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ABSTRACT Ground Penetrating Radar (GPR) is an effective non-destructive detection method, that is
frequently utilized in the detection of urban underground defects because of its quick speed, convenient and
flexible operation, and high resolution. However, there are some limitations to defect detection using GPR,
such as less data, poor data quality, and complexity of data interpretation. In this study, an underground defect
detection system based on GPR was established. First, a Simple Linear Iterative Clustering (SLIC)-PHash,
a Data Augmentation (DA) optimization algorithm, was created to obtain high-quality datasets. Second,
the Convolutional Block Attention Module (CBAM)-YOLOVS, a detection model, was produced for the
recognition of defects. This model uses GhostConv and CBAM to create a lighter design that better focuses
on target detection and increases efficiency. Finally, a one-click detection system was formed by fusing
SLIC-Phsh and CBAM-YOLOvVS8, which were used for one-click GPR dataset optimization and defect
detection. The developed system has the best detection mAP and F1 scores of 90.8% and 88.3%, respectively,
compared to several well-known Deep Learning (DL)-based techniques. The results demonstrated that
the system proposed in this paper can greatly improve detection efficiency and reduce detection time by
achieving a good balance between detection speed and accuracy.

INDEX TERMS Ground penetrating radar (GPR), object detection, perceptual hashing (Phash) underground
defects, YOLOVS.

I. INTRODUCTION

Ground Penetrating Radar(GPR) is a high-resolution and
efficient geophysical non-destructive survey method that
mainly uses the principle of reflection at the interface of two
different dielectric constants during electromagnetic wave
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transmission [1]. They have been widely used in under-
ground defects detection and other fields [2]. GPR forms
radar images through several received echoes, and techni-
cians infer the structure of underground media according to
the characteristics of the reflected waveforms. However, man-
ual interpretation of GPR images is a challenging task, and
it is extremely time-consuming for professional technicians
to interpret GPR image data manually [3], [4]. Meanwhile,
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the Deep Learning (DL) method requires a large amount
of data for training [5]; however, owing to factors such as
the complexity of underground environments, obtaining a
large amount of high-quality data directly is a challenge [6].
Increasing the amount and variability of GPR training data
with Data Augmentation (DA) can enhance object detection
performance on GPR image data. However, it brings new
challenges to the capacity, throughput, maintainability, scal-
ability, and energy management of existing storage systems,
and the problems of high cost and low efficiency are promi-
nent. In this case, it is of great significance to explore a fast
and effective GPR image dataset optimization method and
an automatic identification method for GPR data to improve
efficiency and accuracy.

In recent years, GPR technology has made significant
progress, including advances in data processing [7]. First in
the early 21st century, owing to the ongoing growth and use
of computer technology, Gamba et al. [§] employed Neural
Networks (NN) to analyze GPR data. Shaw et al. [9] used a
Multilayer Perceptron (MLP) network to automatically iden-
tify rebar GPR image data. Subsequently, with the continuous
application of machine learning algorithms in GPR data pro-
cessing, Pasolli et al. [10] used a genetic algorithm (GA) and
a Support Vector Machine (SVM) to identify and categorize
GPR images. Mass and Schmalzl [11] used the Viola-Jones
learning algorithm from the “OpenCV’* open-source library
to apply GPR image recognition through transfer learning.
deep convolutional neural Network (CNNs)-based [12] object
detection techniques have become widespread for interpret-
ing GPR data as Artificial Intelligence (AI) and computer
vision have progressed [13]. Using 2-dimensional (2-D) GPR
B-scans and deep CNNs, Bishop et al. [14] were capa-
ble of accurately classifying buried subsurface explosives.
Pham et al. [15] applied the Faster-RCNN framework to the
detection of buried objects in B-scan GPR images, which
showed a significant improvement compared with classical
computer vision methods. Zhang et al. [16] used a mixed
deep CNN to accurately detect and locate water damage in
asphalt pavement GPR images and achieved good perfor-
mance and superiority. Zhang et al. [17] proposed a deep
learning framework based on Generative Adversarial Net-
works (GANSs) to generate new data, automatically learn
features, and detect underground objects. Li et al. [18] uti-
lized the RegNetY network for the intelligent recognition
of defects in sewer pipeline networks, which can improve
detection efficiency and have a stronger classification ability.
The neural network framework based on YOLO has a fast
detection speed, can detect small targets, and significantly
improves detection accuracy and efficiency [19]. In 2020,
Li et al. [20] used the YOLOv3 neural network built using
the TensorFlow1.13.0 framework developed by Google to
detect GPR images in real-time. Li et al. [21] first introduced
the YOLO model as a DL model for GPR data-based hid-
den crack detection. The study shows that YOLO version 4
(YOLOvV4) and 5 (YOLOVS), when compared to YOLO

VOLUME 12, 2024

version 3, make noticeable advancements even on smaller
datasets, with YOLOVS having the best mean Average Preci-
sion (mAP) values. Situ et al. [22] used the YOLOv5 model to
detect the characteristics of sewer defects, which significantly
improved detection accuracy and speed. Hu et al. [23] used
the YOLOVS5I] model to achieve an improved detection per-
formance for few-shot crack detection, serving as a valuable
reference for small-dataset target detection. Subsequently,
a new target detection model, YOLOvV7, was introduced [24],
which is a secondary development based on YOLOVS5, with
YOLOvV7 demonstrating higher accuracy and speed, espe-
cially when processing large datasets. YOLOV7 incorporates
an Efficient Layer Aggregation Network (E-ELAN) with
expanded, shuffled, and merged cardinality structures, a net-
work design innovation that enhances the model’s learning
capabilities while maintaining effective gradient flow [25].
In January 2023, Ultralytics released a significant update,
YOLOVS. As a state-of-the-art (SOTA) model, YOLOvV8
builds on the success of previous YOLO versions and intro-
duces new features and improvements to further enhance
performance and flexibility. This includes the introduction of
the C2f module, which enhances the model’s feature extrac-
tion ability, thereby improving accuracy [26].

DL has immense potential in GPR applications. However,
the DL requires a substantial amount of training data. The
scarcity of GPR data arises because of the limited presence
of defect samples in standard engineering structures, as well
as issues such as variability in detection equipment and
complexity of subsurface environments [27]. Therefore, it is
crucial to find methods to address the shortage of GPR defect
data.

Common methods for GPR data augmentation include
traditional techniques, methods based on Finite-Difference
Time-Domain (FDTD) simulations, and deep learning
model-based approaches. a) Traditional data augmentation
methods mainly involve operations such as rotation, flipping,
and cropping of input images, as well as changing the color
space of the images. Liu et al. [13] employed horizontal
flipping and image scaling by factors of 1.5 and 2 for data
augmentation when detecting rebar in concrete using GPR.
Zong et al. [28] used a combination of blurring, cropping,
rotating, and mirror flipping to enhance the collected GPR
data. Although these methods can significantly expand the
dataset, considering the characteristics of GPR data, tradi-
tional augmentation may introduce changes that do not align
with the true features of the data, thereby making it diffi-
cult for the model to learn effective features. For example,
rotating GPR data might change the orientation of subsurface
structures, leading to poor model performance on real data
and a limited generalization ability. Similarly, blurring oper-
ations can obscure the details of the targets, thereby reducing
the model’s perceptual capabilities. b) FDTD-based methods
expand GPR B-scan data by simulating target echo data
under various scenarios [29]. However, the electromagnetic
simulation required to generate GPR data is computationally
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expensive and challenging to produce on a large scale. Addi-
tionally, the absence of background clutter, which typically
arises from subsurface environmental noise in these simu-
lations leads to discrepancies between the generated images
and actual field data.c) With the development of deep learn-
ing, Generative Adversarial Networks (GANs) [30] have
shown potential in creating images. This has inspired the
use of GANs to generate GPR defect data and alleviate the
problem of data scarcity in GPR DL applications [17], [31].
Yue et al. [32] used an improved GAN to create GPR images
of rebar. Combining these images with real data improved the
YOLOv4 detection accuracy by 10%. Zhao et al. [33] utilized
the Wasserstein GAN to diversify radar image datasets and
successfully generating a variety of GPR target classes. They
strategically implemented the Wasserstein loss function,
which contributed to a robust and steady training work-
flow. Xiong et al. [34] proposed a GPR-GAN approach that
can adaptively adjust the network structure according to the
data size, thereby showing strong generalizability. Although
GAN-based methods are promising, their effectiveness across
various devices, antenna frequencies, and for identifying a
wide range of engineering defects still needs to be confirmed.
Currently, traditional augmentation techniques can increase
the training data and reduce overfitting when training deep
learning models. However, they also face many challenges,
such as a lack of realism compared with actual GPR images,
insufficient image diversity, and instability during the training
process.

Despite achievements in GPR data interpretation and
enhancement, unresolved issues remain. For example, there is
a mismatch between GPR image features and deep learning
models, and traditional augmentation techniques often lack
image diversity and can be unstable during training. As shown
in Figure 1, this study introduces automatic underground
defect detection based on GPR by fusing a simple linear itera-
tive clustering phash (SLIC-Phash) and Convolutional Block
Attention Module (CBAM)-YOLOVS. The main innovations
of this study are summarized as follows:

o Addressing the current limitations of GPR DA, this
study builds upon the simplest traditional data enhance-
ment methods. We propose the SLIC-Phash data opti-
mization technique, which filters the augmented data
produced by traditional methods. This selection process
retains high-quality, detail-rich GPR data and discards
images with unrealistic target features and complex
and ambiguous backgrounds, ensuring the model’s gen-
eralizability and detection accuracy. Our approach is
straightforward, does not require a high computing per-
formance, and is readily integrable.

o To address the issue of subpar target detection in GPR,
this study harnesses an improved YOLOv8 model to
enhance the detection precision. This study employs a
lightweight GhostConv network to refine the convolu-
tional layers within the backbone and neck of the model
and replaces the standard C2f with C2fCBAM, incorpo-
rating CBAM for added focus. This method reduces the
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model complexity while maintaining the same receptive
field, thereby boosting the real-time performance of the
model. The integration of the attention mechanism fur-
ther amplifies the feature representation, allowing the
network to concentrate more on the targets of interest,
which enhances the detection outcomes.

o A one-click processing system for the automated detec-
tion of underground defects in GPR images was intro-
duced. The system has strong real-time capabilities and
does not require high computational power. Utilizing
this system, a variety of underground anomaly images
(such as voids, pipelines, and loose soil) were examined,
enabling the simultaneous augmentation and detection
of multiple target categories. This resolves the issue
present in the current methods, which can only generate
data and detect single-category targets separately. The
system was designed to deliver efficient and optimal
target detection results.

The remainder of this study is organized as follows.
In Section II, the primary theoretical approach to the proposed
network is described. The dataset processing part of this study
is presented in section III. The experimental setup for this
study is described in Section IV. Section V describes the
detailed training process of this study and compares some
classical object-detection algorithms. Finally, a summary is
presented in Section VI.

Il. METHODS

In this study, underground defects detection based on GPR
was developed by fusing simple linear iterative cluster-
ing phash (SLIC-Phash) and Convolutional Block Attention
Module (CBAM)- YOLOVS. First, the images collected by
GPR for municipal road disease detection were selected and
sized uniformly. Underground defect images are generated
by traditional DA methods, such as adding noise randomly,
adjusting brightness and contrast randomly. To enhance the
effectiveness of object detection and reduce the training time
as much as possible, this study incorporated the expanded
dataset into the SLIC-Phash deduplication model to obtain
the optimal detection dataset. Second, the optimized data set
is input into the CBAM-YOLOV8 object detection model, and
finally a better detection result is obtained.

A. DATA OPTIMIZATION BASED ON SLIC-PHASH

The DA of GPR images using traditional methods is straight-
forward and can expand the dataset while introducing greater
diversity. However, these methods may also induce changes
that do not align with the true characteristics of real data,
potentially reducing the generalizability of the model. Fur-
thermore, blurring operations could obscure critical target
details, thereby diminishing the model’s perceptual acu-
ity [35]. A common issue with GPR data is the significant
deviation from the original data. To address this, the study
introduces the SLIC-Phash model, which filters the aug-
mented dataset to construct a high-quality GPR dataset. This
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FIGURE 1. Framework of the proposed model.

model meticulously selects data that maintains fidelity to
real-world features, ensuring that the enhanced dataset sup-
ports the development of more accurate detection models.
The Perceptual Hashing (Phash) algorithm encodes images
into compact feature vectors, facilitating the easy comparison
and deletion of hash codes. However, directly applying it
to GPR data does not achieve the goal of dataset optimiza-
tion. This study introduced superpixel segmentation prior to
hash code generation. Superpixel segmentation divides an
image into semantically continuous and compact regions.
By leveraging superpixel segmentation with GPR image char-
acteristics, local features and structural information can be
partially extracted from the GPR images. Segmentation uses
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hyperbolic features as constraints to ensure that adjacent
pixels are grouped together into continuous regions.

After completing superpixel segmentation, the Phash
algorithm was employed to encode each superpixel region.
The system determines the similarity of images by setting
a threshold and using the Hamming distance between hash
codes. This approach preserves the useful image information
and removes unnecessary image data. This ensures better
generalization of the model during training and testing and
reduces errors introduced by modifications that could alter
the true characteristics of the target.

In addition, this method can eliminate low-quality GPR
data with complex, ambiguous backgrounds that may
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interfere with target recognition and localization. The detec-
tion accuracy and robustness of the model were improved by
deleting these low-quality images.

1) SIMPLE LINEAR ITERATIVE CLUSTERING (SLIC)

Image superpixel segmentation has become an important tool
in the visual field. It is a method that divides an image
into multiple superpixel regions with similar color, textured
and other features in each region, which is widely used in
image processing and vision. These image regions retain the
effective information of the region and will not affect the
visual expression of the whole image. SLIC [36] employs
k-means clustering to generate superpixels in a manner simi-
lar to [37]. By clustering pixels based on color similarity and
proximity, SLIC creates superpixels. Although the method
provided by SLIC is simple, it solves these problems and pro-
duces high-quality, compacted and almost uniform superpixel
segmentation. Since the resulting superpixels are compact
and orderly like cells, it is simple to express neighborhood
features. Meanwhile, since most GPR radar images are gen-
erated as gray images, SLIC superpixel segmentation can not
only segment color images, but also be compatible with gray
images. SLIC provides additional benefits over other super-
pixel segmentation techniques in terms of running speed,
compactness of created superpixels, and contour preserva-
tion. The procedure is as follows:

First, a uniform “N x N’ adjustment is made to the size of
the radar image dataset using the linear interpolation method,
which ensures that the image after scaling has good stability
and robustness. It can also ensure that all images have the
same length of perceptual hash code obtained by the proposed
algorithm to facilitate the subsequent similarity comparison.
A size-normalized GPR image was obtained. In this study,
the normalized image was processed using Gaussian low-pass
filtering to produce a secondary image, which reduces the
influence of compression and other operations on the image.
The calculation formula is as follows:

H(u,v) = e 2"0+1/20 (1)

Dy is the cutoff frequency and D(u, v) is the distance from the
center of the frequency rectangle.

The secondary image was segmented using SLIC super-
pixels. First, the origin points were initialized and dispersed
uniformly over the picture in accordance with a predeter-
mined number of superpixels. Pre-segment N pixels of the
image into K superpixels of identical size. Each superpixel
region has a size of N/K, whereas neighboring seed points
have a step size of approximately S = /N/K. The seed
points were reselected in a 3 x 3 area of the original seed
points to prevent them from landing on the image edge and
interfering with the clustering effect that followed. The gradi-
ent of all pixels in the vicinity were measured, and the point
with the lowest gradient was chosen as the seed point. The
search area is inside 25 x 2§, each pixel in the vicinity of
each seed point is given a label, and this can speed up the
convergence of the algorithm.
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FIGURE 2. SLIC searches a limited region.

Final Distance Metric. It encompasses both spatial and
color distances. The separation between each searched pixel
and the seed point was determined. The point with the small-
est distance between each element and its neighboring seed
points is taken as the seed point of the pixel, that is, the
cluster center, and iterative optimization is carried out until
the cluster center of each pixel is no longer changed.

The pertinent equation is as follows:

de = JUj—1? + @ —a? + B — b (@)

dy =/ — x)? + (o — i 3)

d. ds
D= [P+ () 4)

where D, is the color distance, which is the pixel distance in
the image laboratory color space. 1, a and b are the compo-
nents of images in the Lab color space. Dy denote the spatial
distance. x and y are the coordinate components of the image
coordinate system. D’ is the final distance metric and the
greatest color distance is N,, which in this case is assumed
to be 10.

As shown in Figure 3, Figure 3(a) and Figure 3(b) show
the original image of the GPR underground defects and the
image where the number of superpixels K is taken to be 218.

2) HASH CODE EXTRACTION
The GPR image set preprocessed by SLIC superpixel seg-
mentation is transformed using DCT and then binarized.
First, the image segmented by SLIC superpixels is trans-
formed by the DCT. The DC component of each segmented
sub-block was extracted. This process transforms an image
from the pixel domain into the frequency domain. The DC
component of each block is selected and the entire image is
in the zigzag pattern order, as shown in figure 4. Finally, they
were connected them to form a one-dimensional vector A;
with length M to represent the entire image.

Subsequently, the mean of the coefficient matrix Avg was
calculated. The equation is expressed as follows:

S Ceorlil

N &)

Avg =
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(a) (b)

FIGURE 3. GPR images. (a) Original image; (b) Image obtained after SLIC
superpixel segmentation.

s d—w

FIGURE 4. Zigzag mode.

The three coefficient matrices were then binarized. Where
Avg is greater than or equal to 1 and less than 0. Finally, the
DCT feature-aware hash H; of the image is obtained as

M = [ 0. Coorlil < Avg

. (6)
I, Celil > Avg

Concatenate H; is concatenated sequentially to generate a
one-dimensional feature vector H of length M. The feature
vector is the perceptual hash sequence value of the image.

3) DATA OPTIMIZATION

The Hamming distance is used as the foundation for assessing
the similarity of pictures, because the final hash sequence pro-
duced by the method in this research is binary. The formula
for Hamming distance D is as follows:

L
D=7 () ® hai)) )

i=1

where /1 (i) and h> (i) are the ith elements of the hash sequence
Hj and H; of the two images, respectively. & is XOR, L is
the total length of the hash sequence.

The Hamming distance between the initial dataset and
amplified dataset was compared, and the Hamming distance
threshold was set as T:

If D(x,y) > T, then x and y are considered to be similar
strings, and the images are removed from the augmented
dataset.
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If D(x,y) < T, then x and y are considered dissimilar
strings and the image in the augmented dataset is saved.

B. CBAM-YOLOv8

Today, the YOLO family of algorithms has the most advanced
real-time object detection systems. Compared to other detec-
tion methods, such as faster R-CNN with ResNet and SSD,
it is more accurate and runs faster [38]. Manual interpretation
of radar images is a challenging task. Expert technicians
spending extensive time on the manual analysis of GPR
image data is not only time-consuming but also difficult
because of the complex backgrounds typically present in
real GPR images. To address this issue, this study intro-
duces CBAM-YOLOVS, based on the YOLOvVS framework,
as illustrated in Figure 5. This study utilizes a lightweight
GhostConv network to optimize the convolutional layers in
the backbone and neck, reducing the number of convolutional
operations and thus the computational complexity of the
model, which accelerates the inference speed.

While reducing the complexity of the model, the approach
maintains the same receptive field as conventional con-
volutional layers, which is beneficial for capturing spatial
structural information from images. This reduction in storage
requirements and improvement in detection efficiency also
enhances the real-time capabilities of the system. As shown
in Figure 6, the Neck portion of the network replaces the C2f
module with a C2fCBAM module, thereby enhancing the fea-
ture representation. This enhancement allows the network to
focus more on targets awaiting detection, thereby improving
the overall effectiveness of detection.

1) YOLOv8 MODULE

YOLOVS, which represents the cutting edge in object detec-
tion models, accounts for the multi-scale nature of objects
and utilizes three different scale detection layers to accom-
modate objects of varying sizes. YOLOVS is a significant
update of YOLOVS5, which was open-sourced by Ultralytics
on January 10, 2023. Compared with previous models in the
YOLO series, YOLOvVS offers superior detection precision
and speed.

The YOLOvVS algorithm is a rapid, single-stage object
detection method comprising four parts: input, backbone,
neck, and output segments. The backbone and neck sections
likely drew inspiration from the YOLOv7 ELAN design,
which replaced the C3 structure of YOLOvVS with a C2f struc-
ture that provides richer gradient flow. In addition, it adjusts
the channel numbers for models of different scales. Com-
pared with the C3 module of YOLOVS, the C2f module
has fewer parameters and superior feature extraction capa-
bilities. This approach retains the lightweight characteristics
while capturing more abundant gradient flow information,
significantly enhancing the model performance. The Head
part of YOLOVS has two major improvements compared to
YOLOVS: 1) it has adopted the currently popular decou-
pled head structure (Decoupled-Head), which separates the
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FIGURE 6. (a) C2f module; (b) C2fCBAM module.

classification and detection heads; 2) it has transitioned from
an anchor-based to an anchor-free approach.

2) GhostConv

Timely and accurate interpretation of GPR defect images is
crucial; however, owing to YOLOVS8’s large model parame-
ters and high computational cost, it is challenging to deploy
in resource-constrained environments. This study introduces
a lightweight GhostConv network to optimize the YOLOv8
model. GhostConv is illustrated in the Figure 7. The Ghost-
Conv model simplifies the process by initially using a few
key filters to select features from the input image. Then,
it applies simple and inexpensive operations to slightly tweak
these features. Finally, everything is combined to create a
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complete set of features required for further processing. This
streamlined approach saves computing resources without
sacrificing too much detail. This approach reduces the learn-
ing cost of non-essential features by using a combination
of a few convolutional kernels and cheaper linear opera-
tions to replace conventional convolution, thereby effectively
reducing the demand for computational resources [35].
Therefore, by replacing the original Conv with GhostConv
in the Backbone and Neck, this method substitutes the orig-
inal network modules with a lighter and faster network,
which, while reducing computational complexity, retains the
model’s sensitivity to GPR defect features as much as pos-
sible, thereby greatly improving the efficiency of model
training.
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3) CBAM MODULE

The CBAM is a simple but effective attention module for
feedforward CNN. It can be seamlessly integrated into any
CNN architecture as a small generic module [39]. This
method may highlight defects, suppress the characteristics
of complex backgrounds, and emphasize the spatial positions
of features in an image with complicated backgrounds [40].
Figure 8 depicts the structure of CBAM. The Spartial Atten-
tion Module (SAM) and Channel Attention Module (CAM)
are two separate sub-modules. CAM and SAM Attention
tasks were performed separately. This guarantees that it may
be added as a plug-and-play module to the current network
architecture while also conserving parameters and computing
power.

As shown in Figure 8, the CBAM structure consists of four
blocks. The output from the convolutional layer goes via the
CAM and SAM modules. First, an intermediate feature figure
F e REHXW Then, a 1D map M¢c € RE**! and a 2D
map Mg € RVH*W are created through CAM and SAM,
respectively. The formula summarizing the full procedure is
as follows:

F/=MC(F)®F (8)

F"'=Ms(F)®F' 9)
where ® denotes element-wise multiplication, F” is the final
output.

The CAM structure is shown in Figure 9(a). The chan-
nel attention map is produced by utilizing the inter-channel
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connections of the characteristics. Prior to the operation,
the feature map is compressed by the CAM in the spatial
dimension, resulting in a one-dimensional vector. [41]. First,
the input feature map is subjected to width and height-based
global max pooling and global average pooling [42]. Two
spatial context descriptors were generated: Fng and Fjy;, .
These two descriptors represent the average pooling feature
and maximum pooling feature respectively, resulting in two
C x 1 x 1 feature maps. A two-layer neural network was then
fed to each layer. This neural network was shared between
the two layers. Then, the features output by the MLP are
added element-wise. After the sigmoid activation operation,
the final channel attention feature is generated, namely M.
Finally, the input features required by the spatial attention
module are created by element-wise multiplication of the M¢
by the input feature map F. Channel attention is computed as
follows:

Mc(F) = c(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= o (Wi(Wo(Fj4,0)) + Wi(Wo(Fjye))) (10)

where o denotes the sigmoid function. Wy € RC/rxC| W e
RCEXC Ir

The SAM is shown in Figure 9(b). Particularly for small
targets, spatial attention is helpful in gathering spatial infor-
mation. The link between various spatial positions is used
by spatial attention to learn a 2D spatial weight map. The
resulting spatial position was then multiplied to obtain more
representative characteristics [43]. The input feature map
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FIGURE 9. Schematic diagram of two attention submodules. (a) Channel Attention Module;

(b) Spartial Attention Module.

F’ of this module was generated using the previous CAM
module. First, we consider channel-wise global maximum
pooling and global average pooling. It obtains two HxW x 1
characteristics of the figure for the Fj , and Fy,, . The two
feature maps are channel stitched. The dimensionality was
decreased to one channel through a convolution of 7 x 7.
Spatial attention feature Mg generated by sigmoid function.
The final feature produced is calculated by multiplying the
features of the module by its input features. The calculations

for spatial attention are as follows:

Ms(F) = o (f "7 ([AvgPool(F)); MaxPool(F)1))

Tx7
=o(f " ([Fiyg Fitax)) (1D
where o represents the sigmoid function and f7*” represents
the convolution operation with a 7 x 7 size.

Ill. DATASET

A. DATA COLLECTION

The algorithm model used in this study requires a large
amount of image data. To ensure that the algorithm in this
study can have high applicability, the GPR models of data
collected in this study use the Greenview SIR-20, Leica
DS2000 and Swedish Impulse CO-730. We collected GPR
images in Zhengzhou municipal road detection using differ-
ent types of GPR, and the original images were blurred and
not of high quality owing to the complex environment. The
high-definition GPR image dataset was created after rigorous
screening. A total of 837 GPR images were selected for
study in this dataset, which contained three types of diseases:
pipeline, void, and loose. Complete manual data annotation
was performed using the open-source software Labellmg.
The original images were then randomly partitioned into
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three sets: training set, validation set, and test set, at a ratio of
8:1:1 respectively.

B. REPEAT IMAGE GENERETION

To imitate the problem of useless data generated by DA, this
study uses a series of measures to generate duplicate image
data, as follows.

o Geometric transformation. Duplicate images were
added by random flipping, rotation, and scaling of the
image.

o Cropping. The original data set images were randomly
cropped, and the size of the cropped image was about
0.8 to 0.9 times of the original image.

o Add noise. To create duplicate images, Gaussian and
salt-and-pepper noises were randomly added to the
images in the original dataset.

e Add filtering. Duplicate images were generated
by randomly adding Gaussian low-pass, median
and mean filtering to the images in the original
dataset.

o Watermark. A watermark was randomly added to the
GPR image dataset to generate duplicate images.

o Gamma correction. The radar image dataset was ran-
domly gamma corrected to generate duplicate images.

o Brightness adjustment. The brightness of the images in
the original dataset was randomly adjusted.

« Contrast adjustment. A contrast is randomly selected for
adjustment.

After DA using the method, the final total number of
images was 4695. In addition, the open-source software Labe-
IImg was utilized for manual annotation of the augmented
data, and a portion of the expanded image data is shown in
Figure 10.
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FIGURE 10. Partially duplicate images.

IV. EXPERIMENT

The experiments in this study were conducted on a PC with
the following specifications: Intel® Xeon(R) Silver 4210
CPU @ 2.20 GHz, 20.0 GB of memory, and an NVIDIA
GeForce RTX 2080Ti graphics card. The platform used for
target detection runs on the Ubuntu 18.04 operating sys-
tem and utilizes Python programming language version 3.8.
To train the proposed model, we utilized pre-trained weights
from cocol128 and set the following parameters: a Hamming
distance T of 24, an image size of 640*640, a batch size of 16,
an initial learning rate of 0.01, and 300 epochs of training.
Additionally, we configured the momentum as 0.937, the
weight decay as 0.0005, and the scale for image resizing as
0.5. The accuracy of the model can be evaluated using vari-
ous metrics, including precision, recall, F1-score@0.75, and
mean Average Precision (mAP). These metrics can provide a
comprehensive evaluation of the performance of a model in
various situations.

A. MODEL INITIALIZATION

Data are crucial for the development of effective computer
vision algorithms. In DL-based approaches, this typically
entails collecting and annotating a large amount of images.
YOLOVS8 object detection relies on a large volume of data,
and the detection effect of the YOLOvS model can gradually
increase with an increase in the dataset size. Transfer learning
is a frequently used machine learning technique that involves
applying the knowledge structure from a related domain to
a target domain with the aim of enhancing learning out-
comes [44]. coco128 was used as the dataset of the pre-trained
model. The results were passed on to the YOLOVS network
for detecting underground defects, thereby enhancing the
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Gamma correction

Contrast adjustment

training of the detection model. The parameters of the model
were fine-tuned based on the pre-trained model using the
real and simulated datasets. By guaranteeing the successful
transfer of knowledge, a new network can be trained quickly
and effectively. The proposed model has strong recognition
capabilities for transfer learning even in complicated natural
situations.

B. EVALUATION METRIC

To evaluate the results, the accuracy (ACC), precision (Pr.),
recall (Re.) and F1-score can be utilized to assess the defect
detection performance for each object. According to Equa-
tions (12)-(15), ACC is a basic metric that is the ratio of
samples that are correctly predicted for all samples. The error
detection rate was evaluated using Pr., while the miss rate be
evaluated using Re. The F1 score is the harmonic mean of
precision and recall and represents a combination of missed
and false detections [45], [46]. In this case, TP refers to
true-positive samples, wherein the model correctly predicts
positive samples. False positives (FP) occur when the model
incorrectly predicts negative samples as positive. True nega-
tive (TN) denotes the samples correctly predicted as negative
by the model. Finally, false negatives (FN) refer to sam-
ples incorrectly predicted as negative by the model despite
being positive in reality. Notably, TP considers the size of
the observed bounding box in addition to the classification
accuracy.

ACC = (TP + TN)/(TP + FP + TN + FN)  (12)

Pr.=TP/(TP + FP) (13)
Re. = TP/(TP + FN) (14)
Flscore = (2 x Pr. x Re.)/(Pr. + Re.) (15)
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TABLE 1. Model training result.

Training
Types Precision (%) Recall (%) mAP (%)  FI score (%) Duration (h)
pipeline 89.5% 88.8% 91.8% 89.1%
void 93.6% 90.5% 94.8% 92.0%
0.953
loose 83.2% 84.2% 85.8% 83.7%
all classes 88.8% 87.8% 90.8% 88.3%

loose 0.94
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FIGURE 11. Output results of the CBAM-YOLOv8 model.

V. RESULTS

A. DETECTION EVALUATION

The average precision, recall, mAP (mean average precision),
and F1 score values for the three types of defects were 88.8%,
87.8%, 90.8%, and 88.3% respectively, as indicated by the
Table 1. Table 1 shows that pipeline and void identify the best,
while loose identify less accurately. This is because the
images of void and pipeline have obvious features, while the
loose diseases are similar to the background and are not
easy to distinguish, which is the case when manually judg-
ing. Through this model, the dataset is optimized. While
increasing the amount of data, remove irrelevant data from the
dataset to obtain an optimized dataset. Next, we leverage the
improved YOLOVS object detection algorithm to optimize
the detection results to the maximum extent possible. Overall,
the quantity of damage samples available is the most signifi-
cant factor affecting the results. Additionally, the features of
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the damage, such as size and shape, are also significant. With
the exception of loose detection results, almost every metric
achieves around 90%. This validates the model’s excellent
performance and fulfills the precision necessary for analyzing
intricate defects.

The output results for the CBAM-YOLOvV8 model pre-
sented in this study are shown in Figure 11. As can be
observed from the figure, the optimized model demonstrates
precise predictive capabilities for target diseases. Experimen-
tal evidence indicates that the model is not only versatile
but also exhibits exceptional robustness and generalizability
when processing various types of image scenes. Specifically,
the model accurately identifies the location of the disease
in images with single defect targets, even when the targets
are situated against complex or ambiguous backgrounds.
Moreover, the model effectively handled images containing
multiple defects in the same category as well as complex
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FIGURE 12. Three sets of experimental output results.

scenes with different types of defects. In such cases, the
model correctly differentiates and labels each disease tar-
get, validating its potential and practical value in real-world
applications. Consequently, this model provides a powerful
method for advancements in the precision and application
scope of disease-detection technology.

B. COMPARATIVE EXPERIMENT

In this study, the CBAM-YOLOvVS8 model was used for object
detection experiments on the original and amplified datasets.
As shown in Figure 12, The results of the three groups of
experiments are compared. Group 1 is the object detection
experiment on the original dataset, Group 2 is the object
detection experiment on the unprocessed augmented dataset,
and Group 3 is the object detection result on the optimized
data set in Section V-A. It can be seen from the figure that all
three groups of experiments can detect the features without
misjudgment, where the recognition area in Group 1 is not
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Group 2 Group 3

accurate, and the result of the target detection is much lower
than that in Group 2 and 3. The object detection results for
Group 3 were slightly higher than those for Group 2. The
identified area was the most accurate among the three groups.
The prediction box better matched the location and size of
the feature. The feature region of each of the three image
categories was enclosed by a prediction box, positioned with
its upper edge coinciding with the vertex of the hyperbolic
feature.

The results of the three sets of experiments are compared
in Table 2. In this study, Precision, Recall, mAP and F1 score
evaluation metrics were used to separately compare the three
groups of experiments. As shown in Table 2, compared with
the previous two groups, the total object detection results
of the optimized dataset with the proposed deduplication
algorithm under the same settings achieved 88.8% average
precision, 87.8% recall, 90.8% mAP, and 88.3% F1 score.
It is 5.4%, 7.0%, 6.3% and 6.3% higher than the Group 1
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TABLE 2. Three groups of experimental training result.

Training
Groups Types Precision (%) Recall (%)  mAP (%) F1 score (%) Duration (h)

pipeline 86.9 82.0 89.8 84.4
void 85.5 85.1 89.2 85.3

Group 1 0.569
loose 77.7 75.2 74.5 76.4
All classes 83.4 80.8 84.5 82.1
pipeline 88.6 86.1 90.9 87.3
void 87.4 86.7 89.6 87.0

Group 2 1.996
loose 80.6 79.1 81.1 79.8
All classes 85.5 84.0 87.2 84.7
pipeline 89.5 88.8 91.8 89.1
void 93.6 90.5 94.8 92.0

Group 3 0.953
loose 83.2 84.2 85.8 83.7
All classes 88.8 87.8 90.8 88.3
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FIGURE 13. Evaluation comparison of different groups. (a) The result of Precision, (b) The result of mAP.

original dataset, and 3.3%, 3.8%, 3.6% and 3.6% higher than
the Group 2 amplified data set. While improving the object
detection effect, Group 3, using the proposed model, has a
much shorter training time than Group 2’s augmented dataset,
saving 1.108h compared with Group 2. As demonstrated
in Figure 13, The Precision and Recall curves of the three
groups of experimental training processes are plotted. It can
be clearly seen from the line chart that in these three groups
of experiments, the curve of Group 3 rises the fastest, has the
smallest oscillation and finally tends to be stable. The output
result was the highest among the three groups. However,
in the other two groups of curves, the rising rate is slow and
the amplitude changes significantly, which persists until the
end. In summary, according to the comparison results, the
dataset optimized by the proposed deduplication algorithm
has the best target detection effect, the most reasonable time
consumption, and the highest efficiency.

C. COMPARISON ANALYSIS USING DIFFERENT MODELS
This study validates the improved performance of the model

through thorough analysis and comparison with existing
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models. Different models were used for comparative analy-
sis to demonstrate the advantages of the proposed CBAM-
YOLOVS, such as YOLOv8, YOLOvVS, MobileNet-SSD and
Faster R-CNN. We used four evaluation metrics: precision,
recall, mAP, and F1 score to evaluate the results. Under the
same experimental conditions and according to the provided
defects datasets, we conducted the same three groups of
comparative experiments on object detection as described in
Section V-B. The average defect detection results obtained
from the different detection methods are presented in Table 4,
with all comparative experiments conducted using the same
training and testing datasets.

As shown in Table 3, the analysis of the results shows
that the proposed model outperforms the other methods in
improving the accuracy and efficiency of defect detection as
much as feasible. Compared with the four groups of compar-
ison tests of all methods, the optimization model part of this
study has a notable increase in the detection results. Com-
pared to the YOLOVS algorithm, it significantly improves the
detection accuracy while maintaining a minimal difference in
the detection time. In contrast to the conventional YOLOVS
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TABLE 3. Comparison of defects detection using different methods.

Models Groups Precision (%)  Recall (%) mAP (%)  F1 score (%) Training
Duration (h)
GROUP 1 83.4 80.8 84.5 82.1 0.569
CBAM- GROUP 2 85.5 84.0 87.2 84.7 1.996
YOLOVS
GROUP 3 88.8 87.8 90.8 88.3 0.953
GROUP 1 82.6 75.5 80.6 78.9 0.527
YOLOVS GROUP 2 84.1 81.3 85.5 82.7 1.767
GROUP 3 87.9 84.3 88.6 86.1 0.864
GROUP 1 75.5 72.7 74.8 74.1 0.489
YOLOV5 GROUP 2 83.4 81.5 84.9 82.4 2.094
GROUP 3 86.6 83.3 86.3 84.9 1.019
GRrouP 1 70.8 713 74.2 70.1 2517
M°'§‘S%\Iet' GROUP 2 77.5 78.6 80.4 78.0 8.705
GROUP 3 80.6 82.8 82.6 81.7 4209
GRroUP 1 65.8 66.7 67.0 66.2 3.133
Faster GROUP 2 73.1 71.8 72.8 72.4 10.688
RCNN : : : : :
GRrOUP 3 76.9 78.0 78.1 77.4 5.162
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FIGURE 14. Analysis of model robustness.

algorithm, although the detection speed is marginally faster,
the accuracy of detection is significantly lower than that
of the proposed method. Some lightweight models, such
as MobileNet-SSD, can reduce computation; however, the
proposed method exhibits superior efficiency and accu-
racy. For traditional object detection methods, Faster RCNN
requires more time but achieves a lower accuracy. The anal-
ysis of the results shows that, the detection results of the
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CBAM-YOLOV8 model in this study are better. In addition,
the detection rate is faster, which matches real-time needs.
Specifically, the inference time (time to detect a single image)
is substantially shorter than that of other approaches, exhibit-
ing a high detection efficiency. In conclusion, our model
differs from most current methods in that we significantly
reduce the detection time while enhancing the detection
results. By maximizing the balance between the detection
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speed and accuracy, the proposed CBAM-YOLOv8 method
outperforms existing methods.

D. ROBUSTNESS TESTING

To further highlight the robustness of the proposed method,
we selected GPR loose images with the least obvious features
and the lowest object detection effect as the data to verify the
robustness of the method. We verified this in terms of noise,
color transformation, translation, scaling, and deformation.
As shown in Figure 14(a), we added Gaussian noise, salt-
and-pepper noise, and brightness to the GPR image in this
part, which has the capability to emulate the impact of various
underground environments and noise. In figure 14(b), the
image is shifted to the left, right and down, indicating that
the location of the GPR image feature does not affect the
recognition performance of the model. Figure 14(c) illustrates
that the recognition performance of the model is not affected
by the image scale deformation caused by horizontal and
vertical stretching and scaling relative to the overall image
size ratio. If the robustness test achieves good results for
the image category with the least obvious features and the
lowest detection effect, the robustness test results for the
void and pipeline image data will also be good. In summary,
it is evident that the proposed model exhibits remarkable
stability and robustness. It can not only distinguish the fea-
tures of GPR images, such as deformation, translation, and
color transformation but also effectively adjust to specific
noisy environments. Therefore, the object detection model
developed in this study can help identify underground defect
GPR images that are challenging for humans to distinguish
because of their high levels of interference and blurriness.

V1. DISCUSSION
A. IMPORTANCE ANALYSIS OF THE MODEL FOR
DETECING DEFECT
Currently, a vast range of data processing approaches has
been developed for GPR object detection. However, the exist-
ing research still relies on manual work, and the challenges
caused by the complex instabilities of underground scenes
have not been fully addressed. DL-based GPR data analysis
has not been able to keep pace with rapid advancements in
other fields, mainly because of the inadequate availability
of extensive radar databases. The precision of the evaluation
results depends heavily on the quality of the data. Effec-
tively obtaining high-quality datasets and detecting defect
targets are of great significance for the development of GPR
data analysis. This is shown in the proposed automated
defect detection system. We can not only obtain high-quality
amplified datasets, but also accurately detect underground
defects. Moreover, the model can greatly reduce the amount
of calculation and, save detection time, and the requirements
for hardware and storage space are no longer harsh.

The integrated application of this method holds significant
potential benefits, enabling efficient and accurate detection
and localization of underground defects such as pipelines
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Algorithm 1 SLIC-Phash

Input: Image Dataset G
Parameters: K = 218 — number of superpixels
S = 218 — hash size
T = 24 — the threshold of Hamming distance
Output: Deduplicated dataset G’
for img in G : // generate perceptual hash for each image
superpixels = segment(img, K)
hashes = []
for Sp in superpixels
hash = phash(sp, S)
hashes.append(hash)
avg_hash = mean(hashes)
for hash in hashes :

if hash >= avg_hash :

| hash=1
else:
hash =0

en
end
end
for img in G : // generate hash signature for each image
Hashes = get_hashes(img)
If scan_mode == ‘zigzag’:
signature = zigzag(hashes)
add signature to hash_table
end
for sig in hash_table : // delete images of low quality
for other in hash_table :
if distance(sig, other) <= T:
remove other’s img
G’ = get_unique_images(hash_table)

Return G/
en

end

and cables. It can assist urban planners in making informed
decisions regarding the placement and layout of under-
ground infrastructure, thereby enhancing the sustainability
and effectiveness of urban development. Additionally, this
method can be utilized for monitoring the health condition
of underground structures, promptly identifying defects, and
implementing appropriate maintenance measures to reduce
safety risks and maintenance costs.

B. FUTURE WORK

In this study, an advanced image dataset optimization and
detection system was proposed. However, despite its good
performance on the current datasets, the model’s gener-
alization ability in new environments or under different
geological conditions has not been fully tested. Second, fur-
ther enhancement of real-time performance under extreme
resource constraints might compromise accuracy. Finally, the
current model primarily focuses on two-dimensional image
features, which may not fully utilize the depth information
available in GPR data. Considering these limitations, future
research should explore cross-domain adaptation techniques
to enable the model to adapt to different geological environ-
ments and detection conditions. Given the three-dimensional
nature of GPR data, future models can incorporate deep
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Algorithm 2 CBAM-YOLOv8

Input: Image img, number of classes nc

Parameters: nc = 3 — number of classes

img_size = 640 — input image size

batch_size = 16 — batch size for training

Ir = 0.01 —initial learning rate

epochs = 300 —number of training epochs

Output: bboxes, class_ids, scores

for epoch in range(epochs) :

for img_batch in Datal.oader(batch_size) :

Backbone // extract features from input image
X1 = conv(img, 64, kernel=3, stride=2) // first

conv layer

X = Ghost_conv(xy, 128, kernel=3, stride=2) //
add Ghost

x3 = C2F(xy) * 3 // CSPDarknet53 to 2-Stage
FPN module

x4 = Ghost_conv(xs, 256, kernel=3, stride=2)

x5 = C2F(x4) * 6

x¢ = Ghost_conv(xs, 512, kernel=3, stride=2)

x7 = C2F(x¢g) * 6

xg = Ghost_conv(x7, 1024, kernel=3, stride=2)

X9 = C2F(xg) * 3

x10 = SPPF(x9) // spatial pyramid pooling
Head // generate feature pyramids for detection

p3 = upsample(x1g)

p3 = concat(ps, X6)

p3 = C2F(p3) * 3

p3 = CBAM(p3) // channel attention

p4 = upsample(pz)

p4 = concat(py, X4)

p4 = C2F(pg) * 3

ps = CBAM(ps)

ps = conv(pa, 256, stride=2)

ps = concat(ps, p3)

p5s = C2F(ps) * 3

ps = CBAM(ps)

pPe = conv(ps, 512, stride=2)

pe = concat(pe, Xg)

p6 = C2F(pg) * 3

p6 = CBAM(pe)

bboxes, class_ids, scores = Detect([p3,ps5.Psls

nc)
Return bboxes, class_ids, scores

end
end

learning with three-dimensional image processing techniques
to make more comprehensive use of GPR data. Finally,
research on GPR underground defect localization will be
developed, and a complete underground defect assessment
system will be established in accordance with existing stan-
dards.

VIl. CONCLUSION

The key contribution of this study is to propose an under-
ground defect detection based on GPR by Fusing Simple
Linear Iterative Clustering Phash (SLIC-Phash) and Convo-
Iutional Block Attention Module (CBAM)-YOLOVS. It is
used to optimize the underground defect image datasets and
improve the detection efficiency. In short, the main novelties
of this study are summarized as follows:

VOLUME 12, 2024

o This study introduces an optimized model for GPR
defect images named SLIC-Phash. The model is based
on traditional DA techniques that incorporate both SLIC
and Phash algorithms. Through this integration, the
model is capable of filtering out unrealistic target fea-
tures and complex, ambiguous backgrounds in GPR
image data with the aim of enhancing the quality of the
dataset. This method has advantages such as simplicity,
ease of integration, and minimal requirements for com-
puter performance. Utilizing this optimized dataset not
only significantly reduces the time required for target
detection but also improves the accuracy of the detection
results and reduces memory consumption.

« To achieve better target detection results, this study
proposesd an object detection model called CBAM-
YOLOVS. By incorporating the GhostConv network and
CBAM attention mechanism, the YOLOv8 model was
significantly improved in terms of detection accuracy,
while the detection time remained nearly unchanged.
The CBAM-YOLOv8 model presented in this paper
achieves an average mAP of 90.8% and an F1 score of
88.3% in underground defect detection, which is supe-
rior to the target detection results of traditional models
such as YOLOvVS8, YOLOvVS5, SSD, and Faster RCNN.

« A system that integrates dataset processing with object
detection, termed the one-click GPR image detection
system, was proposed. This system allows for the direct
use of enhanced datasets to achieve optimal detection
results. The system developed in this study signifi-
cantly reduces the detection time and maximizes the
balance between detection speed and accuracy. Empir-
ical evidence demonstrates that the system is capable
of simultaneously augmenting multiple target categories
and detecting them precisely.

APPENDIX
See Algorithms 1 and 2.

REFERENCES

[1] E. Slob, M. Sato, and G. Olhoeft, “Surface and borehole ground-
penetrating-radar  developments,”  Geophysics, vol. 75, mno. 5,
pp. 75A103-75A120, Sep. 2010, doi: 10.1190/1.3480619.

[2] C. Caselle, S. Bonetto, C. Comina, and S. Stocco, “GPR surveys for the
prevention of Karst risk in underground gypsum quarries,” Tunnelling
Underground Space Technol., vol. 95, Jan. 2020, Art. no. 103137, doi:
10.1016/j.tust.2019.103137.

[3] J.M. W.Brownjohn, A. De Stefano, Y.-L. Xu, H. Wenzel, and A. E. Aktan,
“Vibration-based monitoring of civil infrastructure: Challenges and suc-
cesses,” J. Civil Struct. Health Monitor., vol. 1, nos. 3-4, pp. 79-95,
Dec. 2011, doi: 10.1007/s13349-011-0009-5.

[4] U. Ozkaya, F. Melgani, M. B. Bejiga, L. Seyfi, and M. Donelli, “GPR B
scan image analysis with deep learning methods,” Measurement, vol. 165,
Dec. 2020, Art. no. 107770, doi: 10.1016/j.measurement.2020.107770.

[5] D. Liu, L. Zhang, X. Jiang, C. Su, Y. Fan, and Y. Cao, “MEML:
A deep data augmentation method by mean extrapolation in mid-
dle layers,” IEEE Access, vol. 9, pp.151621-151630, 2021, doi:
10.1109/ACCESS.2021.3125841.

[6] D. Yuan, M. Hong, and Z. An, ‘““Visualizing GPR data using spatial-
subband configuration,” IEEE Access, vol. 6, pp. 54651-54659, 2018, doi:
10.1109/ACCESS.2018.2868797.

25903


http://dx.doi.org/10.1190/1.3480619
http://dx.doi.org/10.1016/j.tust.2019.103137
http://dx.doi.org/10.1007/s13349-011-0009-5
http://dx.doi.org/10.1016/j.measurement.2020.107770
http://dx.doi.org/10.1109/ACCESS.2021.3125841
http://dx.doi.org/10.1109/ACCESS.2018.2868797

IEEE Access

N. Wang et al.: Underground Defects Detection Based on GPR by Fusing SLIC-Phash and CBAM-YOLOv8

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. Xie, F. Niu, W. Su, and Y. Huang, “Identifying coastal highway
pavement anomalies using multiscale wavelet analysis in radar signal
interpretation,” J. Civil Struct. Health Monitor., vol. 13, no. 1, pp. 49-65,
Jan. 2023, doi: 10.1007/s13349-022-00595-z.

P. Gamba and S. Lossani, “Neural detection of pipe signatures in ground
penetrating radar images,” IEEE Trans. Geosci. Remote Sens., vol. 38,
no. 2, pp. 790-797, Mar. 2000, doi: 10.1109/36.842008.

M. R. Shaw, S. G. Millard, T. C. K. Molyneaux, M. J. Taylor, and
J. H. Bungey, “Location of steel reinforcement in concrete using ground
penetrating radar and neural networks,” NDT E Int., vol. 38, no. 3,
pp- 203-212, Apr. 2005, doi: 10.1016/j.ndteint.2004.06.011.

E. Pasolli, F. Melgani, and M. Donelli, “Automatic analysis of GPR
images: A pattern-recognition approach,” IEEE Trans. Geosci.
Remote Sens., vol. 47, no. 7, pp.2206-2217, Jul. 2009, doi:
10.1109/TGRS.2009.2012701.

C. Maas and J. Schmalzl, “Using pattern recognition to automat-
ically localize reflection hyperbolas in data from ground penetrat-
ing radar,” Comput. Geosci., vol. 58, pp. 116-125, Aug. 2013, doi:
10.1016/j.cageo.2013.04.012.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp- 84-90, May 2017, doi: 10.1145/3065386.

H. Liu, C. Lin, J. Cui, L. Fan, X. Xie, and B. F. Spencer, “Detection and
localization of rebar in concrete by deep learning using ground penetrat-
ing radar,” Autom. Construct., vol. 118, Oct. 2020, Art. no. 103279, doi:
10.1016/j.autcon.2020.103279.

L. E. Besaw and P. J. Stimac, “Deep convolutional neural networks
for classifying GPR B-scans,” Proc. SPIE, vol. 9454, May 2015,
Art. no. 945413.

M.-T. Pham and S. Lefévre, “Buried object detection from B-scan ground
penetrating radar data using faster-RCNN,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp. (IGARSS), Valencia, Spain, Jul. 2018, pp. 6804-6807,
doi: 10.1109/IGARSS.2018.8517683.

J. Zhang, X. Yang, W. Li, S. Zhang, and Y. Jia, “Automatic detection of
moisture damages in asphalt pavements from GPR data with deep CNN and
IRS method,” Autom. Construction, vol. 113, May 2020, Art. no. 103119,
doi: 10.1016/j.autcon.2020.103119.

X. Zhang, L. Han, M. Robinson, and A. Gallagher, “A GANs-based
deep learning framework for automatic subsurface object
recognition from ground penetrating radar data,” [EEE Access,
vol. 9, pp.39009-39018, 2021, doi: 10.1109/ACCESS.2021.
3064205.

M. Li, M. Li, Q. Ren, H. Liu, and C. Liu, “Intelligent identification
and classification of sewer pipeline network defects based on improved
RegNetY network,” J. Civil Struct. Health Monitor., vol. 13, nos. 2-3,
pp. 547-560, Mar. 2023, doi: 10.1007/s13349-022-00660-7.

Y. Zheng, Y. Zhan, X. Huang, and G. Ji, “YOLOv5s FMG:
An improved small target detection algorithm based on YOLOVS in
low visibility,” IEEE Access, vol. 11, pp.75782-75793, 2023, doi:
10.1109/ACCESS.2023.3297218.

Y. Li, Z. Zhao, Y. Luo, and Z. Qiu, “Real-time pattern-recognition of
GPR images with YOLO v3 implemented by tensorflow,” Sensors, vol. 20,
no. 22, p. 6476, Nov. 2020, doi: 10.3390/520226476.

S. Li, X. Gu, X. Xu, D. Xu, T. Zhang, Z. Liu, and Q. Dong, “‘Detection
of concealed cracks from ground penetrating radar images based on deep
learning algorithm,” Construct. Building Mater., vol. 273, Mar. 2021,
Art. no. 121949, doi: 10.1016/j.conbuildmat.2020.121949.

Z. Situ, S. Teng, X. Liao, G. Chen, and Q. Zhou, “‘Real-time sewer defect
detection based on YOLO network, transfer learning, and channel pruning
algorithm,” J. Civil Struct. Health Monitor., vol. 14, no. 1, pp. 41-57,
Jan. 2024, doi: 10.1007/s13349-023-00681-w.

N. Hu, J. Yang, X. Jin, and X. Fan, “Few-shot crack detection based
on image processing and improved YOLOVS,” J. Civil Struct. Health
Monitor., vol. 13, no. 1, pp. 165-180, Jan. 2023, doi: 10.1007/313349-022-
00632-x.

C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOV7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2022,
pp. 7464-7475, doi: 10.1109/CVPR52729.2023.00721.

V. Pham, D. Nguyen, and C. Donan, “Road damage detection and clas-
sification with YOLOV7,” in Proc. IEEE Int. Conf. Big Data (Big Data),
Osaka, Japan, Dec. 2022, pp. 6416-6423.

25904

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]
[43]

[44]

[45]

[46]

Y. Du, X. Liu, Y. Yi, and K. Wei, “Optimizing road safety: Advancements
in lightweight YOLOv8 models and GhostC2f design for real-time dis-
tracted driving detection,” Sensors, vol. 23, no. 21, p. 8844, Oct. 2023,
doi: 10.3390/s23218844.

Z. Tong, J. Gao, and D. Yuan, “Advances of deep learning applications in
ground-penetrating radar: A survey,” Construct. Building Mater., vol. 258,
Oct. 2020, Art. no. 120371, doi: 10.1016/j.conbuildmat.2020.120371.

Z. Zong, C. Chen, X. Mi, W. Sun, Y. Song, J. Li, Z. Dong, R. Huang,
and B. Yang, “A deep learning approach for urban underground objects
detection from vehicle-borne ground penetrating radar data in real-time,”
Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci., vol. XLII-2/W 16,
pp- 293-299, Sep. 2019, doi: 10.5194/isprs-archives-XLII-2-W16-293-
2019.

I. Giannakis, A. Giannopoulos, and C. Warren, “A machine learning
scheme for estimating the diameter of reinforcing bars using ground
penetrating radar,” IEEE Geosci. Remote Sens. Lett., vol. 18, no. 3,
pp. 461-465, Mar. 2021, doi: 10.1109/LGRS.2020.2977505.

1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. 27th Int. Conf. Neural Inf. Process. Syst., vol. 2, Montreal, QC,
Canada, 2014, pp. 2672-2680.

G. Chen, X. Bai, G. Wang, L. Wang, X. Luo, M. Ji, P. Feng, and Y. Zhang,
“Subsurface voids detection from limited ground penetrating radar data
using generative adversarial network and YOLOVS,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp. IGARSS, Jul. 2021, pp. 8600-8603.

Y. Yue, H. Liu, X. Meng, Y. Li, and Y. Du, “Generation of high-precision
ground penetrating radar images using improved least square generative
adversarial networks,” Remote Sens., vol. 13, no. 22, p. 4590, Nov. 2021,
doi: 10.3390/rs13224590.

D. Zhao, G. Guo, Z.-K. Ni, J. Pan, K. Yan, and G. Fang,
“WAEGAN: A GANs-based data augmentation method for GPR
data,” IEEE Geosci. Remote Sens. Lett., vol. 20, pp. 1-5, 2023, doi:
10.1109/LGRS.2023.332398]1.

H. Xiong, J. Li, Z. Li, and Z. Zhang, “GPR-GAN: A ground-penetrating
radar data generative adversarial network,” IEEE Trans. Geosci. Remote
Sens., vol. 62, pp. 1-14, 2024, doi: 10.1109/TGRS.2023.3337172.

G. Yue, C. Liu, Y. Li, Y. Du, and S. Guo, “GPR data augmentation methods
by incorporating domain knowledge,” Appl. Sci., vol. 12, no. 21, p. 10896,
Oct. 2022.

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Siisstrunk, “SLIC
superpixels compared to state-of-the-art superpixel methods,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274-2282, Nov. 2012, doi:
10.1109/TPAMI.2012.120.

C. L. Zitnick and S. B. Kang, ““Stereo for image-based rendering using
image over-segmentation,” Int. J. Comput. Vis., vol. 75, no. 1, pp. 49-65,
Jul. 2007, doi: 10.1007/s11263-006-0018-8.

J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6517-6525.

S. Woo, J. Park, J. Y. Lee, and 1. S. Kweon, “CBAM: Convolutional block
attention module,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 3-19.

C. Liu, H. Sui, J. Wang, Z. Ni, and L. Ge, “Real-time ground-level
building damage detection based on lightweight and accurate YOLOV5
using terrestrial images,” Remote Sens., vol. 14, no. 12, p. 2763, Jun. 2022,
doi: 10.3390/rs14122763.

J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8,
pp- 2011-2023, Aug. 2020, doi: 10.1109/TPAMI.2019.2913372.

M. Lin, Q. Chen, and S. Yan, “Network in network,”
10.48550/arXiv.1312.4400.

H. Wang, Y. Fan, Z. Wang, L. Jiao, and B. Schiele, “‘Parameter-free spatial
attention network for person re-identification,” 2018, arXiv:1811.12150.

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,
“A comprehensive survey on transfer learning,” Proc. IEEE, vol. 109,
no. 1, pp. 43-76, Jul. 2020, doi: 10.1109/JPROC.2020.3004555.

Y. Zhang and K. Yuen, ““Crack detection using fusion features-based broad
learning system and image processing,” Comput.-Aided Civil Infrastruct.
Eng.,vol.36,no. 12, pp. 1568-1584, Dec. 2021, doi: 10.1111/mice.12753.
M. Martinez-Rojas, N. Marin, and M. A. Vila, “An approach for the
automatic classification of work descriptions in construction projects,”
Comput.-Aided Civil Infrastruct. Eng., vol. 30, no. 12, pp.919-934,
Dec. 2015, doi: 10.1111/mice.12179.

2014,

VOLUME 12, 2024


http://dx.doi.org/10.1007/s13349-022-00595-z
http://dx.doi.org/10.1109/36.842008
http://dx.doi.org/10.1016/j.ndteint.2004.06.011
http://dx.doi.org/10.1109/TGRS.2009.2012701
http://dx.doi.org/10.1016/j.cageo.2013.04.012
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.autcon.2020.103279
http://dx.doi.org/10.1109/IGARSS.2018.8517683
http://dx.doi.org/10.1016/j.autcon.2020.103119
http://dx.doi.org/10.1109/ACCESS.2021.3064205
http://dx.doi.org/10.1109/ACCESS.2021.3064205
http://dx.doi.org/10.1007/s13349-022-00660-7
http://dx.doi.org/10.1109/ACCESS.2023.3297218
http://dx.doi.org/10.3390/s20226476
http://dx.doi.org/10.1016/j.conbuildmat.2020.121949
http://dx.doi.org/10.1007/s13349-023-00681-w
http://dx.doi.org/10.1007/s13349-022-00632-x
http://dx.doi.org/10.1007/s13349-022-00632-x
http://dx.doi.org/10.1109/CVPR52729.2023.00721
http://dx.doi.org/10.3390/s23218844
http://dx.doi.org/10.1016/j.conbuildmat.2020.120371
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W16-293-2019
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W16-293-2019
http://dx.doi.org/10.1109/LGRS.2020.2977505
http://dx.doi.org/10.3390/rs13224590
http://dx.doi.org/10.1109/LGRS.2023.3323981
http://dx.doi.org/10.1109/TGRS.2023.3337172
http://dx.doi.org/10.1109/TPAMI.2012.120
http://dx.doi.org/10.1007/s11263-006-0018-8
http://dx.doi.org/10.3390/rs14122763
http://dx.doi.org/10.1109/TPAMI.2019.2913372
http://dx.doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/10.1111/mice.12753
http://dx.doi.org/10.1111/mice.12179

N. Wang et al.: Underground Defects Detection Based on GPR by Fusing SLIC-Phash and CBAM-YOLOv8

IEEE Access

NIANNIAN WANG was born in Henan, China,
in 1989. She received the Ph.D. degree in struc-
tural engineering from the Dalian University of

o o~ Technology, China, in 2019.
LA She is currently a Professor with the School
= ‘ of Water Resources and Civil Engineering,

- / Zhengzhou University, China. She also serves as

\ the Vice Chairperson of the Pipeline Inspection
and Rehabilitation Committee of the China Munic-
! ipal Engineering Association and a member of the

Expert Committee of the Sino-U.S. Joint Trenchless Engineering Research
Center. She has led more than ten research projects, including National Key
Research and Development Program, National Natural Science Youth Fund,
China Postdoctoral Special Fund, and China Postdoctoral Fund. Her main
research interests include intelligent inspection of engineering structures,
damage identification and assessment, and big data analysis.

Prof. Wang research results were awarded the Gold Prize of the First
National Postdoctoral Innovation and Entrepreneurship Competition, the
Second Prize of Scientific and Technological Progress in Hubei Province
and Henan Province, and the “Young Star” of China International Trenchless
Technology Symposium. She has published one monograph and 32 academic
articles (25 SCI/EI articles). She received the 2019 ASCE Best Paper Award
(the only award-winning paper from a university in mainland China).

ZEXI ZHANG was born in Jiangxi, China, in 2000.
He received the Graduate degree from the School
of Civil Engineering, East China Jiaotong Univer-
sity, in 2017. He is currently pursuing the master’s
degree with the School of Water Resources and
Civil Engineering, Zhengzhou University.

His research interest includes deep learning
based on ground penetrating radar. He is mainly
engaged in non-destructive detection of under-
ground diseases.

VOLUME 12, 2024

HAOBANG HU was born in Hennan, China,
in 1995. He received the B.S. degree in engi-
neering from Zhengzhou University, Zhengzhou,
China, in 2019, where he is currently pursuing the
M.S. degree in engineering.

His research interests include the non-destructive
detection based on ground penetrating radar and
image recognition based on deep learning.

BIN LI was born in Henan, China, in 1993.
He received the Ph.D. degree from the Dalian Uni-
versity of Technology.

His current research interests include safe
operation and maintenance of underground water
supply and drainage pipes. He is currently a mem-
ber of the Chinese Society of Rock Mechanics and
Engineering.

JIANWEI LEI was born in Inner Mongolia, China,
in 1993. He received the Ph.D. degree in safety
and protection engineering from Zhengzhou Uni-
versity, Zhengzhou, China.

His research interests include non-destructive
detection technique in engineering and numerical
simulation methods (e.g., finite-difference time-
domain method and symplectic methods).

25905



