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ABSTRACT Contemporary mobile networks, offering advanced services such as highly dependable and
fast communication (URLLC) and extensive device-to-device connectivity (mMTC), are paving the way
for the upcoming 6G era. These networks are expanding their capabilities beyond traditional voice and short
messaging services, enabling diverse devices to connect to the cellular network. However, with this increased
connectivity comes a heightened vulnerability at the radio interface, which is the primary access medium
for mobile network communication. This research work focuses on safeguarding the availability of the radio
interface in the face of emerging threats. Threats to radio interface availability can originate either directly
from exploiting the 3GPP radio protocol stack within base stations or indirectly through the IP protocol stack
carried over the user plane. In particular, this research paper delves into user plane DDoS attacks leveraging
the IP protocol stack to generate excessive traffic. It introduces a novel detection method situated within the
Radio Access Network (RAN). This method analyzes the patterns of radio protocols and their functionalities
to identify user plane DDoS attacks initiated from User Equipment (UEs). Importantly, the method does not
rely on directly inspecting user plane packets like IP packets but rather leverages the characteristics of 3GPP
radio protocols (e.g., MAC, RLC, PDCP) to detect IP DDoS attacks closer to their origin. This early detection
capability helps prevent DDoS traffic from propagating to the transport network. The implications of this
research extend beyond the current generation of networks, as it lays a foundation for enhancing security in
the forthcoming 6G networks. As 6G aims to deliver even more advanced services and connectivity across a
diverse array of devices, the robust security measures proposed in this work will be instrumental in ensuring
the reliability and availability of these cutting-edge networks. The analysis employed in this paper showcase
the performance with accuracy of 98.9% for DDoS attack detection.

INDEX TERMS Cellular botnets, DDoS, machine learning, radio access network, security, XAI, 4G, 5G,
6G.

I. INTRODUCTION
The emergence of 5G and as well as the anticipated future
generations like 6G (and beyond, XG), the most recent
developments in mobile network technologies, as well as
their associated capabilities like Massive Machine Type
Communications (mMTC) and Machine-to-Machine (M2M)
connectivity, have significantly changed the role of mobile
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networks [1], [2], [3]. They now serve as indispensable
providers of connectivity for various industries. This tran-
sition has also introduced the concept of the Internet of
Everything (IoE), wherein intelligent devices within the
network seamlessly connect and collaborate with one another
through the infrastructure facilitated by advanced mobile
technologies [4], [5].

However, despite the numerous advantages presented by
these technologies, they also bring forth potential vulnerabil-
ities that can be exploited by malicious actors. These smart
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devices often lack reliable security safeguards, making them
susceptible to exploitation and falling prey to malevolent
purposes. An extensive array of vulnerable devices can be
targeted by various threats, and one major worry with respect
to network availability is the Distributed Denial of Service
(DDoS) attack. This kind of attack involves gathering a large
group of compromised devices, or ‘‘zombies,’’ to besiege a
target, which might be a server or the network itself. Through
this attack, attackers drain the target’s resources-such as
bandwidth, memory, and computational power-making it
unable to meet the needs of legitimate users [6], [7], [8].

Within the realm of mobile networks, various approaches
have been suggested for identifying DDoS attacks [9],
[10], [11], [12], [13]; nevertheless, the majority of these
strategies focus on scrutinizing packets at the IP level. These
examinations occur within the core network, where the
malicious packets traverse the Radio Access Network (RAN)
and are in close proximity to the targeted destination. Despite
the merits of these proposed techniques for detecting DDoS
attacks, the issue lies in their potential latency and the timing
of detection. Given the pivotal role of mobile networks in
meeting the extensive demands from users at high rates, this
delay can result in service disruptions for legitimate users.

In light of the fact that the initial point of interaction in
attacks on the network is often the radio interface, devising
a method for DDoS detection at this level is reasonable and
critical. Doing so makes it feasible to implement mitigation
and countermeasures before malicious packets infiltrate
critical junctures within the network. However, formulating
a detection algorithm at this stage necessitates identifying
and establishing new sets of features and methodologies.
These novel approaches are indispensable for the creation of
a new solution tailored to DDoS detection within this specific
context. Such advances have the potential to significantly
enhance the network’s ability to fend off DDoS attacks
more proactively, thereby ensuring uninterrupted service to
legitimate users.

In this paper, we introduce a novel approach for the early
detection of DDoS attacks, which operates directly within
RAN, as opposed to the conventional method of inspecting
packets within the core network. The significance of this shift
arises from the fact that the 3GPP radio protocols are tasked
with encapsulating and transmitting the IP packets dispatched
by devices. Consequently, any alterations in the behavior
of sending IP packets or modifications in the pattern of IP
traffic would be manifested within the radio protocol stack.
To illustrate this concept, consider the scenario of IP-based
volumetric attacks. In such instances, changes in behavior can
be observable within the radio stack. For instance, a surge in
the number of packets sent per second would consequently
increase the number of radio Packet Data Units (PDUs)
sent per second. Similarly, variations in the size of the
radio protocols could signify anomalous behavior. Another
instance pertains to the repercussions of IP source address
spoofing, which could adversely impact the ratio of radio
uplink and downlink PDUs. By recognizing these patterns,

we can identify instances where user-plane (i.e., IP traffic)
volumetric attacks generate distinct radio protocol traffic
patterns. This early detection capability, situated within the
RAN, empowers us to promptly recognize these attacks
before they infiltrate deeper into the network. Furthermore,
this approach enables the application of localized policies for
mitigation, thereby swiftly safeguarding the network against
potential disruptions caused by DDoS attacks. In essence,
our proposed method leverages the inherent characteristics
of the radio protocol stack to proactively detect IP-based
volumetric attacks at their point of entry into the network.
This proactive approach not only enhances the network’s
resilience but also expedites the implementation of appropri-
ate countermeasures, ensuring minimal impact on legitimate
users’ service experience.

In the existing body of literature, Machine Learning (ML)
and Artificial Intelligence (AI) have become commonplace
tools for identifying DDoS attacks. Furthermore, by advanc-
ing the infrastructure of mobile networks, especially in the
context of 5G and 6G, it is becoming increasingly evident
that an AI-centric approach will constitute the backbone
of these cutting-edge mobile network systems. Therefore,
in this research paper, we also delve into utilizing attributes
extracted from the RAN protocol in conjunction with ML
models. However, a significant challenge arises from the
fact that these distinct attributes are acquired at different
time points. This temporal misalignment prevents their direct
utilization as features for ML models. To address this
challenge, we introduce a designated time interval, denoted
as t, and within this interval, we derive statistical features
from the original attributes of the RAN protocol. This entails
computing various statistical measures [14], such as the
cumulative sum, mean value, standard deviation, skewness,
kurtosis, second L-moment, L-skewness, L-kurtosis, and
entropy for each attribute within the specified time-interval
t. This method ensures that we generate a consistent set of
features with synchronized temporal occurrences, making
them suitable for employment by ML models. Moreover,
our investigation extends to assessing the significance of
these features. We execute several methods for feature
analysis, including Analysis of Variance (ANOVA) [15],
Mutual Information criterion [16], Recursive Feature Elim-
ination [17], and SHAP (SHapley Additive exPlanations)
analysis [18]. Through these techniques, we gain insights into
the importance of individual features in contributing to the
effectiveness of the ML models.

Our main contributions include:

• We analyzed the characteristics and behavior of both
the user plane and control plane protocol stacks in com-
parison with the IP traffic generated from a malicious
device.

• We identified the most important features in the 3GPP
radio stack protocols (e.g., Medium Access Control
(MAC), Radio Link Control (RLC), Packet Data Con-
vergence Protocol(PDCP)) that are sent on the radio
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interface to detect malicious traffic within the radio
network domain.

• We computed a range of statistical measures for each
RAN protocol feature. This approach served a dual
purpose: It not only tackled the temporal misalignment
issue that existed among the features but also led to
the creation of features that encapsulate information
concerning the probability distribution of the underlying
attributes.

• We developed a detection mechanism that enables us
to detect user plane DDoS attacks (e.g., TCP SYN and
UDP Flood) attacks with high accuracy before reaching
the core network.

• We employed various techniques for feature engineer-
ing, seeking to identify the optimal feature set for the
purpose of detecting DDoS attacks.

II. RELATED WORK
To our best knowledge, published DDoS detection techniques
in conjunction with RAN revolve around protection against
various types of DoS attacks against the eNB/gNB and the
provided wireless service (e.g., 3GPP signaling storm, etc.)
[9], [10], [11]. On the other hand, there are many existing
solutions in the industry to detect different types of IP-based
DDoS attacks (e.g., TCP SYN flood, UDP Flood, etc..) by
looking at IP packets or IP flow information. These solutions
are typically deployed at the core, where they only analyze
incoming traffic to the RAN (i.e., traffic destined in the
uplink direction from the UEs towards the network). If User
Equipments (UEs) linked to a 3GPP network transform into
origins of IP-based DDoS attacks, the existing detection
approaches either fail to identify the attacks taking place in
the user plane (because they disregard the user plane traffic or
overlook outbound data) or accomplish this at a considerable
distance from the origin, consequently resulting in only
delayed detection. Additionally, if the analysis of traffic
occurs multiple hops away from the origin in an attempt to
pinpoint a malevolent traffic source, certain valuable details
like exact timing might be altered, thereby diminishing the
precision of detection

Software-Defined Networking (SDN) and Network Func-
tion Virtualization (NFV) have emerged as the fundamental
components of both the 5G and 5GB frameworks, spanning
both the RAN and the core network. Given the versatility
and adaptability inherent in these advancements, a significant
portion of the DDoS attack detection methods found in
the literature are specifically tailored for these innovative
technologies. In the study by Perez et al. [12], an architecture
oriented towards SDN andNFVwas proposed, encompassing
components aimed at detecting and mitigating botnets within
5G networks. Their approach to detection relied on the
implementation of two control loops, each functioning at a
distinct level of abstraction to cater to the substantial number
of anticipated 5G subscribers’ User Equipments (UEs). The
initial control loop encompassed a lightweight, high-level
detection mechanism that rapidly scrutinized network flows

to pinpoint potentially suspicious bot activities. Upon identi-
fying potential bots, the second control loop triggered a more
comprehensive, low-level Deep Packet Inspection (DPI) to
validate the presence of a botnet. However, the authors
did not provide any evaluation outcomes for their proposed
architecture in their paper. In the work by Sridharan et al. [9],
a framework was created to passively identify application
layer attacks by analyzing encrypted wireless traffic through
link-layer features. Experimental trials involving diverse IoT
devices revealed that the framework successfully recognized
96.2%of IP camera attacks, achieving a 97% accuracy in their
classification, and accurately pinpointed Mirai bot infections
with a precision of 96.1%. Furthermore, it exhibited a 98.3%
accuracy in detecting DDoS attacks on IoT devices initiated
by a Mirai botnet. Notably, the framework achieved anomaly
detection with a remarkable accuracy exceeding 98.8% for
a TP-Link bulb utilizing WiFi, and it attained a detection
accuracy of 99% for association flooding attacks on a Zigbee
controller. In a separate study detailed in [10], authors
introduced an independent security system designed to coun-
teract UDP flooding DDoS attacks, providing safeguarding
measures for 5G multi-tenant infrastructures. This concept
was demonstrated using a container-based emulator. The
researchers executed practical tests on their proposed system
within the emulator environment. Their approach involved
identifying harmful data flows through a security monitoring
agent and subsequentlymitigating these detrimental flows via
a network flow control agent.

Ravi and Shalinie [11] introduced a technique termed
Learning-Driven Detection Mitigation (LEDEM) aimed at
identifying and mitigating DDoS attacks on IoT servers
to enhance security within cloud and SDN environments.
LEDEM underwent assessment within a test-bed and an
emulated topology, with outcomes being juxtaposed against
those of contemporary solutions. They attained an enhanced
accuracy rate of 96.28% in the detection of DDoS attacks
through the application of the Semi-supervisedDeep Extreme
Learning Machine (SDELM) model. Furthermore, they pro-
posed a mitigation algorithm classified as an approximation
algorithm, which they demonstrated to be a 2-approximation
algorithm in their research. They carried out rigorous testing
of their mechanism within their test-bed to validate its
effective performance within an actual hardware network.
They executed a sequence of experiments utilizing the
benchmark UNB-ISCX dataset and contrasted the findings
with those of state-of-the-art solutions.

In [13], the authors put forward an anomaly-based IDS that
was capable of identifying and counteracting emergingDDoS
attacks promptly within IoT networks. They showcased the
efficacy of the IDS in detecting and mitigating surreptitious
DDoS attacks, even when originating from sources with
exceedingly small attack sizes. This was achieved through
numerical assessments and trials conducted within a testbed.
The authors introduced a technique for detecting and address-
ing these forms of attacks and examined the associated time
and space complexities. They demonstrated the asymptotic
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optimality of the proposed detectionmechanism in aminimax
context, as the volume of training data increased. Addi-
tionally, they devised a solution to accommodate dynamic
scenarios wherein the count of devices within the network
fluctuated. An evaluation of the system’s performance was
executed through the utilization of a test-bed implementation,
the N-BaIoT dataset, and simulations.

In the study conducted by Harada et al. [19], an attack
suppression mechanism is introduced, aiming to decrease
the unnecessary discarding of legitimate traffic within the
IoT backhaul when its capacity is surpassed. This approach
swiftly regulates frame priorities without introducing novel
routes to accomplish the task. The system’s Network Con-
troller (NWC) outpaces conventional techniques in gauging
attack traffic and adapts frame priorities to assign the lowest
priority exclusively to suspicious data flows. Furthermore,
the switches obstruct attack traffic as identified by a DDoS
protector positioned ahead of the IoT server, thus preventing
the IoT backhaul from exceeding its maximum capacity. The
system rapidly estimates potentially malicious traffic based
solely on its rate prior to the detection of a DDoS attack.
Additionally, it quells questionable traffic by manipulating
frame priorities until the DDoS protector recognizes the
presence of attack traffic, obviating the necessity for extra
switches and fibers. This work mainly focused on the rate
of the traffic coming from the IoT devices, which we believe
that relying on rate of traffic should not be the only feature to
detect an attack, we believe that we have several 3GPP radio
features that could outperform features related only to rate of
traffic.

Most of the related works in the literature are related to
detection of DDoS attacks in the core, and there are quite a
few works on early detection of DDoS attacks at RAN. The
closest work to our current proposed method can be found
in [20]. They presented a technique for early detection of
DoS attacks that harnessed the novel OpenRAN framework
to amass data from the wireless communication interface,
allowing for the early identification of attacks before their
propagation through the network. They developed a nearly
real-time RAN Intelligent Controller (RIC) compatible with
open-source base stations, such as srsRAN, enabling the
collection of measurements. Their approach capitalized on
attributes from the physical and Medium Access Control
(MAC) layers to spot diverse forms of DoS attacks.
Employing various machine learning (ML) algorithms, they
performed real-time analysis of data traffic, effectively
classifying different DoS attacks. Empirical findings from
their experimentation showcased their method’s ability to
accurately distinguish between legitimate and malicious
traffic, yielding an impressive accuracy rate of 95%. These
results were exhibited within a practical testbed environment.

However, their work did not delve into an assessment
of the chosen features’ benefits. For instance, relying on
bitrates and the signal-to-noise ratio (SINR) could lead to
false positives, as these metrics might indicate poor channel
conditions unrelated to an attack. Furthermore, they did not

explore how the characteristics of traffic impacted the chosen
features. Not all features or combinations thereof might
effectively work with all types of traffic for attack detection,
especially in the case of web traffic. Web traffic heavily
relies on human interactions with webpages, introducing
intricacies in behavior. Additionally, selecting web traffic as
a benchmark might be somewhat misleading. DDoS attacks
primarily manifest as uplink traffic, and web traffic consists
of more downlink traffic than uplink traffic.

Lastly, we contend that the features chosen in our
approach are applicable to both monolithic and disaggregated
deployment scenarios.

III. BACKGROUND
This section presents the basic concepts for the LTE radio
protocol stacks used in this work. This is followed by brief
description of cellular botnets and the type of attacks that is
in the scope of this paper.

A. 3GPP RADIO PROTOCOLS
Mobile networks provide wireless communication service
worldwide. The architecture and protocols of mobile net-
works are standardized by 3GPP. There are different gener-
ations of mobile network, i.e., 2G, 3G, 4G, and 5G, the latest
generation being the 5G [21]. On a high-level, there are three
distinct components in a mobile network, i.e., user equipment
(UE), radio access network (RAN), and core network (CN).
The UE is a mobile device used by users to wirelessly access
the network. The RAN is responsible for providing wireless
radio communication to the UE and connecting the UE to
the CN. The CN is responsible for authenticating the UE,
packet routing, and handling mobility of the UE, among other
responsibilities. We will focus mainly on the RAN part in
this paper. In 5G, the RAN is known as a new generation
RAN (NG-RAN). An NG-RAN is either a gNB providing
New Radio (NR) user plane and control plane protocol
terminations towards the UE or an ng-eNB providing Evolved
Universal Terrestrial Radio Access (E-UTRA) user plane and
control plane protocol terminations towards the UE. The gNB
hosts many functions including, radio resource management,
routing of user plane data towards the core network, etc.

The Radio interface in a mobile network is called the
Uu interface, regardless of the mobile generation it carries
two types of Radio protocols stack: (1) Control Plane (CP),
and (2) User Plane (UP). The user plane protocols, which are
terminated in the gNB, are the protocols carrying user data
through the Access Stratum (AS) on the Uu interface between
the UE and the gNB. On the other hand, the control plane
protocols control the user plane sessions and the connection
between the UE and the network, for example, initial access,
requesting services, mobility, etc.

As illustrated in Figure 1, the UP protocol stack is
composed of different layers each providing different func-
tionality. In NG-RAN, the Service Data Adaptation Protocol
(SDAP), the Medium Access Control (MAC), Radio Link
Control (RLC), and Packet Data Convergence Protocol
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(PDCP) are known as layer 2 protocols. The MAC layer
performs multiplexing, demultiplexing, and scheduling. The
RLC sublayer handles sequence numbering, segmentation,
and re-segmentation. PDCP handles header compression, in-
sequence delivery, ciphering and integrity protection, and it is
also responsible for transferring user plane data. The SDAP
sublayer is responsible for quality of service (QoS) flow
handling.

FIGURE 1. User plane protocol stack.

As illustrated in Figure 2, control plane stack protocols
are handled and terminated differently, although they might
be in the same sublayers as in user plane stack, but they
have different functionalities. In the CP stack the PDCP,
RLC and MAC sublayers are terminated in gNB. On top of
the previously mentioned protocols, Radio Resource Control
(RRC), known as layer 3, is a control plane protocol that is
terminated in the gNB. RRC is responsible on establishment,
maintenance and release of the RRC connection between the
UE and NG-RAN, security functions, QoS, paging, broadcast
of system information, UE measurement reports and other
functions. Additionally, there is the Non-Access Stratum
Protocol (NAS) that is terminated in the Authentication
Management Function (AMF) in the 5G CN, and responsible
for subscriber authentication, mobility management, security
control among other functions as well.

FIGURE 2. Control plane protocol stack.

B. CELLULAR BOTNETS
DDoS attacks are becoming more widespread [22], [23],
relying on compromised hosts (botnet) connected to the
Internet. It is expected that devices connected to the internet

through 3GPP networks may become part of a botnet
and as such, source of DDoS attacks. User plane DDoS
attack leverage network protocols based on protocols (e.g.,
TCP, UDP) that are defined by the Internet Engineering
Task Force (IETF) [24]. There are many flavors of DDoS
attacks, possible main categories are network-layer attacks
and application layer attacks. The network-layer attacks rely
on the Open Systems Interconection (OSI) model layers,
for example the network and transport layer protocols to
conduct the attack, two prominent examples are the TCP
SYN flood and the UDP flood volumetric attacks. The
UDP protocol is used in time-sensitive communications,
for example voice, video, and gaming traffic. These are
some of the widely used traffic types in today’s networks.
Additionally, UDP is considered as a lightweight protocol
(in comparison with TCP), it provides some advantages for
IoT device developers; thus, it is mostly common among
cellular IoT devices or lower power applications (e.g, smart
agriculture sensors). UDP protocols can be used in spoofed
network-layer volumetric attacks. Volumetric attacks are
attacks with high packet rates that attempt to cause exhaustion
of a server’s or a network link’s resources. UDP flood attack
is a DDoS type in which many UDP packets are sent to a
targeted server with the aim of overwhelming the server’s
ability to process and respond.

In a TCP SYN flood attack an attacker sends a huge
number of packets with the SYN flag set to a victim server
without the intention of ever completing any of the three-
way handshakes. This attack implicitly puts strain on the
network links but also has a protocol-level effect on the
victim. The victim TCP server responds to the attacker’s
packets (with possibly spoofed source port) with SYN/ACK
packets and maintains half-open connections until a timeout,
since ACK packets will never arrive. Too many of these
fake connection initiations will cause the victim server to
be unable to establish connections with legitimate clients.
The potential security issues of IoT devices make it easy for
adversaries to exploit the IoT devices and make them part of
a botnet that can launch DDoS attacks towards targets that
reside on the internet. This doesn’t only have an impact on the
target machines, but indirectly on the network infrastructure
as well, including the mobile infrastructure (in case of 3GPP
access) that is delivering those packets to the Internet. This
infrastructure includes the RAN, transport, and core domains.

IV. 3GPP RADIO PROTOCOLS FEATURE SELECTION
In this work, the method used to detect IP DDoS relies solely
on analyzing the 3GPP radio protocols that are sent on the
radio interface and processed by a base station (i.e eNB/gNB)
function in RAN. The method does not inspect the IP packets
that are encapsulated in the radio protocols. The relationship
between the different sublayers of the radio protocol stack
can be better understood in Figure 3. As shown, in the figure
the MAC PDU transport block is formed of one or several
MAC SDUs, where each MAC SDU encapsulates a RLC
PDU that in turn encapsulates a PDCP PDU, where then the
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PDCP PDU encapsulates the SDAP PDU. Lastly, the SDAP
PDU encapsulates the IP packet being sent. A one-to-one
mapping relationship can be drawn between PDCP, SDAP
PDUs and the IP packets, where each PDCP and SDAP PDU
corresponds to an IP packet.

We divided our features into two feature categories
1) Radio Protocol Traffic Pattern and 2) Radio Protocol
Procedures and Functions. The following sections will
describe those features and relevance to the attack detection.

FIGURE 3. User plane data flow.

A. RADIO PROTOCOL TRAFFIC PATTERN
This feature category concentrates mainly on extracting
features that are related to the traffic pattern behavior of
the radio protocols in relation to the changes that occur in
the IP based traffic behavior, in other words trying to draw
the understanding if the radio protocol encapsulating the IP
packet will change linearly in its pattern if the IP traffic
changed as well or not. This category of features focuses on
analyzing the PDCP and RLC sublayers, there are several
reasons to choose those two sublayers. Firstly, due to the
direct one-to-onemapping of the IP packet to the PDCP PDU,
an increase in the IP packet size or increase in the rate of the
IP packets per second would in turn reflect on the PDCP PDU
length and rate. Secondly, in LTE there is a feature for RLC
where it can concatenate multiple numbers of PDCP PDUs
in one RLC PDU, thus increasing the size of a RLC PDU,
and that can occur when sending high numbers of packets
per second (pps). Moreover, we considered the physical layer
mainly interested in the resources block utilization which lies
in the frequency domain. The features are described more in
details below:

1) PDCP TRAFFIC PATTERN FEATURES
The PDCP protocol [25] is a layer 2 protocol that is used
to support procedures in the control plane or the user plane
depending on which radio bearer (signaling radio bearer or
data radio bearer) it is carrying data for. Several PDCP entities
maybe defined for a UE. In our proposed detection method,
we leverage PDCP that is associated with the transfer of
user plane data, as this is where the IP packets are carried.
We take into consideration PDCP PDUs features in the uplink
and downlink direction. The PDCP PDU follows a specific

structure as illustrated in Figure 4. The PDCP PDU data
field encapsulates the SDAP PDU, where the SDAP PDU
encapsulates the IP packet.

FIGURE 4. PDCP PDU user plane structure.

The IP packets are represented in the data field in the
PDCP PDU format. As mentioned earlier, the PDCP PDUs
have one to one mapping to IP packets, for example if a UE
is sending 10 IP packets that in return will be proportional
to 10 PDCP PDUs. From the characteristics and structure of
PDCP, there are four possible features that can be derived:
1) PDCP count within a time window, 2) PDCP PDU size
distribution, 3) PDCP UL to Downlink (DL) ratio, and 4)
Time delay between PDCP PDUs.

PDCP countwithin a timewindow, is one feature that can
be used for detection as it relies on the knowledge that each
PDCP PDU corresponds to an IP packet. In the scenario of a
DDoS attack, during a time window of 1 second, it could be
determined if there is an ongoing attack or not by analyzing
the PDCP PDUs count per second (or some established
normal baseline), as that represents the packets per second
(pps) characteristic of a DDoS attack. One example could be,
within one second a TCP SYN flood attack that is generated
from a computationally constrained device (e.g., raspberry
pi) can generate 21,776 PDCP PDUs compared to the count
of PDCP PDUs generated while rendering a webpage can
be around 848 PDCP PDUs in the uplink direction (that is
depending on the webpage and its contents, and the number
of webpages rendered at the same time).

PDCP PDU size distribution, is yet another feature for
detection as it reflects well a steady flow of small TCP packets
of constant size. An example of a TCP SYN packet with
options on the IP layer is 60 bytes long (TCP header: 20 bytes,
TCP options: 20 bytes, IP header: 20 bytes), and it would add
up to 63 bytes long in PDCP (SDAP header [1byte] + PDCP
header [2bytes]). In a DDoS attack the TCP SYN packet
length will remain the same during the attack period, while
benign traffic might have a dynamic size distribution such
as mobile broadband traffic or static size characteristic that
occurs at distinct time intervals such as a MTC use case that
we focus on in this work.

PDCP UL to DL ratio, can be used for detection, as in
a DDoS attack some of the attacked targets may not be
responsive, either they don’t exist or the IP address exists but
the service that is mapped to a specific TCP port that is not
available. Thus, the number of UL PDCPPDUswill be higher
than the DL PDCP PDUs.
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Time delay between PDCP PDUs, is the final PDCP
feature that can be used for detection, because for high packet
rate traffic such as the case with DDoS attacks, the time
arrival difference between packets will be very low. Thus,
analyzing the time intervals between PDCP PDUs can give
an indication if the incoming traffic is a part of an attack or
not.

2) RLC TRAFFIC PATTERN FEATURES
The RLC sublayer [26] functionality in LTE is slightly
different in 5G-NR, both share some common functionalities
such as; error correction, segmentation and re-segmentation
of RLC SDUs, duplicate detection, RLC SDU discard,
RLC re-establishment. LTE RLC differs that it provides
concatenation in RLC, which means that one RLC PDU
contains one or more PDCP PDU. This is a feature that can
be used in LTE networks, as an indicator of an attack as
the higher the IP packets per second reflect on lower time
intervals between PDCP PDUs that leads to concatenating
multiple PDCP PDUs. This can be detected using the RLC
PDU Size distribution for a given time.

3) PHYSICAL (PHY) LAYER RESOURCES PATTERN FEATURES
A resource block (RB) [27] is the smallest unit of resources
that can be allocated to a subscriber. Where one resource
block corresponds to a time slot that is represented in
0.5 ms. This means that each 0.5 ms a subscriber can be
allocated some resources. Moreover, frequency units can be
expressed in resource block, for instance 10MHz in frequency
bandwidth can be described as 50 resource blocks. Depending
on the reported buffer sizes that a UE needs to send to the
network, the base station leveraging its scheduling algorithms
allocated resource blocks that are suitable to be used by a UE
to carry its data. The more data to be sent, the more resource
blocks will be allocated for a single UE in different time slots.
Thus, the more frequent the attacker sends IP packets, the
base station will in return schedule continuous resources for
the attacking device, thus it will impact the allocation and
may lead to exhaustion of the physical resource.

B. RADIO PROTOCOL PROCEDURES AND FUNCTIONS
This category analyzes the features that are related to the
functions and procedures for the different sublayer of the
protocol stack, trying to understand if the change in IP
traffic will affect the way radio protocols interact with the
network through different functions like sending periodic
reports about number of bytes to be sent, asking for resources
from the network and other functions that are supported by
the protocols. This category of features focuses on the MAC
sublayer functions, which is composed of 1) MAC Control
Element (CE) types, 2) Scheduling requests (SR), and 3)
MAC buffer status (BSR) report.

1) MAC CONTROL ELEMENT (CE) TYPES
A MAC PDU consists of a MAC header, and a zero or
more SDUs as shown in Figure 5, and zero or more MAC

CEs. The MAC PDU header consists of one or more MAC
PDU subheaders, where each subheader corresponds to
either a MAC SDU, a CE or padding. The MAC CE is a
special structure within the MAC PDU that carries control
information.

FIGURE 5. MAC PDU structure.

TABLE 1. Values of LCID for UL-SCH.

In our work, we focus more on the uplink MAC CE values
that are sent from the malicious UE to the network, where
snippet of the MAC CE values that are inscope are shown in
Table 1 as specified in [28]

2) SCHEDULING REQUESTS
The MAC architecture, services and procedures are provided
by 3GPP [28]. One of those procedures of interest is the
scheduling procedure. Uplink Scheduling Requests (SR), are
used by the UE to ask the network for uplink resources on
the Uplink Shared Channel (UL-SCH) for a new transmission
where the network in return sends back an UL Grant, so the
UE will be able to transmit control or user plane PDUs. The
scheduling requests are observed to be low in case of high
number of PDCP PDUs per second at a given time, which in
turn means high number of IP packets, compared to certain
types of normal traffic.

3) MAC BUFFER STATUS REPORT
UL-BSR, is a yet another MAC layer procedure which is
used by the UE to provide information about the amount
of data available for transmission in the UL buffers to the
serving gNB. Two main features of MAC BSR that can
be useful for detection are: 1) Frequency of UL-BSRs (or
time delta between two consecutive UL-BSRs) may be a
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valuable feature. In case of a DoS attack on the user plane
it is expected that BSRs are more frequent due to constant
sending of attack traffic, compared to a benign scenario with
lower rate traffic. 2) Buffer sizes that are reported in BSR
from the malicious UE to the gNB, due to short intervals
between PDCP PDUs during an attack, the reported bytes will
be constantly maintaining a high number during a given time.

C. STATISTICAL MEASURES
Our study focused on differentiating User Plane DDoS
attacks from legitimate traffic by extensively analyzing
traffic patterns. To achieve this, we continuously collected
3GPP radio protocol features from the Radio Access
Network (RAN). We hypothesized that legitimate traffic and
DDoS traffic would exhibit distinct probability distributions,
enabling us to establish a discriminative plane for separating
attack traffic from legitimate traffic. Statistical measures can
effectively characterize the probability distribution for each
specific feature within the traffic data. Therefore, rather than
solely relying on the raw protocol features, we opted to
extract multiple statistical measures for each feature and for
each time interval t, we extract several statistical measures
for every feature. This comprehensive approach allows us
to gain a multi-faceted understanding of the traffic behavior
within discrete time frames. By calculating these statistical
measures, we can effectively capture temporal changes and
variations in the data. The extracted statistical measures
included:

1) Cumulative Sum: Providing insights into the temporal
evolution of each feature’s values within the interval t.
for variable X , the cumulative sum is obtained as:

CS =

∑
xi∈t

xi (1)

2) Mean: Representing the average value of each feature
within the time interval, revealing its central tendency.
The mean value is obtained as:

µ =
1
n

∑
xi∈t

xi, (2)

where n is the number of xi within in the time interval
t .

3) Standard Deviation: Quantifying the variability of
traffic data by measuring the spread or dispersion
around the mean. It is obtained as:

σ =
1
n

∑
xi∈t

(xi − µ)2 (3)

4) Skewness: Assessing any asymmetry in the distribution
of each feature’s values within the interval, indicating
tail tendencies. The skewness is obtained as:

Skew =
1
nσ 3

∑
xi∈t

(xi − µ)3 (4)

5) Kurtosis: Analyzing the peakedness or tail behavior
of the distribution, identifying heavy tails and it is

obtained as:

Kurt =
1
nσ 4

∑
xi∈t

(xi − µ)4 (5)

6) L2 (λ2): Estimating L-moments to gain robust insights
into the central tendency and spread of each feature’s
data. 1t is also so called L-scale and it is obtained as:

λ2 =
1
2

(
n
2

) ∑
x1<···<xi<···<xn

(−1)2−i
(
1
i

)
xi. (6)

7) τ3 and τ4: Computing L-moments to capture informa-
tion about skewness and kurtosis in a robust manner.
The most useful of these ratios are τ3 and τ4 which are
called L-skewness and L-kurtosis, respectively and are
estimated as:

τr =
λr

λ2
, where r ∈ {3, 4} (7)

8) Entropy: Calculating Shannon entropy to quantify the
information content and randomness of traffic patterns.
The entropy of X is estimated as:

H (X ) = −

∑
xi∈t

p(xi) log2(p(xi)), (8)

where p(xi) = Pr(X = xi) is the probability mass
function of X .

V. EXPERIMENTS
In order to evaluate different strategies for detection, we con-
ducted a series of experiments with the aim of collecting
data (candidate features) from the RAN stack under different
conditions. We aimed to adhere to the following:

• Patterns of generated test traffic on IP level approximate
selected real-world use cases and processes

• UE is resource constrained to limit the volume of the
attack traffic

• Data collection is light-weight to enable data collection
without disturbing the normal operation of the RAN
implementation

FIGURE 6. Experiments setup.

A. SETUP
Figure 6 shows the experiments setup that was used to obtain
RAN features under the different kinds of IP traffic.
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1) HARDWARE
The UE was represented in a split setup: the IP applications
were run on a Raspberry Pi 3Model B Rev 1.2 (ARMCortex-
A53, 1 GBRAM) and the UE software was running on an x86
server (Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, 128
GB RAM). The same x86 server was used to run the ENB
and EPC as well. The radio air interface was represented by a
localhost connection between the UE software and the ENB,
radio channel conditions were not modeled. The overhead of
the Ethernet communication between the IP applications and
the UE software was deemed negligible in terms of distorting
the traffic patterns emanating from the applications.

2) SOFTWARE AND DATA COLLECTION
The radio stack (UE, ENB and EPC) was implemented
in software using the srsRAN project, formerly known as
srsLTE [29]. Relevant data from the ENB implementa-
tion, including candidate features were written into shared
memory to enable parallel data processing/analysis or
file-mapping for off-line analysis. Timing information was
preserved by recording the CPU TSC (Time Stamp Counter)
value for each data point for the different features in the
respective event handlers. The following raw features were
collected for each UE: PDCP PDU Sizes (uplink and down-
link): pdcp_pdu_sz_ul, pdcp_pdu_sz_dl, reported
buffer size by UE inMACBSR: mac_bsr_buf_sz, size of
the RLC pdu: rlc_pdu_sz, type of MACControl Element:
mac_ce_type, MAC PRB utilization: mac_prb_util.

3) TRAFFIC GENERATION
We developed SW that models traffic patterns emanating
from an MTC (Machine Type Communication) application,
as well as a version of a well-known DDoS attack tool.
To generate benign MTC traffic, an application is used
that mimics a non-time-critical industrial robot controller.
Its payload traffic pattern can be characterized by a set
of periodic communication channels over TCP with some
variance in message size and inter-packet gap:

1) 160-320Bytesmessages (uniform distribution) at every
10 ms

2) 1514 Bytes messages every 200-500 ms (uniform
distribution)

The attack traffic was modeled based on the Mirai
botnet [30]. Only the attack loop (TCP SYN flood or UDP
flood) was considered, running on a single core, traffic
patterns related to scanning or communication with the CC
server were not modeled. In the TCP SYN flood attack case,
packets containing IP and TCP headers (with the SYN flag
set) are prepared for each target (victim host or subnet).
After the preparation, the attack tool loops through all targets
multiple times. For each target, depending on configuration,
it changes some fields (e.g., randomized source/destination
IP, source/destination port, etc.), updates checksums and
sends the packet to the target through a raw socket. The
UDP flood attack is performed in a similar fashion, except

there is an optionally randomized (per packet) UDP payload
with configurable size (per attack). The attack loop may have
slightly different runtime characteristics depending on the
parameters of the attack such as whether to use randomization
for ports or IPs and the list of target IPs/subnets.

B. EXPERIMENTS RUNS
As the main purpose of this detection method to try to detect
DDoS attacks as fast as possible and close to its origination,
we ran the experiments in short time periods, mainly 10,
30 with a maximum of 60 seconds. We noticed that when
running the experiments, that it is possible to reach the same
analysis if we ran the experiments for a long time (≈1minute)
or a short time period (≈1 second).

The drawn hypothesis is that even if the devices are
compromised by an attacker and are part of a botnet, they
will still keep on sending their normal traffic, as probably
the attacker might be either periodic or the attacker wants
to maintain their stealth. Thus, based on this hypothesis
we combined both the benign MTC traffic and TCP SYN
Flood malicious traffic in the experiments, where the attack
runs in different traffic episodes at different time intervals.
A summarization of the experiment runs can be found in
Table 2.

TABLE 2. Traffic duration and attack episodes for each experiment run.

VI. RESULTS
For each time interval t = 100 ms, we extracted several
statistical measure features including the cumulative sum,
the mean, the standard deviation, skewness, kurtosis, the
second L-moment, the L-skewness, the L-kurtosis, and the
entropy for each RAN protocol feature. In total, we obtained
a dataset with 54 statistical measure features. To explore
the potential utility of statistical features in identifying
DDoS samples, we conducted an extensive analysis involving
various machine learning (ML) models: K-nearest Neighbors
(KNN), Support VectorMachine (SVM),Decision Tree (DT),
Random Forest (RF), AdaBoost, Naive Bayes (NB), Linear
Discriminant Analysis (LDA), and Logistic Regression
(LGR). For our study, a total of 605 legitimate samples
and 126 DDoS samples were utilized in the training phase.
Each class represented 80% of its respective samples. Subse-
quently, these models were assessed for their performance in
the testing phase using 152 legitimate samples and 31 DDoS
traffic samples. The results of this analysis are summarized
in Table 3 and shed light on the detection effectiveness of
each ML algorithm. It is noteworthy that, with the exception
of LGR, all other algorithms displayed robust performance
in effectively distinguishing attack samples from legitimate
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traffic. Although LGR exhibited a zero False Positive Rate
(FPR), the relatively lower True Positive Rate (TPR) of
0.65% indicates that a significant proportion of DDoS
samples were erroneously classified as legitimate instances.
This discrepancy led to a relatively modest accuracy of
17.5%. The subpar performance of LGR suggests the
possible inclusion of irrelevant features within the feature set,
a challenge effectively addressed by the otherML algorithms.

Despite its limitations, the inclusion of LGR in our
analysis was deliberate for two main reasons. Firstly, logistic
regression stands as a widely used and interpretable model
for binary classification tasks. Its interpretability allows for
the examination of the influence of individual features on
classification decisions, thereby facilitating the understand-
ing of each feature’s discriminative power. Secondly, LGR is
a fitting candidate for evaluating feature selection methods,
as it is poised to perform better when extraneous features are
eliminated from the model.

Through the evaluation of performance using the entire
feature set, we established a baseline accuracy for com-
parative purposes, post the application of various feature
selection techniques. As a result, subsequent sections of our
study focus on the application of diverse feature selection
methodologies with the intent of enhancing the classification
performance of LGR.

TABLE 3. The performance result of applying ML algorithms on statistical
feature set.

First, to improve the classification performance, we experi-
mented with different variance thresholds in the feature selec-
tion process. We applied variance analysis of features and
tried several thresholds to discard features with low variance
to see if the detection performance improved. However, the
variance analysis did not lead to any significant improvement
in the classification performance, suggesting that variance
alone is not sufficient to capture the discriminative power
of features. In light of this, we proceeded to use four more
sophisticated feature selection methods: Analysis of Variance
(ANOVA), Mutual Information, Recursive Feature Elimi-
nation (RFE), and Shapley Additive exPlanation (SHAP).
These techniques are highly suitable for the process of
selecting the most relevant features in classification tasks.
By pinpointing the features that hold the most crucial
information, these methods aid in improving the accuracy of
classification between different classes, such as DDoS attacks
and legitimate traffic.

ANOVA, for instance, plays a vital role in identifying
features that exhibit substantial variations between distinct
classes. Through evaluating the F-statistic for each feature,
ANOVA effectively highlights those features contributing
significantly to the differentiation between DDoS attacks and
legitimate traffic. This technique focuses on capturing the
differences in feature values that hold key discriminatory
information.

Mutual Information, on the other hand, gauges the quantity
of information a feature offers regarding the class labels.
Its strength lies in capturing both linear and non-linear
relationships existing between features and class labels.
As a result, Mutual Information proves to be an invaluable
criterion for feature selection, particularly in scenarios
involving non-linear classification challenges. This method
can effectively identify features that hold relevant insights for
accurate classification.

In parallel, Recursive Feature Elimination (RFE) operates
by iteratively removing the least influential features from the
dataset. This process continues until an optimal subset of
features is attained, ensuring that only the most informative
features remain. RFE contributes to improving classification
efficiency by eliminating noise and redundant information
that might hinder accurate discrimination between different
classes.

Lastly, Shapley Additive exPlanation (SHAP) is a sophisti-
cated technique that provides a comprehensive understanding
of feature importance within a model. It quantifies the
contribution of each feature to the prediction and classifica-
tion process, offering valuable insights into how individual
features impact the final outcome. This transparency enables
more informed decision-making regarding feature selection,
leading to improved model accuracy.

In summary, ANOVA, Mutual Information, RFE, and
SHAP offer distinct insights independently. We utilize these
separate results to gather a broader understanding and com-
pare their perspectives. By integrating these diverse insights,
we gain a comprehensive view of feature importance. This
approach strengthens our ability to differentiate between
DDoS attacks and legitimate network traffic, enhancing the
effectiveness of our analysis.

A. ANOVA
An F-statistic, also known as an F-test, is a statistical test
that calculates the ratio between variance values, such as
the variance from two different samples or the variance
explained and unexplained by a statistical test, like ANOVA.
In our study, we utilized the ANOVA method, which is a
type of F-statistic called ANOVA F-test. The ANOVA F-test
helps us identify the most important features among the
statistical measures we extracted from time intervals (t =
100 ms). A higher F-test score indicates greater importance
of the corresponding feature. Figure 7 displays the 20 most
significant features identified through ANOVA analysis. The
top two most important features are the sum of rlc_pdu_sz
and the sum of pdcp_pdu_sz_ul, followed by the sum
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of mac_prb_util and the mean of rlc_pdu_sz. Once we
determined the most important features, we utilized them to
train a logistic regression model specifically for detecting
DDoS traffic samples. Table 4 presents the confusion matrix
for the test phase using the selected features. While the
performance improved compared to the model trained with
all features, it remained suboptimal.

FIGURE 7. Top the first 20 features based on ANOVA score.

TABLE 4. The detection performance result using the first 20 features
identified by ANOVA analysis.

To enhance the performance systematically, we conducted
a grid search. Instead of guessing the number of selected
features, a grid search tests various combinations of features
using ANOVA analysis to discover the best-performing
model. The grid search identified the best combination of
features, which turned out to be the sum of rlc_pdu_sz
and the sum of pdcp_pdu_sz_ul - the two features with
the highest scores in Figure 7. The scatter plot in Figure 8
displays the distribution of these two features with estimated
kernel density estimation contours for both DDoS and
legitimate traffic. As depicted in the figure, the density
contours for the two classes are well-separated, indicating
how effectively these two features can distinguish DDoS
samples from legitimate traffic. We re-trained the logistic
model using these two features and conducted the test
phase accordingly. The results, summarized in Table 5, show
a significant improvement in detection performance. The
model successfully identifies all DDoS samples with a low
false positive rate, demonstrating the effectiveness of the
selected feature set for DDoS attack detection.

B. MUTUAL INFORMATION
Mutual information, derived from information theory, is a
technique used in feature selection, drawing inspiration
from information gain typically employed in decision tree

FIGURE 8. The scatter plot for the most important features obtained from
the grid search utilizing ANOVA analysis.

TABLE 5. The Detection performance using the most important features
obtained from the grid search utilizing ANOVA analysis.

construction. It quantifies the reduction in uncertainty for
one variable when the value of another variable is known.
While it is straightforward to calculatemutual information for
two discrete variables (e.g., categorical input and categorical
output data), it can be adapted for numerical input and
categorical output scenarios. Similar to ANOVA analysis,
we utilized mutual information to identify the 20 most
significant features, as depicted in Figure 9, the two most
influential features were found to be the L-skewness of
mac_ce_type and the sum of rlc_pdu_sz, followed by the
L-kurtosis of rlc_pdu_sz and the entropy of pdcp_pdu_sz_ul.

FIGURE 9. Top the first 20 features based on mutual information score.

Having determined these 20 crucial features, we proceeded
to re-train the logistic model and evaluate its performance
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and we got the same perfromance result as the same
as ANOVA analysis. Subsequently, we employed the grid
search method with mutual information to identify the
best feature combination. The results indicated that the
L-skewness of mac_ce_type performed better than other
feature combinations. In Figure 10, we visualize the KDE
for the L-skewness of mac_ce_type for both DDoS and
legitimate traffic. Observing the overlap of L-skewness
values in certain regions, we anticipated a lower detection
performance compared to ANOVA analysis. Table 6 presents
the confusionmatrix for the test phase, obtained using the best
feature combination identified through mutual information.
Although the performance is deemed high and acceptable,
as expected, it falls short of the results summarized in Table 5
obtained through ANOVA analysis.

FIGURE 10. The KDE for the L-skewness of CE for both DDoS and
legitimate traffic.

TABLE 6. The detection performance result using the best feature
identified by grid search utilizing mutual information analysis.

C. RFE
Recursive Feature Elimination (RFE) is a feature selection
technique used in machine learning to identify and select
the most relevant features from a dataset. It involves
iteratively training a model on the full feature set, ranking
the features based on their importance or contribution to
the model, and eliminating the least important features until
a desired number of features is reached. We employed the
RFE technique to prioritize the most relevant features for
distinguishing DDoS traffic from legitimate traffic. The first
20 ranked features are displayed in Figure 11, showcasing
their importance according to the RFE process. Among
these, the L-skewness of mac_prb_util, the L-skewness, and

the L-kurtosis of pdcp_pdu_sz_dl stand out as the selected
features for DDoS detection. Initially, we trained and tested a
logistic regression model using the top 20 ranked features.
The outcomes are summarized in Table 7, which presents
confusionmatrix for the test phase. In contrast to ANOVAand
Mutual Information, where many samples are classified as
attack samples, RFE incorrectly classified all attack samples
as legitimate ones.

FIGURE 11. Top the first 20 features based on RFE.

TABLE 7. The detection performance result using the first 20 features
identified by RFE.

Before proceeding with training and testing the logistic
regression model using the three selected features, we created
a scatter plot of the three features (depicted in Figure 12).
This scatter plot visually illustrates how the DDoS samples
and legitimate samples are distinct in the three-dimensional
space. As indicated by the figure, we anticipate higher
detection performance using these three features compared
to the top 20 ranked features. Table 8 provides a summary of
the confusion matrix for the test phase of the logistic model
using the selected three features. Notably, during the training
phase, RFE outperforms ANOVA and mutual information.
Furthermore, RFE achieves comparable performance to
ANOVA during the test phase.

As Table 3 indicates, the LGR model initially exhibits
suboptimal detection performance when considering the
entirety of statistical features. However, the integration
of feature selection techniques, namely ANOVA, Mutual
Information, and RFE, serves as an avenue to enhance the
model’s classification proficiency. This augmentation leads
LGR to attain a level of accuracy equivalent to that of
other mentioned ML algorithms. Overall, the cumulative
analysis conducted thus far underscores the effectiveness
of the statistical metrics extracted from the RAN protocol
statistics in detecting DDoS samples.
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FIGURE 12. The scatter plot for the three first ranked features obtained
from RFE.

TABLE 8. The detection performance using three first ranked features
obtained from RFE.

In the subsequent section, we intend to further deepen
our understanding of the classification process. To achieve
this, we employ SHapley Additive exPlanations (SHAP)
analysis-a technique within the realm of explainable AI
(XAI). Through SHAP analysis, we seek to attain a more
comprehensive comprehension of the features contributing to
the identification of both DDoS samples and legitimate traffic
instances. This approach is pivotal in unraveling the intricate
relationships between features and classification outcomes,
providing valuable insights into the model’s decision-making
process.

D. SHAP
SHAP stands for SHapley Additive exPlanations, which is a
versatile technique used to interpret the outcomes of machine
learning models, regardless of the model type. This method
works by assigning a value to each feature, indicating its
contribution towards the final prediction. Positive SHAP
values indicate that a feature positively impacts the output,
whereas negative values suggest a negative impact. Two
figures, namely Figure 13 and Figure 14, visually depict
SHAP’s significance.

The first figure, the SHAP feature importance plot,
showcases the ten most crucial features, ranked by their
importance. Importance is determined based on the average
absolute SHAP value across the dataset. This plot serves
as a rapid means of identifying key model features and

FIGURE 13. SHAP feature importance plot.

comparing their relative importance. As shown in Figure 13,
the contribution of each feature appears balanced for both
Legitimate and DDoS traffic. Specifically, the features the
sum of rlc_pdu_sz and the sum of pdcp_pdu_sz_ul emerge
as the most influential contributors, a finding that aligns with
ANOVA analysis.

Conversely, the second figure, the SHAP summary plot,
is a scatter plot illustrating the influence of each feature across
all dataset instances. The x-axis represents SHAP values,
while the y-axis signifies feature values. This summary plot
visually summarizes the distribution of SHAP values for each
feature and their relationship with predictions. As presented
in Figure 14, this figure portrays the summary plot for
legitimate traffic. For DDoS traffic, the plot would be a
mirror image of this one. For instance, the feature the sum
of rlc_pdu_sz negatively affects predicting normal traffic
for higher values (highlighted in red), while lower values
(indicated in blue) positively impact the prediction. Similarly,
the positive impact of the L-skewness of mac_prb_util on
legitimate traffic classification is observed for higher values,
with lower values exerting a negative effect.

VII. DISCUSSION & FUTURE WORK
The paper focuses on enabling RAN to detect compromised
UEs belonging to cellular botnets during DoS attacks at the
very edge of the network. The work presents a methodology
to select powerful features that can serve as a basis for
inferring on-going attacks. The benign and attack traffic
used in the data analysis represent only a fraction of use
cases expected in real-world scenarios. However, the features
identified by the analysis align well with the intuition based
on the expected radio protocol impact of the two classes of
IP traffic. As an example, the uplink RLC PDU size is an
aggregate view of the uplink traffic volume which is rather
high during an attack compared to the benign scenario. Data
from a more diverse set of benign cases would be necessary
to design features that generalize well. The set of collected
features from RAN can also be expanded, also taking into
consideration the cost of obtaining the selected features from
actual implementations.
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FIGURE 14. SHAP summary plot for Legitimate traffic.

Additionally, when compared to previous studies, such as
the methodology outlined in [13], which relies on counting
packets per second and CUSUM, our method performs
notably better. The number of packets per second, typically
an IP-based network statistic, can be correlated with the
sum of PDCP PDUs, which serves as a statistical feature
within our proposed solution. Despite this mapping, the
feature analysis approaches (ANOVA, SHAP etc.) employed
in our paper reveal that other statistical features obtained
from radio protocol statistics exhibit superior performance
compared to merely using the sum of PDCP PDUs. As our
proposed solution is model-agnostic and primarily focuses on
leveraging statistical features derived specifically from radio
protocol statistics, it’s safe to assert that our proposed features
showcase a performance edge over both the method and
the features utilized in [13]. Furthermore, since our method
centers on detecting anomalies at the radio level, preempting
malicious packets before their entry into the network to
potentially overwhelm it, our solution offers the advantage
of early detection compared to the proposed method in
[13]. This proactive stance allows for the identification of
malicious packets at an earlier stage, thereby fortifying the
network against potential disruption or damage.

We intend to continue the research on this topic, our future
work is planned to extend the simulations and experiments to
include other types of bengin traffic types as part of our traffic
generation, an example could be upload traffic. The reason
behind that is the importance to find the suitable features
for the different type of traffic to ensure detection accuracy
and provide an advantage to differentiate between high load
traffic and attack in some traffic use cases. An additional item
is to collect data from live networks to help on fine tuning the
detection algorithms and feature engineering process.

Additionally, we will investigate other DoS attack cat-
egories, other than volumetric attack, for example slow
resource exhaustion attacks to validate that our approach
presented in this paper can detect other types of DoS attacks
as well. Moreover, continuing with the Mirai botnet use case
expand the detection capabilities to detect other phases of the
attack, for example the infection phase, where the infected

device tries to search for other vulnerable devices in order
to comproise and initiate the attack, we believe this can be
possible since evenMachine toMachine (M2M) trafficwithin
the same cell coverage has to be processed by the basestation,
thus there is an opportunity to analyze the traffic and probably
be able to detect the attack even in earlier phases than the
described in this paper.

On the other hand, there is further work to be done
on the detection and analysis part. Notably, all evaluations
have been conducted in the time-domain. Consequently, as a
potential next step, we intend to explore the characteristics of
RAN protocol statistics in the frequency domain. This explo-
ration aims to ascertain whether incorporating frequency
domain-based attributes can enhance the current solution’s
performance.

VIII. CONCLUSION
In this research paper we presented a novel detection method
to detect user plane DDoS attacks more closer to the
originating attack source, thus can enhance the time to
detect and react to those type of attacks before exhausting
radio resource, or propagating more into the network. This
method relies on 3GPP radio protocols analysis without the
need to inspecting the encapsulated user plane packets (e.g,
IP packets).

Numerous statistical attributes were derived from the
statistics of the RAN protocol. These attributes were
examined to determine their effectiveness in distinguishing
betweenDDoS samples and legitimate ones. Various analyses
were conducted to evaluate the significance of these
attributes. Moreover, the acquired features were employed
as inputs for multiple machine learning algorithms, resulting
in a notable achievement of strong performance in detecting
DDoS attacks. Although all experiments and analyses were
conducted within the framework of a 5G mobile network,
the method proposed in this paper possesses the adaptability
to be seamlessly applied within the context of 6G and
beyond (XG). This adaptability underscores its potential as a
valuable roadmap for designing secure and resilient networks
to counter DDoS attacks, not only in the present but also
in the ever-evolving landscape of future mobile network
generations.
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