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ABSTRACT The indoor thermal comfort in both homes and workplaces significantly influences the
health and productivity of inhabitants. The heating system, controlled by Artificial Intelligence (AI), can
automatically calibrate the indoor thermal condition by analyzing various physiological and environmental
variables. To ensure a comfortable indoor environment, smart home systems can adjust parameters related
to thermal comfort based on accurate predictions of inhabitants’ preferences. Modeling personal thermal
comfort preferences poses two significant challenges: the inadequacy of data and its high dimensionality.
An adequate amount of data is a prerequisite for training efficient machine learning (ML) models.
Additionally, high-dimensional data tends to contain multiple irrelevant and noisy features, which might
hinder ML models’ performance. To address these challenges, we propose a framework for predicting
personal thermal comfort preferences, combining the conditional tabular generative adversarial network
(CTGAN) with multiple feature selection techniques. We first address the data inadequacy challenge by
applying CTGAN to generate synthetic data samples, incorporating challenges associated with multimodal
distributions and categorical features. Then, multiple feature selection techniques are employed to identify
the best possible sets of features. Experimental results based on a wide range of settings on a standard
dataset demonstrated state-of-the-art performance in predicting personal thermal comfort preferences. The
results also indicated that ML models trained on synthetic data achieved significantly better performance
than models trained on real data. Overall, our method, combining CTGAN and feature selection techniques,
outperformed existing known related work in thermal comfort prediction in terms of multiple evaluation
metrics, including area under the curve (AUC), Cohen’s Kappa, and accuracy. Additionally, we presented
a global, model-agnostic explanation of the thermal preference prediction system, providing an avenue for
thermal comfort experiment designers to consciously select the data to be collected.

INDEX TERMS Personal thermal comfort, generative adversarial network, feature selection, machine
learning, data inadequacy.

I. INTRODUCTION
Occupants’ well-being, health, and productivity significantly
depend on thermal comfort both at home and in the
workplace [1], [2], [3], [4], [5], [6]. A notable portion of the

The associate editor coordinating the review of this manuscript and
approving it for publication was Gina Tourassi.

total energy consumption is attributed to the HVAC (heating,
ventilation, and air conditioning) system, accounting for
nearly half of the overall energy use in corporate and residen-
tial buildings [5]. Additionally, these buildings contribute to
almost 40% of CO2 gas emissions [1], [5]. The advancements
in sensor technology over the last two decades have played a
crucial role in shaping the concept of smart home systems
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to reality, empowering inhabitants to control and monitor the
indoor environment within their homes and workplaces [2],
[3], [4], [5], [6], [7]. Environmental parameters related to
thermal comfort, such as temperature and humidity, can be
adjusted using multiple machine learning-based systems with
human-in-the-loop interaction [1].

In general, artificial intelligence (AI)-based techniques
can be applied to have energy-efficient and comfortable
indoor environment inside buildings [8], [9]. It is also evident
that researchers often leveraged AI-enabled techniques for
energy aware and comfortable built environment. However,
the primary objective is to save energy and decrease the
carbon-di-oxide footprints. The notable smart home energy-
aware applications that generally applied deep learning (DL)
and ML models can be energy demand forecasting, adjusting
indoor environment by predicting thermal comfort prefer-
ences, etc [1]. However, in this work we focus on personal
thermal comfort preference prediction. Recently, there has
been a considerable attention in applying ML models for
thermal comfort preference prediction tasks [1], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20].
Generally, the task of personal thermal comfort preference

prediction can be classified into two different categories,
global and personal. In global thermal comfort (GTC) pref-
erence prediction task, the model tries to predict the overall
thermal comfort preference in the rooms/zones. On the
other hand, since the thermal comfort of different person
varied widely, personal thermal comfort (PTC) preference
prediction refers to identifying an occupant’s individual
thermal comfort [1]. Based on the preference prediction
system’s output, smart home systems can control and adjust
the environment to provide pleasant and comfortable living
space.

In most of the existing studies [2], [10], [15], [18], authors
applied their predictive models to high dimensional features
to capture relation between the data and occupants’ thermal
preference. There are two major challenges associated with
modeling the personal thermal comfort preference prediction:
one is the high dimensionality of the data including
environmental and physiological features, and other one is
the lake of adequate amount of data samples to train efficient
predictive MLmodel. This is expected that the data to predict
thermal comfort preference will be high dimensional, since
it considers every possible attributes that are related to the
occupants indoor HVAC comfort. On the other hand, the data
collection from real subjects with right annotation procedure
is very time consuming and costly.

Generally, MLmodels needs adequate data to train and this
is a prime requirement in any predictive models. To mitigate
the data availability problem, an effective synthetic data
generation technique addressing associated challenges can be
a game changer. The high-dimensionality might be the curse
in modeling indoor thermal comfort preference. Because
there might have some features that are not relevant and
can even downgrade the performance of the predictive
model. Hence, identifying the possible relevant set of

features is a prerequisite of the system with high-dimensional
data.

In this research, we propose a new indoor thermal comfort
preference prediction system by addressing the above-
mentioned challenges by incorporating CTGAN andmultiple
feature selection techniques. First, we address the data inad-
equacy challenge by employing one of the most successful
synthetic data generation techniques that incorporate the
multi-modal distribution in the numeric features with mode-
specific normalization technique. In addition with the data
adequacy problem, datasets related to the PTC preference are
generally imbalanced, which might make the performance
biased towards the majority class samples. By incorporating
CTGAN, we address also the data imbalance problem by
synthetically generating the data for minority class samples.

The best set of relevant features generally provides
high performance in predictive modeling in case of high-
dimensional datasets. Before applying feature selection
techniques, we conducted experiments to determine whether
highly correlated features exist in the PTC dataset. Our
hypothesis for this experiment was that if we found more
correlated features related to PTC preference prediction,
we could then make use of feature selection techniques to
filter out irrelevant, noisy, and redundant features. To achieve
this, we carried out experiments on a PTC preference predic-
tion dataset [2]. The correlation among the 82 features, based
on Pearson’s correlation coefficient analysis, is illustrated in
the heatmap representation in Fig. 1.

FIGURE 1. Heatmap depicting correlation coefficient among different
features.

We observed that more than 20 features out of the 82 dif-
ferent physiological, environmental, and weather features
are highly correlated (ρ ≥ 0.80) [1]. With these findings,
we developed the idea to apply various feature selection
techniques to filter out irrelevant features. Our previous
paper, based on the preliminary findings on the effect of
applying feature selections, is published in the proceedings
of the ACM International Conference on Systems for
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Energy-Efficient Buildings, Cities, and Transportation (ACM
BuildSys 2022) [1]. Inspired by the impressive preliminary
findings, this extended research applied multiple feature
selection techniques and introduced CTGAN to generate
synthetic data samples for effectively training ML models.

We conducted experiments by training six different ML
models on a standard PTC prediction dataset by generated
synthetic data samples employing CTGAN for thermal
comfort prediction. We leveraged the best-selected feature
set, applying multiple feature selection techniques, for
training the ML models. Since the dataset was imbalanced,
we carefully utilized multiple evaluation metrics, including
Cohen’s Kappa and Area Under the Curve (AUC), along with
accuracy, that can measure the prediction performance a ML
model for imbalance data distribution.

The experimental results, encompassing a wide range
of settings, demonstrated the superiority of the proposed
method with synthetically generated data focusing on feature
selection techniques. The performance of predictive models
trained on synthetic data significantly outperformed the
baseline, as well as models trained on real data with
feature selections. Compared to known related works, our
methods also achieved much higher performance in terms
of all evaluation metrics (AUC, Kappa, and Accuracy). The
contributions of this research are summarized as follows:

• We introduced CTGAN, a synthetic data generation
technique, to address the problem of data inadequacy
by generating new personal thermal comfort data for
individuals.

• We employed multiple feature selection techniques to
identify the best possible set of relevant features for
effectively modeling personal thermal comfort prefer-
ence prediction.

• The experimental results demonstrated the superior-
ity of our framework in modeling thermal comfort
preference prediction. We achieved significantly higher
performance after applying feature selection techniques
and CTGAN, a synthetic data generation technique.
The combination of both techniques showed a signifi-
cant improvement in performance compared to known
related methods.

In the remainder of the paper, we present state-of-the-
art on personal thermal comfort preference prediction in
section II. We then present our proposed thermal comfort
modeling framework combining on CTGAN and feature
selection techniques in section III. In section IV, we discuss
about the dataset, evaluation metrics, experimental design
and the findings by demonstrating results for wide range of
experiments. Finally, we conclude our findings with future
research direction in section V.

II. LITERATURE REVIEW
The prior works on modeling PTC preferences are associated
with the experiments on the data collected from living
labs [21], [22], [23], [24], [25], [26], [27]. Generally,
a large number of features are included, often the amount

of data samples available after cleaning the data of any
missing value in the features decreases [21], [24], [27],
especially for experiments including physiological metrics
for an occupant. Consequently, classical ML models often
have more predictive power compared to deep learning based
models [28], [29], [30], [31]. Therefore, unlike the latter
models, which automate the feature engineering by learning
from the data, with the classical models, feature engineering
plays a key role in the predictive power.

However, most of the datasets for PTC preference
prediction task are small in sample size and the sample
distributions among different classes are quite imbalanced.
Since ML models need adequate data for learning the pattern
from the samples, it is challenging to train models with
small dataset. In addition, collecting big dataset from the
participants in a living lab setting is quite time consuming
and costly. Therefore, synthetically generating data samples
on the available data has got considerable attention in thermal
comfort modeling research in recent time [32], [33], [34],
[35], [36].

To address the data inadequacy challenges in thermal
comfort preference prediction task, several methods has
been proposed that generate synthetic data [32], [33],
[34]. Synthetic data generation techniques are also often
applied for balancing the data [37], [38]. Quintana et al. [32]
employed conditional generative adversarial networks to
generate synthetic data samples for minority class to address
class imbalance problem. Similarly, conditional Wasserstein
GAN has been applied by Yoshikawa et el. [33] for
balancing the thermal comfort preference prediction dataset.
Das et al. [34] also applied basic GAN architecture for the
same purpose.

Evidently, the inclusion of redundant features degrades the
performance of theMLmodel [39]. Feature selection has also
been of interest of similar fields, e.g. in occupancy prediction
where the objective is to predict the occupancy count of
the rooms in a building, adaptive lasso feature selection
has been used to select the most relevant features [40].
Similarly in [41] authors use genetic algorithms for feature
selection.

Feature selection techniques based on manual observation
that evaluate the best combination by the prediction perfor-
mance of the trained model. For instance in [21], authors
tried out the various combinations of the input features and
concluded that skin temperature and heating settings are the
best predictors for thermal comfort. In a similar study [27],
authors examined the skin temperature at 6 points on the
body and evaluated the various combinations, besides also
proposing a new feature representative of the body’s average
temperature based on Ramanathan’s formula as a combined
feature [27]. In another study [42], authors defined 3 feature
sets and evaluated their predictive power via precision and
recall. The above-mentioned approaches, despite being the
most prevalent approaches adopted in the literature, require
significant background knowledge regarding the features and
significant manual labor. Also, the manual approach might
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FIGURE 2. A high-level building block of the proposed PTC preference prediction with synthetic data using CTGAN focusing on feature
selection.

not necessarily result in the best combination, especially for
datasets with high dimensions.

Another selection method is related to the prior knowledge
from thermal comfort domain and literature. For example,
in [43], authors have defined new features based on the
ASHRAE standard [44] which would be representative for
model structure and heat balance of the body. In another
study [45], authors derived new features based on the
polynomial basis function to capture the relation between
the environmental features and thermal perception. Although
these groups of studies may introduce new crucial features
that may promote the predictive power, they still have to
employ a selection process to omit the less productive
features. Similar to the first group of the studies, this approach
also requires prior knowledgewhile introducing new features.

One of the most classical ways is to apply feature selection
techniques to find the relation between the input variables
and the target variable. For example, in the study conducted
in [46], authors tried to find the relation between the thermal
sensation and the air quality via multi-linear regression
and hypotheses testing. However, in their study they do
not differentiate between heating and cooling. Similarly,
in [19], authors used Lasso feature selection to select among
the features that collected from an experimental study.
Additionally, in the study done in [2], authors employed
Pearson correlation coefficient among the features and the
target to measure the importance of the introduced features.

In this research, we applied conditional tabular GAN [35],
[36] inspired by the success achieving new benchmark.
CTGAN can solve the multimodal distributions in the
numeric data points by incorporating mode-specific nor-
malization technique and address challenge associated with
categorical features applying variational Gaussian-Mixture
model [35], [36]. Adequate training data, complemented
by synthetic data generated through CTGAN, ensures the
effective training of ML models. Furthermore, this can
address the issue of data imbalance in the training set,
ensuring that the model does not exhibit bias towards any

majority class. On the other hand, we incorporated multiple
feature selection techniques to identify the best set of features
that help the ML models to achieve higher performance in
thermal comfort preference prediction.

III. METHODOLOGY
The overview of our proposed PTC preference prediction
framework is illustrated in Fig. 2. We first generate synthetic
data applying CTGAN and then apply four different feature
selection techniques to identify the best possible sets of
features. With the selected features, we employed six
different ML classification models to predict occupants’
thermal comfort preference.

A. SYNTHETIC DATA GENERATION WITH CTGAN
A significant challenge in developing predictive models
for PTC preferences arises from the scarcity of adequate
data. The dataset [2] utilized in our experimental work,
as described in greater detail in Section IV-A was sourced
from a group of 14 individuals. These subjects participated
in data collection activities that involved the annotation of
their thermal comfort preferences while residing in living
laboratories located in Berkeley and San Francisco.

It is worth noting that acquiring large datasets specially
for training of state-of-the-art ML models for PTC pref-
erence prediction is expected to be very expensive and
time consuming. Consequently, there is potential value
in generating synthetic data through the application of
robust data generation techniques. This approach is inspired
by the remarkable achievements of generative adversarial
networks (GAN) when applied to tabular data, as evidenced
by prior works [35], [36]. Specifically, we explore the
application of conditional tabular GAN (CTGAN), which
offers particular advantages in addressing challenges related
to mixed data types and multi-modal distributions when
generating synthetic tabular data.

Unlike other GAN-based methods including WGAN [47]
and WGAN-GP [48], CTGAN can capture the heterogeneity
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FIGURE 3. Heatmaps for four different subjects highlighting the correlation among different features.

of the real-world data [35], [36]. To handle mixed data in
creating synthetic data, CTGAN developed a full workflow
from data preprocessing to modifying GAN architecture.
The major challenge that CTGAN solved is non-Gaussian
multimodal distribution by introducing a mode-specific
normalization technique. It handles this problem by following
multimodal distributions. By applying a variational Gaussian
mixture model (VGM), it can represent each continuous
real-valued feature in a one-hot vector that indicates the
sampled mode and the normalized value [35], [36]. To tackle
challenges posed by categorical features, CTGAN introduced
the sparsity of one-hot-encoded vectors in real-valued data
with probability distributions [35], [36]. Further, it introduced
a conditional data generator that gets ride of the challenges
posed by multimodal and imbalanced data distributions. The
detail description of CTGAN can be found in [35] and [36].

B. FEATURE SELECTION TECHNIQUES
Classifiers are often misled by redundant, correlated and
noisy features. In case of a high dimensional dataset, selecting
best features’ set before applying classifier would be a better
approach for modeling thermal comfort. In this section,

we will outline our visual exploration of feature redundancy.
This exploration indicates the usefulness of feature selection
techniques to filter out less relevant features. Next we
introduce four feature selection techniques in our study to
filter out redundant and correlated features to improve the
performance of PTC prediction model.

1) VISUAL EXPLORATION
We explore the correlation among different features across
occupants numerically as well as visually to detect patterns
in them. Heatmaps in Fig. 3, show the feature correlation
for four different occupants. We can see that there are
a substantial number of features that are correlated to
each other. However, we can also see that the correlation
coefficients among different features are quite different
among different occupants. These observations and findings
illustrate why PTC prediction is a challenging task. The
detailed view also shows that there are some common patterns
and correlations among some features across the occupants.
With this preliminary analysis, we hypothesize that the
elimination of these correlated and redundant features might
improve the PTC prediction model.
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FIGURE 4. The workflow of the forward feature selection (FFS) technique (Figure created based on [1]).

2) CORRELATION-BASED FEATURE SELECTION
Since one of our primary objectives is to filter out irrel-
evant features before applying classifiers, we conducted a
correlation analysis across all features. In correlation-based
feature selection, we consider a feature as redundant if it has
a high correlation coefficient (ρ ≥ 0.80) and remove it from
the list [1]. We compute the Pearson correlation coefficient
between two features as follows:

ρ(fa, fb) =

∑n
i=1 (fai − f̄a)(fbi − f̄b)√∑n

i=1 (fai − f̄a)2 ·
∑n

i=1(fbi − f̄b)2
(1)

where fa and fb are two features from the list of features
F = {f1, f2, f3, . . . , fk}. The average feature values for
two different features fa and fb are denoted by f̄a and f̄b,
respectively [1].

3) CHI-SQUARE TEST-BASED FEATURE SELECTION
The target of this technique is to select those features, which
have higher dependency with the response. In statistics,
Chi-Square test is a prominent technique applied to test
the independence of two different events. In this research,
however, we employed Chi-Square test as a tool to select the
best set of features. Given two different variables, Chi-square
test computes how the expected count E deviates from the
observed countO for those two variables. The computation is

done as X 2
=

∑ (Oi−Ei)2
Ei

. We employ this test to determine
the relationship between specific features and the labeled
response. Chi-Square will return a smaller value when two
features are independent. In other words, the observed count
is close to the expected count. Hence, the higher the Chi-
Square value the feature is more dependent on the response
and that feature should be selected for training the model.
We applied iterative approach to have Chi-Square test for
each feature and selected the best features’ set. To select an
optimal value for the number of selected features, we make
use of a grid search. The details on parameter tuning is
presented in section IV-D1.

4) SUPERVISED FORWARD FEATURE SELECTION
Weapplied supervised forward feature selection (FFS), which
enables the selection of more insightful features through a
greedy iterative selection procedure. We present the FFS
procedure in Fig. 4 [1]. This approach first utilizes every
feature individually and applies a baseline classifier to predict
occupants’ personal thermal comfort. By comparing the
performance of all individual features, it selects the best-
performing one as fbest. The first selected feature fbest is
then added to the selected feature set S. Subsequently, FFS
then combines the remaining features fi one at a time to the
selected feature set S and applies the classifier separately [1].
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Considering the performance of the classifier, FFS selects the
feature fi if the combination achieved better performance than
the previous classifier with the already selected feature set S.
This greedy approach continues for the rest of the features.
Applying this FFS approach allows us to select the best set
of features that are effective in predicting occupants’ PTC
preferences efficiently [1].

5) SUPERVISED BACKWARD FEATURE ELIMINATION
The working principle of backward feature elimination
(BFE) is the opposite of forward feature selection. Unlike
the forward feature selection approach, it first applies all
the features feeding to a classifier to model PTC and then
computes the classification performance. After computing
the performance, it iteratively discards one feature at a
time and checks whether the performance of the model
increases or decreases without that feature. If the performance
decreases, then it hypothesizes that the feature has an
important role in modeling PTC. Consequently, it includes
that feature in the list of important features. In the opposite
case, it ignores the feature and discards it as less relevant.

IV. EXPERIMENTS
This section presents the wide range of experimental setups
and performance evaluations of our proposed methods that
validate the efficiency in modeling personal thermal comfort
in terms of multiple evaluation metrics on a PTC dataset.

A. DATASET
We conducted experiments on a PTC preference prediction
dataset collected by Liu et al. [2]. The dataset was collected
and annotated by 14 different subjects living in the areas of
Berkeley and San Francisco. During the study, the authors
measured the skin temperature from different parts of the
subjects’ bodies and the surrounding room temperature where
the subjects were present. Additionally, they also measured
the activity and heart rate of the subjects using accelerometers
and polar sensors, respectively. The experiments spanned
14 days, with each subject expected to provide their
thermal comfort preference 12 times a day, categorized as
‘‘Cooler,’’ ‘‘Warmer,’’ or ‘‘No Change.’’ Out of the collected
3848 samples, the distribution across different classes is
quite imbalanced. Fig. 5 illustrates the percentage of samples
across different classes, showing that 68.5% of samples are
for ‘‘No Change,’’ while 16.5% and 15% are for ‘‘Cooler’’
and ‘‘Warmer,’’ respectively.

B. DATA PRE-PROCESSING
The values of the features in the dataset vary widely in terms
of their units and ranges. In addition, there are some missing
values which we tackled by applying median values. After
that we applied min-max normalization [49] to map each
variables’ values to a certain range [0,1]. We also grouped
the dataset based on individual occupant and analyzed the
features for individual occupants.

FIGURE 5. Distribution of samples over PTC preferences.

C. EVALUATION METRICS
In the assessment of any ML model, it is crucial to consider
the evaluation metrics with respect to the characteristics of
the dataset. According to the literature on PTC models [4],
Accuracy, AUC (Area Under Curve), and Cohen’s kappa are
the three widely used evaluation metrics.

The validity and usefulness of evaluation metrics also
depends on the specific domain and characteristics of the
datasets. In our case, it is essential that the evaluation metric
are sensitive to the class-imbalance. For instance, using
accuracy alone will be problematic, since this metric will not
reflect the class-wise prediction performance. Considering
the imbalance distribution in the personal thermal comfort
datasets, a model classifying all the samples as ‘‘no change’’
with an 80% share in the original dataset, would result in
an 80% accuracy, which does not necessarily suggest the
strength of the classification.

In the following formulations, True Positive (TP) is an
outcomewhere themodel correctly predicts the positive class,
True Negative (TN) is an outcome where the model correctly
predicts the negative class, False Positive (FP) is an outcome
where the model incorrectly predicts the positive class, False
Negative (FN) is an outcome where the model incorrectly
predicts the negative class.

1) ACCURACY
As shown in equation 2, Accuracy only requires the class
labels for evaluation and does not examine the separability
strength of the model. Nonetheless, it has also been reported
to be compared with the previous studies.

accuracyclass1 =
TP+ TN

TP+ TN + FP+ FN
(2)

2) AREA UNDER THE CURVE (AUC)
In contrast to Accuracy, AUC [50] also considers howwell the
predicted classes are distinguished, by taking the prediction
probabilities of each class into account. Technically, AUC
is the area under the curve of the ROC (Receiver Operative
Characteristics) which is the representation of TPR (True
Positive Rate) with respect to the FPR (False Positive Rate),
defined in equations 3 and 4, respectively when the decision
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boundary is moved through the data points.

TPR =
TP

TP+ FP
(3)

FPR =
FP

TN + FP
(4)

Fundamentally, this metric is proposed for binary classifi-
cation problem, however, in order to apply it to the multiclass
cases, the One vs Rest approach has been used.

3) COHEN’S KAPPA
Cohen’s Kappa [50] is often an under-utilized, but quite use-
ful metric, which also considers the prediction probabilities
of each class. It can be defined as follows:

kappa =
P0 − Pc
1 − Pc

(5)

P0 =
TP+ TN

TP+ TN + FP+ FN
(6)

Pc = P(‘‘Positive Classified ′′)

+ P(‘‘Negative Classified ′′)

(7)

P(‘‘Positive Classified ′′) =
TP+ FP

TP+ TN + FP+ FN
(8)

P(‘‘Negative Classified ′′) =
TN + FN

TP+ TN + FP+ FN
(9)

Cohen’s kappa considers the quantity of the classes. More
precisely, it consider the probability of classes being changed,
defined as PC (the observed agreement) and P0 (the expected
agreement). It varies from 0 to 1, with 0 being a random
classification.

D. FEATURE SELECTION
We applied the four feature selection techniques described
in section III. The number of selected features differ among
selection techniques.

1) CHI-SQUARE TECHNIQUE’S PARAMETER TUNING
The Chi-Square-based feature selection technique requires
to tune the parameter k , the number of selected features.
We applied a grid search to identify the optimal number
of selected features and evaluated the performance. The
experimental results in terms of AUC are illustrated in
Fig. 6. The figure concludes that the optimal number
of features (highest AUC) should be k = 17 and the
performance with those selected features are on the y-axis.
Therefore, we select k = 17 and apply this parameter value
in our chi-square-based feature selection.

2) RESULT OF FEATURE SELECTION TECHNIQUES
None of the introduced feature selection techniques need
parameter tuning except the Chi-Square test. For correlation-
based selection, we make use of ρ >= 0.80 (Eq. 1) as
highly correlated features. In turn, we could apply other
techniques straight forward. Table 1 presents the detailed

FIGURE 6. Tuning the parameter k , number of selected features in
Chi-Square feature selection using grid search.

TABLE 1. Results of applying feature selection techniques and notable
selected features.

results of our feature selection techniques with the number
of selected features. The four feature selection techniques
chi-square based, correlation based, forward feature selection
and backward feature elimination are denoted as Chi-Square,
Correlation, FFS and BFE, respectively. As outlined above,
in the case of Chi-Square-based feature selection technique,
the number of selected features was a result of our parameter
tuning. We can see in Table 1, some features are common
in all selected feature sets. From 82 different features,
we enlisted here the most notable 19 features. Of these
19 features, some features have different varieties i.e., the
temperature has different varieties such as mean, gradient,
and standard deviation of different time slots.

Similar to temperature, skin temperature on the wrist
and ankle, wind speed, and wrist acceleration also have
some varieties. Here in this list, we checked if any one of
the varieties is selected by the feature selection technique.
However, we can see that age, height, thermal sensitivity,
temperature, working hour, heart rate, weight, and subject
location are the common features that all the selection
techniques selected as relevant. Other than that, the skin tem-
perature of the wrist, ankle, and body proximity temperature
are important features considered by the three selection
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TABLE 2. Performance of applying feature selection techniques in different ML models trained on real data in global thermal comfort prediction. The best
results for each feature selection techniques are in bold. The blue-colored values indicate the best performance among all experimental settings.

techniques. Similarly thermal sensitivity, cold sensitivity and
cold extremity experience also came out to be important in
modeling PTC preference.

E. EXPERIMENTAL SETTING
We first applied feature selection techniques and trained
the ML models on original data samples collected from
14 different subjects. For all of these feature sets selected
based on selection criteria, we carried out a range of
experiments to validate the performance of our introduced
feature selection techniques. At first, we applied our methods
on the whole dataset combining samples from all 14 subjects.
The primary intuition was to observe how our feature
selection methods perform on overall thermal comfort
dataset. In other words, evaluating our methods on the global
thermal comfort (GTC) preference in buildings. Then we
applied the similar experimental setting to train ML models
on synthetically generated data by CTGAN with the selected
relevant features sets.

Finally, with the selected features leveraging four different
feature selection techniques, we applied six different classical
classifiers to model the thermal comfort of the occupants.
Then, we applied two best performing models to observe
the performance on PTC preference prediction for individual
subject. By doing so, we applied our method on 14 different
subjects’ collected samples separately to model PTC. The
remainder of the section presents the experimental results
for modeling global and personal thermal comfort and
performance comparison with prior works. We repeat all
experiments for GTC and PTC with training the models with
our generated synthetic data by conditional tabular generative
adversarial networks for modeling thermal comfort prefer-
ence prediction.

F. GLOBAL THERMAL COMFORT PREDICTION
PERFORMANCE
We designed the experiments in a way to visualize the
performance of the feature selection techniques in modeling
thermal comfort preference with the trained models on real
data. As we noted earlier that the data might not be adequate
to train ML models, we employed CTGAN to generate
quality synthetic data and combine it with real data for
training the model with feature selection. Therefore, we first
illustrate the performance of different feature selection
techniques on real data and then we present the results on
applying CTGAN for synthetic data generation.

1) PERFORMANCE ON REAL DATA
The performance of six different classifiers trained on real
data samples of the global thermal comfort dataset with
our introduced feature selection techniques is summarized in
Table 2. With the selected features for each feature selection
technique, we applied six different classifiers: decision
tree (DT), support vector machine (SVM), K-nearest neigh-
bor (KNN), Gaussian Naive Bayes (GNB), XGBoost (XGB),
and random forest (RF). This results in a total of 24 experi-
mental setups.

Table 2 shows that XGBoost with the correlation-based
feature selection technique achieved better performance
among all experimental settings (highlighted in blue) in terms
of Cohen’s Kappa and Accuracy. However, in terms of AUC,
the XGBoost model with the backward feature elimination
technique obtained the best performance. Among the six
different ML models, the XGBoost model is consistently
better across all feature selection techniques, except for
Forward feature selection and Chi-square-based selection
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TABLE 3. Performance of applying feature selection techniques in different ML models trained on synthetic data with CTGAN in global thermal comfort
prediction. The best results for each feature selection techniques are in bold. The blue-colored values indicate the best performance among all
experimental settings.

techniques. In both cases, random forest (RF) acquired
the highest accuracy for the Chi-square-based selection
procedure and the best AUC for the forward feature
selection technique. However, it is also observed that the
performance difference among correlation-based, forward
feature selection, and backward feature elimination is not
significant. We can broadly say that among all six different
classifiers, XGBoost and random forest are the two best-
performing models across all feature selection techniques.

2) PERFORMANCE ON SYNTHETIC DATA.
The performance of introduced feature selection techniques
with the synthetically generated data employing the promi-
nent conditional tabular GAN is presented in Table 3. The
result shows clearly that the performance has been improved
significantly for all ML models with the trained models
using synthetic data. The best performing model among
all experimental settings is XGBoost that used the selected
features based on forward features selection techniques,
numerically the performance 20%, 7% and 5% higher than
the best performing model trained on original data (Table 2)
in terms of Kappa, Accuracy and AUC, respectively. Based
on AUC score, XGBoost model on real data with backward
feature selection technique achieved highest performance
(numerically, 0.9438 (Table 2)) and on contrary the XGBoost
model trained on synthetic data generated by CTGAN is way
more higher than the the performance (numerically, 0.9885)
on same model trained with original data.

The superiority in modeling thermal comfort preference
with synthetically generated data is visualized in Fig. 7 and 8
using bar and line chart. In both figures, we highlight the
difference in achieving the higher performance in terms of

most significant evaluation metrics AUC between model
trained with original data and with synthetic data for all
24 experimental settings. In Fig. 7, the black colored bar
denotes the performance for trained models on synthetically
generated data by CTGAN and the gray colored bars
represent the performance for models on original data.
Similarly, the orange and blue colored line in Fig. 8 represent
the similar performance of models with and without synthetic
data.

From both the figures we can see that, the models
trained with synthetic data demonstrated higher performance
compared to all experimental settings except two models,
decision tree for Ch2-based and correlation-based feature
selection technique. Fig. 8 clearly illustrates the performance
improvements after integrating CTGAN based synthetic
data generation techniques. However, based on the facts
and findings discussed above we can conclude that feature
selection on synthetic data can achieve higher performance in
predicting thermal comfort preference and that can be used to
calibrate the indoor environment. Hence, this might provide
more occupant-friendly environment that can be both healthy
and energy efficient in smart home.

G. PERFORMANCE ON PTC PREFERENCE PREDICTION
To predict occupants’ PTC preferences, we trained two ML
models, including XGBoost and Random Forest, which are
the two best-performing models on real and synthetically
generated data. We considered the selected features by
applying backward feature elimination techniques and trained
both models for each subject separately on synthetically
generated data leveraging CTGAN. The experimental results
in predicting PTC preferences for all 14 different subjects
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FIGURE 7. The performance comparison of all experimental settings between the models trained on original data and synthetically
generated data by CTGAN, respectively.

FIGURE 8. The performance comparison of all experimental settings between the models trained on original data and synthetically
generated data by CTGAN, respectively.

are presented in Table 4. We also compared the results with
existing work [2], where they trained classical ML models
on the same dataset. The best PTC preference prediction
performance amongmultipleMLmodels for every subject [2]
is reported in the right-hand side of Table 4.
Our trained models with the selected features on synthetic

data by CTGAN outperformed the models in related work in
terms of Cohen’s Kappa, except for one subject (Subject 2).
In terms of the most important metric, AUC, our method,
combining synthetic data generation and feature selection
techniques, significantly outperformed existing works for
all 14 different subjects. AUC is the metric that can better
measure a classifier’s performance for imbalanced data
distribution.

Liu et al. [2] applied multiple classical ML models
on the annotated data, considering all features. As we

mentioned and analyzed earlier, some features are correlated,
redundant, and irrelevant. We observed that our feature
selection techniques identify the best sets of features related
to modeling PTC preference. Compared to prior research,
their model might suffer from irrelevant features that might
mislead the classifiers.

One of the major problems in training the PTC preference
model is the inadequacy of sufficient data samples. We tack-
led this problem by introducing CTGAN to generate high-
quality synthetic data, and utilizing those data, we trained
the models efficiently. Hence, the model has more data
points about particular subjects and can learn better to predict
thermal comfort preference more accurately. The dataset was
imbalanced, CTGAN also solved that problem and mitigated
the possible bias-related issues in predicting thermal comfort.
Based on the evaluation metrics Kappa and AUC, both
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TABLE 4. Performance in modeling PTC preference compared to with baseline.

FIGURE 9. Performance comparison with existing study in terms of AUC.

recommended due to the data imbalance issue, our introduced
models demonstrated significant improvements. Therefore,
we can say that applying CTGAN for data generation for
personal thermal comfort with feature selection is an effective
approach that can be an effective combination to achieve high
performance in PTC prediction.

To point out the performance differences compared to
previous work, we present a comparison with related work as

a bar chart in Fig. 9 in terms of performance based on AUC.
AUC (CTGAN+FS) and AUC (ES) denote the performance
of our proposed method combining CTGAN and feature
selection (FS) and existing study (ES), respectively, in terms
of AUC.We can also observe from the figure that our method
outperforms prior work for all 14 subjects’ thermal comfort
preference prediction. To the best of our knowledge, this
research is one of the few studies that conduct an extensive
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FIGURE 10. Interpretation of PTC model with feature selection using SHAP values.

study on the impact of synthetic data generation by CTGAN
and effective feature selection techniques in PTC preference
prediction.

H. MODEL INTERPRETABILITY
To understand the priorities in decision-making of PTC
model, we applied one of the successful method, shapely
additive explanation (SHAP) [51]. The feature interpretation
using SHAP is presented in Fig. 10. Note that, we conducted
this interpretability experiments with the selected features by
applying correlation-based feature selection technique. The
figure shows the 15 most important features that contributed
most to make the decision of our proposed PTC model.

The top two most important features that the model
takes into account are thermal sensation and cold extremity
experience. It makes sense that thermal comfort preference
should be dependent on these two features most. However,
the next three features are age, total working hours per day
and height of the subjects. Next, the skin temperature at ankle
and wrist contributed the PTC model in decision making.
Interestingly, subjects’ sex is also an important feature that is
considerable in predicting the PTC. In turn, body proximity
temperature, outdoor temperature, and heart rate is also
considerably important features in modeling PTC preference.
This is in line with the feature selection results that we
presented in Table 1.

V. CONCLUSION AND FUTURE WORK
This paper proposes a thermal comfort preference prediction
method that combines a two-step process involving synthetic
data generation using CTGAN and the selection of the best
set of features by filtering out irrelevant and noisy features
using multiple feature selection approaches. The results on
a wide range of experimental settings demonstrated state-of-
the-art performance and significantly outperformed existing
known related work.

We observed that the ML models trained on synthetic data
generated by CTGAN can predict better PTC preference than
on original data samples. In addition, the introduction of a
series of feature selection techniques helps filter out irrelevant
features in modeling PTC preference prediction tasks. The
interpretability of the model with SHAP demonstrated that
the important features also overlap with the selected features.
Since the PTC preference prediction task needs a substantial
amount of data samples per subject to train the model
efficiently, the incorporation of an effective data generation
technique can save both data collection costs and associated
time. The findings with feature selection indicate not to
collect unnecessary data from the subject and environment
and hence it might also save potential cost in sensor-based
data collection cost.

In the future, we plan to introduce explainable arti-
ficial intelligence (XAI) on a large scale to provide a
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human-centered explanation so that occupants can under-
stand the reason behind specific indoor parameter changes
related to thermal comfort in smart homes. Since the PTC
preference prediction model will be used in the smart home
to control the indoor environment, an exciting extension of
this work would be to conduct a user study to design a new
collaborative interface for general users in human-computer
interaction (HCI) perspective so that they can also be included
in the loop of the smart heating system.
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