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ABSTRACT The high frequency of rocket launches requires low-cost solid rocket fuel. Currently, the fuel
manufacturing process faces increased launch costs caused by the risk of ignition from rotary mixers and
increased equipment and labor costs from batch processes in which mixing and conveying are separated.
Therefore, this paper proposes and verifies an automatic switching system between mixing and conveying
modes for a peristaltic mixing conveyor that enables safe and continuous mixing and conveying of solid
fuel. In a previous study, peristaltic mixing conveyor with low shear force was developed and successfully
produced solid fuel. However, there was room for improvement for more efficient fuel production because
the device was controlled by pre-determined driving pattern. The actual intestine generates movement
autonomously by enteric nerves. Therefore, the development of a sensing function that imitates the enteric
nervous system and generates movement patterns based on the acquired data is expected to improve
manufacturing efficiency. In this study, the sensor data of a mixed solid fuel simulant packaged in a bag were
acquired, and the degree of mixing (unmixed and mixed completely) was discriminated using supervised
learning (the k-nearest neighbor method). Furthermore, a system was constructed to continue the mixing
mode when unmixing and automatically switch the motion to the conveying mode when the mixing was
complete. The experiment showed that the motion mode automatically switched to the conveying mode at
almost the same time as the labeled training data, and mixing and conveying of the simulated material was
successfully performed.

INDEX TERMS Solid fuel, soft robotics, robot sensing system, machine learning, predictive, data acquisi-
tion, product safety, mixing, conveying.

I. INTRODUCTION
This paper presents a fuel manufacturing process that facil-
itates a high frequency of rocket launches by cost-saving.
Recently, there have been more demands for more frequent
rocket launches to send numerous satellites into space. Solid
fuel is expected to reduce launch costs because of its small
size, inexpensive, and easy to handle characteristics [1], [2].
The fuel can also be further reduced in cost by improving
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the efficiency of the solid fuel manufacturing line. Solid
fuel is manufactured by mixing and conveying a powder
of metal and other materials with a viscous fluid. Gener-
ally, a rotary mixer is used for mixing solid fuel [3]. The
automated manufacturing and mass production is difficult
because mixing with a mixer generates frictional heat due to
high shear force. After completing mixing, the fuel is con-
veyed by manual operation causing increased equipment and
labor costs. Therefore, the developing amethod of continuous
manufacturing solid fuel with low shear force is expected to
costs-saving of solid fuel.
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To realize the costs-saving of a fuel manufacturing low
shear force, the authors focused on intestinal movements.
The intestine is constructed of two different muscle layers,
the longitudinal muscle, and the circular muscle [4]. The
intestinal tract mixes and conveys food masses and digestive
juices through repeated contraction and relaxation of these
two muscle layers. Because the intestinal wall is flexible,
mixing and conveying by the intestine is performed contin-
uously and with low shear force [5]. In addition, the intestine
has enteric nerves, which control intestinal movements by
mechanical and chemical stimuli from the contents, inde-
pendent of commands from the brain. By controlling muscle
movements this way, the intestine autonomously determines
the movements for mixing (segmental movements) and con-
veying (peristaltic movements) the food mass and digestive
juices. The development of a device and control system
that can reproduce the motion of the intestine’s small force
of mixing and conveying is expected to realize a safe and
continuous manufacturing method. Furthermore, the intro-
duction of the intestinal movement generation mechanism
into the device automates a series of processes frommixing to
conveying, which is expected to improve the manufacturing
efficiency.

In this study, we aim to develop a device that imitates
the intestinal tract and a system that autonomously deter-
mines the mixing or conveying motion and switches the
motion, like an enteric nervous system, to realize a safe
and efficient solid fuel manufacturing method. Specifically,
we develop a device that can reproduce the segmental and
peristaltic movements of the intestinal tract. The device
has a sensing function and uses a machine learning model
built based on data acquired from the sensors to deter-
mine the degree of mixing of solid fuel. The construction
of a system that switches to a segmental movement for
mixing if unmixed, and to a peristaltic movement for con-
veying if the mixing is complete. The realization of this
system is expected to establish an efficient manufacturing
method for solid fuel and to lower the cost of solid rocket
launches.

Therefore, we developed a peristaltic mixing conveyor
based on the intestine’s mixing and conveying function as
shown in Fig. 1. This device uses pneumatically driven rub-
ber artificial muscles to imitate the muscular layers of the
intestines [6], [7]. When the device is supplied with air pres-
sure, the inside rubber tube is occluded, and the contents
of the device produce a squeezed flow. The device is con-
structed as a unit, and multiple units can be connected and
driven independently to reproduce peristalsis and segmen-
tal movements of the intestine. Solid fuel was successfully
produced using this device [8], [9]. In addition, the device
was able to mix the materials even when the materials were
packed in bags and input into the device [10]. This has the
practical advantages of enabling mixing under quantitatively
controlled conditions, ensuring stable physical properties,
and facilitating maintenance. Since all these studies were
based on sequence control using experimentally determined

drive patterns, there was room for improvement toward more
efficient fuel manufacturing. On the other hand, to reproduce
a control system that autonomously determines the appro-
priate motion for the contents, such as an enteric nervous
system, it is necessary to develop a system that detects the
mixing state of the contents based on information obtained
from the sensors mounted on the device and automatically
generates a driving pattern according to that state. Therefore,
we partially developed a sensing function [11] and system
with a distributed arrangement like that of the intestinal tract.
The two issues of estimating the mixing state of the con-
tents [12], [13] and automatic switching of the drive pattern
according to the state of the contents [14] were verified,
respectively. For the estimation of the mixing state, machine
learning was used to successfully estimate the mixing state
of powder and liquid in the device [12], [13]. In addition,
the state of mixing of fuel simulants packed in bags has
been successfully estimated [15]. Both studies were able
to estimate mixing completion at some level under certain
conditions. In a study on switching the drive pattern [14],
a rigid rod was detected based on sensor data mounted on the
device, and the movement was successfully switched from
random drive to peristaltic movement. Currently, a system
that simultaneously estimates the mixing state and switches
driving patterns for highly fluid contents has not yet been
developed.

In this paper, we construct and verify a system that auto-
matically switches the motion mode of a peristaltic mixing
conveyor after the contents have beenmixed. Specifically, the
following is a list of the following.

1) The device mixes the solid fuel simulant, which is a
highly fluid content. For practical use, the contents of
the device should be packaged in bags, so this paper
focuses on bagged simulants.

2) Determine whether the mixture is unmixed or com-
pleted using machine learning based on sensor data
acquired during mixing.

3) If the discrimination result is unmixed, the mixing
mode is continued, and if the mixing is complete,
the motion is automatically switched to the conveying
mode.

In a previous study, switching of the motion mode was veri-
fied by detecting the presence or absence of a rigid rod, but
this is the first verification of switching of the motion mode
from a mixing determination for a fluid content. Previous
studies have already shown that a mixed decision is possi-
ble in certain environments. Since the purpose of this paper
is to validate the entire system, a simple machine learning
model that can make decisions with high accuracy only in
the current environment was constructed, as in the previous
study.

The contributions of this paper are as follows.
• Regarding intestinal motion, which performs an appro-
priate action according to the state of the contents,
we constructed a system that automatically switches the
motion mode when the solid fuel simulant is mixed.
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TABLE 1. Comparative table of devices capable of reproducing the peristaltic movement of a living body.

This paper is organized as follows: Chapter 2 describes
related research, Chapter 3 outlines the peristaltic mixing
conveyor for solid fuel production, and Chapter 4 describes
the selection of a suitable machine learning model for the
estimation of themixing degree of bagged solid fuel. In Chap-
ter 5, we describe the operational experiments using the
device and system for switching from the mixing mode to the
conveying mode using the training model we created.

II. RELATE WORKS
A. PERISTALTIC PUMP
Several devices have been developed to reproduce the
peristaltic motion of living organisms, such as intestine,
esophagus, etc. [16]. Table 1 lists the purpose of devel-
oping the peristaltic pump, a summary, and a comparison
with the regarding the function in hardware and software
of the peristaltic mixing conveyor proposed in this paper.
Table 1 compares three devices to peristaltic mixing con-
veyor devices: a tube pump that uses two rollers to generate
peristaltic waves [17], a swallowing device that imitates the
digestive tract of a living body [18], [19], and a pump using
ballooning [20]. These compared devices are not intended
for industrial use, such as the production of solid fuel.
In addition, the device is primarily intended for fluid con-
veyance. The performance of mixing the fuel is not described.
Other devices that can reproduce peristaltic motion include
a linear pump using magnetic fluid [21] and a device with

a rotating helix drive mechanism [22]. Pneumatic pumps
also include flexible pumps made of silicon [23], [24] and
micropumps [25] that are mounted in microfluidic modules.
Furthermore, we developed a peristaltic pump (Fig. 1) that
simulates the muscular layer of the intestinal tract using
pneumatic artificial muscles made of rubber material [6], [7].
This device is intended for industrial applications such as
the manufacture of solid fuel and is capable of mixing and
conveying the contents in one device. Therefore, this paper
focuses on peristaltic mixing conveyor.

However, all these devices that reproduce the peristaltic
movement of the digestive tract are sequence-controlled,
in which a predetermined driving pattern is input to the device
to generate the movement while the actual digestive tract is
driven autonomously by a neural network as shown in the next
section.

B. THE SYSTEM AND SIMULATION BY ENTERIC NERVES
The intestinal tract, also known as the ‘‘second brain,’’ has
a nervous system (enteric nervous system) that constructs
the reflex arches without involving the reflex centers [26].
Therefore, intestinal muscular movements are controlled
independently of brain commands by mechanical and chem-
ical stimuli from the contents. In addition, simplifying the
intestinal mechanism, the intestinal tract can be thought of as
a unit separated by a certain length [27]. The complexly con-
structed nervous system determines not only the movement
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of the stimulated unit but also the movement of muscles in
neighboring units as the stimulus propagates. By controlling
muscle movements in this way, the intestine autonomously
determines the movements for mixing (segmental move-
ments) and conveying (peristaltic movements) the food mass
and digestive juices. Simulations include intestinal models
using neural circuit models such as motoneurons [28], [29]
and two-dimensional intestinal models using neural oscilla-
tors [30]. These models show that, assuming that the intestine
is divided into units, when one unit is stimulated, peristalsis
and other movements can be reproduced by the coordination
between neighboring units. In general, it is difficult to control
a soft robot such as this device delicately because of the
complex behavior of hyperelastic materials, such as nonlin-
earities, large strains, and deformations. However, applying
high-precision sensing and control to a soft robot and allow-
ing it to operate autonomously will eventually allow the
robot itself to acquire autonomous behavior under various
environments and for various tasks [31], [32].
Based on the above, the development of a control system

that autonomously generates mixed conveyance motion in
response to stimuli, as in the case of the intestinal tract,
is possible for this device.

C. OUR APPROACH
In our previous study, we aimed to develop a system to control
a peristaltic mixing conveyor by sensing stimuli caused by
changes in the contents of the device, like the enteric nervous
system. In this paper, we developed a sensing function using
a distributed arrangement like that of an intestinal tube [11]
and verified two issues: estimation of the mixing state of
contents [12], [13] and automatic switching of driving pat-
terns according to the state of contents [14], respectively.
For the estimation of the mixing state, logistic regression
was used to successfully estimate the mixing state of the
powder and liquid in the device [12], [13]. In addition, GMM
has been successfully used to estimate the mixing state of
bagged fuel simulant [15]. Both studies were able to estimate
mixing completion at some level under certain conditions.
In a study on switching the drive pattern [14], the volume
of the rigid rod in the unit was detected from the air flow
sensor data mounted on the device, and the operation was
successfully switched from random drive to peristaltic move-
ment. However, this method makes it difficult to detect fluid
contents and the conveyance of fluid contents has not yet been
investigated. Currently, a system that can estimate the mixing
state and switch the drive pattern accordingly has not yet been
developed. The construction of an autonomous decentralized
system that simulates the enteric nervous system has not yet
been achieved. The introduction of such a control system
into this device will automate a series of processes from
mixing to conveying and is expected to improve the effi-
ciency of solid fuel production, which is the objective of this
research.

In this paper, we aim to construct a system that auto-
matically switches the motion mode of a peristaltic mixing

conveyor after the contents have been mixed, based on our
previous research. The system acquires pressure and flow
sensor data during the mixing of solid fuel simulants and
determines the degree of mixing by machine learning. If the
discrimination result is not yet mixed, the system continues
in the mixing mode, and if the mixing is complete, the
system automatically switches the motion to the conveying
mode.

III. PERISTALTIC MIXING CONVEYOR FOR THE
PRODUCTION OF SOLID FUEL
A. SOLID FUEL
Solid fuel is manufactured by mixing and conveying oxi-
dizers, metallic fuels, binders, plasticizers, and hardeners.
Existing solid fuel production methods are batch processes
in which mixing and conveying are separate. Mixing uses
a planetary mixer that rotates metal blades inside a metal
container to mix the materials [3]. After that, the mixed fuel
is conveyed to the rocket and cast by hand. The mixing and
conveyance of the product are the two main issues. Mixing
with a mixer involves the risk of ignition due to high shear
forces, and it is difficult to mix a large amount of fuel at
the same time. In addition, manual conveyance involves thor-
ough safety control, equipment costs, and labor costs in the
manufacture of solid fuel. Therefore, the rocket launch costs
increase and the launch frequency decreases.

Related studies [33], [34] have attempted to reduce the
cost of continuous production of solid fuel. However, the
risk of combustion cannot be eliminated because the mixing
and conveying paths are composed of metals. We focused on
a mixing and conveying method for the intestinal tract that
mixes and conveys food mass and digestive juice with a low
shear force.

B. OVERVIEW OF PERISTALTIC MIXING CONVEYOR
The muscular layer of the intestinal tract is constructed from
the circular and longitudinal muscles. Circular muscles are
arranged in an annular pattern in the intestinal tract, whereas
longitudinal muscles are arranged axially. Each muscle layer
contracts and relaxes to generate peristalsis and convey food
masses. Fig. 1 (a) shows the overall view of the device that
was developed to simulate the intestinal structure. The device
consists of units, and a single unit is shown in Fig. 1 (b).
As shown in Fig. 1 (c), The device consists of an outer axial
fiber-reinforced artificial muscle (hereinafter referred to as
‘‘artificial muscle’’) and an inner rubber tube. The material
to be mixed and conveyed is input into the rubber tube. When
compressed air is applied to the chamber between the outer
artificial muscle and the inner rubber tube, the device is
axially contracted by the outer artificial muscle and the inner
rubber tube is occluded as shown in Figure 2. The contents
inside the device move between the neighbor units because
of the squeezing flow caused by the closure of the rubber
tubing.

This device is constructed as a unit and reproduces the
movement of the intestine by selecting the unit to which air
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is applied by turning the solenoid valve attached to each unit
on or off.

Segmental motion, which is the motion of the intestine
during mixing, can be reproduced by switching the units
to which air is alternately applied, as shown in Fig. 3(a).
Peristaltic motion, which is the movement of the intestine
during conveyance, can be reproduced by applying air to
each of the two units sequentially in the direction of the
desired conveyance, as shown in Fig. 3(b). The flange of the
device has a curved flow channel, and it is possible to control
temperature inside the flange by flowing warm water to heat
the flange. Each unit was equipped with two types of sensors
(pressure and flow sensors). The pressure sensormeasures the
pressure in the chamber, and the flow sensor measures the air
flow rate applied to the device.

FIGURE 1. (a) Overall view of the peristaltic mixing conveyor, (b) single
unit, (c) cross-section of the single unit.

FIGURE 2. Motion when air is supplied to a single unit.

Using these sensors, the volume and viscosity of the device
can be detected [28]. Moreover, machine learning models
constructed from sensor data can be used to determine the
mixing state of device content [29], [30]. A system was

FIGURE 3. Segmental and peristaltic motion of a device coupled
to 5 units.

also constructed to switch motion to peristaltic motion by
detecting a rigid rod input into the device [31].

C. AUTONOMOUS DECENTRALIZED SYSTEM
SIMULATING ENTERIC INNERVATION
In the manufacture of solid fuel, it is important to efficiently
maintain stable physical properties of the fuel because the
degree of fuel mixing affects the combustion speed. The
realization of a method that enables continuous mixing and
conveying will enable the construction of a safe and low-cost
fuel manufacturing system. In contrast, in the intestinal tract
with enteric innervation, appropriate movement patterns are
generated according to the state of the contents. The degree
of mixing of the fuel inside the peristaltic mixing conveyor
was estimated by machine learning constructed from sensor
data, referring to the intestinal tract system, and the switching
between the mixing and conveying modes of motion was
automated. In addition, an autonomous decentralized system
is constructed to convey the contents of the device when they
are inside the device.

The procedure for switching from mixing to conveying
mode is described below. A flowchart of this process is shown
in Fig. 4. While the device is in operation, pressure and flow
sensor data are constantly acquired and motion patterns are
generated.

1) Start mixing bagged materials (powder + high viscos-
ity fluid) input into the device tube.

2) Discriminate the degree of mixing by machine learning
using pressure and flow sensor data.

3) While the estimated mixing degree is unmixed, the
mixing mode (segmental motion, Fig. 3 (a)) continues.
When the mixing is completed, the motion is switched
to the conveying mode (peristaltic motion, Fig. 3 (b)),
and conveying starts.

4) In the conveying mode, if a unit detects the content, the
peristaltic motion continues.

5) After completion of content conveyance, switch to the
mixing mode and prepare for a new degree of mixing
discrimination.
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FIGURE 4. Automatic switching system of motion mode according to
contents condition. While the mixing prediction is unmixed, the mixing
mode (segmental motion) is continued, and when the mixing is
completed, the motion is switched to conveying mode (peristaltic
motion).

In this study, the first step was to construct a system that
automatically switched exercise modes (steps 1-3).

IV. MIXTURE DISCRIMINATION BY
SUPERVISED LEARNING
Pressure and flow sensors were installed in each unit of the
device, and mixing experiments were conducted with pow-
ders and highly viscous fluids, which were bagged solid fuel
simulants. Furthermore, a machine learningmodel is required
to estimate mixing was constructed from the acquired sensor
values and evaluated, and a learning model was selected for
use in the mixing and conveying switching system. Previ-
ous studies [12], [13], [15] have shown that mixing degree
discrimination is possible in certain environments. There-
fore, in the next phase, a simple machine learning model
that enables highly accurate mixture discrimination in this
environment was applied to the device in the same way
as in the previous study to construct a motion-switching
system.

A. OUTLINE OF EXPERIMENT
The purpose of this experiment was to verify the change
in the state of the simulant during the mixing process and
its mixing completion time to label the unmixed and mixed
states of the simulant for use in supervised machine learn-
ing. The experimental setup is shown in Fig. 5. There are
connected five unit of peristaltic mixing conveyor in the
experimental environment. There are two types (pressure and
flow sensors) of 15 sensors in the experimental environment.

The pressure sensors (SMC ZSE30AF-C6H-C-M) measure
air pressure in the chamber of the unit. The flow sensors
(SMC PFM750-C6-C) measures flow rate for air supply and
exhaust air on the device. Three sensors are mounted on each
unit. Supply air to the device is supplied from the compressor
via the regulator and the solenoid valve (SMCVDW20JA) on
the air supply side. Exhaust from the device is discharged into
the atmosphere by opening the solenoid valve on the exhaust
side. The device is driven by a microcontroller (Arduino
MEGA 2560) that switches the air supply and exhaust every
2 s (4 s from air supply to exhaust is called one cycle). The
pressure is set at 60 kPa by the regulator and the sampling
frequency is 20 Hz. As in previous studies [29], [30], the
device was driven by a segmented motion that alternately
switched the units to which air was applied every 2 s. The
device consisted of several powder components and a liquid
component consisting of a premixed metal powder and a
highly viscous fluid. They were used as simulant for solid
fuel and were based on recipes in a previous study [19]
(hereafter referred to as simulant). The materials were sealed
in polyethylene bags (90mm × 300 mm, 0.08 mm thick)

FIGURE 5. Experimental environment. All sensors and valves are
connected to Arduino Mega 2560.

FIGURE 6. Upper side: Packaged solid fuel in a plastic bag. The total
amount of material is 270g, Under side: Sample input method for the
solid propulsion simulant mixing experiment.
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large enough to be mixed by the three units of the device
for the experiment. The total weight was 270 g, which is
90% of the maximum amount packed in bags and input
into the device. Although it is possible to mix and convey
the maximum amount of material, this is difficult because
the simulant clogs up in the device during conveying. The
actual bagged simulated material is shown in the upper part
of Fig. 6.

As shown in Fig. 6, unmixed simulated materials packed
in three unit-sized bags were input into Units 1–3, and the
mixing process was acquired from the sensor data. Dummy
simulant was placed in units 4 and 5 in the same volume,
in a completely mixed state, and packaged in bags with a
size of three units. These bags were connected to bags of
the simulated material in units 1-3. The dummy simulant
in Units 4-5 was installed to convey the simulated material,
and mixing experiments were conducted only in Units 1-3,
which were inputted with unmixed simulant. If there are no
dummy simulant in units 4–5, the simulant is not conveyed
from units 3 to 4, and the simulant in unit 1 are conveyed in the
bag, causing the simulant to accumulate in unit 2 and risking
bag breakage. The dummy simulant could be connected to a
pull. The completed mixed sample from unit 3 to unit 4 for
smooth conveyance.

To promote mixing, a heating system was installed in
units 1 and 3, where the liquid component was present,
and 60 ◦C hot water was run through the flange so
that the temperature in the device tube was warmed to
around 55 ◦C.

B. RESULTS OF THE EXPERIMENT
Fig. 7 shows the simulatedmaterial photographed every 5min
from the start of mixing to 20 min later. At 0 min before
mixing, the grey liquid and white powder components were
completely separated. After 5 min of mixing, the liquid began
to penetrate the powder, and a white powder was observed
at the center. After 10 min of mixing, the liquid almost
completely penetrated the powder. The center of the product
is slightly uneven (light gray), and the human touch confirms
the feeling that there is slightlymore powder at the center than
at the edges. After 15 min, the mixture was almost complete,
although a very slight powder unevenness was observed at
the lower edge of the center. After 20 min, the mixture was
determined to be complete because there was no uneven
texture. Based on the above, mixing was defined as unmixed
for 15 min or less from the start of mixing and as complete
for 20 min or more.

C. ACQUISITION OF TRAINING DATA
IN MACHINE LEARNING
The experimental environment was the same as that described
in SectionA. Based on the results described above, themixing
data from the start of mixing to 10 min were considered
unmixed, and the mixing data of the simulated material after
mixing for 1 hwere consideredmixed. From the data obtained
with reference to previous studies [32], the pressure value was

FIGURE 7. The mixing process of simulant from before mixing to the
mixing complete.

calculated at 0.05 s from the start of the air supply for each
cycle, and the flow rate was calculated as the integrated flow
rate for 2 s of air supply and 2 s of exhaust air, respectively.
Data were prepared for 1510 pressure values, and integrated
supply and exhaust flow values for unmixed and completed
mixing (two conditions × three variables × 1510 values).
Of the total data, 80% were divided into training data (used
to build the learning model) and 20% into test data (used to
evaluate the model).

D. CONSIDERATION OF THE BEST MACHINE LEARNING
ALGORITHM FOR MIXING DEGREE DISCRIMINATION
The objective of machine learning in this study was to clearly
distinguish between the unmixed and mixed contents of a
device to construct an automatic switching system for the
motion mode. Thus, two classifications were established:
unmixed and mixed. To improve the accuracy of mixture
discrimination, we compared the discrimination accuracies
of 7 popular 2-class classification methods in supervised
learning. The models in the Python Scikit-learn library were
used for machine learning. This method is described as
follows:

• Logistic Regression: Probability prediction between
zero and one using a nonlinear sigmoid function.

• Support Vector Machines (SVM): classification by lin-
ear discriminant function

• AdaBoost generatesmore accuratemodels by repeatedly
training them on the same data.

25986 VOLUME 12, 2024



I. Terayama et al.: Construction of Motion Mode Switching System by Machine Learning

• RandomForest:Multiple decision trees are used tomake
predictions by majority vote.

• k-nearest neighbors (k-NN): estimates the class to which
the data belongs by the majority vote of k training data
close to the unknown data.

• Decision Tree: Classification by repeated conditional
branching using a tree structure.

• Naive Bayes makes predictions based on the probability
of the category to which the data belong.

For each method, a model was constructed using the train-
ing data (80% of all the data) described in Section C. of this
chapter, and the correct response rate for each method was
calculated using the test data (20% of all the data). Table 2
presents the results for each unit. For each unit, the results
showing the top three correct responses for the sevenmethods
are colored. Table 2 shows that k-NN has the highest correct
response rate among the seven methods for all units. Based
on the above, k-NN, which was expected to discriminate the
degree of mixing with the highest accuracy, was adopted
for mixing discrimination. Mixing degree discrimination was
performed for k-NN, which was adopted as the mixing degree
discrimination model. The results are presented in Fig. 8.
The upper row of Fig. 8 shows a plot of the original data,

and the lower row shows the discriminant prediction of the
test data. From (a) to (c) in Fig. 8, for all units, although
the red unmixed data are slightly misclassified as blue mixed
data near the border between the unmixed and mixed data,
the trend of the plots for the original and discriminated data
and the results were almost the same. Therefore, as shown
in Table 2, the test data exhibited a high percentage of correct
responses, and the trend of the predictions of the test data
was almost the same as that of the original data, indicating
that k-NN can discriminate mixtures with a high degree of
accuracy.

V. MIXED CONVEYING EXPERIMENT WITH MOTION
MODE SWITCHING SYSTEM
A. PROPOSAL AND OVERVIEW OF SWITCHING
METHOD TO CONVEYING MODE
In Chapter 3, it was shown that k-NN could discriminate the
degree of mixing for Units 1 to 3 with more than 95% correct
answers. However, there is a tendency for unmixed data to be
misclassified as completely mixed data. The actual simulated
material from the start of mixing to 10 min can be visually
confirmed to have unmixed powder components; however,
it is also close to the clay-like texture of the complete mix

FIGURE 8. Prediction results from k-NN Upper row: Acquired data Lower row: Predicted values by model.
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TABLE 2. Comparison of the accuracy rate to test data in each unit when
two or three variables are used and colored for the top results in
each unit.

to the human touch. It is difficult to acquire this difference in
texture from sensor data.

Accordingly, we propose a system that switches to the
conveying mode only when all units 1–3 are determined
to be completely mixed. This method prevents misclassifi-
cation more effectively than discrimination using a single
unit. As previously noted, the degree of mixing of the solid
fuel affects the combustion speed. If the material is con-
veyed without mixing, it will be difficult to maintain stable
physical properties; therefore, it must be conveyed when
mixing is completed. Consequently, the proposedmethodwas
adopted.

As shown in Fig. 9, a microcontroller (Arduino
MEGA 2560) acquired the sensor data and switched the
motion mode, and a PC (Python) determined the mixing
degree and motion mode. The system continues in the mixing
mode (segmental motion) if the mixture is unmixed, and
switches to the conveying mode (peristaltic motion) when
the mixing is complete. After the mixing starts, the motion
mode is automatically switched when the mixture changes
from unmixed to mixed by discriminating the degree of mix-
ing using machine learning. The model (k-NN) constructed
in Section III was used for machine learning. The procedure
for the motion-mode switching system is as follows.

1) After the device’s contents are input, communication
between the microcontroller and the PC is initiated.

2) The PC sends the first motion mode (mixing mode) to
the microcontroller.

3) The microcomputer starts driving the device in the
mixing mode received from the PC.

4) Sensor data were acquired at a sampling frequency
of 20 Hz using a microcomputer, and the data were
transmitted to a PC.

5) After acquiring one data cycle (80 data points for 4 s),
a machine-learning model (k-NN) was used to deter-
mine the degree of mixing.

6) If Units 1–3 are not mixed, send the mixing mode to
the microcontroller and repeat Step (4).

7) When all units 1–3 have completed mixing, the
conveying mode is sent to the microcontroller, and
communication between the microcontroller and PC is
terminated.

FIGURE 9. Automatic motion mode switching system communication flow between microcontroller (Arduino MEGA 2560) and PC (Python).

25988 VOLUME 12, 2024



I. Terayama et al.: Construction of Motion Mode Switching System by Machine Learning

FIGURE 10. Time-series results of mixing predict. Mixing predicts
(unmixed: 0, mixed: 1) and motion mode (mixing: 0, conveying: 1)
for each unit.

8) The peristaltic motion of the device continued until the
microcomputer completely conveyed the content.

B. OVERVIEW OF MIXING AND CONVEYING
EXPERIMENTS
The experimental environment was the same as that used
in the mixing experiment (Fig. 5) described in Section III.
During mixing, the material is mixed via segmental motion,
and during conveying, the mixed simulant is conveyed via
peristaltic motion. In both exercises, the unit to which air was
applied was switched every 2 s. The experiments were started
with the same initial conditions as in Chapter 3 (unmixed in
Units 1-3 and mixed simulant in Units 4-5), and the system
described in the previous section was used to verify whether
the motion mode automatically switched when the simulant
changed from unmixed to mixed.

C. RESULTS OF THE EXPERIMENT
1) MIXING AND CONVEYING TIME
A mixing and conveyance experiment was conducted using
the constructed system. The results of the time-series predic-
tion of the mixing degree discrimination are shown in Fig. 10.
Fig. 10 (a)–(c) show the mixing degree discrimination
(unmixed:0, mixed:1) and (d) the motion mode (mixed:0,
conveyed:1) for each unit. The actual device is shown
in Fig. 11. The device after receiving the first mix-
ing mode (mixing start of approximately 4 s) is shown
in Fig. 11 (a) and (b). From this 4-second data, the degree

FIGURE 11. Switching of the motion mode of the peristaltic mixing
conveyor.

FIGURE 12. Simulant before mixing and after conveying in the switching
experiment.

of mixing was calculated for every cycle, and the seg-
mental motion was conducted similarly. Four seconds after
that shown in Fig. 10, the motion automatically switched
from the mixing mode to the conveying mode at 9 min
40 s (580 s) from the start of mixing. Fig. 11 (c) shows
the device immediately after the motion was switched to
conveyor mode. Approximately 20 min after the start of
conveying, the simulant mixed in units of 1–3 was conveyed
(Fig. 11 (d)). Fig. 12 shows the simulated materials before
and after the experiment. As mentioned above, mixing in the
three units was completed within 15–20 minutes. As a result
of the experiment, conveying occurred earlier than mixing,
and as shown in Fig. 12(b), a small amount of unmixed
powder was observed near the center of the bag. Although
the mixing was not complete, the mixed simulant had almost
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no texture unevenness, except at the center, and was difficult
to distinguish even by human texture. The unmixed state was
defined as the start of mixing at less than 10 min, and the
model was constructed to discriminate the degree of mixing,
which switched to the conveying mode at approximately the
same time. Thus, we succeeded in constructing a system that
automatically switched motion modes.

The simulated material in Unit 1 moved to Unit 5 in about
20 minutes (1200 seconds) after the start of the conveying
mode, and the conveying of the simulated material was com-
pleted. The conveyor speed was 0.38 mm/sec. Although the
device was confirmed to convey the fuel from this verifica-
tion, the conveyance speed is slow for efficient solid fuel
mixing and conveying, and there is still room for improve-
ment in the current conveyance speed.

2) DISCRIMINATION OF THE DEGREE
OF MIXING OF EACH UNIT
As shown in Fig. 10, the motion switched to conveying mode
at 9 min and 40 s from the start of mixing. As described in
Section A of this chapter, the system switches to the convey-
ing mode when all units 1 to 3 are completely mixed. Fig. 10
shows that mixing was never determined to be complete for
Unit 3 during the 580 s from the start of mixing. However,
Unit 1 was discriminated as mixed complete once, and Unit 2
was discriminated as mixed complete several times. The plot
of the training data and trajectory of the experimental data
(green) in each unit from 4 s after the start of mixing to the
switching of the motion mode (9 min and 40 s) are shown
in Fig. 13. Fig. 13 shows the start of the mixing degree

calculation (t = 4 s, Fig. 11 (b)) and the mixing completion
point (t = 580 s, 2 s before Fig. 11 (c)), which are marked
with yellow stars. Fig. 13 (a) show that, for Unit 1, much
of the experimental data differed from the training data.
From Fig. 13 (b), the green trajectory repeatedly approaches
the blue mixing completion for unit 2, which is repeatedly
discriminated against as complete mixing during the mixing
mode. However, Fig. 13 (c) shows that for Unit 3, which has
never been discriminated as mixing complete, the green tra-
jectory passes through the red unmixed data and approaches
the blue mixing complete trajectory at the mixing complete
point. Fig. 13 shows that the trends of the trajectories of
the experimental data and plots of the training data roughly
correspond for both units.

Fig. 13 shows that in unit 3, the experimental data closely
follow the trend of the training data, whereas in units 1 and 2,
the experimental data trace the area where the training data
do not exist. It can be predicted that there is a lack of data
regarding the construction of the learning model used in
this system. In addition, in supervised learning, the more
data used in the model, the greater is the number of correct
answers, and thus, the better is the accuracy. From the above,
it is necessary to increase the training data to improve the
accuracy of mixture discrimination.

D. CHALLENGES AND FUTURE WORKS
OF THE CONSTRUCTED SYSTEM
The degree of mixing of the flowing solid fuel simulant was
estimated from Section C of this chapter, and the switching

FIGURE 13. Plot of the training data and the trajectory of the experiment data (green color) in each unit from 4 s after the start of mixing to the
switching of the motion mode (9 min 40 s). The mixing predict start point (t = 4 s) and the mixing completion point (t = 580 s) are marked with yellow
stars.
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of motion suitable for the state of the contents was realized.
However, in order for this device to be used for fuel produc-
tion, the accuracy of mixing estimation needs to be improved
and the conveyor speed needs to be increased.

The challenge in estimating the degree of mixing was
that some of the conveyed simulated material was unmixed.
Although this experiment was conducted in a limited envi-
ronment, reconstruction of the model using sensor data at
15 to 20 minutes after the start of mixing to unmixed data
can be used to improve the estimation of the degree of mixing
in this experimental environment, preventing conveyance that
leaves unmixed portions. Sensor data from the start of mixing
to less than 10 minutes were used for the unmixed data in this
experiment’s mixing discrimination model. This was selected
based on previous studies [13]. From the experimental results,
since the time from the start of mixing to switching to the
exercise mode (9 min 40 sec) was almost the same as that
of the labeled training data, more accurate discrimination of
the degree of mixing may be possible by reexamining the
unmixed data.

In the future, fuel production will need to be estimated
with high accuracy in complex environments. In this exper-
iment, the mixing estimation used a limited set of data: the
values of three different sensors at a specific time. In the
case of a change in the experimental environment, such as
a change in the weight or composition of the contents to be
mixed or an increase in the number of units, the accuracy of
the mixing estimation is difficult to maintain in its current
state, and it lacks generalizability. Considering the actual fuel
manufacturing process, the environment is expected to be
more complex than this experiment. In the future, themachine
learning model, including the type of data to be used, needs to
be reconstructed to enable highly accurate mixture estimation
even in complex environments.

On the other hand, the simulated material in Unit 1 moved
to Unit 5 in about 20 minutes (1200 seconds) after the start
of the conveying mode, and the conveying of the simu-
lated material was completed. The conveyor speed was about
0.38 mm/sec. The conveyor speed depends on the time the
air is applied and the pressure set to the device. These set
values are experimentally pre-determined values. Currently,
each unit is set to move discretely in a constant rhythm.
In the actual intestine, the amount and duration of intestinal
contractions vary according to the amount and hardness of
the contents, and the intestinal wall is continuously deformed.
Reproducing such intestinal movements may improve the
speed of conveyance. In the future, we will verify whether
increasing the degree of freedom in setting up each unit will
improve the conveyor speed.

VI. CONCLUSION
This study aimed to incorporate a control method that imi-
tates the autonomous motion generation mechanism of the
intestinal tract and an automatic motion-mode switching sys-
tem between mixing and conveying in a peristaltic mixing
conveyor. In this study, we acquired experimental data on the

mixing of bagged solid fuel simulant and used supervised
learning (the k-nearest neighbor method) to determine the
degree of mixing (unmixed and completed mixing). In addi-
tion, the system continues in the mixing mode when the
results of the mixing degree discrimination indicate that
the mixture has not been mixed, and automatically switches
the motion to the conveying mode when the mixing is
complete. The experimental results showed that the motion
mode automatically switched to conveyance at almost the
same time as the unmixed labeled training data (mixing
started at 10 min), and the mixed simulant was successfully
conveyed.

The future prospect is to improve the accuracy of mixture
discrimination by rebuilding the machine learning model.
In addition, there is still room for improvement in the speed
of fuel conveying for practical use. Adjust parameters such
as drive pattern of conveyance, air application time, and set
pressure.
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