
Received 16 January 2024, accepted 12 February 2024, date of publication 13 February 2024, date of current version 27 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3366069

MindTheDApp: A Toolchain for Complex
Network-Driven Structural Analysis of
Ethereum-Based Decentralized Applications
GIACOMO IBBA1, SABRINA AUFIERO 2, SILVIA BARTOLUCCI 2, RUMYANA NEYKOVA3,
MARCO ORTU 1, ROBERTO TONELLI 1, AND GIUSEPPE DESTEFANIS 3
1Department of Computer Science, University of Cagliari, 09124 Cagliari, Italy
2Department of Computer Science, University College London, WC1E 6BT London, U.K.
3Department of Computer Science, Brunel University London, UB8 3PH Uxbridge, U.K.

Corresponding author: Giuseppe Destefanis (giuseppe.destefanis@brunel.ac.uk)

The work of Silvia Bartolucci, Rumyana Neykova, Marco Ortu, and Giuseppe Destefanis was supported by the Ethereum Foundation
under Grant FY23-1048.

ABSTRACT This paper presentsMindTheDApp, a toolchain designed specifically for the structural analysis
of Ethereum-based Decentralized Applications (DApps), with a distinct focus on a complex network-driven
approach. Unlike existing tools, our toolchain combines the power of ANTLR4 and Abstract Syntax Tree
(AST) traversal techniques to transform the architecture and interactions within smart contracts into a
specialized bipartite graph. This enables advanced network analytics to highlight operational efficiencies
within the DApp’s architecture. The bipartite graph generated by the proposed tool comprises two sets
of nodes: one representing smart contracts, interfaces, and libraries, and the other including functions,
events, and modifiers. Edges in the graph connect functions to smart contracts they interact with, offering a
granular view of interdependencies and execution flow within the DApp. This network-centric approach
allows researchers and practitioners to apply complex network theory in understanding the robustness,
adaptability, and intricacies of decentralized systems. Our work contributes to the enhancement of security
in smart contracts by allowing the visualisation of the network, and it provides a deep understanding of the
architecture and operational logic within DApps. Given the growing importance of smart contracts in the
blockchain ecosystem and the emerging application of complex network theory in technology, our toolchain
offers a timely contribution to both academic research and practical applications in the field of blockchain
technology.

INDEX TERMS Smart contracts, DApps, Ethereum, solidity, complex networks.

I. INTRODUCTION
Solidity is a high-level, statically-typed programming lan-
guage specifically designed for writing smart contracts on
the Ethereum blockchain platform. It incorporates elements
of existing languages such as JavaScript and Python, but
is tailored to the requirements of blockchain development.
One of its standout features is its contract-oriented design,
which allows for clear and reusable code structures. This
enables developers to create decentralised applications,

The associate editor coordinating the review of this manuscript and
approving it for publication was Yilun Shang.

complex financial mechanisms, and even other blockchains.
Its popularity and widespread adoption make Solidity a
central subject for study, especially as smart contracts become
increasingly integral to blockchain ecosystems.

The necessity to analyse Solidity smart contracts is given
by two critical aspects: security and structural understanding
of Decentralised Applications (DApps). Security vulnera-
bilities in smart contracts can be dangerous [7], given the
immutable nature of blockchain. Being able to parse and
analyse the contracts opens the field for identifying such
vulnerabilities, allowing for timely remediation. In addition
to security, the study of Solidity contracts provides a window

28382

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0007-5336-4165
https://orcid.org/0000-0003-1127-5600
https://orcid.org/0000-0003-4191-5058
https://orcid.org/0000-0002-9090-7698
https://orcid.org/0000-0003-3982-6355


G. Ibba et al.: MindTheDApp: A Toolchain for Complex Network-Driven Structural Analysis

FIGURE 1. Toolchain summarising the bipartite graph’s creation process.

into the architecture and operational logic of DApps. These
contracts contain the rules and functions that dictate the
behaviour of a DApp, making their analysis crucial for
understanding how these decentralised systems function.
Therefore, an efficient tool for parsing Solidity smart
contracts serves a dual purpose: enhancing security and
enriching the understanding of DApps.

Motivation: Many Ethereum-based DApps currently face
significant issues related to security and operational perfor-
mance. Although there exists tools for structural analysis,
they do not provide a comprehensive picture of how
components within these applications interact together, which
is crucial for both developers and analysts. There is an evident
need for more advanced analytical tools that can map out
and analyze the architecture of DApps in depth, revealing
how their individual elements coordinate and communicate.
This need motivated the creation of our tool, designed to
conduct a detailed analysis of the network structures char-
acterising DApps to aid in enhancing their functionality and
robustness.

Complex networks theory [8] offer a powerful lens through
which to study and understand the behaviour of systems.
Complex networks, which could be social, biological,
or technological, are characterised by non-trivial topological
features that govern the interactions among their individ-
ual components [20]. By studying the network structure,
researchers can gain valuable insights into emergent system
behaviours, such as robustness, adaptability, and efficiency.
In the context of blockchain systems, understanding the
network interactions within and among smart contracts
could provide new perspectives on systems’ vulnerabil-
ities and operational efficiencies [33]. However, to our
knowledge, there is limited research on the applicability of
complex network theory to the analysis of smart contracts’
interactions.

This paper introduces MindTheDApp, a toolchain1

uniquely designed for the structural analysis of Ethereum-
based DApps, adopting a complex network-driven approach.
Unlike traditional tools that perform structural analysis, our
tool uses complex networks analysis techniques to offer an
understanding of smart contracts’ interactions. The tool uses
ANTLR4 [22] to traverse the Abstract Syntax Tree (AST)
of Solidity contracts. This information is then transformed
into a specialised bipartite graph, allowing for advanced
network analytics that can highlight potential bottlenecks
or vulnerable points within the DApp’s architecture. In this
graph, one set of nodes represents smart contracts, while the
other set represents functions. Edges connect functions to the
contracts they interact with, providing a comprehensive view
of dependencies and flows within the DApp.

Our approach goes beyond a simple bipartite structure
by offering a detailed, context-specific visualization, making
it easier to understand how various contracts and functions
are interconnected [2]. The graph produced by the tool is
particularly suited for complex network analysis, enabling
researchers to study aspects such as contract interdependen-
cies, potential security vulnerabilities, and execution flow
within decentralised applications.

In addition to introducing MindTheDApp, this paper also
presents an initial dataset of decentralised applications. This
dataset spans across various dApp categories, including
finance, art, gaming, and technology, and serves as a resource
for researchers and practitioners co conduct further analysis.
It offers a detailed look into the networks of smart contracts’
interactions within DApps, providing a foundation for future
studies on DApp structures, network architectures, and
potential security concerns.

The main contributions of this paper are:

1Github Link to the tool.

VOLUME 12, 2024 28383

https://github.com/giacomofi/Smart-Contracts-Bipartite-Graph-Generator


G. Ibba et al.: MindTheDApp: A Toolchain for Complex Network-Driven Structural Analysis

• A novel toolchain for the structural analysis of
Ethereum-based DApps that employs complex network
theory.

• A bipartite graph model that captures the nuances of
smart contract interactions within DApps.

• An initial dataset spanning across various DApp cate-
gories, serving as a benchmark for further research.

• An in-depth analysis of DApp structures and a case study
illustrating the application of our tool, shedding light on
network topologies and security implications.

The rest of this paper is organized as follows: Section II
reviews the related work in the field. Section III details
the workflow of our proposed tool. Section IV describes
the methodology and architecture of the tool. Section V
outlines the parsing rules for network extraction, followed
by Section VI, which details the extraction of contract
calls. Section VII presents the dataset and evaluation, while
Section VIII addresses discussion and limitations of the tool,
and Section IX concludes the paper and discusses future
work, summarising our findings and their implications for the
field of blockchain technology.

II. RELATED WORK
Research and development in the areas of smart contracts
have seen a surge in recent years. In this section, we discuss
previous work that has laid the groundwork for our study and
highlight the gaps that our research aims to fill.

A. SMART CONTRACT ANALYSIS
Numerous studies have targeted smart contract analysis,
mainly to highlight security vulnerabilities.

Wu et al. [30] explored the development and challenges
of smart contract technology within blockchain, emphasising
its wide-ranging applications beyond financial transactions.
The authors provided a detailed overview of smart contracts,
including their formal definition, working mechanisms,
and key components. The paper identified challenges such
as low execution efficiency, data storage issues, privacy
concerns, and vulnerability to attacks. In response, it dis-
cusses various solutions like scalable capacity expansion,
privacy-enhancing technologies like zero-knowledge proofs,
and security measures like fuzzing and formal verification.
Brent et al. [4] introduced ‘‘Vandal’’, a security analysis
framework for Ethereum smart contracts, aimed at addressing
their vulnerability to potential malicious attacks. Vandal
converts Ethereum Virtual Machine (EVM) bytecode into
semantic logic relations for enhanced security analysis. This
conversion allows for declarative security analysis using the
Soufflé language. In a comprehensive empirical study, Vandal
demonstrated its efficiency and robustness, outperforming
existing tools by analyzing a majority of unique contracts
more quickly. The framework’s effectiveness was established
through its ability to handle common vulnerabilities in smart
contracts.

In [15], the expanding role of blockchain technology in
various applications is discussed, focusing on the deploy-
ment of smart contracts on the Ethereum platform. The
work emphasises the importance of reducing faults and
vulnerabilities and to enhance smart contract development,
proposing to use established Object-Oriented metrics for
Solidity. Over 10,000 smart contracts were analyzed using
a prototype tool, revealing that they are generally rather
short and that they vary in complexity and documentation.
The study also found a high redundancy in functionalities
within Solidity’s libraries, suggesting the need for better
external library and dependency management in smart
contracts’ development. Kushwaha et al. [17], provided a
systematic review of security analysis tools for Ethereum
smart contracts. It categorized these tools into static and
dynamic types, and explored various code analysis techniques
such as taint analysis, symbolic execution, and fuzzing.
A total of 86 tools developed for Ethereum smart contract
security analysis were examined. Praitheeshan et al. [25],
surveyed the security vulnerabilities of Ethereum smart
contracts, highlighting their susceptibility to attacks due
to technical flaws in software design and the scripting
nature of the Solidity language. They identified 16 key
vulnerabilities, correlating them with 19 common software
security issues, and suggested that many vulnerabilities
are yet to be exploited. The survey also reviewed various
tools for detecting these vulnerabilities, including static and
dynamic analysis and formal verification methods, while
discussing the limitations of these tools in addressing smart
contract security challenges. Tjiam et al. [29], focused on
transaction-ordering dependency and oracle manipulation,
which have led to significant financial losses. They presented
a literature survey assessing these vulnerabilities and their
countermeasures, as well as an analysis of these measures.
The conclusion summarized the strengths, weaknesses, and
trade-offs of the countermeasures, suggesting future research
directions.

Sayeed et al. [26] highlighted the need for robust
pre-deployment security strategies due to high-profile attacks
like the DAO and Parity Wallet hacks. This work classified
blockchain exploitation techniques into four categories and
analyzed seven major attack techniques on smart contracts.

These works have employed a range of methods, from
static and dynamic analysis to formal verification and
machine learning-based techniques [15], [25], [32]. However,
such methods often focus on isolated types of vulnerabilities
and lack a broad understanding of the smart contract’s overall
functionality [17], [25]. For instance, some studies aim to
identify specific kinds of attacks such as consensus protocol
attacks, smart contract code bugs, operating system malware,
or fraudulent users [26]. Others direct their attention to
particular analytical aspects such as gas consumption or
opcode analysis [16], [21]. While these efforts contribute
valuable insights into specific vulnerabilities or technical
aspects, they fall short of offering a systemic perspective on
smart contracts’ functionality and vulnerabilities.

28384 VOLUME 12, 2024



G. Ibba et al.: MindTheDApp: A Toolchain for Complex Network-Driven Structural Analysis

In addition to the previously mentioned studies, recent
research has further expanded our understanding of smart
contract security. Chu et al. [6] provide a comprehensive
examination of smart contract vulnerabilities from various
perspectives, including data sources, detection methods, and
repair strategies. Their survey details the ongoing security
challenges faced by smart contracts, evaluates existing
solutions, and assesses their effectiveness, offering valuable
insights into future research directions in smart contract
security. Complementing this, Liu et al. [18] introduced
a smart contract vulnerability detection mechanism that
combines deep learning with expert rules. This approach
utilises graph neural networks alongside expert patterns,
enhancing traditional detection methods that typically rely
on fixed criteria. Their findings showed improved detection
accuracy and the capability to prevent risky transactions at
the EVM level, marking a step towards creating more secure
smart contract environments.

To fill this gap, it is important to develop more com-
prehensive analytical tools. One promising avenue is the
application of complex networks to the study of DApps.
Complex network analysis can offer additional perspectives
on the structure of smart contract interactions, highlighting
potential bottlenecks or vulnerable points that may not be
evident through conventional analytical methods. Hence,
there is a need for integrated approaches that can offer a
holistic view of smart contracts and their interactions within
decentralised applications.

B. DAPPS AND SOLIDITY
The Ethereum blockchain platform and its native language,
Solidity, have been the subject of numerous studies. These
studies have explored various aspects of decentralised
applications (DApps) and smart contracts on the Ethereum
blockchain. For example, Wu et al. [31] conducted a
comprehensive empirical study of 995 Ethereum DApps,
analyzing transaction logs to gain insights into the their
typical structure and behaviors. They also highlighted the
rapid development and wide adoption of DApps in various
domains.

Bhargavan et al. [3] focused on the formal verifica-
tion of Solidity contracts using the F programming lan-
guage to prevent bugs and vulnerabilities. In addition to
empirical studies and formal verification, researchers have
also explored tools and techniques for analyzing Solidity
contracts. Hajdu et al. [13] proposed a novel approach
for analyzing Solidity contracts, evaluating their semantics
and benchmarking its findings with other analysis tools.
Gao et al. [11] developed a tool called SmartEmbed,
which effectively identifies instances of repetitive Solidity
code in smart contracts. Furthermore, the adoption and
implementation of DApps in various domains have been
investigated. Pierro et al. [23] discussed the adoption of
Solidity as the most widely used programming language for
coding DApps on the Ethereum blockchain.

Górski et al. [12] introduced a resilient design pattern for
smart contracts, implemented in Java, for enhancing source
code reusability and facilitating testing. This pattern allows
the update of verification rules across all instances where
they are used, potentially reducing validation time for smart
contracts. The author planned to implement this pattern in
the Solidity language for Quorum smart contracts, aiming to
reduce redundancy in the verification rule of the source code
compared to standard implementations.

C. PARSING TECHNOLOGIES
ANTLR4 has proven to be a versatile and widely used
parsing technology in various domains. Its features, such
as predicates and support for LL(k) grammars, make it
a powerful tool for parsing and analyzing different types
of input, including source code, natural language, and
more. ANTLR has been utilised as a back-end for Solidity
parsers [24] and software vulnerabilities detectors [1], [19],
[28].

Paso [24] is a web-based solidity parser that collects widely
used software metrics from Solidity contracts. It relies on the
same Solidity grammar, as MindTheDApps. Other tools use
ANTLR to generate XML-based intermediate representation
of smart contracts written in Solidity. For instance, SESCon
(Secure Ethereum Smart Contracts by Vulnerable Patterns’
Detection) [1] uses static analysis by converting a .sol
file to its equivalent AST XML parse tree and apply the
XPath query to find some simple vulnerabilities patterns.
By combining XPath and taint analyses, SESCon can identify
security vulnerabilities defined by the Ethereum community.
Similarly, [19], [28] uses the Solidity parser to transform the
smart contract source code into an XML parse tree which is
then analysed further using XPath queries on the intermediate
representation.

D. COMPLEX NETWORKS
The use of complex networks to understand system behav-
ior is well-established in various contexts, especially in
object-oriented software systems. Gao et al. [10] employ
directed software coupling networks to empirically analyze
the macroscopic properties of such systems. Complex
network analysis has been valuable not only in understanding
software structure but also in real-time distributed control
applications, where fast processes and complex interactions
are key.

Themethod is also effective for assessing software risk and
vulnerabilities. Cai et al. [5] use complex network analysis
for vulnerability detection method based on deep learning
and subgraph partition that enhances detection accuracy
while maintaining scalability. Additionally, complex network
models shed light on the behavior and emergence of
requirements in networked systems [14], and can even guide
software design and performance improvement.

Ferretti et al. [9] conducted an analysis of the Ethereum
blockchain using complex network modeling techniques.

VOLUME 12, 2024 28385



G. Ibba et al.: MindTheDApp: A Toolchain for Complex Network-Driven Structural Analysis

They represented the flow of transactions in the blockchain as
a network, with nodes representing Ethereum accounts. This
approach allowed them to gain insights into the structure and
dynamics of the Ethereum blockchain.

These studies highlight the versatility of complex network
analysis in gaining insights into the structure, behavior,
and vulnerabilities of software systems. Such insights are
particularly relevant for decentralised applications, where
understanding the interactions among smart contracts is
essential.

E. COMPARING MINDTHEDAPP WITH PRIOR RESEARCH
While the previously mentioned studies provide founda-
tional insights into smart contract analysis, DApp structure,
and parsing technologies, MindTheDApp introduces an
innovative approach that intersects with complex network
theory for an enhanced understanding of Ethereum-based
DApps. Unlike the tools and methodologies proposed by
Wu et al. [30], Brent et al. [4], and others that primarily
focus on security vulnerabilities or specific aspects of Solid-
ity development, MindTheDApp’s toolchain encapsulates
a broader spectrum of analysis by generating a detailed
bipartite graph model. This model captures the details
of contract interactions, going beyond the conventional
scope of static and dynamic analyses. It provides a sys-
temic perspective that identifies not only vulnerabilities
but also potential performance bottlenecks and structural
inefficiencies within DApps. Moreover, our toolchain utilises
the parsing capabilities of ANTLR4, akin to the works
of Paso [24] and others, but extends it by applying a
network-driven approach to discern complex dependencies.
In contrast to the empirical and theoretical nature of studies
like those by Ferretti et al. [9], our framework offers practical
tools for developers and researchers to visualize and analyze
the dynamic interactions of smart contracts, thus contributing
to the evolution of blockchain software engineering with a
focus on both security and architectural clarity.

III. TOOLCHAIN OVERVIEW
Figure 1 illustrates the workflow of our proposed tool
for constructing a complex network-driven bipartite graph
representation of a decentralised application. The process
begins by tokenising the DApp’s smart contracts using
the Lexer module. This is followed by generating the
Abstract Syntax Tree (AST) representation of the source code
through the Parser module. Once the AST is constructed, the
Analyzer module scans and extracts key elements relevant
to our complex network analysis. These key elements
include contracts, functions, interfaces, events, modifiers, and
libraries.

In the resulting bipartite graph, nodes represent two distinct
categories: the first category comprises functions, events,
and modifiers, while the second category includes smart
contracts, interfaces, and libraries. An edge exists between
a node from the first category and a node from the second
category if and only if the function, event, or modifier from

the first category calls the corresponding contract, interface,
or library in the second category. This includes External calls,
which are interactions that involve source code imported
from external sources. This structure enables a complex
network-driven view of how different components within a
DApp interact.

In order to deliver a better understanding of the logic
and tool’s functionalities, we give an example of a Solidity
contract in Figure 2 (a). The code shows a Solidity contract
named Contract3, which imports and uses Contract1

and Contract2. It implements a function func3 that calls
functions func1 and func2 from these imported contracts.
In this setup, Contract3 is the source, and Contract1 and
Contract2 are the targets. The function func3 triggers the
calls. Both Contract1 and Contract2 have similar code
structures and make calls to each other and Contract3.
The dependency graph generated by the tool is shown in

Figure 2 (b). In this specific case, we have six nodes (the three
functions and the three contracts), and six edges highlighting
the contract calls from the specific functions.

IV. METHODOLOGY AND TOOL ARCHITECTURE
The architectural overview depicted in Figure 3 illustrates
the workflow and modular structure of the MindTheDApp
toolchain. At the outset, the ANTLR Grammar defines the
parsing rules, which are then applied by the Lexer to tokenise
the Solidity source code. The Parser, along with the Listener,
interprets these tokens to construct the so-called Abstract
Syntax Tree (AST), a hierarchical representation of the
smart contract’s syntax. Following this, the DappScanDataset
module serves as the repository for the parsed data. The AST
is then traversed and analyzed, dissecting the smart contract
into its fundamental components such as source contracts,
target contracts, source functions, target functions, and the
call chains that interlink them. This granular breakdown is
crucial for identifying dependencies and interactions within
the DApp’s ecosystem. Finally, the ASTAnalyser synthesises
this information to generate a bipartite graph, which visually
maps the relationships between contracts and their functions,
providing a clear and actionable insight into the DApp’s
architectural design.

Our tool employs ANTLR4 to perform several key tasks
in the smart contract analysis process. After receiving
the Solidity source code, ANTLR4’s lexer first tokenizes
the input, breaking it down into identifiable lexical units.
These tokens are then fed to ANTLR4’s parser, which
organises them into a hierarchical structure, resulting in an
Abstract Syntax Tree (AST). We traverse this AST using
auto-generated tree walkers, extracting relevant syntactical
and semantic information for further analysis. This process
is key for producing a bipartite graph that reflects contract
and function dependencies in the analysed set of smart
contracts.

Internally, our tool follows a modular architecture com-
prising several components (highlighted in Figure 4),
each responsible for specific tasks. Upon receiving a

28386 VOLUME 12, 2024



G. Ibba et al.: MindTheDApp: A Toolchain for Complex Network-Driven Structural Analysis

FIGURE 2. Example of (a) a solidity contract and (b) the produced bipartite graph.

FIGURE 3. Architectural overview.

Solidity contract for analysis, the Lexer and Parser modules
tokenize the code. The resulting AST is then passed to
the Analysis module, where features like function calls,
contract dependencies, and control flows are extracted.
This data is represented as a bipartite graph in the Graph
module, which is then available for complex network
analysis.

The advantages of using ANTLR4 can be summarised as
threefold:

• Versatility and Performance: ANTLR4 can handle a
wide array of grammar types and employs the efficient
LL(*) parsing algorithm, enabling fast and accurate
parsing of various languages and formats.

• Error Handling and Management: ANTLR4 excels in
identifying and recovering from syntax errors, providing
robust error reporting and continuation capabilities.

• Extensibility and Integration: ANTLR4 supports gram-
mar inheritance and can generate parser code for

multiple programming languages. It also integrates with
build systems like Maven and Gradle, making it a highly
adaptable tool for diverse development environments.

Given our focus on building a bipartite graph that depicts
function and contract dependencies, the following Solidity
constructs are of particular interest to us:

• Function Definitions and Calls: These provide insight
into the interdependencies between different functions
within and across contracts.

• Modifiers: Used to change the behaviour of functions,
understanding modifiers helps in analysing the condi-
tions and requirements under which functions operate.

• Events: These are crucial for tracking changes and inter-
actions, offering a dynamic view of contract activities.

• Inheritance and Interfaces: These features help in
understanding contract hierarchies, which is essential
for analysing dependencies.

VOLUME 12, 2024 28387



G. Ibba et al.: MindTheDApp: A Toolchain for Complex Network-Driven Structural Analysis

FIGURE 4. Toolchain of the ANTLR architecture.

V. PARSING RULES FOR NETWORK EXTRACTION
The goal of the tool is to create a bipartite graph that illustrates
the interactions between functions and contracts, central to
Decentralised Applications. The objective is to detect and
showcase a function (within the source contract) making
a call to another contract (termed the target contract). For
this purpose, defining rules to identify valid calls becomes
essential. It is important to mention that the source code for
the Listener, Lexer, and Parser depends on the grammar used
during their creation.

The initial step is to define the type of nodes in the bipartite
graph. In our study, nodes represent functions, contracts,
interfaces, and libraries. As a result, any call found in the
source code forms a relation of the kind (source, target).
For the generation of nodes, specific rules and criteria have

been set:

• Constructor Calls: The constructor initiates a new
instance of a contract. This means that a constructor
is seen as a call to the contract itself. For example,
if there’s a contract named ‘‘Bank’’, the constructor
would produce a self-referencing node, the relation
(Bank, Bank), with the association being defined by the
‘constructor’ keyword.

• Global Scope Calls: If a contract call is made outside
of specific structures like functions, modifiers, or events,
and exists within the broad scope of the contract, the link
formed from the Source contract to the Target contract
is labelled as ‘Global’.

• Self-Reference Calls: The keyword ‘this’ denotes the
contract itself. Every occurrence of ‘this’ within a
contract is treated as a legitimate call to the contract. For
instance, within a ‘‘Bank’’ contract, any ‘this’ reference
would result in a relation (Bank, Bank). The specific
function where ‘this’ appears defines the connection.

• Cast Operations: Casting operations to contracts,
libraries, or interfaces are treated as valid calls. If there’s
a ‘‘Bank’’ contract and within it, a cast operation to
‘‘ERC20’’ is executed, the outcome would be a relation

(Bank, ERC20). The connecting link is determined by
the function where the cast occurs.

• Calls to Constructs: Calls made from one contract to
libraries, interfaces, or other contract structures (like
functions, events, or modifiers) are recognised as valid
calls. For example, a ‘‘Bank’’ contract invoking a
modifier from another ‘‘Vault’’ contract produces a
valid call. This interaction would generate a relationship
(Bank, Vault), with the specific function in the ‘‘Bank’’
contract that made the call determining the link.

• External Source Calls: Calls to contracts, interfaces,
or libraries sourced from external platforms, such as
GitHub, are labelled as ‘External’. So, if a ‘‘Bank’’
contract interacts with an ‘‘ERC20’’ contract imported
from GitHub, the relationship would be represented as
(Bank, External).

Following these rules ensures that the nodes are created
accurately and consistently, representing the interactions
within decentralised applications effectively.

A. PARSER DEFINITION AND TOP-DOWN AST
EXPLORATION
This section provides a brief overview of our approach to
traversing the Abstract Syntax Tree (AST) of a Solidity smart
contract, as shown in Figure 5. We employ a specialised
listener classes generated from the Solidity grammar.2

ANTLR provides support for two tree-walking mechanisms
in its runtime library – namely parse-tree listeners and
visitors. We employ the former since (1) it offers a more
efficient tree traversal and (2) it is applicable to traversals
that do not alter the parsed trees, as in our case. In a nutshell,
a parse-tree listener interface responds to events triggered by
the built-in tree walker. The methods in a listener class are
callbacks. The listeners receive notification of events such as
startTreeNode and endTreeNode.

2https://github.com/solidityj/solidity-antlr4/blob/master/Solidity.g4

28388 VOLUME 12, 2024



G. Ibba et al.: MindTheDApp: A Toolchain for Complex Network-Driven Structural Analysis

FIGURE 5. Abstract syntax Tree (AST) example of a smart contract.

Key elements in the contractDefinition branch include
functions, state variables, events, and modifiers, among
others. The listener classes facilitate the traversal of these
elements, extracting relevant information that contributes to
our complex network-driven bipartite graph analysis.

For isntance, traversing the ifStatement branch of the
AST involves understanding the boolean conditions that
guide the code flow. Similarly, loops like forStatement

and conditional constructs like tryStatement offer unique
challenges. These constructs may include further branches
that require recursive exploration, as they could involve
additional function calls or contract interactions.

B. ASSEMBLY CODE ANALYSIS
In Solidity, assembly code allows developers to interact more
closely with the Ethereum Virtual Machine (EVM). While
Solidity provides a high-level interface for contract creation,
assembly code can be used for certain optimizations or EVM-
specific behaviors.

Analyzing assembly code within the Abstract Syntax Tree
(AST) is different from Solidity code. Figure 6 illustrates the
inlineAssemblyStatement branch in the AST, comprising
all statements in the Solidity assembly construct. These
statements can include identifiers, blocks, expressions, local
definitions, assignments, among others.

Assembly code has a simpler structure than Solidity,
making its analysis more straightforward. For instance,
all assembly statements can be examined using just
assemblyExpression, assemblyLocalDefinition, and
assemblyAssignment, which cover variable definitions,
assignments, and expressions like function calls.

VI. CONTRACT CALLS (GRAPH NODES) EXTRACTION
This section explains how to extract contract calls from
a smart contract’s source code. Our primary focus is to
identify all constructors and instances of the this keyword to
capture self-referential contract calls. Detecting calls to other

contracts dispersed throughout the code poses a challenge.
These calls can appear within functions, modifiers, events,
and custom errors. However, we opt to exclude calls within
embedded assembly code due to their rare occurrence and
minimal impact on our study.

In our examination of Events andModifiers, we aim to find
contract calls, uses of functions from other contracts, contract
objects, references to this, and typecasting operations
targeting contracts, interfaces, or libraries. Contract calls can
also occur within boolean conditions of control structures like
if,for, while, and do-while statements.

We conduct a systematic examination of all software
constructs, covering various types of expressions as variable
declarations and assignments. Sometimes, certain constructs
might not be present in the DApp’s source code, usually
because they are imported from external sources such as
GitHub. In such cases, we extract the source code directly
from the relevant webpage, we generate a unique Abstract
Syntax Tree for that contract, and we analyze it. Due to the
added computational requirements and webpage dependency,
we label these interactions as ‘‘External calls.’’

1) EXAMPLE OF CONTRACT CALLS WITHIN A FUNCTION
In the example below, the function renounceManagement

() calls a modifier onlyPolicy() and generates an event
OwnershipPushed.

Both the modifier and the event come from the same
contract, Ownable. Invoking the modifier and triggering the
event add specific function calls to the sequence, forming
pairs involving the contract Ownable.
In this example, both the event and the modifier are

defined within the same contract, Ownable. The function
renounceManagement is defined within the Ownable contract

VOLUME 12, 2024 28389



G. Ibba et al.: MindTheDApp: A Toolchain for Complex Network-Driven Structural Analysis

as well, and in this case, we have two different contract
calls in which the source and target contract overlap. The
first call provides Ownable as the source and target contract,
renounceManagement as the source function, and themodifier
onlyPolicy being part of the call chain. The second call
provides Ownable as the source and target contract as well,
the renounceManagement as the source function and the event
OwnershipPushed incorporated into the sequence.
In another example, a function called markdown includes

several contract calls. The function starts by calling
IUniswapV2Pair(_pair).getReserves() and stores the
result in a tuple. The key part is the cast operation, leading
to a sequence of function calls involving the getReserves

() method. Following this, the function has an ifStatement

containing the expression IUniswapV2Pair(_pair).token0

()== SGT. This expression also includes a contract call and
should be broken down for further analysis.

The function ends with a return statement that includes
another contract call, casting to IERC20. This adds another
function call sequence involving decimals(), div(), and
getTotalValue().

To summarize, this function includes three primary con-
tract calls:

The source function, in this specific example, is the function
markdown, which is the function where the three calls
are contained. The source contract is the one that defines
the function markdown, while IUniswapV2Pair and IERC20

are the two target contracts. The following functions
getReserves, token0, and decimals build the call chain for
the three different contract calls.

Lastly, the function _mint() in the ERC20 contract triggers
the Transfer event from the IERC20 interface.

In this case, the function _mint is the source function,
the contract ERC20 (that defines the _mint function) is the

FIGURE 6. Example of inlineAssemblyStatement branch in the
AST.

source contract, and the contract IERC20, which defines
the Transfer event is the target contract. Moreover, the
event takes as input the address(this) parameter, which
refers to the contract itself (in this specific case ERC20).
The tool considers the this as a valid contract call, and
consequentially the ERC20 contract is both source and target
contract, the _mint function as the source function, and the
Transfer event is incorporated into the sequence.

This section has examined multiple examples to illustrate
how contract calls within functions are identified and
analysed based on our extraction rules. These examples
cover different scenarios, including function calls, modifiers,
and events, to give a comprehensive view of how contract
interactions may occur.

VII. DATASET AND EVALUATION
We have collected 3093 smart contracts from 26 DApps
belonging to different domains and we have generated
their respective dependency graphs. The dataset generated
by MindTheDApp serves as one of the contributions of
this paper. It includes Decentralized Applications (DApps)
from various categories, as recommended by Ethereum.org,
listed below. The dataset provides a resource for researchers
and developers interested in analyzing DApp structures,
identifying patterns, and studying the network topology of
these applications.

• Financial: These DApps focus on crypto-based financial
services such as lending, borrowing, and interests
accumulation.

• Art and Collectibles: This category supports solutions
for digital ownership and revenue for artists, providing
investment opportunities for enthusiasts.

• Gaming: These applications offer access to interactive
entertainment, featuring virtual worlds and valuable in-
game collectibles.

• Gambling: In this category, users can engage in various
betting activities, ranging from classic casino games to
blockchain-specific prediction markets.

• Technology: These DApps aim to decentralize develop-
ers’ tools and integrate crypto-economic systems into
existing technologies.

28390 VOLUME 12, 2024

https://ethereum.org/en/dapps/


G. Ibba et al.: MindTheDApp: A Toolchain for Complex Network-Driven Structural Analysis

TABLE 1. Summary of the features of decentralized applications.

Table 1 provides a summary of the Decentralized Applica-
tions included in the dataset.

The columns in the table are defined as follows:

• Name: The name of the decentralized application
(DApp).

• Category: The specific category the DApp belongs to.
• MacroCategory: The broader category under which the
DApp falls.

• Number of Smart Contracts: The total number of
smart contracts that form the codebase of the DApp.

• Contract Calls: The count of contract calls identified by
the analyzer.

• Everyday Users: The percentage of total users who
engage with the particular DApp on a daily basis.

• Outflow/Inflow: This column shows the percentage of
currency that is both deposited into and withdrawn from
the exchange, respectively.

A. EVALUATION
This section reports our findings and illustrates the perfor-
mance and accuracy of the tool.

1) PERFORMANCE
To test the applicability of MindTheDApp, we ran it on
728 applications constituted by 25077 smart contracts from
the DAppScan dataset,3 which is a curated repository built
to assess the performances of smart contracts vulnerability
detection tools. We successfully extracted the dependencies
within the DAppScan dataset, and here we report the
performance of the tool on the executed applications.

3https://github.com/InPlusLab/DAppSCAN.

We conducted our experiments on a MacBook Air with
an Apple M1 processor with 8 cores, 8 GB of RAM,
and 256 GB of SSD with macOs Monterey 12.6.6. All the
Solidity compiler versions are locally installed in case of a
needed version switch, and Python (3.8.13), and npm (9.6.7)
have been used to run code and install packages respectively.

The results revealed the efficacy of the tool in properly
scanning and generating a bipartite graph for the sample
of decentralised applications. Trivially, the execution time
is strongly conditioned by the DApp’s dimension. The
largest DApp of the dataset considering the number of smart
contracts (596 SCs), required 65.16686 seconds for the
scanning and graph generation process, while the smallest
(8 SCs) required 0.55405 seconds. The average execution
time is 12.60385 seconds.

2) EXAMPLE ANALYSES
To demonstrate the applicability of MindTheDapp, Figure 7
presents an example of a filtered function network of
Ethersic, one of the DApps in our dataset, presented in
Table d1.

Figure 7 showcases how the tool can extract the complex
network of contracts and their interactions within a DApp.

In our study of 26DApps (Table 1) from various categories,
we found notable patterns in function and contract interac-
tions.Most functions call between 1 to 4 contracts, suggesting
tasks’ distribution among multiple functions. All analyzed
dApps exhibit high modularity, with modularity coefficients
ranging from 0.21 to 0.92, indicating the presence of distinct,
non-interconnected components. This pattern is consistent
across dApps of different sizes and categories. Metrics such
as diameter, average path length, and clustering coefficient

VOLUME 12, 2024 28391



G. Ibba et al.: MindTheDApp: A Toolchain for Complex Network-Driven Structural Analysis

FIGURE 7. Filtered network of functions for the Etherisc DApp.

also display consistency across dApps, hinting at common
development patterns.

We employ a disparity filter to isolate the most crucial
interactions within the function and contract networks.
A disparity filter is a network simplification technique that
retains only statistically significant edges, thereby revealing
the ‘backbone’ of a complex network [27]. This approach
allows us to focus on the most important relationships
between functions and contracts, providing a clearer, more
meaningful representation of the network’s core structure.
The use of this filter helps us to distill complex network data
into a more manageable form, making it easier to identify key
patterns and vulnerabilities.

After applying the disparity filter, we observed that
function networks retain about 55% of their nodes, while
contract networks shrink dramatically to about 12% of their
original size. We define a ‘filtered function network’ as
a projection from the original bipartite graph, where each
node represents a function and edges are formed based
on certain projection rules capturing interactions between
functions. Similarly, a ‘filtered contract network’ is another
projection from the same bipartite graph, but in this case,
each node represents a contract, and edges are formed based
on interactions between contracts via function calls. Both
types of networks aim to highlight the specific interplay of
functions or contracts within decentralized applications.

Lastly, our resilience analysis shows that targeted removal
of high-betweenness nodes can quickly fragment the largest
connected component, unlike random removal. This reveals
the network’s vulnerability to specific disruptions.

B. POTENTIAL USAGES
MindTheDApp offers several avenues for further analysis and
study. For example, the tool could be used for:

• Identifying key contracts and functions that serve as
hubs in the network, which could be critical points for
security evaluation.

• Studying the flow of contract calls to identify potential
bottlenecks or inefficiencies in a DApp.

• Comparing the network structures of DApps across
different categories to identify common patterns and
unique features.

VIII. DISCUSSION AND LIMITATIONS
Our tool is able to analyse and extract contract calls from a
selected sample of decentralised applications. After scanning
the DApp, the tool produces a CSV file named after the
application, which contains five columns:

• File: Specifies the name of the smart contract.
• Source Contract: Identifies the contract where the
function calls the target contract.

• Source Function: Notes the function that calls the target
contract.

• Target Contract: Lists the contract called by the source
contract.

• Chain: If the target contract is called after a chain of
function calls, then the whole chain of calls is reported.

Our analysis shows that financial decentralised applica-
tions generally have a higher number of contract calls and
are typically larger in terms of the number of smart con-
tracts composing the application. MindTheDapp effectively
extracts key elements like modifiers and event calls.

We chose to omit external dependencies to concentrate
on analyzing the intrinsic structure of a DApp in isolation.
This approach allows us to provide a more focused and
meaningful representation of the application’s network
topology. By doing so, we aim to understand the internal
interactions, dependencies, and potential bottlenecks within a
specific DApp, which are often more relevant for developers
and researchers interested in optimizing or securing that
particular application.

Including external dependencies would widen the scope of
our analysis, potentially diluting the insights gained about the
DApp itself. For example, if external dependencies such as
common contracts like ERC20 were included in the analysis,
they would likely emerge as central nodes in the network
graph. While these nodes may be important in the broader
Ethereum ecosystem, their centrality could distract from the
unique characteristics and vulnerabilities of the DApp being
studied. Therefore, our tool, MindTheDapp, aims to offer
a more precise, application-specific view of the DApp’s
internal network structure.

In this section, we outline potential threats to the validity
of our research, addressing issues that could affect both the
generalization and applicability of our findings.

A. LACK OF CROSS-PLATFORM COMPARISON
Our study is confined to DApps within the Ethereum
ecosystem. This narrow focus hampers our understanding of
decentralised applications more broadly, as a comparative
analysis across different platforms could reveal key similar-
ities or differences within the same DApp categories. Our

28392 VOLUME 12, 2024

https://etherisc.com/


G. Ibba et al.: MindTheDApp: A Toolchain for Complex Network-Driven Structural Analysis

tool, however, is not platform-specific and can analyse any
Solidty contract independently of the platform on which it is
deployed.

B. TEMPORAL SCOPE LIMITATIONS
While our research includes popular Ethereum DApps,
it lacks a temporal dimension. A more comprehensive study
would incorporate DApps developed at various stages of the
Ethereum platform’s lifecycle. Such a comparison could yield
valuable insights into the evolving structure, complexity and
categorization of DApps over time.

C. MISSING DEPENDENCIES
In our analysis, external dependencies like GitHub imports
are labeled as ‘External,’ obscuring the original contract
names. External contracts could offer specific patterns that
highlight similarities or differences between DApps.

D. PARSER TESTING SCOPE
Our tool underwent testing on a dataset of 728 applications.
While this sample size allowed us to identify and address
some tool limitations, more extensive testing on a larger
dataset is required to further validate the tool’s efficiency
and effectiveness. For example, initial testing did not account
for empty contract declarations, leading to the extraction of
None-type objects, an issue that has since been resolved.

In addition to the presented limitations, it is important to
acknowledge the strengths and weaknesses of our approach
in analysing smart contract patterns. One of the key
strengths of MindTheDapp lies in its ability to dissect and
visualize complex interactions within smart contracts. This
visualization aids in identifying not only direct relationships
but also the more subtle interdependencies that might go
unnoticed in traditional analyses. However, this strength
also brings forth a limitation: the tool primarily focuses on
structural patterns and might overlook behavioral patterns
that emerge during contract execution. Behavioral patterns,
such as those involving dynamic state changes or interaction
sequences with external contracts, play a significant role in
the overall functionality and security of DApps. Our current
approach might not fully capture the evolutionary patterns of
smart contracts, where changes over time could significantly
impact their reliability and security. Future enhancements of
MindTheDapp could involve integrating dynamic analysis
techniques to complement the static structural insights,
providing a more holistic view of smart contract behaviors.
This integration would allow for a better understanding of
how contracts evolve and interact under various conditions,
potentially uncovering hidden vulnerabilities and perfor-
mance issues.

IX. CONCLUSION AND FUTURE WORKS
Future work will focus on broadening the dataset of analyzed
DApps to deepen our understanding of smart contract
interactions within decentralized applications. DAppRadar
offers valuable data, including new releases and trending

applications across categories, which could be useful for
more comprehensive studies. Currently, our research focuses
on Ethereum-based DApps, giving us a specific view of
smart contract interactions. To provide a broader picture,
we plan to extend our analysis to DApps built on other
platforms like EOS, Solana, Hyperledger, and Cardano. Each
of these platforms uses its own programming language for
smart contract development, necessitating the creation of
new parsers for each of them. For example, while Ethereum
primarily uses Solidity, Hyperledger employs languages such
as JavaScript and Python.

In addition, we aim to study the evolution of DApps within
the Ethereum ecosystem by comparing older and newer
applications. Such a comparative analysis would allow us to
understand changes in DApp structures and the evolution of
smart contract interactions over time.

In this paper, we have introduced a tool designed to extract
interactions among smart contracts in decentralized appli-
cations. The tool accomplishes this by parsing the Abstract
Syntax Tree to extract various elements including contract
calls, modifiers, constructors, and events. This extraction
offers a more complete understanding of the decentralized
application being analyzed. The tool serves as a valuable
resource for both developers and researchers aiming to grasp
the purpose and structure of a decentralised application,
the interactions among its smart contracts and functions,
as well as the links with external libraries. By providing these
insights, our tool paves the way to a more in-depth analysis
and further improvements of smart contracts’ and DApps’
development, contributing to strengthening the evolving
landscape of blockchain technology.

REFERENCES
[1] A. Ali, Z. U. Abideen, and K. Ullah, ‘‘SESCon: Secure Ethereum smart

contracts by vulnerable patterns’ detection,’’ Secur. Commun. Netw.,
vol. 2021, pp. 1–14, Sep. 2021.

[2] A. S. Asratian, T.M. Denley, and R. Häggkvist,Bipartite Graphs and Their
Applications, vol. 131. Cambridge, U.K.: Cambridge Univ. Press, 1998.

[3] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,
N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, and
S. Zanella-Béguelin, ‘‘Formal verification of smart contracts: Short paper,’’
in Proc. ACM Workshop Program. Lang. Anal. Secur., 2016, pp. 91–96.

[4] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, ‘‘Vandal: A scalable security analysis framework for smart
contracts,’’ 2018, arXiv:1809.03981.

[5] W. Cai, J. Chen, J. Yu, and L. Gao, ‘‘A software vulnerability detection
method based on deep learning with complex network analysis and sub-
graph partition,’’ Inf. Softw. Technol., vol. 164, Dec. 2023, Art. no. 107328.

[6] H. Chu, P. Zhang, H. Dong, Y. Xiao, S. Ji, and W. Li, ‘‘A survey on smart
contract vulnerabilities: Data sources, detection and repair,’’ Inf. Softw.
Technol., vol. 159, Jul. 2023, Art. no. 107221.

[7] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and
R. Hierons, ‘‘Smart contracts vulnerabilities: A call for blockchain
software engineering?’’ in Proc. Int. Workshop Blockchain Oriented Softw.
Eng. (IWBOSE), Mar. 2018, pp. 19–25.

[8] E. Estrada, The Structure of Complex Networks: Theory and Applications.
Oxford, U.K.: Oxford Univ. Press, 2012.

[9] S. Ferretti and G. D’Angelo, ‘‘On the Ethereum blockchain structure:
A complex networks theory perspective,’’ Concurrency Comput., Pract.
Exper., vol. 32, no. 12, p. e5493, Jun. 2020.

[10] Y. Gao, G. Xu, Y. Yang, X. Niu, and S. Guo, ‘‘Empirical analysis of
software coupling networks in object-oriented software systems,’’ in Proc.
IEEE Int. Conf. Softw. Eng. Service Sci., Jul. 2010, pp. 178–181.

VOLUME 12, 2024 28393

https://dappradar.com/


G. Ibba et al.: MindTheDApp: A Toolchain for Complex Network-Driven Structural Analysis

[11] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, ‘‘Checking smart contracts
with structural code embedding,’’ IEEE Trans. Softw. Eng., vol. 47, no. 12,
pp. 2874–2891, Dec. 2021.

[12] T. Górski, ‘‘Reconfigurable smart contracts for renewable energy exchange
with re-use of verification rules,’’ Appl. Sci., vol. 12, no. 11, p. 5339,
May 2022.

[13] Á. Hajdu and D. Jovanovic, ‘‘Smt-friendly formalization of the solidity
memory model,’’ in Proc. ESOP, 2020, pp. 224–250.

[14] K. He, P. Liang, R. Peng, B. Li, and J. Liu, ‘‘Requirement emergence
computation of networked software,’’ Frontiers Comput. Sci. China, vol. 1,
no. 3, pp. 322–328, Jul. 2007.

[15] P. Hegedus, ‘‘Towards analyzing the complexity landscape of solidity
based Ethereum smart contracts,’’ inProc. 1st Int. Workshop Emerg. Trends
Softw. Eng. Blockchain, 2018, pp. 35–39.

[16] M. M. A. Khan, H. M. A. Sarwar, and M. Awais, ‘‘Gas consumption
analysis of Ethereum blockchain transactions,’’ Concurrency Comput.,
Pract. Exper., vol. 34, no. 4, p. e6679, Feb. 2022.

[17] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, ‘‘Ethereum
smart contract analysis tools: A systematic review,’’ IEEE Access, vol. 10,
pp. 57037–57062, 2022.

[18] Z. Liu, M. Jiang, S. Zhang, J. Zhang, and Y. Liu, ‘‘A smart
contract vulnerability detection mechanism based on deep learning
and expert rules,’’ IEEE Access, vol. 11, pp. 77990–77999,
2023.

[19] N. Lu, B. Wang, Y. Zhang, W. Shi, and C. Esposito, ‘‘Neucheck: A more
practical Ethereum smart contract security analysis tool,’’ Softw. Pract.
Exp., vol. 51, no. 10, pp. 2065–2084, 2021.

[20] M. Newman, A. Barabási, and D. Watts, The Structure and Dynamics of
Networks. Princeton Univ. Press, 2011.

[21] R. Norvill, B. Pontiveros, R. State, and A. Cullen, ‘‘Visual emulation for
Ethereum’s virtual machine,’’ in Proc. IEEE/IFIP Netw. Oper. Manag.
Symp., Apr. 2018, pp. 1–4.

[22] T. Parr, The Definitive ANTLR 4 Reference. The Pragmatic Bookshelf,
2013, pp. 1–326.

[23] G. A. Pierro, R. Tonelli, and M. Marchesi, ‘‘An organized repository of
Ethereum smart contracts’ source codes and metrics,’’ Future Internet,
vol. 12, no. 11, p. 197, Nov. 2020.

[24] G. Antonio Pierro and R. Tonelli, ‘‘PASO: A web-based parser for solidity
language analysis,’’ in Proc. IEEE Int. Workshop Blockchain Oriented
Softw. Eng. (IWBOSE), Feb. 2020, pp. 16–21.

[25] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, ‘‘Security analysis
methods on Ethereum smart contract vulnerabilities: A survey,’’ 2019,
arXiv:1908.08605.

[26] S. Sayeed, H. Marco-Gisbert, and T. Caira, ‘‘Smart contract: Attacks and
protections,’’ IEEE Access, vol. 8, pp. 24416–24427, 2020.

[27] M. Á. Serrano, M. Boguñá, and A. Vespignani, ‘‘Extracting the multiscale
backbone of complex weighted networks,’’ Proc. Nat. Acad. Sci. USA,
vol. 106, no. 16, pp. 6483–6488, Apr. 2009.

[28] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, ‘‘Smartcheck: Static analysis of
Ethereum smart contracts,’’ in Proc. 1st Int. Workshop Emerg. Trends
Softw. Eng. Blockchain, 2018, pp. 9–16.

[29] K. Tjiam, R. Wang, H. Chen, and K. Liang, ‘‘Your smart contracts are not
secure: Investigating arbitrageurs and oracle manipulators in Ethereum,’’
in Proc. 3rd Workshop Cyber-Secur. Arms Race, Nov. 2021, pp. 25–35.

[30] C. Wu, J. Xiong, H. Xiong, Y. Zhao, and W. Yi, ‘‘A review on
recent progress of smart contract in blockchain,’’ IEEE Access, vol. 10,
pp. 50839–50863, 2022.

[31] K. Wu, Y. Ma, G. Huang, and X. Liu, ‘‘A first look at blockchain-
based decentralized applications,’’ Softw., Pract. Exper., vol. 51, no. 10,
pp. 2033–2050, Oct. 2021.

[32] Y. Xu, G. Hu, L. You, and C. Cao, ‘‘A novel machine learning-based
analysis model for smart contract vulnerability,’’ Secur. Commun. Netw.,
vol. 2021, pp. 1–12, Aug. 2021.

[33] W. Zou, D. Lo, P. Kochhar, X. Le, X. Xia, Y. Feng, Z. Chen, and B. Xu,
‘‘Smart contract development: Challenges and opportunities,’’ IEEE Trans.
Softw. Eng., vol. 47, no. 10, pp. 2084–2106, Oct. 2021.

28394 VOLUME 12, 2024


