assignment using B+tree index enhance-
ments,’’ in Proc. World Symp. Digital Intelligence Syst. Mach. (DISA),
Nov. 2023, pp. 145–153, doi: 10.1109/DISA59116.2023.10308931.

[43] M. Malcher and D. Kuhn, Pro Oracle Database 23c Administration:
Manage and Safeguard Your Organization’s Data. Apress, 2024, p. 588.

[44] A. Agrawal,Oracle Database Database Administrator’s Guide, 23c. USA:
Oracle Press, 1996.

[45] ORACLE-BASE—GROUP BY and HAVING Clauses Using Column
Aliases in Oracle Database 23c. Accessed: Dec. 13, 2023. [Online].
Available: https://oracle-base.com/articles/23c/group-by-and-having-
clause-using-column-alias-or-column-position-23c

[46] E. I. Chong, M. Perry, and S. Das, ‘‘Improving RDF query perfor-
mance using in-memory virtual columns in oracle database,’’ Proc.
Int. Conf. Data Eng., vol. 2019-April, pp. 1814–1819, Apr. 2019, doi:
10.1109/ICDE.2019.00197.

[47] M. Kersten, Y. Zhang, P. Katsogridakis, P. Koutsourakis, and J. van Ruth,
‘‘Database resource allocation based on resilient intermediates,’’ in Proc.
IEEE Int. Conf. Cloud Comput. Technol. Sci. (CloudCom), Dec. 2018,
pp. 314–319, doi: 10.1109/CloudCom2018.2018.00067.

[48] M. Kvet, ‘‘Impact of disc types on database performance,’’ in Proc. IEEE
16th Int. Sci. Conf. Informat. (Informatics), Nov. 2022, pp. 188–195, doi:
10.1109/Informatics57926.2022.10083421.

[49] W. Li, N. Li, J. Yan, Z. Zhang, P. Yu, andG. Long, ‘‘Secure and high-quality
watermarking algorithms for relational database based on semantic,’’ IEEE
Trans. Knowl. Data Eng., vol. 35, no. 7, pp. 7440–7456, Jul. 2022, doi:
10.1109/TKDE.2022.3194191.

MICHAL KVET (Member, IEEE) became an
Associate Professor in applied informatics with the
Faculty of Management Science and Informatics,
University of Žilina, Slovakia, in 2020. He is
currently a recognized Researcher, a Conference
Speaker, and an Oracle ACE Alumn. He is the
author of several text-books and monography in
temporal database processing. He is the author of
more than 70 scientific articles indexed in IEEE-
Xplore, Scopus or WOS. He is certified for SQL,

PL/SQL, analytics, and cloud databases. His research is devoted to the
temporal databases, indexing, performance, analytics, and cloud computing.
He strongly participates with Oracle Academy and he is a part of multiple
Erasmus+ projects. Besides, he is a Consortium Leader of the Erasmus+
project dealing with the environmental analytics. He also organizes multiple
database workshops annually.

JOZEF PAPAN received the dual Ph.D. degree
in applied informatics from the Faculty of Man-
agement Science and Informatics, University of
Žilina, Slovakia, in 2015 and 2020, respectively.

He is currently the Head of the IP Fast Reroute
Research Team, the Director of the Fortinet
Network Security Academy, and a member of
Cisco Academy with the Faculty of Management
Science and Informatics. He is the author or coau-
thor of more than 30 scientific papers published in

scientific journals and presented at international conferences. His research
interests include IP fast reroute, fault-tolerance, protocols and services in IP
networks,WSN, the IoT, the modeling and simulation of computer networks,
smart sensors, wireless technology, portable devices, technical cybernetics,
and cloud computing. He is the Teacher of the following subjects: Securing
Networks with Fortinet (Fortinet Academy), Principles of ICS (Cisco), and
Network Architectures (Linux + Networks).

27330 VOLUME 12, 2024

http://dx.doi.org/10.1109/ACCESS.2021.3123291
http://dx.doi.org/10.1109/TPDS.2004.13
http://dx.doi.org/10.1109/ideas.2005.33
http://dx.doi.org/10.1109/IRI.2003.1251411
http://dx.doi.org/10.1109/CICN.2013.100
http://dx.doi.org/10.1109/ICDIM.2013.6694037
http://dx.doi.org/10.1109/ISCO.2015.7282236
http://dx.doi.org/10.1109/kit59097.2023.10297114
http://dx.doi.org/10.1109/ACCESS.2022.3170711
http://dx.doi.org/10.1109/idt59031.2023.10194457
http://dx.doi.org/10.1109/ACCESS.2020.3022057
http://dx.doi.org/10.1109/TBDATA.2022.3186857
http://dx.doi.org/10.1109/sst55530.2022.9954691
http://dx.doi.org/10.1109/DISA59116.2023.10308931
http://dx.doi.org/10.1109/ICDE.2019.00197
http://dx.doi.org/10.1109/CloudCom2018.2018.00067
http://dx.doi.org/10.1109/Informatics57926.2022.10083421
http://dx.doi.org/10.1109/TKDE.2022.3194191

