
Received 13 December 2023, accepted 4 February 2024, date of publication 13 February 2024, date of current version 23 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3365947

Optimizing Shared E-Scooter Operations Under
Demand Uncertainty: A Framework Integrating
Machine Learning and Optimization Techniques
NARITH SAUM 1,2, SATOSHI SUGIURA 1, AND MONGKUT PIANTANAKULCHAI 2
1Division of Engineering and Policy for Sustainable Environment, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan
2School of Civil Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand

Corresponding author: Narith Saum (saumnarith@gmail.com)

This work was supported in part by the ASEAN University Network/Southeast Asia Engineering Education Development Network
(AUN/SEED-Net) Collaborative Education Program (CEP) through the Sirindhorn International Institute of Technology, Thammasat
University, and Hokkaido University; in part by Japan Society for the Promotion of Science (JSPS) KAKENHI, under Grant 22H01610;
and in part by the Committee on Advanced Road Technology under the authority of the Ministry of Land, Infrastructure, Transport, and
Tourism in Japan, through the Project ‘‘Research on the Evaluation of Spatial Economic Impacts of Building Bus Termini,’’ Principal
Investigator: Prof. Yuki Takayama, Kanazawa University.

ABSTRACT The emergence of dockless shared e-scooters as a new form of shared micromobility offers a
viable solution to specific urban transportation problems, including the first-mile–last-mile issue, parking
constraints, and environmental emissions. However, this sharing service faces several challenges in daily
operation, particularly related to demand volatility, battery recharging, maintenance, and regulations, owing
to their trip and physical characteristics. Therefore, this study proposed a new data-driven rebalancing
framework for dockless shared e-scooters that incorporates demand and variance prediction, and Monte
Carlo sampling to simulate the expected demand. Thus, demand uncertainty and the collection of low-battery
and broken e-scooters were included in the rebalancing formulation to minimize user dissatisfaction and
operating costs. Rebalancing optimization is an NP-hard problem; in this study, the small-size problem was
solved using the integer linear programming (ILP) solver GNU Linear Programming Kit, and the large-size
problem was solved using the proposed hybrid ant colony optimization–ILP algorithm (ACO–ILP). This
framework was evaluated on a real-world dataset fromMinneapolis, Minnesota, which demonstrated that the
demand and variance prediction efficiently allocated the uncertainty while reducing the overall uncertainty,
leading to shorter driving distances and lower rebalancing costs relative to baseline cases.

INDEX TERMS Shared e-scooter, integer linear programming, ant colony optimization, gradient boosting,
SGARCH, demand uncertainty.

I. INTRODUCTION
The first-mile–last-mile problem is a common transportation
problem in many urban areas globally, owing to improper
planning of public transit, in addition to budget constraints
and urban sprawl. The private sector has stepped in to fill
this transportation gap by supplying shared transportation
modes—shared bikes, shared electric (e-)bikes, and shared e-
scooters—that are operated as either dock-based or dockless
systems. Dock-based systems are mainly used for shared
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bikes and require bikes to be picked up or dropped off at
specific stations. As the capacity of a station is dictated
by its number of docks, users of shared dock-based bikes
sometimes cannot finish their trips at the most convenient
station if it has no available capacity and thus have to finish
their trips at a less convenient station that has available
capacity. In contrast, users of dockless shared bikes or e-
scooters can pick up or properly park a dockless shared bike
or e-scooter at any public space within a given operational
area. However, although this dockless shared mobility is
convenient, dockless bikes or e-scooters sometimes obstruct
the public (such as by impeding sidewalk access), negatively
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affect urban esthetics, or are vandalized. To handle these
problems, operators are required to remove excess vehicles
in a timely manner or provide proper parking areas. Another
type of distribution regulation involves the necessity of
distributing shared e-scooters to disadvantaged communities,
such as those with low income, minority populations,
or limited access to public transit, in order to ensure vehicle
equity [1], [2].

Shared bikes were first introduced in Amsterdam in 1965
[3], whereas shared e-scooters were first introduced in
Singapore in 2016 and in the United States in 2017 [1].
Nevertheless, in the United States in 2019, the total number
of trips of shared e-scooters (96 million trips) surpassed
that of dockless and dock-based shared bikes combined
(40 million trips), as e-scooter services are provided in
more than 100 cities in the United States [4]. This shared
micromobility has been comprehensively reviewed [1], [5],
[6]. Moreover, shared e-scooters have gained much attention
from researchers in terms of policy and regulation [2],
[7], [8], [9], [10], [11], [12], spatiotemporal trip charac-
teristics [5], [13], [14], [15], [16], [17], [18], life cycle
assessment [19], [20], [21], [22], and social perception
[23], [24], [25], [26].

Regarding short-term demand prediction, a novel spa-
tiotemporal graph capsule neural network called GCScoot
has been developed to forecast the trip flow of shared e-
scooters by considering deployment reconfiguration [27],
[28]. GCScoot achieved start-of-art performance compared
with baseline models when it was evaluated on open
datasets from four cities in the United States (Austin,
Texas; Louisville, Kentucky; Minneapolis, Minnesota (MN);
and Chicago, Illinois). In addition, other recent studies
have employed or proposed various prediction models,
such as seasonal autoregressive integrated moving average
and generalized autoregressive conditional heteroskedasticity
(GARCH) [29], encoder–recurrent neural network–decoder
framework [30], masked fully convolutional networks [31],
graph convolutional networks [32], long short-term mem-
ory [33], and a bagging ensemble of several decision
tree-based models [34].
However, there have been few studies on the opera-

tional planning of shared e-scooters, including recharging
e-scooters, fleet size design, e-scooter distribution and
rebalancing, and facility location design. Masoud et al. [35]
addressed a shared e-scooter recharging problem formu-
lated as an ILP by modifying a College Admission (CA)
algorithm to determine the optimal allocation of freelance
chargers. Similarly, Ciociola et al. [36] adopted Poisson
processes to examine the effects of fleet size and battery
charging on the simulated demand of shared e-scooters.
Additionally, the deep learning model 3D-CLoST was used
to predict shared e-scooter demand before applying a greedy
relocating strategy by workers [37]. Osorio et al. [38]
incorporated the possibility of charging e-scooters on
overnight rebalancing vehicles and formulated a mixed-
integer program. To solve large-instance problems, they

developed a discrete-continuous hybrid model that integrates
line haul and local operations and evaluated the model using
a randomly generated demand based on normal distributions.
Fathabad et al. [39] developed a two-stage stochastic program
for short- and long-term operational planning of shared e-
scooters. The first stage minimizes the investment costs
(of charging facilities, e-scooter fleet size, and relocating
schedules), whereas the second stage optimizes the short-
term operational costs (the relocation cost, charging cost, and
penalty of unserved demand). Losapio et al. [40] devised E-
Scooter Balancing–DeepQNetwork, amulti-agent deep rein-
forcement learning approach that minimizes a rebalancing
operation and battery swapping by incentivizing customers
to pick up e-scooters in one-hop neighboring zones. The
location of charging stations for shared e-scooters was opti-
mized, taking into account energy consumption influenced
by dynamic motion, location model, 3-dimensional road
geometry, and road surface characteristics [41]. Finally,
[42] optimized the locations of charging stations for a
shared e-scooter system by using a multi-criteria decision
protocol based on a geographical information system, with
the aim of integrating the shared e-scooter system with
existing public facilities, points of interest, and population
densities.

Shared e-scooters are mainly used for short trips (i.e.,
a distance and duration of approximately 1.5 km and
10 minutes, respectively) and particularly for tourism and
recreational activities [6], [29], [31], [43], and their ridership
is more volatile than that of shared bikes, which are mainly
used for commuting. Shared bike ridership exhibits two
peak-demand periods, one during the morning rush hour
and one during the evening rush hour, whereas shared e-
scooter ridership is high from morning until late evening.
The pickup and drop-off demand in a dock-based system is
bounded by the number of docks or station capacity, whereas
the dockless system does not have demand boundaries,
resulting in greater fluctuations in demand or higher demand
volatility. Owing to shared e-scooters’ ridership pattern and
dockless nature, they require more frequent rebalancing
to satisfy their fluctuating demand. In other words, two
rebalancing operations for the two peak demand periods
of shared bikes may be sufficient, but shared e-scooters
may need a greater number of rebalancing operations and a
shorter planning horizon.Moreover, shared e-scooters require
intensive maintenance [16] and have a short service life [20],
as they are built to be lightweight and easy to ride, and
require battery swap-out or recharging when their battery
power is low. Compared with the former scenario, the latter
scenario (i.e., recharging the battery) is easier to incorporate
with the rebalancing process and thus was the focus of the
current study. In this scenario, e-scooters with low-battery
power are relocated to nearby charging facilities, particularly
charging stations relying on renewable energy, such as solar
power [44].

Few previous studies on shared e-scooters have inves-
tigated short-term operational planning (i.e., within one
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day planning such as hourly, etc.), particularly regarding
accounting for demand uncertainty. In this regard, a queuing
model with Poisson distribution of demand is commonly
employed in bike sharing, but this technique has a few
disadvantages. First, the demand uncertainty in the queuing
model is higher compared with the demand prediction
approach, and covering this uncertainty results in high
operational costs (see Fig. 2). Second, the actual demand of
shared micromobility is highly volatile and affected by many
exogenous factors, so it does not follow Poisson distribution
(see Section IV-A). On the other hand, several studies have
applied machine learning or deep learning models to predict
short-term demand for rebalancing operations. However,
deploying e-scooters solely based on predictions from their
models results in an undesired service level because pre-
diction error is not considered. Therefore, the present study
developed a novel data-driven framework for the short-term
rebalancing of shared e-scooters that considers both e-scooter
and trip characteristics. The main objective of this framework
is to relocate the limited number of e-scooters to areas
projected to have the highest expected demand. The uncertain
demand of shared e-scooters is primarily minimized by
demand prediction, whereas the variance prediction model,
SGARCH, allocates the remaining uncertainty based on
the conditional heteroskedasticity approach. In this context,
the term ‘‘allocation’’ refers to the time dependence of
forecasted variance by SGARCH on the current trend of
demand volatility and the performance of demand prediction
models compared to constant or seasonal (daily or weekly)
variances. Our framework is well-suited for static rebalancing
planning within a planning horizon ranging from a few to
a couple of hours. However, the proposed framework can
also be expanded to accommodatemultiple planning horizons
in future research. The contributions of this study are as
follows.
• Monte Carlo sampling was adopted to simulate the
demand uncertainty of shared e-scooters according to
the trip gap predicted by Gradient Boosting (GB)
regression and the variance and probability distribution
predicted by the seasonal generalized autoregressive
conditional heteroskedasticity (SGARCH).

• The static vehicle-based rebalancing problem was
formulated as an ILP problem to address demand
uncertainty, the collection of broken e-scooters to the
depot, the relocation of low-battery e-scooters to nearby
charging stations, and distribution regulations. Two
ILP formulations were constructed with known and
unknown route sequences, while the objective function
and relevant constraints were modified to facilitate prac-
tical implementation, specifically by penalizing specific
unmet demands rather than deviations in requests.

• Integer Linear Programming solver (GLPK) and
a hybrid ant colony optimization–ILP (ACO–ILP)
algorithmwere used and proposed, respectively, to solve
the rebalancing tasks with demand scenarios generated
by the Monte Carlo approach. A real-world dataset of

dockless shared e-scooters operating in Minneapolis
(MN) was chosen as the case study.

The remainder of this paper is separated into five
sections. Section II reviews studies on the rebalancing
of transportation-sharing services, especially bike sharing.
Section III presents the methodology used in the research
framework, demand prediction, variance prediction, rebal-
ancing formulation, and the ACO–ILP algorithm. Section IV
presents the data collection, description, and predicted short-
term demand and variance. Section V provides the empirical
results of rebalancing optimization, and Section VI concludes
this paper and suggests areas for future investigation.

II. LITERATURE REVIEW
A. REBALANCING OF SHARING SERVICES
As mentioned in the previous section, there has been limited
research on the operational planning of shared e-scooters,
but we can also learn from other sharing services, especially
shared bikes, which are the most similar modes to shared
e-scooters. Shui and Szeto [45] reviewed studies and found
that they have focused on different characteristics of shared-
bike rebalancing, such as objective functions (e.g., distance,
cost, and emission), constraints (e.g., budget, service time,
and inventory), optimization algorithms (exact or heuristic
algorithms), deterministic or stochastic problems, and static
or dynamic problems. Several other studies also summarized
these challenges of rebalancing problems, including method-
ology [46], objectives [47], [48], problem size [49], number
of rebalancing vehicles [50], [51], damaged bikes [52],
equilibrium of station [53], and multi-step matching [54].
The present study focused on problems of rebalancing
shared bikes under demand uncertainty and with predicted
demand.

Shared bikes are commonly used for commuting and thus
have a peak-demand period in the morning (6 am–10 am)
and in the evening (4 pm–8 pm) [47], [55]. Owing to this
and their stations’ capacities, the demand for shared bikes
is more stable than that for dockless shared e-scooters.
Therefore, studies have typically assumed that bike-sharing
demand follows a Poisson distribution. For instance, it has
been assumed that a dynamic shared-bike inventory level
can be represented using continuous-time Markov chains
(CTMCs) with Poisson processes of pickups and drop-offs,
and thus this level has been modeled as a double-ended
queuing system. The results of this modeling approach were
examined using a real-world dataset, bike-sharing in Tel
Avis, Israel [56]. Similarly, the unsatisfied demand or service
level was derived from the historical data of bike sharing
in Palma de Mallorca, Spain, using a simulation approach
(Monte Carlo approximation) and an approximate approach
(Skellam distribution) [57]. The approach of using CTMCs
was adapted for the overnight rebalancing of the Citi Bike
system in New York City, whereas small- and large-scale
problems have been solved using the ILP solver and a greedy
algorithm, respectively [58]. Likewise, a non-stationary
queuing (Mt/Mt/1/K) model with exponentially distributed
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pickups and drop-offs was developed for the static rebalanc-
ing of bike-sharing services in Boston, Massachusetts (Hub-
way), andWashington, DC (Capital Bikeshare) [59]. Seo [60]
accounted for the demand uncertainty in dynamic rebalancing
by adopting a Markov decision process based on Poisson
distribution, whose mean was the demand predicted by a
random forest regression. The author examined bike sharing
in Seoul, South Korea, as a case study, but a chi-squared
goodness-of-fit test showed that only 77% of the stations in
the study had demands that followed a Poisson distribution.
Lu [61] developed a robust multi-period bike fleet allocation
scheme by assuring the worst-case scenario (i.e., maximum
demand) for bike sharing in New Taipei City, Taiwan.

Other studies have accounted for demand uncertainty in
rebalancing problems using sample average approximation
from Monte Carlo sampling. For example, the operational
planning of shared autonomous electric vehicles in Shanghai,
China, was conducted using the Monte Carlo method to
generate daily demand from a normal distribution based on
the average demand [62]. Regarding bike sharing, Monte
Carlo sampling was used to generate demand scenarios
in Bergamo, Italy, based on four probability distributions
(uniform, exponential, normal, and log-normal probability
distributions) with a mean and standard deviation derived
from historical data [63]. Similarly, demand scenarios
for New Taipei City, Taiwan, were generated from a
truncated normal distribution with a mean and standard
deviation derived from historical demand (weekly) data [64].
Instead of using the aforementioned sampling technique,
Dell’Amico et al. [65] used historical data in each day as
scenarios and solved stochastic programming models via
branch-and-cut, deterministic equivalent program, L-shaped,
and heuristic algorithms based on several open datasets.

On the other hand, machine learning and deep learning
models have satisfactory prediction performance and have
thus been integrated into rebalancing frameworks. For exam-
ple, Regue and Recker [66] formulated chance-constrained
programming for dynamic bike-sharing rebalancing based
on a normal distribution, which had the demand predicted
by GB and the model error on a test set as its mean and
variance, respectively. A random forest regressor was used
to forecast the station-level rental and return demands of bike
sharing in Nanjing, China, with static rebalancing formulated
according to predicted demand and as a hub-first–route-
second problem [67]. A spatiotemporal graph neural network
was devised to predict city-wide bike demand for truck-
based rebalancing in New York City [68]. Similarly, a deep
learning model was embedded in a data-driven framework
for a deterministic dynamic rebalancing of bike sharing in
Beijing, China [47]. A random forest was used to forecast
future demand and inventories for the repositioning of bike
sharing in Seoul, South Korea [69]. Yu et al. [70] constructed
a hybrid model, SARIMA-LSTM, to predict pickup and
drop-off demands, which they used to plan rebalancing
for bike sharing around rail transit stations in Xicheng,
Beijing.

In summary, the methods for the short-term operational
planning of bike sharing have mostly accounted for demand
uncertainty by using a Markov chain and assuming that
demand follows a probability distribution (usually a Poisson
distribution). Otherwise, rebalancing has been planned using
demand predicted by machine learning and deep learning
models. Regue and Recker [66] included the error of the
demand prediction model in their rebalancing of shared
bikes, but they did not properly examine the variance
and probability distribution. Therefore, the present study
used SGARCH model to examine the residuals of the
demand prediction model, as this regression model can
reduce the average demand uncertainty and provides the
probability distribution and temporal variance, which are
the essential parameters for Monte Carlo sampling. A few
previous studies have included collecting broken bikes in
their rebalancing problems [47]. However, no studies have
particularly addressed the distribution regulations and the
recharging issue, specifically for electric bikes (e-bikes).
This lack of attention can be linked to the fact that, despite
their high cost, similar to shared e-scooters, e-bikes are
frequently deployed as dock-based mode at low percentages
alongside regular bikes. Nonetheless, e-bikes are generally
perceived as less attractive. Hence, this study aims to
handle all four characteristics of dockless shared e-scooters:
normal/usable, faulty/broken, and low-battery e-scooters, and
distribution regulations. Furthermore, this study formulates
the rebalancing problem with stochastic demand based on
Sample Average Approximation (SAA) approach, so that
a target service level can be achieved through parameter
settings. This approach also allows us to formulate the
rebalancing task as an ILP problem with unknown and
known route sequences, which can be solved using exact and
heuristic algorithms, respectively.

B. OPTIMIZATION ALGORITHMS
Rebalancing problems in shared micromobility, including
e-scooter and bike sharing, involve the use of dedicated
rebalancing vehicles and can be classified as a variant of
the one-commodity pickup and delivery capacitated Vehicle
Routing Problem (VRP) or one-commodity pickup and
delivery Traveling Salesman Problem (TSP). When dealing
with multiple types of e-scooters or bikes, these problems
become multi-commodity VRP or TSP [71], which is also
the focus of this study. Therefore, these rebalancing problems
fall into the category of NP-hard optimization problems,
where computational time grows exponentially with the
number of nodes. These rebalancing problems are typically
addressed using exact or heuristic algorithms, depending on
problem size. For instance, rebalancing problems in shared
micromobility are often formulated as integer programming,
allowing them to be tackled by exact algorithms such as
(mixed) ILP (with decomposition) [54], [66], [72], [73],
branch-and-cut [55], [74], branch-and-bound [75], branch-
and-reject [76], and constraint programming (CP) [59].
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Various heuristic algorithms have also been developed or
applied to address these NP-hard optimization problems.
These include (hybrid) genetic algorithm [48], [71], ant
colony optimization with CP (ACO–CP) [77], discrete-
continuous hybrid model [38], CA [35], extended particle
swarm optimization [52], [53], greedy-genetic heuristic [46],
tabu search [49], neighborhood search [50], and neigh-
borhood search–variable neighborhood descent [51]. Other
algorithms can be found tabulated in the references [46], [47],
[48], [50].

NP-hard optimization problems often pose challenges for
ILP solvers in generating desirable solutions, or even feasible
ones, within limited time constraints, particularly in the
case of stochastic problems. Conversely, heuristic algorithms,
while unable to guarantee the global optimal solution,
often provide better feasible solutions within a restricted
computational time frame. To ensure scalability, this study
proposed a hybrid heuristic algorithm, named ACO–ILP
algorithm, which combines ant colony optimization (ACO)
with an ILP solver to solve the rebalancing optimization tasks
of dockless shared e-scooters. A similar hybrid algorithm,
ACO–CP, was developed for the deterministic rebalancing
of bike sharing [77]. However, in our study, ACO was
utilized to generate a population of route sequences in each
iteration, while the ILP solver was employed to optimize
the pickup and drop-off operations specifically for each of
these predefined route sequences (i.e., rebalancing with a
known route sequence). The proposed ACO–ILP algorithm
also supports parallel computing, which could substantially
reduce computational time, especially when dealing with
large-scale problems. This feature makes it suitable for
scalability and practical implementation.

III. METHODOLOGY
A. RESEARCH FRAMEWORK
The typical procedure for dockless shared e-scooter trips
involves several steps: searching for nearby e-scooters by
looking around or using a phone application, walking to
the e-scooter location, unlocking the e-scooter with a phone
application, riding the e-scooter to the destination, properly
parking the e-scooter, and finally, terminating the trip.
Although the trip termination process in dockless mode is
very convenient, users may choose not to start their trip
with an e-scooter if the distance they have to walk to pick
up the e-scooter is too far. To address this issue, operators
commonly partition the operational area into walkable (ex.,
200 – 500 meters) zones and ensure that e-scooters are
always present in these zones. One common approach
operators employ is rebalancing or relocating e-scooters from
zones with excess e-scooters to zones with fewer e-scooters.
Under various operational constraints, especially the limited
availability of e-scooters, operators regularly assess the status
of each zone and perform rebalancing activities to minimize
unsatisfied demands (or staving zones) during the planned
timeframe. To improve operational efficiency, operators can

utilize relevant information and historical trip data to forecast
future demands, i.e., the number of pickup and drop-off
demands in each zone during specific time intervals. This
information is then utilized to optimize the rebalancing task,
which involves determining the route path for the rebalancing
vehicles and the number of e-scooters to be picked up or
dropped off in each zone.

Fig. 1 shows the research framework, which consisted of
three main parts: (1) data collection andmanipulation, (2) trip
gap prediction using GB regression and variance prediction
using SGARCH, and (3) rebalancing optimization. As shared
e-scooters are a short-range transportation mode, their short-
term demand is susceptible to external factors, such as
weather, seasonal (weekly and yearly) factors, holidays, and
special events [5]. These factors were thus considered and
manipulated in the demand prediction models. E-scooters
are a dockless or free-floating shared-transportation mode,
so users can pick up and park e-scooters anywhere within
a given operating area, except on private properties or
in forbidden zones stipulated by authorities. Gridding is
commonly used to aggregate spatial trips, but this technique
does not account for the concentration of demand or the
similarity of trip purposes. For example, a group of trips in
a shopping mall, park, or school may be separated into a few
cells if the group is located on the edge of a grid. Additionally,
studies have observed aggregation based on postal codes or
administrative areas (communities or wards), but these areas
are often too large for the short-term rebalancing of shared e-
scooters. Hence, the present study used a k-means clustering
algorithm to aggregate the spatial ridership of shared e-
scooters for the number of clusters of 15, 30, and 60.

FIGURE 1. Research framework.

To deal with the sparsity of trip flow, the present study
predicted the trip gap or net demand, which is the difference
in demand between the trip-starts (i.e., the trip generation
or pickup demand) and trip-ends (i.e., the trip arrival or
drop-off demand). A positive trip gap indicates that there
are more trip-starts than trip-ends. The hyperparameters of

VOLUME 12, 2024 26961



N. Saum et al.: Optimizing Shared E-Scooter Operations Under Demand Uncertainty

the GB regressor for trip gap prediction were optimized
through Bayesian Optimization (BO), and the residuals of
trip gap prediction were used to train the SGARCH model.
Then, based on the predicted trip gap and variance, Monte
Carlo sampling was conducted to simulate the demand
uncertainty of shared e-scooters for rebalancing optimization.
This optimization problem was solved using the ILP solver
GNU Linear Programming Kit (GLPK) and the hybrid
ACO–ILP algorithm. Studies have typically derived the
stochastic nature of shared-bike demand from historical data,
where each scenario has been a seasonal instance, or a sample
obtained byMonte Carlo simulation [63], [64], [65]. To avoid
an assumption about the distribution of demand (as this is
not a practical assumption regarding the demand for shared
e-scooters), seasonal (daily and weekly) historical data were
selected as baseline cases for rebalancing planning. Finally,
the objective values for all the rebalancing optimization
problems—the ILP solver andACO–ILP results for the actual
trip gap, the historical daily and weekly trip gap, and the
simulated trip gap—were compared. The comparison was
examined using 30 random instances from the testing dataset
(see Section V). The aim of comparing the ILP solver with the
proposed ACO–ILP algorithm is to demonstrate the effective-
ness of these two algorithms in handling different problem
sizes, thus highlighting their scalability. Additionally, the
purpose of comparing the simulated demands by the Monte
Carlo method with the baseline cases, namely historical daily
and weekly trip gaps, is to showcase the effectiveness of
minimizing and allocating the demand uncertainty through
demand and variance prediction.

B. DESCRIPTION OF REBALANCING PROBLEM
Due to data limitations and the complex nature of actual
operations of shared micromobility involving bikes, e-bikes,
or e-scooters, operational planning is usually based on
several assumptions that may vary between studies. Even
though some assumptions can be allocated through parameter
setting, worst-case scenario, etc. The present study made the
following assumptions.

• Assumption 1: The distributions of the trip-start
(pickup) and trip-end (drop-off) of a specific cluster are
uniform along the time interval (1t). That is, all of the
e-scooters from the trip-end can be used for pickup trips,
particularly if the drop-off demand is lower than the
pickup demand (or the trip gap is positive). For instance,
an empty cluster (i.e., one with no e-scooter in its area)
that has 15 trip-starts and 10 trip-ends (i.e., a trip gap
of +5) is supposed to have only five unmet demands if
there is no other interruption, whereas it could have up
to 15 unmet demands if all of the trip-starts are in the
first half of the time interval and all of the trip-ends are
in the second half of the time interval.

• Assumption 2: The demand in each cluster does not
change during the planning and rebalancing process, i.e.,
static rebalancing planning.

• Assumption 3: Owing to the dockless sharing mode,
a customer picks up an e-scooter if it is available in
the same cluster (i.e., the walking distance is ignored);
otherwise, the customer leaves the system (i.e., there is
unmet demand).

• Assumption 4: Broken e-scooters are repaired at the
only one depot, whereas low-battery e-scooters are
recharged at charging stations or the depot.

• Assumption 5: There is only one rebalancing vehicle,
and it must visit all of the nodes, including the charging
stations and demand clusters.

The demand uncertainty is mainly minimized in the
demand prediction step, commonly presenting in the form
of a smaller mean squared error (MSE) compared to
the historical average. Since the explanatory features are
included in the demand prediction model, GB, the residuals
are supposed to be white noise or random walk. However,
the remaining uncertainty (or variance of residuals) can
be further mitigated through a variance prediction model
explicitly designed for heteroscedastic datasets. Even though,
the primary objective of variance prediction is to allocate
uncertainty based on the concept of conditional variance,
i.e., temporal variance. Using the predicted trip gaps and
variances, the operator can relocate the limited number of e-
scooters to the area that maximizes the expected profit.

This paper addresses the rebalancing problem on a
complete graph G = (N ,A), where N is the set of all nodes
(including depot, charging stations, and demand clusters),
and A is the set of links or edges between these nodes. Other
notations used in this study are presented in Table 1. Three
types of e-scooters are considered: faulty (or broken), low-
battery, and usable (or normal) e-scooters. Faulty e-scooters
are collected and brought back to the depot for repair, whereas
low-battery e-scooters are relocated to charging stations or
the depot for battery recharging. Faulty e-scooters refer to
those with electronic or frame issues that require repair by
technicians at the depot, and this status is commonly reported
by customers. The operator has the flexibility to define the
threshold of battery level for categorizing e-scooters as low-
battery (e.g., the battery level required for an average trip
duration or the entire planning horizon). Therefore, the status
of these two types of e-scooters is assumed to be known by
the operator during the planning stage. In this case, several
parameters represent the current information known at the
beginning of the planning horizon, such as vehicle capacity
(B), driving distance (ci,j), the number of faulty (vfi ), low-
battery (vli), and usable (vui ) e-scooters at each node, as well
as the number of charging docks (Di).

The expected trip gap in this study is assumed to be
a parameter for rebalancing optimization despite being
simulated based on the predicted trip gap and variance. The
demand at the depot and charging stations is assumed to be
zero, while the expected net demand gθ

i in each cluster i is
simulated for the total scenarios of 2 using Monte Carlo
approximation. Several other parameters are user-defined,
including the threshold values for the minimum (C i) and
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TABLE 1. List of notations.

maximum (C i) number of e-scooters, and the unit cost of
driving distance (β0) and penalty terms (β1, β2, β3, β4, and
β5). The objective of rebalancing planning is to ensure that
the number of usable e-scooters remains within the specified
thresholds,

[
C i,C i

]
, which are enforced as optimization con-

straints. This study introduces the parameter, the minimum
number of usable e-scooters (C i), which serves as a safety
stock, allowing the operator to address the limitations of
assumptions (1)–(3), distribution regulations, and potential
demand (specifically when the demand prediction model is
trained on historical ridership data). Similarly, there are cases
where regulations require a timely response to locations with

an excessive number of e-scooters. Therefore, this study also
introduces themaximum number of e-scooters (C i) to prevent
such unfavorable situations. However, operators have the
flexibility to ignore this parameter by assigning a large value
or setting the unit cost of the penalty term (β5) to zero. The
unit cost of pickup (β1) is introduced for two reasons. Firstly,
it aims to prevent unnecessary pickups, especially when the
pickup and drop-off occur at the same location. Secondly,
it serves as a tradeoff for the service level, meaning that
demand with a probability smaller than the ratio of β1/β4 is
considered not worth the cost of pickup. The higher values
of β2 and β3 lead to fewer faulty and low-battery e-scooters
remaining in the system, specifically after the rebalancing
operation. The unit penalty cost of unmet demand (β4) is
commonly set proportionally to the revenue or profit, but the
higher value might lead to a longer driving distance.

In each cluster i and scenario θ , unmet demand (U θ
i )

occurs when the available (vui ) and the drop-off amount (pui )
of usable e-scooters are less than the positive net demand
(gθ
i > 0). Consequently, the total inventory tends to approach

the upper bound value of the predicted net demand under the
constraint of total usable e-scooters. This approach leads to an
improvement in the service level while reducing the impact
of potential demand. One capacitated vehicle is assigned to
relocate the usable and low-battery e-scooters and collect
faulty e-scooters tominimize the operational objective, which
is defined as the sum of driving cost, pickup cost, and penalty
cost of unmet demand, and the remaining faulty, low-battery,
and excess e-scooters in the system.

The rebalancing optimization problem in this study
consists of two main types of decision variables: routing
variables (xij and aij), and pickup and drop-off variables
for different types of e-scooters (pfi , p

l
i, d

l
i , p

u
i , and dui ).

Previous studies commonly combined pickup and drop-off
operations as a single decision variable, representing pickup
or drop-off activities as positive or negative values. In this
study, we separate these two activities, ensuring all decision
variables are strictly positive integer values (nonnegative-
integer). Additionally, we introduce a penalty on pickup
activities to minimize unnecessary pickups and to achieve
a specific service level. The pickup variable for faulty
e-scooters (pfi ) is constrained by the number of faulty e-
scooters in each zone. For low-battery e-scooters, the pickup
activities (pli) may be required if there are low-battery e-
scooters present in each demand cluster and if there are more
low-battery e-scooters than charging docks at each charging
station. The drop-off of low-battery e-scooters (d li ) is only
allowed if there are available charging docks. For usable e-
scooters, the number of pickups (pui ) is allowed if there are
more usable e-scooters than the specific safety stock (C i),
while the drop-offs (dui ) are constrained by the availability
on the rebalancing vehicle.

C. DEMAND PREDICTION BY GRADIENT BOOSTING
As shown in Fig. 1, the short-term trip gap of shared
e-scooters was predicted byGB, a powerful machine-learning
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technique proposed by Friedman [78]. A GB model is an
ensemble decision-tree model based on a boosting approach
and achieves good prediction performance by iteratively
adding a new weak learner (decision tree) to minimize
remaining errors that have been generated by the previous
learners. The base estimator is a classification and regression
tree so that GB can be used for both classification and
regression problems. The detailed formulation and algorithm
of GB were presented by [78], whereas the loop (i.e.,
iteratively accumulating decision tree) of the GB regressor
comprises several essential steps: computation of the negative
gradient (starting with the mean value for the initial
prediction), fitting of the regression tree to predict the
negative gradient, calculation of the gradient descent step
size (or learning rate), and updating of the GB model or
prediction performance. In this study, the GB model was
trained using a Python module in the Scikit-Learn package,
GradientBoostingRegressor [79].
The GB regressor can achieve performance comparable

to deep learning models [80] but requires proper featuring
and hyperparameter tuning. There are several approaches for
hyperparameter optimization, such as manual search, grid
search, random search, sequential model-based approach,
and population-based approach. The sequential model-based
approach is commonly adopted to optimize hyperparameters
of machine learning and deep learning, as it can achieve a
near-globally optimal solution within a short computational
time. This approach uses surrogate and acquisition functions
to iteratively suggest a new candidate until the stopping
criteria are reached. Two popular algorithms in this approach
are Bayesian Optimization (BO) and Tree-structured Parzen
Estimator (TPE). In the BO algorithm, a Gaussian process
is used to construct a surrogate function from the evaluated
samples (starting with initial random samples), and the new
candidate has the highest expected performance (e.g., the
minimum mean squared error (MSE) on evaluation data)
that can be achieved using the probability of improvement,
expected improvement, or lower confidence bound as the
acquisition function. Further details of the BO algorithm can
be found in the literature [81]. This study selected the BO
with lower confidence bound due to its capability to handle
local optima, as it has a parameter, kappa, that balances the
tradeoff between exploration and exploitation.

In the present study, BO with the lower confidence bound
was employed to optimize the hyperparameters of the GB
algorithm in the Python package Scikit-Optimize or skopt
[82]. Most parameters of the BO algorithm were set as
default values, whereas the number of initial random samples
(n_random_starts), total number of evaluations (n_calls), and
coefficient of the lower confidence bound (kappa) were set to
50, 200, and 1.8, respectively. BOwas adopted to optimize the
MSE of the evaluation data and its ratio to that of the training
data, i.e., MSE_eval + MSE_eval/MSE_train. This objective
function aims to minimize overfitting and reduce the training
time by preventing the suggestion of complex models that
significantly and slightly reduce MSE_train and MSE_eval,

respectively. This setting of the BO algorithm was applied
to optimize five hyperparameters of the GB algorithm: the
lookback length (l), sampling rate (r), number of boosting
stages (n_estimators), maximum depth of the decision tree
(max_depth), and learning rate (learning_rate). Two of the
parameters (l and r) were related to input selection (see Fig. 1)
to enable the GB regressor to predict the future trip gap (t
+ 1). For hourly prediction, the input selection was drawn
from step t to step t− l − 1, with one sample being selected
in each r interval from t − l − 1 to t − r , and all of the
samples being selected from t − r − 1 to t . For example, if l
= 24 and r = 3, the list of historical data was [t − 23, t −
20, t − 17, t − 14, t − 11, t − 8, t − 5, t − 2, t − 1, t]. The
ranges of l and r were [13, 170] and [1, 13], respectively. The
lookback length thus covered the weekly pattern for hourly
trip gap prediction. The other three parameters (n_estimators,
max_depth, and learning_rate) of the GB algorithm were
optimized in the ranges [5, 400], [1, 20], and [0.01, 0.5],
respectively. Other parameters of the GB algorithm were set
as default values; i.e., the loss function was set as the squared
error, the minimum required number of samples to split was
set as 2, and the split quality was taken as the FriedmanMSE.

D. VARIANCE PREDICTION BY SGARCH
Although machine learning algorithms achieve state-of-art
performance, these models still have prediction errors, com-
monly reported as theMSE, root-mean-square error (RMSE),
or mean absolute error. As such, supplying e-scooters by
following the demands predicted using these models (i.e.,
ignoring the error term) would achieve a service level Type
I (or probability of shortage events) of only 50%. For
example, if operators supply e-scooters to 100 locations
based on predicted demands, around 50 locations (right-
side of residuals’ histogram or probability distribution)
may experience a shortage. In other words, the predicted
demand is an expected value or mean where roughly
50% of the actual demand lies above or below it. The
historical mean and variance have thus been used to simulate
stochastic scenarios under an assumed demand distribution.
However, the assumed distributions of trip-starts and trip-
ends are unrealistic, especially for shared e-scooters, as in

FIGURE 2. Effect of demand uncertainty on expected unmet demand.
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FIGURE 3. Trip clustering generated by the k-means algorithm (red stars = depot and charging stations; blue dots = centers of trip clusters; gray
dots = street centers of pickup and drop-off trips).

Section IV-A, and high uncertainty leads to a high operational
cost. For example, as shown in Fig. 2, two Gaussian trip-
gap models with different variations give different expected
unmet demands; i.e., higher uncertainty results in higher
expected unmet demand. Therefore, we can minimize the
operating cost by reducing the demand uncertainty through
demand prediction and selecting appropriate variation and
distribution models.

It was recently found that the residuals of a short-term
demand prediction model for shared e-scooters were not
white noise [29]. Thus, the present study examined the
heteroskedasticity of the residuals of trip gap prediction.
As the prediction is a time-series problem, a Lagrange

multiplier test was conducted to determine whether the
residuals of trip gap prediction from the previous section
were homoskedastic; if so, the variance was constant; if
not, the conditional variance of the residuals was forecasted
using the SGARCH model. An autoregressive conditional
heteroskedasticity (ARCH) model can be used to predict
future variance on the basis of conditional variance, with high
volatility and low volatility grouped together. Such a model
has only previous residuals as independent variables, whereas
the generalized form (GARCH) also includes previously
predicted variances [83]. Therefore, to capture the seasonal
pattern, seasonal residuals and predicted variances were
added to the GARCH model to construct the SGARCH
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model. A comprehensive explanation and other extensions
can be found in the referencemanual of STATA software [83].
The basic model of SGARCH(p, q)(P,Q, S) is expressed as
follows:

yt+1 = X t+1α + ϵt+1 (1)

Var (ϵt+1) = σ 2
t+1 = γ0 +

∑p

i=1
γp,iε

2
t+1−i

+

∑q

i=1
γq,iσ

2
t+1−i +

∑P

i=1
γP,iε

2
t+1−iS

+

∑Q

i=1
γQ,iσ

2
t+1−iS (2)

where, yt+1 denotes the residuals of the demand prediction
model, GB. Therefore, X t+1 = 1, and yt+1 is the sum
of a constant value (α) commonly close to zero and the
disturbance ϵt+1. In this case, the parameters (γ0, γp,i, γq,i,
γP,i, and γQ,i) of SGARCH model was estimated using the
maximum log-likelihood estimator with flexible distribu-
tions, i.e., a normal distribution ϵt+1 ∼ N.Dist(0, σ 2

t+1),
Student’s T distribution ϵt+1 ∼ T.Dist(0, σ 2

t+1, df), and
generalized error distribution. The SGARCH parameters
for forecasting the hourly conditional variance σ 2

t+1 were
σ 2
t , σ 2

t−1, σ
2
t−2, σ

2
t−23, σ

2
t−47, ε

2
t , ε

2
t−1, ε

2
t−2, ε

2
t−23 and ε2t−47

and the insignificant parameters (95%) were removed.
This means that the estimated variance at time t + 1 is
strongly influenced by residuals and predicted variances from
several of the most recent time steps (t , t-1, t-2) and the
corresponding hours from previous days (t-23 and t-47).
This conditional variance estimation properly allocates the
uncertainty throughout the day, resulting in a small variance
during nighttime and a high variance during daytime. Since
SGARCH assigns greater weight to recent trends, it is more
tolerant of long-term fluctuations compared to daily variance
(i.e., variance at the same hour of the day). The SGARCH
model was trained independently for each cluster using the
statistical software STATA [83]. Normal and Student’s T
distributions were considered, and the distribution with the
smallest standard deviation was selected. This distribution
and forecasted variance were then used to generate the
demand uncertainty via Monte Carlo simulation.

E. REBALANCING FORMULATION FOR THE ILP SOLVER
As reviewed in Section II, previous studies have designed
rebalancing problems with various objective functions,
predominantly focused on total driving distance [55] and
generalized cost [47], [65], [67], [68], [77]. These generalized
cost functions often share common terms, such as driving
distance or duration, as well as constraints like vehicle
capacity, pickup and drop-off constraints, among others.
However, there are also distinct terms and constraints specific
to each study in order to fulfill their respective objectives.
For instance, Chang et al. [47] devised deterministic rebal-
ancing problems for dockless bike sharing, incorporating a
generalized cost function encompassing driving cost, pickup
and drop-off cost, and penalty cost for unvisited zones where
requests exist. In contrast, Dell’Amico et al. [65] formulated

stochastic rebalancing for station-based bike sharing, with
a generalized cost function comprising driving cost and
penalized cost for supply deviation (slack and surplus) from
stochastic requests.

In this study, we adopt a generalized cost function as
the objective for stochastic rebalancing of dockless shared
e-scooters, aiming to minimize the cost associated with driv-
ing distance and pickup/drop-off operations. All four main
characteristics of this shared service are taken into account,
including stochastic demand, low-battery e-scooters, broken
e-scooters, and distribution regulations. Instead of imposing
penalties for deviation values from the requests, as seen in
previous studies, our approach introduces penalties related
to unmet demand, excess e-scooters, and remaining faulty
(i.e., broken or damaged) and low-battery e-scooters. The
penalty for unmet demand U θ

i includes both simulated
demands in each scenario gθ

i and the safety stock inventory
C i, which may also incorporate a distribution regulation
requiring a minimum number of e-scooters in a specific
region. Another distribution regulation (i.e., operators need
to respond to flooded e-scooters promptly) is addressed by
imposing penalties for excess e-scooters when the total e-
scooters in a specific zone surpass a specific threshold, C̄i.
Consequently, our objective function is more comprehensible
to non-experts, particularly when it comes to parameter
adjustment for practical implementation. Additionally, this
function facilitates the tradeoff between driving distance and
pickup and drop-off operations rather than strictly adhering
to request constraints.

As shown in the research framework in Fig. 1, the Monte
Carlo method was used to generate the demand uncertainty
based on the predicted trip gap (Section III-C) and the
predicted variance and distribution (Section III-D). These
random simulated trip gaps were assumed to have equal
probability or weight; therefore, the formulation of the short-
term rebalancing of shared e-scooters is as follows.

Minimize β0

∑
(i,j)ϵA

cijxij + β1

∑
iϵN

(
pfi + p

l
i + p

u
i

)
+ β2

∑
iϵN

Rfi + β3

∑
iϵN

Rli

+
β4

2

∑
iϵN ;θϵ2

U θ
i +

β5

2

∑
iϵN ;θϵ2

Eθ
i (3)

Subject to
∑

iϵN
xij = 1 ∀jϵN (4)∑

jϵN
xij = 1 ∀iϵN (5)

ai − aj + Nxij ≤ N − 1 ∀i, j| (i, j) ϵA− {1} ,

i ̸= j (6)

0 ≤ pfi ≤ v
f
i ∀iϵN (7)

0 ≤ pli ≤ max(0, vli − Di) ∀iϵN (8)

0 ≤ d li ≤ max(0,Di − vli) ∀iϵN (9)

0 ≤ pui ≤ max(0, vui − C i) ∀iϵN (10)

hfj − h
f
i − p

f
j +M

(
1− xij

)
≥ 0

∀i, j| (i, j) ϵA, j ≥ 2 (11)
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hfi − h
f
j + p

f
j +M

(
1− xij

)
≥ 0 ∀i, j|(i, j)ϵA

(12)

Rfi = vfi − p
f
i

∀iϵN (13)

hlj − h
l
i − p

l
j + d

l
j +M

(
1− xij

)
≥ 0

∀i, j|(i, j)ϵA, j ≥ 2 (14)

hli − h
l
j + p

l
j − d

l
j +M

(
1− xij

)
≥ 0

∀i, j|(i, j)ϵA (15)

Rli = max{vli − Di, 0} − p
l
i ∀iϵN (16)

huj − h
u
i − p

u
j + d

u
j +M

(
1− xij

)
≥ 0

∀i, j|(i, j)ϵA, j ≥ 2 (17)

hui − h
u
j + p

u
j − d

u
j +M

(
1− xij

)
≥ 0

∀i, j|(i, j)ϵA (18)

C i − v
u
i + p

u
i − d

u
i +max

{
gθ
i , 0

}
− U θ

i ≤ 0

∀iϵN , θϵ2 (19)

Rfi + R
l
i + v

u
i − p

u
i + d

u
i − g

θ
i − C̄i − E

θ
i ≤ 0

∀iϵN , θϵ2 (20)

hfi + h
l
i + h

u
i ≤ B ∀iϵN (21)

Algorithm 1 ACO–ILP Algorithm for the Rebalancing
Problem
1 Input:
2 complete non-directed graph: G = (N ,A)
3 distance function: c
4 rebalancing cost function: L
5 set all of the ACO parameters {ϕ, ω, ρ, #ants, #iterations}
6 initialize all of the pheromone trails τ0
7 iteration_result = []
8 for z← 1 to #iterations do
9 calculate the probability matrix: Pz =

[
τz−1

]ϕ
(1/c)ω

10 for k ← 1 to #ants do
11 routeAnt(k) [0]← 0
12 for i← 1 to N − 1 do
13 list the nodes to be visited: N k

i
14 normalize the probability of the remaining nodes:

Pkz,i
15 randomly choose the next node according to the

probability: next_node
16 routeAnt(k) [i]← next_node

17 evaluate the cost function of each ant: Lk
18 iteration_result.add ([min {Lk } ; argmin {Lk }])
19 update the pheromone trails: τz = (1− ρ) τz−1 +1τz

The objective of the short-term rebalancing defined
by equation (3) is to minimize the cost of the driving
distance and the associated penalty costs of pickup activ-
ities, remaining faulty and low-battery e-scooters in the
system, unmet demand, and excess e-scooters. Constraints
(4)–(6) are routing constraints related to the arrivals and
departures at all of the nodes and the elimination of

subtours. Equations (7)–(10) are pickup and drop-off con-
straints. Constraints (11) and (12) represent conservation
rules for loading faulty e-scooters onto the rebalancing
vehicle, and Constraint (13) requires that the number of
remaining faulty e-scooters equals the initial number of
faulty e-scooters minus those that have been picked up.
Similarly, Constraints (14) and (15) are conservation rules
for loading (unloading) low-battery e-scooters onto (from)
the rebalancing vehicle, and the remainder is determined via
equation (16). The conservation of loading and unloading for
usable e-scooters is imposed by Constraints (17) and (18).
The unmet demand is calculated via equation (19), which
requires the number of usable e-scooters in each cluster to
be greater than the threshold (C i) after both the rebalancing
process and the end of the planning time. The number of
excess e-scooters is calculated using equation (20), which
prevents one spot from being flooded with e-scooters and
thus requires a rapid response. Finally, equation (21) is the
rebalancing vehicle capacity constraint.

F. REBALANCING FORMULATION FOR THE HYBRID
ACO–ILP ALGORITHM
The ACO algorithm was first introduced in the early 1990s
and is inspired by the pheromone trails used by ants as a form
of indirect communication to find the shortest path between
food and their nest [84]. Thus, the ACO algorithmmimics this
foraging behavior by using artificial ants to iteratively adjust
the path according to the transition probability, which is based
on the ‘‘pheromone’’ concentration and a visibility function.
As mentioned earlier, in this study, ACO was employed
to generate feasible route sequences, while ILP solver was
employed to optimize the number of pickups and drop-offs
for these suggested route sequences individually. In other
words, the driving cost (the first term of equation (3)) can
be calculated for each feasible route sequence suggested by
ACO. However, the remaining terms of equation (3) or the
new objective function in equation (27) are optimized by
the ILP solver under the constraints (28) – (39). This means
that the cost function (L) in Algorithm 1 is the sum of the
driving cost and the optimal rebalancing cost (equation (27))
computed by the ILP solver for each specific route
sequence.

Algorithm 1 shows the procedure of rebalancing optimiza-
tion via ACO–ILP algorithm. Lines 1–4 describe the inputs
for ACO–ILP: a graph with a set of nodes N and set of
links A, a distance function c that represents the driving dis-
tance (taken from BingMaps (https://www.bing.com/maps)),
a rebalancing cost function (comprising the driving distance
cost and penalty costs optimized by ILP solver), and
the parameters of ACO. In each iteration, several steps
are performed: calculation of the transition probability,
construction of the route sequence for each ant based on the
probability, evaluation of the performance of each ant, storage
of the best solution found, and updating of the pheromone
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trails that are initialized as having equal weights (values
of 1). The detailed formulations in the ACO algorithm are
as follows.

Pkij(z) =

[
τij(z)

]ϕ (
ηij

)ω∑
lϵN k

i
[τil(z)]ϕ (ηil)

ω ∀jϵN k
i (22)

ηij = 1/cij (23)

τij (z+ 1) = (1− ρ) τij (z)+1τij(z) (24)

1τij (z) =
∑m

k=1
1τ kij (z) (25)

1τ kij (z) =


1
Lk

, The kth ant passes between i and j

0, Otherwise
(26)

Here, Pkij(z) is the probability of ant k traveling from the
current node i to the next node j in iteration z; N k

i is the set
of nodes that ant k has not yet visited; ηij is the visibility of
node j from node i, which is defined as the inverse distance
between the two nodes; ϕ and ω are the importance factors
of the pheromone and visibility, respectively. The pheromone
is updated using equation (24). ρ and 1τij(z) represent
the pheromone evaporation coefficient and the total amount
of pheromone deposited by all of the ants (i.e., m ants),
respectively; and Lk is the cost function (which describes the
driving distance cost and penalty costs) for ant k . In this study,
the ACO algorithmwas trained using a Python library, Scikit-
opt [85]. ϕ, ω, and ρ were set to default values: 1, 2, and 0.1,
respectively.

In this section, the objective function is the same as
in the previous section (equation (3)), except that the
ACO algorithm and ILP solver were utilized to solve the
rebalancing vehicle routing problem and pickup/drop-off
problem, respectively. In this hybrid case, the ILP solver
optimizes the pickups and drop-offs for a known route
sequence (. . .→i→ j→ . . ., ∀i, jϵN ) given by the ACO, and
the ACO then combines these penalty costs with the driving
distance cost to improve the route sequence iteratively.
Therefore, the ILP formulation of rebalancing for a known
route sequence is

Minimize β1

∑
jϵN

(
pfj + p

l
j + p

u
j

)
+ β2

∑
jϵN

Rfj

+ β3

∑
jϵN

Rlj +
β4

2

∑
jϵN ;θϵ2

U θ
j

+
β5

2

∑
jϵN ;θϵ2

Eθ
j (27)

Subject to 0 ≤ pfj ≤ v
f
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f
j ∀i, jϵN (32)

Rfj = vfj − p
f
j ∀jϵN (33)
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u
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u
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hfj + h
l
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u
j ≤ B ∀jϵN (39)

Here, Constraints (28)–(31) are pickup and drop-off
constraints at the current node j. Equations (32), (34),
and (36) give the accumulated numbers of faulty, low-
battery, and usable e-scooters, respectively, that are on the
rebalancing vehicle at the current node j, defined as the
sum of those that are on the rebalancing vehicle at the
previous node i and the number picked up or dropped off
at the current node j. Equations (33) and (35) give the
remaining numbers of faulty and low-battery e-scooters,
respectively. Equations (37) and (38) give the unmet demand
and excess e-scooters, respectively. Finally, equation (39)
enforces the rebalancing vehicle capacity constraint. The
rebalancing vehicle must start from the depot, and all of the
decision variables for this node were thus set to zero, except
for the variables relating to picking up usable e-scooters
pu1 and the number of usable e-scooters on the rebalancing
vehicle hu1.

IV. APPLICATION OF DEMAND AND VARIANCE
PREDICTION
A. DATA COLLECTION AND DESCRIPTION
True demand data is highly desirable for operational
planning; however, it is often inaccessible unless operators
grant access to extract it from user app activities [30]. Due
to data limitations, historical ridership data are commonly
used to evaluate the effectiveness of proposed models or
frameworks [5], [28], [29], [33], [34], [70]. Similarly, this
study employs historical data as a case study, while the
potential demand is managed through the safety stock
parameter or minimum number of usable e-scooters (C i).
In practice, the proposed framework in this study, particularly
the demand prediction model, may require training using true
demand data that includes unmet demand, as discussed by
Ham et al. [30].

A case study was performed using an open dataset
for shared e-scooters operated in Minneapolis (MN)
(https://opendata.minneapolismn.gov). The data cover
961,040 trips taken from May 13 to November 25, 2019.
The information on each trip comprises the trip ID, trip
duration, trip distance, start/end center line ID, and start/end
date time. The name of the street where each trip started
and ended was recorded, so the center of this street was
used as the trip coordinates. In data cleaning, the exclusion
criterion was having data missing, and the inclusion criteria
were a trip distance (20 m–10 km), a trip duration (20 s–2 h),
within the study period (May 14 to November 24, 2019), and
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within the study boundary. The 813,970 trips remaining after
data cleaning had an average duration of 13 minutes and an
average distance of 1.72 km. As mentioned in the previous
section, the trips were clustered using the k-means clustering
algorithm for 15, 30, and 60 clusters; see Fig. 3. For hourly
trip-gap prediction (1t = 1 h), there were a total of 4,680
samples: 80% were used for model training and 20% were
used for model testing (see Fig. 4). Overfitting was avoided
by using random sampling to separate the training data into
portions for model construction (75%) and model evaluation
(25%).

FIGURE 4. Hourly pickup and drop-off trips and the trip gap for shared
e-scooters in Minneapolis, MN.

FIGURE 5. Histograms and Poisson distributions of the pickup and
drop-off demands of shared e-scooters.

Studies have shown that the demand for shared e-
scooters correlates with weather attributes, public holi-
days, annual festivals, and weekly patterns. Therefore,
seven hourly weather attributes (temperature, precipita-
tion, wind speed, humidity, wind gust, pressure, and
dew point) were downloaded from Weather Underground
(www.wunderground.com). Linear interpolated values were
to replace values missing from these attributes. In addition,
the trip gap prediction model considered official public
holidays, annual festivals and events (open street events,
a pride festival parade, a state fair festival, a stone arch
bridge festival, and an uptown art fair), and the fact that the
use of shared e-scooters was banned on October 10, 2019,
during the state visit of the President of the United States to

Minneapolis. The demand of shared e-scooters is affected by
many factors. Thus, it is not suitable to assume that pickup
and drop-off demands follow a specific distribution (e.g.,
a Poisson distribution), see Fig. 5. This characteristic was
confirmed by a goodness-of-fit test of daily (same hour of
the day) and weekly (same hour of the day and day of the
week) patterns. Therefore, the rebalancing approaches based
on this assumption (e.g., queue theory) that have commonly
been applied for studying shared bike services may not be
appropriate for studying shared e-scooter services.

FIGURE 6. Hyperparameter optimization by Bayesian Optimization for
trip gap prediction.

B. RESULTS OF DEMAND PREDICTION
As mentioned, the k-means algorithm was used to group the
trips in clusters of 15, 30, and 60. To improve the performance
of the trip gap prediction model, it was trained spatially
independently, whereas the model’s inputs included external
features (as presented in Section IV-A), local historical data,
and historical data from four neighboring clusters. Fig. 6
(top) shows the convergence curve of the GB hyperparameter
tuning performed by BO for cluster 37. Hyperparameter
tuning is commonly performed to minimize a loss value
on the evaluation dataset (e.g., MSE_eval), which likely
leads to overfitting, especially for the family of decision
tree models. Fig. 6 (bottom) plots the BO’s evaluated GB
models following the sorted value of MSE_train. This graph
reveals that the minimum MSE_eval is located in the region
where the deviation between MSE_train and MSE_eval is
high, after which MSE_eval worsens or loses generalization.
Moreover, the GBmodeling in this region is time-consuming,
as the models typically require more and deeper decision-
tree regressors and a longer lookback length. Therefore,
our objective function for BO, which includes the ratio of
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TABLE 2. Results of trip gap prediction and variance prediction.

MSE_eval and MSE_train has a shorter training time and
suggests a more generalized GB model.

FIGURE 7. Trip gap predicted using the testing data for cluster 37.

Fig. 7 presents the trip gap predicted by the GB regressor
for cluster 37. The GB model extracted the temporal pattern,
but there were prediction errors or residuals. Ignoring such
errors in rebalancing planning results in a lower service
level or profit than if such errors are taken into account.
Table 2 compares the GB prediction with the predictions
of two benchmark models (historical average and daily
historical average models), with the RMSE used as the
accuracy metric. Our numerical results on the training data
indicate that GB yielded a smaller RMSE of approximately
26% and 16% compared to the baseline historical and daily
historical averages, respectively. With the testing dataset, the
GB model’s RMSE (or uncertainty) was approximately 19%
and 15% lower than the RMSEs of the historical average
model and daily historical average model, respectively.

C. RESULTS OF VARIANCE PREDICTION
The prediction of variance using SGARCH provides two
critical parameters for Monte Carlo simulation: the stan-
dard deviation (STD) and distribution of the residuals.
As explained in Section III-D, a low STD or low uncertainty
reduces the expected loss. However, the STD should be
minimized such that the coverage (i.e., the percentage of
residuals lies within the confidence bounds) is not reduced.

For instance, the daily variance of GB residuals had an
average STD (Mean-STD) smaller than that of the constant
variance without a reduction in coverage (see Table 2). This
indicates that the variance prediction model could affect
rebalancing planning, as it could further reduce the uncer-
tainty from the demand prediction model. However, the daily
variance based on historical data could not capture the long-
term fluctuation, as shown in Fig. 8. We also observed that
SGARCH variance was more flexible over time (seasonal or
annual pattern) than daily variance, as a higher weight was
given to the later residuals than the earlier residuals. Overall,
compared with the daily variance, the SGARCH model had
a slightly smaller Mean-STD but also slightly reduced the
coverage.

FIGURE 8. Variance prediction based on residuals of the GB model for
cluster 37.

V. RESULTS OF REBALANCING OPTIMIZATION
A. PARAMETER SETTINGS
The open dataset contains trip data that does not cover all
the operational planning parameters. Thus, the parameters
were simulated using fixed and random values in specified
ranges (see Table 3). The coordinates of trips taken by dock-
less shared e-scooters were partitioned using the k-means
clustering technique. Increasing the number of clusters dealt
with Assumption 1 but reduced the performance of demand
prediction models (sparsity and random walk pattern) and
exponentially increased the rebalancing optimization time.
The number of clusters was set at 15, 30, and 60, and
the total number of nodes (N ) (including the depot and
charging stations for these three cases) were 18 (324 edges),
35 (1225 edges), and 70 (4900 edges), respectively. The
driving distance from one node to another was obtained from
Bing Maps. The computational times for these three cases
were 20, 40, and 60 minutes, respectively. The testing data
were for a period of approximately 39 days or approximately
five weeks, and 30 instances were randomly drawn from
the high-demand period (10 am to 8 pm) in the first (for
15-cluster case), middle (for 30-cluster case), and last (for
60-cluster case) three weeks. Monte Carlo simulation was
conducted to generate 100 scenarios for our method, whereas
the benchmark cases using daily or weekly historical trip data
had approximately 180 and 26 scenarios, respectively. One
rebalancing vehicle with a capacity of 35 e-scooters was used
to complete the rebalancing.

The total number of e-scooters was assumed to be 400,
including 20 faulty e-scooters (∼5%) and 60 low-battery
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TABLE 3. Parameter settings for the rebalancing optimization.

e-scooters (∼15%). Hence, the total number of usable e-
scooters was 320, approximately half the hourly pickup
demand during the high-demand period. These faulty, low-
battery, and usable e-scooters were randomly distributed
across the clusters. The average usage time of shared
e-scooters in Minneapolis reveals that users spent approx-
imately 3 USD per trip. In the current study, the unit
penalty cost of the unmet demand was set as 2 USD, which
was approximately 67% of the revenue. The unit cost of
excess e-scooters was 1 USD, whereas the penalty costs
of the remaining faulty and low-battery e-scooters were
5 and 3 USD, respectively. The driving distance was charged
at a rate of 1 USD per kilometer. The pickup cost for each
e-scooter was set as 0.1 USD to prevent pickup and drop-
off of the same e-scooter from being performed at the same
location and to balance the service level. The pickup cost was
approximately 5% of the unmet demand penalty, representing
a service level Type II (i.e., percentage of served demand) of
95% (i.e., a demand with a probability of less than 5% does
not justify the pickup cost).

B. EXPERIMENTAL ANALYSIS
The rebalancing optimization was performed in the Spyder
integrated development environment in Python. The ILP
solver GLPK of the Python library Pyomo [86] was used
to solve the ILP rebalancing formulation, as in Section III-
E. The pickup and drop-off operations in Section III-F were
also solved using this ILP solver, whereas the ACO algorithm
was trained using another Python library, Scikit-opt [85]. The
whole process was performed in a Windows 10 environment

on a 64-bit operating system running on an Intel processor
core i7-9750H CPU@ 2.60 GHz and equipped with 8.00 GB
RAM.

FIGURE 9. Exploration and exploitation tradeoff of ant colony
optimization (top) and the convergence curve (bottom).

Table 3 shows that the computational time of the balanc-
ing optimization was restricted. Therefore, the exploration
and exploitation of the hybrid ACO–ILP algorithm were
balanced using two ACO parameters, i.e., the population
size and number of iterations. A larger population requires
fewer iterations than a smaller population to complete an
optimization procedure within a limited computational time.
Fig. 9 shows the tradeoff between the population size and
number of iterations on the top and the convergence curve
of the optimal trial (population size = 7 and number of
iterations = 160) on the bottom. The tradeoff was examined
independently for 10 trials of the 15-cluster, 30-cluster, and
60-cluster problems. The optimal ant populations for these
three problems were 65, 90, and 7, and the number of
iterations were 25, 20, and 160, respectively. The benchmark
cases (actual, historical daily, and historical weekly trip
gaps) had different numbers of scenarios, and the population
size was increased or reduced accordingly. For 15-cluster
problems, the population sizeswere set to 250, 50, and 150 for
actual, daily, and weekly scenarios, respectively. Similarly,
for 30-cluster and 60-cluster problems, the population sizes
of these three scenarios were (300, 75, and 200) and (50, 5,
and 20), respectively.

Fig. 10 shows the optimal rebalancing result of an instance
in the 15-cluster problem. The penalty cost for the remaining
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FIGURE 10. (Top) Optimal route sequence of an instance in the 15-cluster problem and (bottom) its optimal pickup and drop-off results (CH:
charging station, CL: cluster center of aggregated trips by k-means algorithm.)

faulty and low-battery e-scooters was high, so there was no
remainder after rebalancing. In this case, the vehicle passed
through several demand clusters and collected the low-battery
e-scooters before dropping them off at the charging stations.

At the first couple of nodes, the rebalancing vehicle took
13 usable e-scooters from the depot, then picked up 22 low-
battery e-scooters and delivered them to charging station
2. At cluster 6, five usable e-scooters were dropped off,
which might have been unnecessary if we had ignored the
demand uncertainty. The remainder (eight usable e-scooters)

and the other ten usable e-scooters picked up at cluster
13 were dropped off at cluster 2, which had a considerable
trip gap variation. The accumulated low-battery e-scooters
at cluster 2 were then dropped off at charging station 1,
where nine usable e-scooters were picked up and relocated to
either cluster 9 (six e-scooters) or cluster 5 (three e-scooters).
Finally, five and two usable e-scooters were relocated from
clusters 4 and 10, respectively, to cluster 1, as this possibly
gave a higher expected revenue. The accumulated faulty and
low-battery e-scooters on the vehicle up to this node were
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TABLE 4. Results of rebalancing optimization for each problem size.

then taken back to the depot for repair and recharging. This
result shows that the expected unmet demand was minimized
under several constraints (e.g., the vehicle capacity, driving
distance, and the available number of usable e-scooters) by
relocating the usable e-scooters from a location with an
excessive number of e-scooters or a low expected demand to
a location with a higher expected demand.

The ILP solver provided a feasible solution for all of the
instances of 15- and 30-cluster problems but did not provide a
feasible solution for the 60-cluster problem in some instances
of historical daily (70%) and historical weekly (25%) trip
gaps. There were approximately 200 and 28 scenarios for
historical daily and historical weekly trip gaps, respectively,
whereas the Monte Carlo sampling had 100 scenarios.
Our results from Monte Carlo sampling demonstrate that
the ILP solver can generate feasible solutions within the
given computational time constraints for this large-scale
problem, even with up to 500 simulated scenarios. Hence,
the distribution and variance of the trip gaps rather than
just the number of scenarios contributed to the complexity
of the optimization problem, which prevented the ILP solver
from reaching a feasible solution. To obtain feasible results
for all instances of historical daily and historical weekly
trip gaps, the computational time was iteratively increased
by 30 and 15 minutes, respectively. Table 4 shows that the
computational time required to reach a feasible solution in
these two cases was 120 and 72 minutes, respectively.

In the case of ACO–ILP, the computational time for actual
cases with only one demand scenario is significantly reduced

despite increasing the population sizes by more than three
times compared to those of the sampling method. Similarly,
the computational time for historical weekly demand was
slightly shorter than the allotted time, even with a population
size increase of approximately 2–3 times. In contrast, the
computational time for the historical daily baseline was
slightly longer than the target training time.

Table 4 presents the average objective values for all three
cluster problems based on 30 random instances. This includes
the overall objective value, driving distance, service level,
and the count of remaining faulty and low-battery e-scooters.
This table shows that the ILP solver outperformed for small-
sized problems (15- and 30-cluster problems), whereas the
hybrid ACO–ILP algorithm achieved better objective values
for large-sized problems (60-cluster problems). The table also
indicates that the average service level (Type II) is 96.91%,
slightly surpassing the expected service level of 95%,
as presented in the previous section. However, the service
level could substantially improve with perfect information,
i.e., actual trip gaps. To achieve this target service level,
the driving distance is proportionally increased based on the
number of nodes or the size of the rebalancing problems.
For instance, the driving distances are approximately 50 km,
92 km, and 127 km for 15-, 30-, and 60-cluster problems,
respectively.

From Table 4, it is observed that the occurrences of
remaining faulty and low-battery e-scooters were more
prominent with the less optimal optimization algorithm, i.e.,
ACO–ILP for the 15- and 30-cluster problems and ILP solver
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for the 60-cluster problems. Given the relatively high penalty
cost associated with these two types of e-scooters, there
were minimal remaining faulty and low-battery e-scooters
after the rebalancing operation. Notably, the penalty cost of
remaining faulty e-scooters is higher than that of low-battery
e-scooters, resulting in a higher percentage of remaining
low-battery e-scooters than faulty ones. In other words,
imposing a higher penalty cost on these e-scooters results in
a lower rate of remaining faulty and low-battery e-scooters,
potentially leading to longer driving distances. For practical
implications, conducting a sensitivity analysis on these two
parameters, e.g., focusing on the tradeoff between driving
distance and the acceptable percentage of remaining faulty
and low-battery e-scooters, is imperative.

Assumption 3 requires a high number of clusters, but
this leads to a long driving distance for the rebalancing
vehicle and high penalty costs due to the high demand
uncertainty. This increased uncertainty can also be observed
in Table 2, as the reduction in RMSE is not proportional
to the number of clusters. The Elbow method is commonly
employed to select an appropriate number of clusters, which
can be further increased until the radius of the clusters falls
within the walkable range of 200 to 500 meters. However,
using the perfect information (actual trip gaps) had the
lowest penalty cost irrespective of the number of clusters.
According to the average optimal objective value of the 15-
cluster problems obtained using the ILP solver, the sampling
approach had an objective value 6.78% lower than that
when using the historical daily trip gaps and 3.29% lower
than that when using the historical weekly trip gaps. In the
case of the 30-cluster problems, the proposed framework
had an objective value of 8.99% and 2.78% smaller than
the objective values of these two benchmarks, respectively.
In the case of the 60-cluster problems, the objective value
obtained using the hybrid algorithm was 20.01% less than
that when using the historical daily trip gaps and 15.31%
less than that when using the historical weekly trip gaps.
In summary, across all three cases, the proposed framework
reduced the objective value by 11.93% and 7.12% compared
to the baseline historical daily and weekly cases, respectively.
However, the perfect information, i.e., actual trip gaps,
demonstrated a more substantial reduction of approximately
15.61%. Therefore, the demand uncertainty of shared e-
scooters could be further minimized either by employing
comprehensive deep-learning models or by incorporating
additional explanatory features.

C. DISCUSSION
During the pilot program in 2019, the city of Minneapolis
allowed up to 2,000 shared e-scooters, which were deployed
by several operators, such as Lime, Lyft, JUMP, and Spin.
The present study set the total number of e-scooters as
400, which was approximately the number of e-scooters
deployed by each operator. In the case of dockless shared
bikes, Hua et al. [87] found that 96.8% of the trip demand
could be satisfied by supplying just 14.5% of the original

fleet. Under a limitation of 400 e-scooters (approximately
20% of the allowed fleet), we achieved a service level
of approximately 96.91% with hourly rebalancing. From
an operational viewpoint, this means that we could reduce
the deployed fleet if all of the operators participated in
unified rebalancing planning or reduced the overlap of their
deployment areas by using geofences. From an emissions
viewpoint, frequent rebalancing, especially when a vehicle
with an internal combustion engine visits many clusters, is a
poor option because servicing can account for 50% of total
emissions [19]. It is also impractical to unify operations
among operators, so properly separating deployment zones
(that minimize overlap and are partitioned by maximizing
intrazonal trips) is a promising choice. In this case, the
rebalancing should be performed only a few times per day,
and the operators should use an electric rebalancing vehicle
and minimize the number of clusters to visit.

The presented empirical findings demonstrate that optimal
driving distances approximate 50 km, 92 km, and 127 km
for the three distinct problem sizes: 15-cluster, 30-cluster,
and 60-cluster cases. As a result, the case study indicates
that a single rebalancing vehicle is unable to complete the
rebalancing procedure within the allotted one-hour time-
frame. Under these circumstances, our proposed framework
exhibits greater feasibility for extended rebalancing periods,
such as 2 to 3 hours, or it might necessitate certain
adjustments to fulfill specific objectives, such as driving
distance reduction or service level enhancement. The first
modification involves allowing the rebalancing vehicle to
bypass unnecessary nodes, e.g., nodes with low penalty costs.
The second modification suggests increasing the number of
rebalancing vehicles, especially using multiple small ones.
However, the most advisable course of action is the third
option. This involves the elimination of balanced demand
clusters before initiating the rebalancing optimization and
rebalancing operation. By doing so, the computational time
and the driving distance can be reduced as the number of
nodes becomes smaller. In this case, the operators can focus
only on nodes with a significant deviation from the desired
supply level, i.e., the sum of predicted trip gaps, predicted
trip gap variations with service level parameters, and safety
stock. When the number of nodes is relatively small, the
rebalancing optimization can be solved by an ILP solver;
otherwise, employ ACO–ILP with parallel computing.

VI. CONCLUSION AND FUTURE STUDIES
In summary, dockless shared e-scooters are a potential
solution for compact urban mobility, particularly for address-
ing the first-mile–last-mile problem, parking shortages, and
providing an alternative mode of transportation. However, the
trip characteristics, vehicle characteristics, and regulations
make the short-term operational planning of this transporta-
tion mode more challenging than that of the most similar
transportation mode, namely shared bikes. For instance, the
pickup and drop-off demands of shared e-scooters do not
follow typical Poisson distributions, which means that the

26974 VOLUME 12, 2024



N. Saum et al.: Optimizing Shared E-Scooter Operations Under Demand Uncertainty

operational planning approaches commonly applied under
demand uncertainty to shared bikes (e.g., the use of Markov
chain or queue theory) may not be appropriate for shared e-
scooters. Therefore, this study proposed a new framework
for the short-term rebalancing of this mode, which involved
Monte Carlo simulation based on the predicted demand and
variance. The GB model was used to forecast the hourly trip
gap of shared e-scooters, and SGARCH trained the model’s
residuals. As a result, the integration of two models (GB and
SGARCH) reduced the demand uncertainty in terms of the
RMSE and average STD. Moreover, a new ILP rebalancing
formulation was constructed by considering the demand
uncertainty, faulty e-scooters, low-battery e-scooters, and
distribution regulations. This is an NP-hard problem, so an
ILP solver was used to solve the small-size problem, whereas
the proposed hybrid ACO–ILP algorithm was used to solve
the large-size problem. The numerical results for the most
practical case (the 60-cluster case) based on real-world data
for Minneapolis, MN, show that the use of our framework
reduced the operational burden by 20.01% and 15.30% rela-
tive to the benchmark practices of using the historical daily
and weekly demands, respectively. Furthermore, the ILP
solver sometimes did not provide a feasible solution under
a computational time constraint for these two benchmarks,
but this problem did not arise with our simulated demand.
In other words, the ILP solver required longer computational
time to produce a feasible solution for the baseline problems
than our Monte Carlo sampling approach.

Future studies could focus on dynamic rebalancing,
including rebalancing planning for a few steps ahead or
in real time. The stochasticity of faulty and low-battery e-
scooters may also be considered in future research, especially
if relevant information (accumulated riding duration, battery
drainage rate, etc.) is available. Moreover, for more practical
applications, future research could implement parallel com-
puting to reduce the computational time of the rebalancing
optimization, specifically for large-scale problems. The
proposed remedial suggestions, which include using multi-
ple smaller rebalancing vehicles, allowing the rebalancing
vehicle to skip specific nodes selectively, and getting rid
of balanced clusters, merit thorough examination in future
experimental studies. Since SGARCH is an exponentially
weighted average of the prior squared errors, this model
is highly susceptible to significant errors from the demand
prediction model. Hence, the future research direction could
involve implementing machine learning or deep learning
algorithms to deal with this limitation or obtain lower demand
uncertainty than is currently achievable.
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