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ABSTRACT Electricity load forecasting is important to planning the decision-making regarding the use of
energy resources, in which the power system must be operated to guarantee the supply of electricity in the
future at the lowest possible price. With the rise of the ability of forecasting based on deep learning, these
approaches are promising in this context. Considering the attention mechanism promising to capture long-
range dependencies, it is highly recommended for sequential data processing, where time series-related tasks
stand out. Considering a sequence-to-sequence (Seq2Seq) time series data of the electricity load in Brazil,
this paper proposes the use of the long short-term memory (LSTM) with the attention mechanism to perform
the time series forecasting. The proposed Seq2Seq-LSTM with attention mechanism outperforms other well-
established models. Having a mean absolute error equal to 0.3027 the proposed method is shown to be
promising for field applications. The proposed method contributes to time series forecasting by implementing
an attention mechanism to Seq2Seq data, therefore, more than one correlated signal can be used to perform
the prediction enhancing its capacity when more data is available.

INDEX TERMS Electricity supply industry, energy measurement, forecast uncertainty, time series analysis.

I. INTRODUCTION demand, classical power sources are used based on fossil

In Brazil, the energy dispatch is computed based on a
stochastic optimization problem, where the goal is to ensure
the availability of energy in the future at a lower cost as
possible [1]. Since the power grids are connected in a national
interconnected system [2], the generation and transmission
are based on the demand of each region, and the management
of the use of water (in hydroelectric power plants with dams)
is based on this optimization problem [3]. Given this goal,
electricity load forecasting is a challenging task.

Load forecasting is an important topic that several
researchers have studied since it is relevant for decision-
making regarding electrical power management [4], [5], [6],
[7]. When renewable energies can not support the electricity
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energy, which increases the cost of energy and its price [8].
Given that, energy forecasting can be used for energy
planning and improved energy security [9].

Improving the characteristics of energy dispatch and costs
with more efficiency from a prediction about the electricity
costs, attributed together with the community demands,
allows evaluating local load and storage showing behavior
patterns about system marginal electricity prices [10]. These
advantages can be applied to the contribution of planning
new generators or alternative sources acquisitions verifying
the correlation between variables and their impacts on the
prices [11]. These approaches help to select strategies that
consequently promote effective optimization of the grid
system and reduction of costs of power plants [12].

Modeling and forecasting of electricity are essential tasks
that collaborate to present features and advantages in a
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competitive market, showing components with potential
improvement in the trading and risk management derived
from seasonality, rapid spikes, and high volatility [13].
These maximize economic benefits and mitigate power
market risks, consequently providing reliable operation and
evaluating the profitability of storage in some cases reducing
logistic uncertainties and most expensive predictive seasonal
costs [14].

The period in the electricity load and prices forecasting
are divided into three categories with particular advantages:
short, medium, and long-term [15]. The first one is allocated
when it desires real-time supply demand to prepare bidding
strategies as a demand response program, in the case of the
medium-term is collaborative to support import decisions and
maintenance schedules, finally, the long-term contributes to
power generation and storage planning and controls strategies
as low load diesel helping to increase renewable energy
insertion mainly in the isolated systems [16].

In Brazil, the operation of the power system depends on
the electricity load of the power grid, based on a stochastic
optimization problem the national operator system defines
the requirements for the generation of each power plant to
meet the need over time [17]. In this paper, a time series
is considered to evaluate this variation over time, where
predictions are made to help manage the power systems’
decision-making. This application is especially promising in
small grids (isolated systems) where the load variation is
higher and classical methods may not perform well.

Decompose the load profile into features and components
contributing to reducing the computational time process as
the selection of these is a key factor bringing a significant
influence in the prediction accuracy to understand the relative
importance of each variable in different time horizons from
aggregate analysis of opposite environmental conditions that
can be used in multiple power levels [18], [19], [20].

The performance of load forecast is evaluated mainly
by the accuracy obtained [21], however, other factors must
be considered for the prediction model to reach success
as the configuration facility and your applicability in the
energy sectors, as well as the necessary costs to implement
in the government or private power system, finishing the
process when reaching the good balance between accuracy,
repeatability, applicability, and easiness access [20].

Choosing the appropriate architecture to perform the time
series analysis is challenging since deep learning structures
may perform better when there are nonlinearities, however,
they may need extra computational effort [22]. Combining
shallow structures to have an ensemble learning model is also
one possible solution [23]. Considering that the models used
for time series have a specific nomenclature, in Table 1 the
acronyms and symbols used in this paper are presented.

Given these challenges, in this paper, sequence-to-
sequence (Seq2Seq) time series data is considered, and
the long short-term memory (LSTM) with the attention
mechanism is applied to forecast the electricity load in Brazil.
The proposed Seq2Seq-LSTM with attention outperforms
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TABLE 1. Abbreviations and symbols used.

Definition Acronym
Convolutional neural networks CNNs
Graphics processing unit GPU
Long short-term memory LSTM
Mean absolute error MAE
Mean absolute percentage error MAPE
Mean squared error MSE
National Electricity System Operator ~ ONS
National Interconnected System SIN
North N

North East NE
Random-access memory RAM
Recurrent neural network RNN
Root mean squared propagation RMSprop
Sequence-to-sequence Seq2Seq
South S
Southeast/Midwest SE
Stochastic gradient descent SGD
Definition Symbol
Candidate cell state Ct

Cell state ct
Context vector (C]
Forget gate ft
Hidden state ht

Input gate it

Input sequence Tt
Output gate ot
Predicted output Ut
Target output sequence Yt

Time step t

other well-established models. The contributions of this paper
are:

o A Seq2Seq time series data gives the advantage in the
analysis considering that it is possible to evaluate more
than one input series to perform the prediction.

o The attention mechanisms capture long-range depen-
dencies which is an advantage for time series analysis
since it enables the model to better understand the
temporal dynamics within the data.

o A hybrid LSTM network that uses Seq2Seq data, and
applies the attention mechanisms, outperforms well-
established models.

The remainder of this paper is: In section II related
works are discussed regarding the application of time series
forecasting. In section III the proposed method is presented.
In section IV the results are presented and discussed, and
finally, in section VI a conclusion is drawn.

Il. STUDY BACKGROUND
Several authors have studied time series forecasting models
for diverse applications [24], such as emergency preven-
tion [25], wind speed forecasting [26], fault prediction [27],
load forecasting [28], power generation [29], where the use
of deep learning structures are becoming popular [30].
According to Sopelsa Neto et al. [31], several models
can be applied and it is difficult to define what method is
more suitable for a specific application. In this case, the
best strategy is to evaluate as many techniques as possible
to set the best approach for the application. According to
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Souza et al. [32], one major goal of this topic is the guarantee
of energy supply.

The reliability of the power grid is important for consumers
and it is the objective of the electricity utility suppliers [33].
In addition to load forecasting, the reliability of the electrical
power network has been evaluated [34], especially using deep
learning methods, such as convolutional neural networks
(CNNs) [35], or even hybrid methods [36] that combine
CNNs with other models [37]. Focused on time series the
use of hybrid deep learning methods has shown to be
promising [38].

According to Klaar et al. [39] energy has an important
social impact and its prediction may help in the political
decision-making scenario. In their research, an ensemble
learning method was combined with seasonal decomposi-
tion approaches to forecast the energy price in Mexico.
By optimizing the models using a hypertuning approach, it is
possible to have a mean squared error of 3.37 x 10~ which
was higher than other state-of-the-art models.

As presented by Seman et al. [40], the ensemble learning
methods can outperform even deep learning for some
applications. In their evaluation, it was proven that the use of
filters to have a hybrid structure can be a promising approach
when high frequencies don’t need to be considered. Using a
hybrid method they had a root mean square error 2.69 times
lower than the original ensemble random subspace approach.

Using an aggregating prophet, in [41] the electricity spot
prices were predicted considering a study case in Italy. As the
authors mentioned the rise in the price caused by the conflict
in Ukraine was difficult to predict since high prices like the
ones applied in the period were never registered. Using a
seasonal trend decomposition method they had an 18% mean
absolute percentage error compared to the model with filter,
showing to be a great strategy for time series prediction.

Ribeiro et al. [42], evaluated the electricity price of
Brazil using a self-adaptive, heterogeneous, decomposed,
and ensemble learning approach. They proved that by using
a hybrid method it is possible to have a mean absolute
percentage error 4.2% lower than other methods. In their
method, several models are evaluated and combined to build
a structure that outperforms single models.

Considering the use of hybrid methods where denoising
filters are applied, in [43] the group method of data handling
was combined with the Christiano-Fitzgerald random walk
filter for fault prediction. With a root-mean-squared error of
3.44 x 10~ !2 their method outperformed the standard model
(without the filter) and the LSTM.

A combination of different artificial intelligence methods
of load electric forecasting can provide the highest accuracy
avoiding over-fitting and benefit in the feature extractions
resolution [44]. Hybrid models from the application of
stochastic optimization as LSTM and wavelet [45] generally
have the capability to process sequential data faster than
simple algorithms enabling finding a set of suitable weights
and recurrent neural networks [46] helping to calibrate the
prediction time.
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LSTM has advantages for long time series and combined
with the attention mechanism can be a powerful time series
forecasting [47]. The LSTM, considering a sequence-to-
sequence problem, was used for the prediction of water levels
in [48]. The authors proved that this method can be even better
when combined with the wavelet transform. considering a
mean squared error of 0.0020 their method was better than
other well-established models.

Considering the load forecasting task, Yamasaki et al. [49]
applied a hybrid method that combines prediction models
to detrend functions for very short-term load forecasting.
Their hybrid approach combines the gradient boosting
regressor, extreme gradient boosting, k-nearest neighbors,
and support vector regression through automated machine
learning. Based on the combination of all models in a hybrid
structure they had a root mean squared error of 1,931.8 MW.

Ma et al. [50] presented a complete review of short-
term load forecasting presenting the applications focused
on energy management systems. As they mentioned, several
models can be applied for load forecasting such as autore-
gressive integrated moving average model, support vector
regression, random forest, and gradient boosting regression.
In addition to these models, they highlighted the LSTM,
which is the one applied here. Other applications are found
in the load forecasting review of Zhu et al. [51] and
Wang et al. [52].

In [53] the transformer-based is considered for electrical
load forecasting. They showed that based on this approach
can be used for contextual data. Considering the transformer-
based model, they had an accuracy increase of mean absolute
percentage error of 2.57% in a 36 h load ahead forecasting.

lIl. METHODOLOGY

The LSTM is a recurrent neural network (RNN) architecture
that is designed to overcome the vanishing gradient problem
in traditional RNNs [54]. LSTMs are a popular choice in the
field of deep learning for various sequential data processing
tasks, such as speech recognition [55], classification [56],
natural language processing [57], time series forecasting [58],
and more.

LSTMs have proven to be effective in a wide range of
applications due to their ability to model sequential data with
long-term dependencies. They have been further extended
and improved with variations such as attention mechanisms
to handle more complex tasks [59]. The LSTM with the
attention mechanisms is the method applied in this paper as a
baseline for time series prediction.

The LSTM cell with the updates is given by:

fr=oWr - [he—1, %] + by)

ir = oW+ [h—1,x]+ bi)

¢; = tanh(W, - [h;—1, x¢] + be)
=fOc-1+iOC

or = oWy - [h—1, X ] + bo)
hy = o; O tanh(c;)
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where f; is the forget gate, i; is the input gate, ¢, is the
candidate cell state, c; is the cell state, o; is the output gate,
and 7, is the hidden state [60].

The LSTM encoder can be represented by:

enc enc enc enc
K" = LSTM®™ (x;, k™, ™))

" = Cell™™(x;, b, i)
where x; is the input sequence at time step . The decoder is
given by:

hi*® = LSTM®*(yr, b5, ¢f9)

¢ = Cell®*(y;, B, ¢
where y; is the target output sequence. When the attention
mechanism is applied, it can be described as:

i dec zenc
e; = Score(h; ", hi"™)

ai = Softmax(e;)

T
O = > o™
i=1

where i is the time step, ei and ocf are used in the attention
mechanism to compute context vector ®. Figure 1 presents
the attention mechanism a(®x;, ©x;) employed in the model
proposed by Velickovic et al. [61].

FIGURE 1. Attention mechanism.

Using the attention mechanism it is possible to dispense
the recursion and convolutions entirely, resulting in models
that require less time to train and are more parallelizable.
As mentioned by Vaswani et al. [62], the self-attention can
yield more interpretable models. Interpretable models are
promising as their results make it clearer what is being
accomplished by the model [63].

Extending the mechanism for employing multi-headed
attention is beneficial as it helps to stabilize the self-attention
learning process [61]. An example of multi-head attention,
considering 3 heads, is present in Figure 2, in which different
colors denote independent attention computations.

Finally, the output layer of the LSTM is:

0, = LSTM2Seq(c;, h%, y,)
¥+ = Softmax(oy)

where 3, is the predicted output probability distribution over
the vocabulary for the time step [64]. The structure of this
model is presented in Figure 3.
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concat/avg
_____________ *@
1

FIGURE 2. Multi-headed attention.

In the structure of the proposed method initially, the time
series is loaded to an encoder where the data is normalized.
In this step, the number of hidden neurons is the main
parameter to specify the size of the network, this parameter is
evaluated in the results section presented in this paper. Given
this input, the model is trained considering an optimization
method, that is also evaluated in this paper, until a maximum
of epochs or the early stop criterion is satisfied.

In this paper, the use of 100 epochs is considered since
the early stop works before the model reaches this number
of epochs, therefore there is no overfitting and the model is
properly trained. After training, the predictions are made and
the predicted signal is compared to the observed signal. In this
structure a sequence provides features to help the training
of other sequences, therefore when there are correlated time
series, the predictions of the seq2seq are enhanced by the
proposed approach.

A. DATASET
In Brazil, there is a National Interconnected System (in
Portuguese Sistema Interligado Nacional - SIN) that connects
all the regions of the country. Still, there are isolated systems,
however, they don’t represent the majority of the systems,
being used in remote places, mainly in the Amazon region
where renewable energies are used [65]. The regions of Brazil
are North (N), North East (NE), Southeast/Midwest (SE), and
South (S). Loads of each region are presented in Figure 4.

The dataset is based on information received by the
Supervision and Control System from the National Electricity
System Operator (in Portuguese Operador Nacional do
Sistema Elétrico - ONS), Brazil. Load data is by subsystem
on a daily basis, measured in average megawatt (MWmed).!

Until February 2021, the dataset represents the load
supplied by power plants dispatched and/or scheduled by
the ONS; between March 2021 and April 2023, it is
considered additionally the generation forecast for plants not
dispatched by the ONS. From April 29, 2023, besides the data
previously considered, the estimated value of micro and mini-
distributed generation was incorporated, based on forecast
meteorological information.

In Brazil, there are major differences in rainfall during the
rainy season, and this variation directly impacts the plan of

1 https://dados.ons.org.br/dataset/carga-energia
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input_3 input: | [(None, 200, 2)]
InputLayer | output: | [(None, 200, 2)]
Istm_2 | input: (None, 200, 2)
LSTM | output: | [(None, 200, 25), (None, 25), (None, 25)]
batch_normalization_2 | input: | (None, 25)
BatchNormalization | output: | (None, 25)
repeat_vector_1 | input: (None, 25) batch_normalization_3 | input: | (None, 25)
RepeatVector | output: | (None, 20, 25) BatchNormalization | output: | (None, 25)

N,

/

Istm_3 | input: | [(None, 20, 25), (None, 25), (None, 25)]
LSTM | output: (None, 20, 25)
dot | input: | [(None, 20, 25), (None, 200, 25)]
Dot | output: (None, 20, 200)
activation | input: | (None, 20, 200)
Activation | output: | (None, 20, 200)
A
dot_1 | input: | [(None, 20, 200), (None, 200, 25)]
Dot | output: (None, 20, 25)
y
batch_normalization_4 | input: | (None, 20, 25)
BatchNormalization | output: | (None, 20, 25)

i

concatenate input:

[(None, 20, 25), (None, 20, 25)]

Concatenate output:

(None, 20, 50)

time_distributed_1(dense_1)

input: | (None, 20, 50)

TimeDistributed(Dense)

output: | (None, 20, 2)

FIGURE 3. Structure of the proposed Seq2Seq-LSTM with attention.

the power dispatch over time [66]. Considering the variation
of the rainy season (which happens once a year), in this paper
a period of one year is evaluated to have the complete picture
of the time series. The forecast is daily, as the electrical power
system dispatch follows a daily plan.

The use of co-features can enhance the prediction model
by having more information to train the model to deal with
the variation of the system [67]. In this paper, the co-features
of predictions are based on seq2seq data, where a sequence
provides information on the prediction of other time series.
The season variation is considered since the data evaluates
a yearly period that has all variations of seasons. Weather

30024

conditions and social variables were not used since the dataset
doesn’t have this information and the focus is based on the
evaluation of the trend of the time series.

The region SE was the major load of the SIN, which makes
this region have a major impact on it. The result of summing
all the loads of each region is the load of the country, this
result is presented in Figure 5. This time series is considered
for the study case presented in this paper.

B. EXPERIMENT SETUP
The algorithm proposed in this paper was written in Python,
and the computations were performed in the Google Colab
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FIGURE 4. Load by region from October 2020 to October 2023, ONS,
Brazil.
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FIGURE 5. Electricity load of Brazil from October 2020 to October 2023,
ONS, Brazil.

(back-end Google Compute Engine). The experiments were
using a graphics processing unit (GPU) NVIDIA Tesla T4
(16 GB) and 12.7 GB of random-access memory (RAM).

For model assessment, the mean squared error (MSE),
mean absolute error (MAE), and mean absolute percentage
error (MAPE) are considered, which are computed by:

1 < R
MSE = ;Z(yi_yi)zv 1)
1 ljl
MAE =~ [y =il . 2)
i=1

x 100, 3)

1< |y — 3 '
MAPEq, = — -

where n are the number of samples, y is the observed value,
and y is predicted value [68].

IV. RESULTS AND DISCUSSION

In this section, the results will be presented and discussions
about them will be done. The initial evaluation is going to be
using the standard LSTM considering a Seq2Seq time series
data. After the first evaluations, the attention mechanism will
be considered and a complete assessment will be performed.

A. PREPROCESSING

Given that the optimization problem evaluated by the ONS
is based on a stochastic evaluation, two scenarios will be
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considered, one with more generation requests (xz) and
another with less demand (x1). These scenarios compared to
the original signal are presented in Figure 6.

90000 -

80000 -

70000

60000

Load (MWmed)

50000 -

— Original
40000 1 — x,

0 200 400 600 800 1000
Time (days)

FIGURE 6. Original and possible two scenarios for the electricity load.

Given that the possible scenarios have a maximum and
minimum trend, this variation is considered for the system
to take account of the worst possible case. The maximum and
minimum trend variations are presented in Figure 7. These
trend variations are considering two possible scenarios given
a stochastic problem. Training and test splitting are applied
after normalizing the input data.

90000 A
80000 g
3 L=
€ 70000
H
£ 60000
kel
©
o
— 50000 A
—-==- Xx; trend
40000 1 — x; === x;trend
0 200 400 600 800 1000
Time (days)

FIGURE 7. Maximum and minimum considered trend variations.

When the load follows the wort scenarios, with major
variations, the results become even further than previously
considered, these time series are presented in Figure 8.

| H‘\ LN |
0 “ ‘ ‘\\ L\‘lm“,l‘ W““"'l“l'l"h( 1“‘\ “‘! \\\[nm“.“h\l'T‘

Index

|

—

o

o

o

o
L

—— X detrend
—40000 4 — X2 detrend

0 200 400 600 800 1000
Time (days)

FIGURE 8. When load follows the trends scenarios.

Finally, normalizing the two-time series and splitting the
data into train and test, we have the data that is used to
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evaluate the method presented in this paper. These time series
are shown in Figure 9.

Normalized Index

—— Xx3 train (normalized)

—— X3 test (normalized)

—4 4 =—— X, train (normalized) — X test (normalized)
0 200 400 600 800 1000
Time (days)

FIGURE 9. Normalized time series split in train and test datasets.

B. SEQ2SEQ-LSTM

To evaluate the Seq2Seq-LSTM model initially, 25 hidden
neurons are considered and the Adam optimizer is applied.
In the initial experiment, the Seq2Seq-LSTM model starts to
have overfitting after 80 epochs as can be seen in Figure 10.
To be sure that the model was properly trained a maximum
of 100 epochs is defined and the early stop is applied (the
training is stopped when there are no more improvements).

— Train

0.45 7 —— Validation

0.40

0.35 A

Loss

0.30 A

0.25 A

0.20 A

0.15

0 20 40 60 80 100
Epoch

FIGURE 10. Train and validation loss over the epochs.

To have a complete evaluation of the Seq2Seq-LSTM
model the number of neurons and the optimizer are evaluated.
The Adam, root mean squared propagation (RMSprop), and
stochastic gradient descent (SGD) optimizer are considered.
The results are presented in Table 2.

Since the models have their best results considering
different measures, the MAE is used for a global evaluation.
Using the Adam optimizer, the best MAE was based on
5 neurons, in this configuration, the MSE was 0.1638, the
MAE was 0.3129, and the MAPE was 116.01.

Based on the RMSprop most MAE results were a bit
higher, considering the SGD better results were found. The
best MAE was 0.3074 using 5 neurons with the SGD
optimizer. Most of the best MSEs were found using the
Adam, however, as the MAE is used for the main evaluation
the SGD is the optimizer that returns the lower error given
this metric.

30026

TABLE 2. Results of Seq2Seq-LSTM model.

Optimizer ~ Neurons MSE MAE MAPE  Time (s)
5 0.1638 03129 116.01 404.58

10 0.1605 0.3257 113.54 449.98

Adam 25 0.1568 03165 116.97 457.86
50 0.1534 03158  130.97 450.97

100 0.1559 03238  116.04 323.04

5 0.1630 0.3321  115.39 449.16

10 0.1663 03401 112.61 405.80

RMSprop 25 0.1584 0.3270 11943 390.40
50 0.1685 03413  120.77 450.30

100 0.1687 03162  129.75 450.24

5 0.1769 03074 12145 451.39

10 0.1733  0.3151 108.43 450.93

SGD 25 0.1634 03096  139.97 399.36
50 0.1623  0.3214 10298 451.66

100 0.1648 0.3245 101.67 407.39

The distribution of the MAE results over the time series
is presented in Figure 11. As can be observed the shutdown
that happens in the power system at the beginning of the
time series evaluated, which results in low values in the
generation, didn’t affect the prediction results. This indicates
that the proposed model could be applied to identify possible
shutdowns been an extra advantage of this approach.

MAE test: overall MAE = 4885.359014471308

8000 -

7000 -

6000 -

5000 A

4000 1

3000 -

T T T T T
0 50 100 150 200 250 300

FIGURE 11. MAE results for the test dataset.

C. SEQ2SEQ-LSTM WITH ATTENTION

The results of prediction errors using the attention mechanism
are presented in Table 3, these setups are based on the
equivalent variations of the hyperparameters that were
evaluated considering the standard Seq2Seq-LSTM.

The Seq2Seq-LSTM with Attention had the best MAE
using the SGD with 25 neurons, by using this configuration
an MSE of 0.1722, MAE of 0.3027, and MAPE of 140.72 was
obtained. Interesting results also emerged from this optimizer
using 10 neurons, in which the MAPE was 93.97, the lowest
result so far, however, when five neurons were evaluated,
this optimizer resulted in the worst MAPE, showing that this
measure is not the best on to define the setup configuration
of these models.

Using the Adam optimizer the second-best MAE was
found, this is also valid to state that the Seq2Seq-LSTM
using the attention mechanism was better than the original
model considering this metric. If the MSE was considered the
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TABLE 3. Results of Seq2Seq-LSTM with attention model.

Optimizer ~ Neurons MSE MAE MAPE  Time (s)
5 0.2276 03732 177.75 452.84

10 0.1604  0.3038  142.69 451.82

Adam 25 0.1888  0.3096  161.00 392.09
50 0.1978 03196  139.64 298.72

100 0.2500 0.3430 145.31 330.28

5 0.1549 03086  138.07 425.82

10 0.2047 03126  138.99 381.41

RMSprop 25 0.2106 03192 156.34 377.49
50 0.1947 03103  131.89 449.55

100 0.1660 0.3056 116.88 390.68

5 0.2081 0.3356  227.07 450.15

10 0.1697  0.3279 93.97 425.67

SGD 25 0.1722 03027  140.72 453.42
50 0.2047 03108 174.84 450.10

100 0.2000 0.3089  150.83 412.48

attention mechanism may not be interesting since it creates
more complexity without major improvements in this case.

The higher architecture complexity doesn’t reflect in
a longer time to compute the model using the attention
mechanism, this result can be related to the early stop, where
a model with this function may converge faster even using
extra parameters.

The results of the predictions considering the training
and testing time series data are presented in Figure 12.
As observed the predictions have fewer nonlinearities than
the original signal, this result is fine since the main goal of
the evaluation is to have a trend of variation.

The best MSE result using the proposed method (with
attention mechanism) was equal to 0.1549 using the
RMSprop optimizer and 5 neurons, in comparison to the
original LSTM had an MSE of 0.1630. Based on this
result with an MSE 5.23% lower, the Seq2Seq-LSTM with
Attention outperforms the original LSTM.
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FIGURE 12. Prediction considering the training and testing.

D. EVALUATION BY REGION
Using the Seq2Seq-LSTM with Attention model an extra
evaluation is presented in Table 4. Brazilian regions have very
different structures of power sources and load features, this
characteristic makes the power grid unique, which may be
reflected in the evaluation of time series models.

Comparing the results of different regions it is possible to
observe that in the North region, the error of the prediction
was lower, this happens because in this region there was less
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TABLE 4. Evaluation performance of the model considering different
regions of Brazil.

Region MSE MAE MAPE Time (s)

North (N) 0.2544  0.3655 43.10 450.39

North East (NE) 0.4481 0.5059 2,943.79 451.10
Southeast/Midwest (SE) ~ 0.1443  0.2741 335.93 420.51
South (S) 0.1667  0.2921 94.11 450.34

variation in the load given the features of the SIN, observing
that there is more wind energy generation in this region and
less industrialization.

V. FINAL REMARKS AND CONCLUSION

The use of Seq2Seq-LSTM with attention mechanism to
electricity load forecasting in Brazil has proven to be
a significant advancement. This approach combines the
strengths of the sequence-to-sequence approach, LSTM
networks, and attention mechanisms to tackle the complex
and dynamic nature of electricity load data.

The proposed Seq2Seq-LSTM with attention model excels
at capturing the temporal dependencies and patterns in
electricity load data. By considering historical loads and their
relationships over time, the model provides more accurate and
context-aware predictions.

Compared to classic forecasting methods, the Seq2Seq-
LSTM with attention has demonstrated superior results with
an MAE equal to 0.3027, this model outperforms other
approaches. Additionally, the proposed method can handle
non-linear load movements, sharp fluctuations, and abrupt
changes, making it a valuable tool for energy evaluation.

Future work can be performed considering hypertuning the
proposed model, thus it would not be necessary to evaluate
each parameter individually to have the best structure. The
optimization of hyperparameters tunes the structure to have
the best performance considering the used data, and it is a
promising approach to have the best possible model.
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