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ABSTRACT The increased utilization of digital instruments like smartphones, Internet of Things (IoT)
sensors, cameras, and microphones has resulted in extensive amounts of big data. Inherent challenges
associated with big data include significant data dimensionality, redundancy, and irrelevant information. The
main objective of feature selection is eliminating unnecessary features, thereby minimizing time and space
requirements. This paper proposes a new Binary Crayfish Optimization Algorithm (BinCOA) for feature
selection. The Crayfish Optimization Algorithm (COA) is a new metaheuristic algorithm inspired by the
simulation of Crayfish search for food, summer resorts, and competitive habits. The original COA has been
augmented with two primary enhancements to improve its performance. The refracted opposition-based
learning strategy is a novel enhancement incorporated into the initialization step of the COA algorithm to
strengthen the algorithm’s capability for exploitation. The crisscross strategy is added to the original COA,
increasing the COA’s convergence accuracy. The algorithm’s performance is assessed by evaluating a set
of 30 benchmark datasets. The proposed BinCOA is evaluated in comparison to seven contemporary wrap-
per feature selection methods. The experimental finding indicates that BinCOA consistently outperforms
existing algorithms in classification accuracy, average fitness value, and the number of selected features.
Furthermore, the statistical significance of the results is verified by calculating the Wilcoxon rank-sum test.

INDEX TERMS Crayfish optimization algorithm (COA), feature selection (FS), classification, the refracted
opposition-based learning strategy, the crisscross strategy.

I. INTRODUCTION
Due to the swift adoption of the internet and computer tech-
nologies, vast amounts of data, each comprising hundreds of
features, are generated. In data mining, the task is to extract
valuable information from this extensive dataset to make
informed decisions. Meticulously choosing pertinent and
beneficial features can significantly influence various appli-
cations such as data mining [1], the Internet of Things [2],
machine learning [3], and image processing [4]. For instance,
within machine learning, redundant, irrelevant, and chaotic
records in high-dimensional datasets diminish classification
accuracy and escalate computational costs [5]. Keeping and
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processing the enormous amounts of data sensors collect
is a common problem with IoT techniques. The additional
challenge pertains to the existence of irrelevant and redun-
dant features. Consequently, Preprocessing, such as feature
selection, is required to handle high-dimensional data and
remove redundant or duplicate features. [6]. Feature selection
is a crucial aspect of data preparation, playing a signifi-
cant role in building robust models. It entails identifying
and finding the most significant features from the given
dataset.

A feature selection framework comprises three primary
components: (i) Classification methods like support vec-
tor machines (SVMs) [7], k nearest neighbour (kNN) [8],
etc., (ii) evaluation criteria, and (iii) the search algorithm
employed to identify the most optimal features. Feature
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selection methods can be classified into two primary cat-
egories: wrapper strategies and filter strategies. Wrapper
methods judge feature subsets based on how well they
work with the classification algorithm. A wrapper employs
the classification algorithm independently, allowing for the
assessment of the selected subset’s quality depending on
its classification effectiveness [9]. A filter approach oper-
ates without dependence on any learning model; evaluating
subsets of features solely depends on the data, independent
of the specific model in use. It’s crucial to highlight that
filter approaches may not always identify the optimal sub-
set of features. Nonetheless, there’s a general observation
that wrapper approaches often yield the most optimal fea-
ture subset in terms of performance for a predetermined
classifier [10]. A feature selection technique aims to pin-
point the optimal subset of features from the entire set of
possible subsets. Accurate search methods and metaheuris-
tics are two main types of search algorithms [11]. Accurate
search methods explore the entirety of the search space,
which, for example, in a feature set with k features, has
a magnitude directly related to 2k, requiring substantial
computational resources. Metaheuristic algorithms, on the
other hand, exhibit a stochastic nature by initiating their
optimization process with randomly generated solutions,
effectively exploring the search space. The effectiveness of
metaheuristics in addressing feature selection problems relies
on their potential to provide solutions approaching optimality
within a reasonable timeframe [12]. Due to their simplicity
and ease of implementation, metaheuristics display signifi-
cant adaptability when applied to specific problem domains.
A notable feature of these algorithms is their remarkable abil-
ity to prevent premature convergence, maintaining a delicate
balance between exploration and exploitation, two critical
facets.

The Crayfish optimization algorithm (COA) [13] is a
newly devised metaheuristic algorithm inspired by the sim-
ulation of Crayfish searching for food, summer resort, and
competitive habits. The searching for food stage and compet-
itive habits stage represent the exploitation phase of COA,
while the summer resort stage constitutes the exploration
phase of COA. COA introduces several variables to gov-
ern the algorithm’s exploration and exploitation, enhancing
randomness and optimizing its effectiveness. As a result,
we have been prompted to utilize a binary version of
COA. As mentioned earlier, metaheuristic algorithms have
significantly impacted feature selection issues in the last
few years. Despite the extensive research in this field,
many metaheuristic algorithms still encounter challenges that
require attention. Continued development of optimization
techniques is necessary to achieve further improvements in
results. So, two primary enhancements have been incorpo-
rated into the original Crayfish optimization algorithm (COA)
to strengthen its performance. These enhancements rein-
force opposition-based learning and cross-cross strategy. The
refracted opposition-based learning strategy is implemented
to enhance the diversity of the population and minimize the

risk of the method becoming stuck in a suboptimal local
state. The crisscross strategy is implemented to Strengthen
the accuracy of convergence. Our contributions can be sum-
marized in the following points:

•Combining the refracted opposition-based learning strat-
egy with COA, which has the potential to augment the
diversity and traversal of the initial population.

•The crisscross strategy is implemented to improve the
COA’s convergence accuracy.

•BinCOA: A binary modification version of the COA
algorithm is proposed to address challenges associated with
feature selection.

•The algorithm’s effectiveness is assessed through exper-
iments conducted on a collection of 30 well-established
benchmark datasets.

The remaining manuscript is structured as follows:
Section II presents the literature review, and Section III
briefly reviews the Crayfish Optimization Algorithm (COA).
The proposed BinCOA algorithm is introduced in Section IV,
The Experiments and Analysis are introduced in detail
in Section V, and finally, the conclusions are detailed in
Section VI.

II. LITERATURE REVIEW
Metaheuristic approaches are commonly categorized into
four distinct groups according to the sources that inspire
them: human-based methods [14], swarm intelligence [15],
evolutionary algorithms [16], and physics-based meth-
ods [17]. Human-based methods draw inspiration from
how people interact and connect in society. Agrawal [18]
introduced a binary variant of the knowledge-based gain-
ing sharing method (GSK) to address feature selection
issues, known as FSNBGSK. This approach utilized the
k-nearest neighbors (kNN) classifier to assess its perfor-
mance across 23 benchmark datasets. The proposed method
exhibited superior classification accuracy and a minimal
number of selected characteristics compared to other algo-
rithms. Examples of algorithms based on human approaches
include imperial competition algorithms (ICA) [19], the cul-
tural evolution algorithm (CEA) [20], the volleyball premier
league (VPL) [21], and teaching-learning-based optimization
(TLBO) [14]. Hybridizing multiple algorithms has become a
popular approach in feature selection, enabling researchers
to leverage the unique strengths of various algorithms [17].
Swarm intelligence approaches draw inspiration from the
collective behaviour of animals in swarms, offering valu-
able contributions to solving feature selection (FS) problems.
Notable algorithms in this category include Binary Horse
Herd Optimization (BinHOA) [22], Binary Cuckoo Search
(BCS) [23], Binary Dragonfly algorithm (BDA) [24], and
Binary Flower Pollination Algorithm (BFPA) [25]. Xue et al.
introduced a new approach for Particle Swarm Optimization
(PSO) to reduce computational time, minimize the number
of features, and maximize the accuracy of classification [26].
Additionally, Al-Tashi et al. [27] presented a binary version
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of hybridization modes based on WOA. The SA algorithm
is integrated into the WOA framework in the first model.
In contrast, the SA algorithm enhances the optimal solution
obtained after each iteration in the subsequent model. The
results indicate that the methods described in this research
are better than existing binary algorithms in terms of accu-
racy and computational time, with experiments conducted
on 18 UCI benchmark datasets.

Evolutionary algorithms emulate the principles of natural
evolution, drawing inspiration from the Darwinian theory
of evolution. Among these is the genetic algorithm (GA),
a type of evolutionary approach for its exceptional abil-
ity to effectively address challenges associated with feature
selection [28]. The results from implementing nested GA
have shown a notable enhancement in classification accuracy.
For instance, using the Genetic Algorithm (GA) algorithm
in conjunction with chaotic optimization has demonstrated
effectiveness in text categorization [29]. Other types of evo-
lutionary methods include differential evolution algorithms
(DE) [30], geography-based optimizers [31], and stochastic
fractal search [32].
Physics-based methods are formulated from the fun-

damental principles and rules of natural physics, and
metaheuristic algorithms of this nature have significantly
contributed to addressing challenges in feature selection.
Notable algorithms in this category include the Light-
ning Search Algorithm (LSA) [33], Multi-verse Optimizer
(MVO) [34], Electromagnetic Field Optimization (EFO)
[35], Henry Gas Solubility Optimization (HGSO) [36], and
Gravitational Search Algorithm (GSA) [37]. Additionally,
Simulated Annealing (SA) [38], inspired by metallurgi-
cal processes involving controlled heating and subsequent
cooling of materials, is considered. The Equilibrium Opti-
mizer (EO) algorithm has emerged as a prominent addi-
tion to physics-based approaches in recent years [39].
Ahmed et al. [40] developed an upgraded version of the
Equilibrium Optimizer to address feature selection problems.
The method was tested on 18 kNN datasets and compared to
8 established approaches, encompassing classical and mixed
metaheuristic algorithms. Another development is the binary
version of the Equilibrium Optimizer, denoted as BinEO,
introduced by D. A. Elmanakhly et al. [3]. This variant
incorporates an opposition-based learning method and a local
search algorithm [3]. The k-nearest neighbour and SVM
classifiers were widely employed as wrapper techniques.
A comparative analysis using various established algorithms
demonstrated the Binary Equilibrium Optimizer’s (BinEO)
effectiveness.

The Crayfish Optimization Algorithm (COA) is a novel
meta-heuristic algorithm that belongs to the swarm intel-
ligence meta-heuristics algorithms. It mimics crayfish
behaviour in competition, summer resorts, and foraging.
COA has demonstrated superior performance compared
to other widely recognized metaheuristics, showcasing its
robust exploration and exploitation capabilities and effec-
tiveness. In our proposed paper, we present utilizing a

binary version of COA as a wrapper feature selection
technique to enhance the efficacy of feature selection
and classification tasks. To strengthen the performance of
COA, the refracted opposition-based learning and cross-
cross strategy was combined with the original COA. The
refracted opposition-based learning strategy is implemented
to increase population diversity and lower the likelihood of
the method being caught in an ideal local state. The criss-
cross technique is employed to improve the accuracy of
convergence.

III. CRAYFISH OPTIMIZATION ALGORITHM
The crayfish is an omnivorous creature that has the ability to
consume a wide range of food sources [41]. When crayfish
are hunting, they use their claws to tear up big meat and
then send it to their second and third feet to hold on to
while they walk. Use your second and third walking feet
to hold and nibble on small items. As depicted in Figure 3,
crayfish commonly employ rapid hiding or utilize pincers
as a defensive mechanism to safeguard themselves against
potential theft by other crayfish.

FIGURE 1. The structure of a crayfish.

A. INSPIRATION
COA draws inspiration from the foraging, summer vacation,
and competitive behavior of crayfish. The foraging and com-
petition stages might be considered the exploitation stage of
the Cultural Evolutionary Approach (COA). In contrast, the
summer resort stage can be seen as the exploration stage
of COA. The initial part of the algorithm involves defining
the crawfish colony Cr to accurately represent the charac-
teristics of optimization by swarm intelligence. The variable
Cri represents the spatial location of the ith crayfish, serving
as an indicator of a potential solution. The regulation of
the exploration and exploitation of COA is contingent upon
temperature, a stochastic variable that denotes the environ-
mental temperature in which an organism resides. When the
ambient temperature exceeds a certain threshold, the COA
will transition into the summer resort or competition stage.
COA will initiate the foraging stage when the temperature
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conditions are suitable. During the foraging stage, the most
favorable position for food acquisition is referred to as the
optimal solution. The present solution fitnessi (the answer
found byCr ii ) and the optimal solution fitnessfood (the answer
found by the optimal solution) both give the size of the
food. Crayfish get new positions based on their place when
the food is right. Cr i, food intake stayed the same p, and
food placement was Updated on Cr foode. While eating, crabs
tear up food with their claw foot if it’s too big, then switch
between their second and third walking feet to eat.

The sine and cosine formulas were employed to imitate the
alternating eating habits of crayfish.

B. MATHEMATICAL FORMULA
1) INITIALIZATIO
The initial step in the process of the Cooperative Optimiza-
tion Algorithm (COA) involves the generation of a set of
Candidate solutions, denoted as Cr , within the given search
space. This generation is done randomly. The Candidate
solution, denoted a Cr , is formulated with consideration to
the population of size N and the dimension (dim). The pro-
cess of initializing the COA algorithm can be formulated as
follows

Cr= [Cr1,Cr2, . . .CrN ]=



Cr1.1 · · · Cr1,j
... · · ·

...

Cr i.1 · · · Cr i,j

· · · Cr1,dim

· · ·
...

· · · Cr i,dim
... · · ·

...
... · · ·

...

CrN ,1 · · · CrN ,j

· · ·
...

· · ·
...

· · · CrN ,dim


(1)

where Cr indicates the initial position of the population,
N indicates the population’s numbers, dim indicates the
dimension of the population, Cr i,j is individual positions of
i-th in the j-th dimension, and Cr i,j is calculated as follows:

Cr i,j = lbj + (ubj + lbj) × rand (2)

where ubj and lbj are the upper and lower bounds of the
j-th dimension, respectively, and Rand indicates a random
number.

2) EFFECT TEMPERATURE ON CRAYFISH INTAKE
Fluctuations in temperature can influence crayfish behav-
ior, prompting transitions between various stages. When
the ambient temperature exceeds 30 ◦C, crayfish exhibit a
preference for seeking out cooler environments as a means
of engaging in their summer retreat. Crayfish will engage
in foraging activity when exposed to suitable temperature
conditions. The quantity of food consumed by crayfish is
influenced by temperature. The optimal feeding range for
crayfish falls from 15◦C to 25◦C, with 30◦C being partic-
ularly favorable. Consequently, It is possible to model the
feeding quantity of crayfish using a normal distribution.,

illustrating the impact of temperature on their feeding behav-
ior. Due to the robust foraging behavior exhibited by crayfish
within the 20 to 30◦C temperature range, COA defines a
temperature range extending from 20 to 35◦C. The equation
for temperature is eq.3. The representation of crayfish intake
is depicted in eq.4. Figure 2 illustrates the schematic of food
intake.

Temperature = rand × 15 + 20 (3)

p = W ×

(
1

√
2 × π × σ

× exp

(
−

(Temperature− µ)2

σ 2

))
(4)

where µ stands for the ideal temperature for crayfish, and
σ and W are employed to regulate the amount of crayfish
consumed at different temperatures.

FIGURE 2. The influence of temperature on intake on crayfish [13].

3) PHASE OF SUMMER RESORT (EXPLORATION)
If the temperature is more than 30, it’s too hot. At this point,
the crayfish decide to spend the summer in the cave. The cave
Xshade is described as follows:

Crshade =
CrG+CrL

2
(5)

where CrG denotes the optimal position achieved through
the cumulative iterations while CrL signifies the optimal
position within the current population. The phenomenon of
crayfish engaging in territorial disputes within caves can be
characterized as a stochastic occurrence. When the value of
the random variable rand is less than 0.5, it indicates the
absence of any rival crawfish for caverns, hence resulting in
the direct entry of the crawfish into the cave for the purpose
of summer vacation. This process is simulated as follows:

Cr t+1
i,j = Cr ti,j + S × rand × (Crshade − Cr ti,j) (6)
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In this context, t is the current number of iterations, and
t + 1 signifies the iteration number for the next generation.
Additionally, S is a decreasing curve, as depicted in the
following equation:

S = 2 −

(
t
T

)
(7)

where T is the maximum iteration number.
During the summer resort phase, crayfish aim to approach

the cave, symbolizing the best solution. In this phase,
crayfish move closer to the cave, effectively bringing indi-
viduals nearer to the best solution. This process strength-
ens COA’s exploitation ability, facilitating faster algorithm
convergence.

4) PHASE OF COMPETITION (EXPLOITATION)
When the temperature is above 30 degrees, and the rand is
less than 0.5, It’s a sign that the cave is appealing to more
than just crayfish. Eq. 8 shows the crayfish vying for control
of the cave.

Cr t+1
i,j = Cr ti,j − Cr tz,j + Crshade (8)

where z is a randomly selected individual of crayfish.

z = round (rand × (N − 1)) + 1 (9)

Crayfish engage in competition with one another, and cray-
fish Cr i adjust their positions depending on the position
Crz of another crayfish. This positional adjustment expands
the COA search range, thereby enhancing the algorithm’s
exploration capability.

5) PHASE OF FORAGING (EXPLOITATION)
When the temperature is equal to or below 30◦C, it is con-
sidered suitable for crayfish feeding. During this period,
Crayfish exhibit active locomotion as they approach the food
source. After discovering the food, crayfish evaluate the
dimensions of the food item. Crayfish use their claws to
dismantle big food items, then ingest them by alternating
between their second and third ambulatory appendages.

Cr food = CrG (10)

The size of food Q is presented as:

Q = k × rand × (
fitnessi
fitnessfood

) (11)

where k represents the food factor, signifying the maximum
food size with a constant value of 3. fitnessi denotes the i-th
crayfish fitness value, while fitnessfood is the fitness value
associated with the location of the food.

The crayfishs assessment of food size is based on the
dimensions of the largest food item. When Q > (k + 1)/2,
it indicates that the portion size of the food is excessive.
At present, the crayfish engages in the act of tearing its food

using its foremost claw appendage. The following equation
simulates this process:

Cr food = exp
(

−
1
Q

)
× Cr food (12)

The equation for foraging, considering the relationship
between the food obtained by crayfish and food intake, is as
follows:

Cr t+1
i,j = Cr ti,j + Cr food × p× (cos (2 × π × rand)

− sin (2 × π × rand)) (13)

at Q ≤ (k + 1)/2, The crayfish simply needs to approach the
meal and consume it directly. The equation can be expressed
as:

Cr t+1
i,j = (Cr ti,j − Cr food ) × p+ p× rand × Cr ti,j (14)

Crayfish employ several feeding methods depending on the
size of their food Q, with food Cr food representing the best
solution. If the size of the food Q is appropriate for crayfish
consumption, the crayfish will approach the food. When the
value of Q is excessively large, it signifies the presence of
a substantial disparity between the crayfish and the ideal
solution. Hence, it is to decrease the prevalence of Cr food and
facilitate its proximity to the food. During the foraging step,
the COA algorithmwill strive to reach the best solution, hence
improving its exploitation ability and exhibiting strong con-
vergence capabilities. The flowchart illustrating the process
of COA is depicted in Figure 3.

IV. PROPOSED BinCOA
This section thoroughly elucidates the proposed BinCOA,
an approach based on wrappers specifically crafted to
address the challenge of Feature Selection. The primary steps
of the BinCOA algorithm include Initialization using the
Refracted Opposition-Based Learning strategy, the transfor-
mation function, the Crisscross strategy, and the evaluation.
The subsequent subsections will delve into a detailed expla-
nation of each step.

A. INITIALIZATION WITH THE REFRACTED
OPPOSITION-BASED LEARNING STRATEGY
Efficient utilization of the local space plays a crucial role
in pursuing an optimal solution, significantly impacting the
obtained optimal solution quality. Our proposed algorithm,
BinCOA, incorporates the Refracted Opposition-Based
Learning strategy [42] to enhance the population’s initializa-
tion. The solution space is expanded by the acquisition of
an opposition-based solution derived from the existing solu-
tion, hence facilitating the identification of a more optimal
alternative solution to address a given problem. The integra-
tion of the metaheuristic with opposition-based learning has
been established to demonstrate the effective enhancement
of algorithmic solution accuracy. In the initialization phase
of BinCOA, refracted opposition-based learning is employed
to adjust the positions of crayfish within the search space.
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FIGURE 3. The flow chart of crayfish optimization algorithm (COA).

The concept of refracted opposition-based learning is illus-
trated in Figure 4.

The search interval for solutions on the x-axis extends
within the range [lb, ub]; the origin O is situated at the mid-
point of the interval [lb, ub]. Here, α and β are assigned as the
angle of incidence and the angle of refraction, respectively.
Additionally, m and m∗ denote the lengths corresponding to
the incident and refracted rays, respectively. The refracted
formula can be expressed as follows:

Put σ =
m∗

m and n=1 in Eq.15, and COA is extended to
a high-dimensional space, resulting in the solution for the
refracted direction Cr∗

i,j, as follows:

n =
sinα
sinβ

=

lb+ub
2 − x

Cr∗
−

lb+ub
2

×
m∗

m
(15)

Cr∗
i,j =

lbj + ubj
2

+
lbj + ubj

2σ
−
Cr i,j
σ

(16)
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FIGURE 4. The Refracted opposition-based learning.

where Cr i,j is the i-th crayfish position at j-th dimensions,
Cr∗

i,j is the refracted inverse solution of Cr i,j, and lbj and ubj
are the lower and upper bounds of the dynamic boundary.

B. TRANSFORMATION FUNCTION
The Feature Selection process has traditionally been con-
ceptualized as a binary problem. However, the positions of
particles generated by the original Crayfish Optimization
Algorithm (COA) are characterized by continuous values.
Consequently, to convert the continuous space of the original
COA into a binary search space, introducing a transforma-
tion function becomes imperative. In the context of feature
subset selection challenges, the concentrations of particles
are constrained to binary values of 0 or 1. Figure 5 depicts
the binary representation of a COA solution designed for
a dataset comprising D features. The values of 1 and 0
signify the selected or unselected of the corresponding
feature.

FIGURE 5. Binary representation for BinCOA solution.

The proposed binary COA algorithm employs a binariza-
tion technique to transform each solution into its correspond-
ing binary representation. The sigmoid function stands out as
one of the most frequently utilized transformation functions
within the S-shaped family [43]. The sigmoidal function can
be classified as a member of the S-shaped family of transfer

functions, described as follows:

T(Crdi (t)) =
1

1 + e−Cr
d
i (t)

(17)

where Crdi (t) the i-th crayfish position. In order to obtain
the binary value, the concentration of i-th crayfish is updated
according to the following procedure:

Crdi (t + 1) =

{
1 rand ≥ T(Crdi (t))
0 rand < T(Crdi (t))

(18)

The variable rand represents a randomly generated value
inside the interval [0,1].

C. APPLYING CRISSCROSS STRATEGY TO BinCOA
In this section Crisscross Strategy is described in detaels to
enhances the solution accuracy of the BinCOA algorithm by
applingHorizontal crossover and vertical crossover.

1) HORIZONTAL CROSSOVER
The arithmetic crossover applied across all dimensions
between two agents is referred to as horizontal crossover [44].
Suppose the i-th crayfish. Cr i and the k-th crayfish Crk are
employed to execute the horizontal crossover operation at the
j-th dimension. This can be formulated as:

Cr ′
i,j = r1 × Cr i,j + (1 − r1) × Crk,j+C1 × (Cr i,j − Crk,j)

(19)

Cr ′
k,j = r2 × Crk,j + (1 − r2) × Cr i,j+C2 × (Crk,j − Cr i,j)

(20)

whereCr ′
i,j andCr

′
k,j represent the moderation solutions gen-

erated as offspring from Cr i,j and Crk,j, respectively. r1 and
r2 are randomly selected from the range [0,1], while c1 and
c2 are randomly chosen from the interval [−1,1]. To maintain
superior crayfish, comparing the solutions generated by the
horizontal crossover operation with the pre-crossover solu-
tions is essential.

2) VERTICAL CROSSOVER
Vertical crossover involves applying an arithmetic crossover
to all agents between two dimensions [44]. Suppose the
i1– th and the j2– th dimensions of the crayfish Cr i, they are
employed for conducting the vertical crossover operation.

Cr ′
i,j = r × Cr i,j1 + (1 − r) × Cr i,j2 (21)

where Cr ′
i,j is the offspring of Cr i,j1 and Cr i,j2, r are ran-

domly selected from the range [1,0]. The solutions produced
through the vertical crossover operation must be compared
with the pre-crossover solutions to preserve crayfish better.

D. THE EVALUATION FUNCTION
Choosing a higher number of features from the data presents
a challenge, as the classifier’s performance tends to degrade
when faced with irrelevant or redundant features. There-
fore, it becomes crucial to address this issue by reducing
the dimensionality of the data. Feature selection emerges as
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Algorithm 1 Pseudo-Code of BinCOA
1. Initialization T, Population N, dimension dim
2. Initialize the candidate solutions using Eq. 1 and Eq. 2
3. Apply refracted opposition-based learning using Eq. 11
and Eq.12
4. Evaluate the fitness values of the population to get
CrG,CrL
5. While (t < T)
6. Transform the Crayfish positions into binary space by
employing a transfer function using Eq.15 and Eq.16.
7. Evaluate each Crayfish within the population by employ-
ing kNN or SVM classifiers.
8. Measure the fitness of the entire population of the Crayfish
using Eq.20.
9. Defining temperature by Eq.3
10. if (temperature > 30)
11. Define cave Crshade according to Eq.5
12. if (rand < 0.5)
13. Crayfish conducts the summer resort stage according to
Eq.6
14. Else
15. Crayfish compute for caves through Eq.8
16. End if
17. Else
18. The food intake P and food sizeQ are obtained by Eq.4
and Eq.11
19. if Q > 2
20. Crayfish shreds food by Eq.12
21. Crayfish foraging according to Eq.13
22. Else
23. Crayfish foraging according to Eq.14
24. End if
25. Update the position of Crayfish by using the crisscross
strategy based on Eq.16 and Eq.18
26. End if
27. Update fitness values, CrG,CrL
28. t = t + 1
29. End While

a technique aimed at improving the efficiency and effec-
tiveness of a given classifier by eliminating unnecessary
or irrelevant features. In evaluating solutions, it is not
only the classification accuracy rate that is scrutinized; the
number of selected features also plays a significant role.
In cases where two solutions demonstrate identical classifi-
cation accuracy, preference is given to the solution with the
fewest selected features. Thus, the objective of the fitness
function is to optimize the classification accuracy rate by
minimizing the classification error while concurrently reduc-
ing the number of selected features. The fitness function
provided below serves as the metric for evaluating Bin-
COA solutions, striking a balance between these two primary
objectives.

fitness =∝ γ + β
S
N

(22)

TABLE 1. Description of the datasets.

TABLE 2. BinCOA parameter configuration.

where ∝∈ [0, 1], γ indicates the classification error rate
computed by the kNN or SVM classifier, β = 1− ∝,

S represents the selected features, and N is the total features.
In the proposed algorithm (BinCOA), kNN or SVM is used
as a classifier [7], [45]. We use the SVM classifier method
when a dataset has two classes. In every other case, the kNN
algorithm is used. The procedural steps for the BinCOA are
illustrated in Algorithm 1.

V. EXPERRIMENTAL RESUTLS AND ANALYSIS
In this section, we present the outcomes of the suggested
methodology and compare them with the latest algorithms.
Both the proposed and recent algorithms underwent testing
on a laptop with the following specifications: the Matlab
R2016a Software operating on the Windows 8 OS, powered
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TABLE 3. Results for BinCOA compared to COA in average Fitness, average accuracy, and average No. of selected feature overall datasets.

by an Intel Core i7-3630QM processor running at 3.2 GHz,
and equipped with 8 GB RAM.

A. DATASETS
We utilized a set of 30 datasets obtained from the UCI data
repository to assess and verify the effectiveness of BinCOA
in comparison to state-of-the-art algorithms. The selection of
these datasets was driven by their diverse range of instances
and features, providing a thorough evaluation of BinCOA
across various challenges. Table 1 offers a concise overview
of the examined datasets, encompassing varied class counts,
instance quantities, and attribute variations.

B. CONFIGURATION BinCOA PARAMETER
The performance of BinCOA is compared to several other
state-of-the-art feature selection methods. Each algorithm
undergoes 20 runs, with a maximum iteration limit of 30 and
10 search agents. The chosen classifiers for this study are
kNN and SVM. When datasets comprise more than two
classes, the 5-NN classifier takes precedence for generat-
ing the optimal subset. Thorough trials and runs on diverse
datasets are conducted to determine the optimal K value for

kNN. K-fold cross-validation is set at 10 for both kNN and
SVM to mitigate overfitting. The parameters for BinCOA are
outlined in Table 2.

C. EXPERIMENTAL RESULTS
The experimental process comprises two phases. The initial
phase entails a comparison between the proposed BinCOA
and the original COA. A comparative analysis is carried out
in the subsequent phase between the proposed BinCOA and
the latest feature selection algorithms. The experiments in
this study are grounded in four primary evaluation measures,
as follows:

• Classification accuracy: Classification accuracy refers
to the classifier’s precision in determining the most
advantageous subset of features

• Average Fitness value: The Average Fitness at each run
n can be computed as follows:

AverageFitnessn

=
1

Maximum iteration

∑Maximum iteration

i=1
Fitnessi (23)

where Fitnessi is the Fitness at iteration i.

VOLUME 12, 2024 28629



N. H. Shikoun et al.: BinCOA: An Efficient BinCOA for FS

TABLE 4. The classification accuracy comparison results with other recent algorithms overall dataset.

FIGURE 6. The average Fitness value of BinCOA compared to COA over all
datasets.

• No. of selected feature: denotes the minimum number of
features obtained in the optimum solution.

The present experiments in this section examine the impact
of combining the refracted opposition-based learning strat-
egy and the crisscross strategy into the performance of
the COA algorithm. Table 3 presents comparative stud-
ies between the proposed BinCOA and the original COA
regarding average fitness, classification accuracy, and No.
of selected features. Concerning average fitness, the table

FIGURE 7. Average classification accuracy value of BinCOA compared to
COA over all datasets.

shows that BinCOA consistently outperforms the original
COA across all 30 datasets. Table 3 also shows that the
BinCOA consistently performs better than the original COA
for all 30 datasets in Accuracy classification. The number
of selected features for each algorithm is also reported in
Table 3. BinCOA achieves the highest ranking in 28 instances
out of 30 datasets. Figures 6, 7, and 8 present a comparative
analysis between COA and BinCOA, showcasing the overall
average fitness value, classification accuracy, and number of
selected features across all datasets.
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TABLE 5. Average Fitness comparison results with other recent algorithms overall dataset.

FIGURE 8. Average No. of selected feature value of BinCOA compared to
COA over all datasets.

In order to investigate the performance of the proposed
BinCOA algorithm, a comparison of results with the latest
feature selection algorithms was conducted. In the com-
parative results, we use 7 well-known feature selection
algorithms: GWO [46], EO [47], MFO [48], PSO [49],
SSA [50], HOA [22], and WOA [51]. Tables 4-6 present
the numerical outcomes achieved by the proposed BinCOA
algorithm in comparison with the latest feature selection
algorithms. Table 4 discusses the accuracy of the participants’
methodologies and the proposed BinCOA algorithm over
30 iterations on each of the 30 datasets.

Based on the data presented in the table, it can be
observed that BinCOA has achieved the highest accuracy

FIGURE 9. Comparison between BinCOA and recent feature selection
algorithms in Average Classification accuracy overall datasets.

value in 96.6% of the instances, namely in 29 out of the
total 30 datasets. Subsequently, it has the highest over-
all average accuracy across all datasets. Figure 9 depicts
a bar chart that illustrates a comparison based on the
overall average accuracy. According to the presented data,
the figure illustrates that the proposed algorithm exhibits
the highest ranking in terms of total average accuracy
at 96.6%.

The Fitness value of each of BinCOA and the other algo-
rithms for 30 datasets are listed in table 5. According to the
results in table 5, the proposed BinCOA algorithm outper-
forms other algorithms in 28 out of the total 30 datasets.
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TABLE 6. No. of selected feature comparison results with other recent algorithms over all datasets.

FIGURE 10. Comparison between BinCOA and recent feature selection
algorithms in Average Fitness over all datasets.

The bar chart in Figure 10 compares the average fitness
value for BinCOA and the other algorithms. The IBEVO
algorithm has superior performance in achieving the minimal
average fitness value (0.1177) across all datasets, and the
HOA algorithm comes in second with a value of (0.1245) as
shown in figure 10.

In addition to maximizing classification accuracy, mini-
mizing the number of selected features is also considered
desirable.

FIGURE 11. Comparison between BinCOA and recent feature selection
algorithms in Average Fitness over all datasets.

The number of selected features for all datasets is reported
in table 6. The proposed BinCOA achieves the minimum
number of selected features for 30 of the 30 total datasets.
The IBEVO demonstrates strong size reduction capabilities,
obtaining the smallest average selection size (244.18) across
all datasets. TheHOAalgorithm is ranked secondwith a value
of (272.22), as depicted in Figure 11. The Wilcoxon signed
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TABLE 7. The Wilcoxon rank sum test results.

rank-sum test is a statistical technique employed to evaluate
the similarity or dissimilarity between two groups. This test
analyzes the differences within pairs of groups to determine
if they are statistically significantly distinct. In our analysis,
the Wilcoxon rank-sum test, conducted at a 5% significance
level, compares the results of the BinCOA algorithm to six
prominent recent feature selection metaheuristic algorithms
across the 30 standard datasets. Table 7 displays the p-values
obtained from this test. Upon examination of the data in the
table, it becomes evident that all p-values for the compared
algorithms fall below the 5% significance level. This result
provides compelling evidence to reject the null hypothesis.
Consequently, it can be inferred that the binary BinCOA
method surpasses all other comparative algorithms.

VI. CONCLUSION
A novel Crayfish Optimization Algorithm (BinCOA) pro-
vides for feature selection problems in the present study. The
original COA is enhanced by incorporating both the refracted
opposition-based learning strategy and the crisscross strategy,
leading to improved performance. The k-nearest neighbors
(kNN) or support vector machine (SVM) classifier has

been found to produce high-quality solutions when used
in conjunction with the BinCOA algorithm. Furthermore,
these classifiers have proven their ability to learn effectively
from the provided training data. The application of k-fold
cross-validation is a highly effective approach for addressing
the concern of overfitting. In order to promote traversal
and variety, the population is initialized using the refracted
opposition-based learning technique. It has been discovered
that applying the crisscross technique improves optimization
accuracy to some extent. It also facilitates a more thor-
ough investigation of possible answers and enhances the
algorithm’s utilization of the search space. Thirty datasets
are used to evaluate the proposed algorithm, and the results
are compared with seven well-known feature selection algo-
rithms. The contrasting experiments and the mentioned
results demonstrate the superiority of BinCOA over recent
feature selection algorithms. Furthermore, the significance
of the proposed algorithm is assessed by the utilization of
the Wilcoxon rank-sum test. The statistical findings indicate
that the proposed algorithm demonstrates superior perfor-
mance when compared to the most recent feature selection
algorithms.
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