
Received 2 January 2024, accepted 24 January 2024, date of publication 13 February 2024, date of current version 21 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3365521

A Novel Attention Residual Network
Expression Recognition Method
HUI QI 1,2, XIPENG ZHANG1, YING SHI1,3, AND XIAOBO QI1
1School of Computer Science and Technology, Taiyuan Normal University, Jinzhong 030619, China
2Shanxi Key Laboratory of Intelligent Optimization Computing and Blockchain Technology, Jinzhong 030619, China
3School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China

Corresponding author: Hui Qi (qihui@tynu.edu.cn)

This work was supported in part by the Shanxi Patent Transformation Special Programs under Grant 202302009 and Grant 202302012,
in part by the Basic Research Program (Free Exploration) of Shanxi Province under Grant 20210302123334, and in part by the Taiyuan
Normal University Achievement Transformation and Technology Transfer Base under Grant 2023P003.

ABSTRACT Expressions serve as intuitive reflections of a person’s psychological state, making the
extraction of effective features for accurate facial expression recognition a crucial research problem.
However, when facial information is incomplete, the existing convolutional neural networks face some
challenges in extracting features. To address this issue, this paper introduces a pyramidal convolutional
attention residual network(PCARNet) based on the ResNet18. PCARNet combines the pyramidal
convolution module and an improved convolutional attention mechanism to effectively extract expression
features and achieve high-precision facial expression recognition. The proposed model utilizes pyramidal
convolution to extract facial expression features at multiple scales, capturing both global and local
information of the face. Grouped convolution is employed to reduce the computational complexity and
the number of parameters. Additionally, to avoid the adverse effects of channel dimensionality reduction
on the attention mechanism and enhance the capacity for information exchange across channels, the Share
MLP module within the convolutional attention mechanism was replaced by a one-dimensional convolution
with adaptive kernel size. The improved convolutional attention mechanism assigns weights to the extracted
multiscale features based on both channel and spatial dimensions, enhancing the representation of crucial
facial features. Experimental results demonstrate the high recognition accuracy of the proposed method
on public datasets such as Fer2013, RAF-DB, and CK+. The accuracies achieved are 73.725%, 87.516%,
and 95.455%, respectively. Compared to other methods, the proposed approach shows improvements
of at least 1.4%, 2.4%, and 0.25% on the respective datasets, confirming its high reliability and
performance.

INDEX TERMS Residual network, pyramidal convolution, attention mechanism, facial expression
recognition.

I. INTRODUCTION
People commonly utilize facial expressions to convey
emotions and information in everyday communication. With
the continuous advancement of deep learning, computer
vision has progressively achieved remarkable performance
in the field of image analysis. The research on expression
recognition has been deepening, and its applications have
expanded to various domains such as intelligent transporta-
tion, medical services, intelligent education, and criminal
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deception detection, demonstrating significant potential for
further development.

The process of face expression recognition can be divided
into several steps, including image acquisition, face detection,
feature extraction, and expression matching and recognition.
Among these steps, feature extraction plays a crucial role
in the effectiveness of facial expression recognition. This
is due to the subtle differences between expressions, which
cannot be discerned without extracting the key features of
expressions to distinguish expressions accurately. Currently,
feature extraction methods are primarily categorized into
two types: traditional methods and deep learning methods.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 24609

https://orcid.org/0000-0002-9930-9088
https://orcid.org/0000-0002-0651-4278


H. Qi et al.: Novel Attention Residual Network Expression Recognition Method

Traditional expression feature extraction techniques pri-
marily rely on hand-designed approaches [1], [2]. These
methods encompass Principal Component Analysis (PCA)
[3], Local Binary Patterns (LBP) [4], and Histogram of
Oriented Gradient (HOG) [5]. However, traditional methods
are difficult to handle face expression recognition tasks
involving complex backgrounds and diverse angles, exhibit-
ing limited generalization ability. Therefore, an automatic
feature extractionmethod is necessary to enhance themodel’s
generalization ability.

Deep learning methods have gained widespread adop-
tion in various computer vision domains due to their
exceptional feature extraction capabilities. Convolutional
neural networks (CNNs) have surpassed manual meth-
ods in feature extraction, offering autonomous learning
and improved accuracy and stability in recognizing facial
expressions. Most applications of deep learning in expres-
sion recognition are based on network models such as
VGGNet [6], ResNet [7], and MobileNet [8], which are
primarily structured is Deep Convolutional Neural Networks
(DCNNs). Wang et al. [9] proposed an enhanced MobileNet
network model, incorporating depth separable convolution
to reduce network computational complexity, and employing
Support Vector Machines (SVM) for facial expression
classification, resulting in a lighter model. Lan et al. [10]
introduced a joint regularization strategy based on the
ResNet18 residual network, mitigating model overfitting and
enhancing accuracy by integrating multiple regularization
methods into the network. This approach improves both
the model’s generalization ability and overall performance.
Zhou et al. [11] designed a lightweight CNN by employing a
multi-task cascade convolutional network for face detection
and combining residual and depth-separable convolutional
modules to reduce network parameters, thus increasingmodel
portability. Furthermore, they screened shallow features
of facial expressions using techniques like global average
pooling and fused shallow and deep features for expression
recognition. Shi et al. [12] proposed a multi-branch cross-
connected CNN-based facial expression recognition method.
Their approach combines residual connections, network of
networks, and tree structure to improve feature extraction.
Additionally, they introduced fast cross-connections to the
convolutional output layer, enhancing data flow between
networks and feature extraction abilities in each sensory
domain.

Attentionmechanisms represent a category of optimization
modules that have yielded substantial advancements in
recent years within deep neural network research. These
mechanisms label pivotal features in an image by readjusting
their weights, aiming to mitigate background interference
and discern the information-rich regions within the image.
Wang et al. [13] introduced a regional attention network
that integrates both a self-attention module and a relational
attention module. This framework aims to comprehensively
learn attention weights for individual regions in an end-to-end

approach, consequently enhancing the accuracy of facial
expression recognition. Li et al. [14] fused LBP features
with an attention model in facial expression recognition
by integrating the attention mechanism within the network
architecture. This integration facilitated the network in
assigning diverse attention weights to distinct segments of
the input, thereby directing the network’s focus towards more
relevant features. Guo et al. [15] proposed an enhanced
method for facial expression recognition incorporating an
attention mechanism and Involution operator. This method
utilizes VGG19 as the foundational network and introduces
the attention mechanism at the front-end to extract highly
relevant expression features. Additionally, it enhances the
distribution of feature data through a joint regularization
strategy, resulting in improved accuracy in expression
recognition.

The aforementioned methods have somewhat enhanced
the accuracy of facial expression recognition. Literatures [9],
[10], [11], and [12] primarily focuses on refining the
base model and enhancing its feature extraction capability.
In real-world scenarios, images comprise not only facial
details but also extraneous background information. Thus,
literatures [13], [14], and [15] integrates the attention
mechanism into the network architecture, leveraging it
to mitigate irrelevant features. This approach significantly
improves the model’s generalization ability. However, in the
pursuit of further enhancing expression recognition accuracy
for practical application, several challenges remain that need
addressing as follows:

(1) In datasets with incomplete facial information, such as
faces with partial occlusion or deflection, the existing model
lack the ability to extract facial expression features, resulting
in low recognition accuracy.

(2) Most existing attention mechanisms employ chan-
nel dimensionality reduction operations to reduce model
complexity in the information extraction process. However,
this approach disrupts the direct correspondence between
channels and their weights, impacting the information
extraction capability of the attention mechanism.

To address these issues, this paper proposes a solution
that involves the following: Extracting multi-scale features
from images using pyramid convolution, allowing for the
capture of global and local facial information. Avoiding
the adverse effects of channel dimensionality reduction
on the attention mechanism while enhancing information
fusion between channels using an improved convolutional
attention mechanism. Enhancing key features within the
multi-scale features extracted from pyramid convolution.
As a result, a Pyramid Convolutional Attention Residual
Network (PCARNet) is designed. The contributions of this
paper are as follows:

(1) Replacing the initial 3×3 convolution in
ResNet18 with a pyramid convolution structure to extract
multi-scale feature information. This modification enables
the capture of global and local facial information
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by utilizing multiple convolution kernels of varying
scales.

(2) Introducing the Efficient Convolutional Block Atten-
tion Module (ECBAM) attention mechanism module to
enhance information fusion among multi-scale channels. The
ECBAM attention effectively highlights key feature regions
for expression recognition in both the channel and spatial
dimensions, while avoiding the negative impact of channel
dimensionality reduction.

(3) Conducting experiments on Fer2013 [16], RAF-DB
[17], and CK+ [18] datasets, resulting in accuracies
of 73.725%, 87.516%, and 95.455%, respectively. These
experiments demonstrate the model’s ability to improve
expression recognition accuracy and highlight its significant
advantage.

II. RELATED WORK
A. PYRAMID CONVOLUTION
Pyramid Convolution(PyConv) [19] employs convolution
kernels of varying sizes, as illustrated in Fig. 1. Inspired
by the concept of grouped convolution in Fig. 2, PyConv
achieves the utilization of different-sized convolution kernels
at each level by partitioning the input data into distinct groups
and assigning different-sized convolution kernels to each
group. This approach enables PyConv to process the input
data using multiple convolution kernels of diverse scales.
Specifically, it utilizes small convolution kernels, such as
1×1 and 3×3, to capture detailed image information, while
employing larger convolution kernels, such as 5×5 and 7×7,
to learn semantic information across larger receptive fields.
By capturing information at different scales and in various
environments, PyConv enhances the model’s performance
compared to standard convolution. Importantly, PyConv
achieves this improvement without introducing additional
parameters. Qiao and Zhang [20] proposed a Pyramid
Hourglass Network based on Pyramid Convolution. The use
of multiple convolutional kernels of varying sizes increases
the model’s ability to extract features and represent them
and improves the accuracy of prediction. It can be seen that
pyramid convolution does improve the prediction accuracy
to a certain extent, but it can be seen in Figure 1 that
the different sizes of convolution operations in pyramid
convolution are computed within their respective groups,
which leads to the data information existing only inside this
group. There is no interaction between the channels, and
information has been blocked. So we need a method to allow
communication between different channels of information to
avoid information blocking.

B. CBAM
CBAM [21], short for Convolutional Block Attention Mod-
ule, is an attention mechanism that enhances the optimization
of adaptive features more efficiently. It operates by weighting
the input features using information from both the spatial and
channel dimensions of a given intermediate feature map. The

weighted features are then multiplied with the input features
to achieve adaptive optimization. Importantly, CBAM can
be trained end-to-end alongside the underlying convolutional
neural network model without significantly increasing com-
putational complexity. Compared to SENet [22], which solely
focuses on channel attention mechanism, CBAM combines
both spatial and channel attention mechanisms. As a result,
CBAM outperforms SENet in terms of performance. The
structure of the CBAM module is illustrated in Fig. 3. How-
ever, the channel attention in CBAM employs an MLP layer
for information extraction and incorporates channel dimen-
sionality reduction to reduce computational complexity.
Nevertheless, the channel dimensionality reduction operation
in the channel attention module projects the channel features
into a low-dimensional space and then maps them back to the
feature map, resulting in an indirect correspondence between
the channel and its weights. This indirect correspondence
negatively impacts the attention mechanism and conse-
quently affects recognition accuracy. Thus, it is essential to
avoid the channel dimensionality reduction operation in the
attention mechanism to achieve more efficient information
extraction.

III. APPROACH
Existing models that struggle to extract facial expression
features adequately when facing with incomplete facial
information, leading to diminished recognition accuracy.
Thus, this paper introduces a novel algorithm, PCARNet,
designed to extract both global and local facial information,
aiming to address the challenge of low recognition accuracy
encountered by models in scenarios involving incomplete
facial information. The proposed algorithm consists of
three main steps. Firstly, the facial expression dataset is
subjected to preprocessing to enhance the data quality.
Secondly, facial expression features are extracted by utilizing
the Pyramid Convolutional Attention Residual Network
(PCARNet). PCARNet comprises of four PCAR Blocks,
which each block utilizes PyConv to extract multi-scale
features from the image, enabling the capture of both local
and global facial information. Meanwhile, ECBAM is used to
facilitate channel-wise fusion of information and emphasize
crucial facial features. Finally, classify with a fully connected
layer. The workflow of the proposed approach is shown in
Fig. 4.

A. DATASET PREPROCESSING
In this thesis, we select the Fer2013, CK+, and RAF-DB
expression datasets. The Fer2013 dataset is initially provided
in CSV format, so we utilize pandas to parse and extract the
dataset into images. To enhance the quantity and quality of
the samples and improve the model’s generalization ability,
we perform data augmentation on three datasets through
random cropping and level-flipping techniques. In Fig 4, the
data processing is illustrated using the fer2013 dataset as an
example.
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FIGURE 1. Pyramid convolution.

FIGURE 2. Group convolution.

FIGURE 3. CBAM module.

B. PCARNET
The network architecture comprises a 3×3 convolutional
layer, followed by PCAR Block0, PCAR Block1, PCAR
Block2, PCAR Block3, a Global Average Pooling (GAP)
layer, and a fully connected layer. The overall structure of
the PCARNet network is illustrated in Fig. 5, where ‘‘C’’
represents the number of channels.

The model starts by performing feature extraction from
the input image using a 3×3 convolutional layer. Follow-
ing the convolutional layer, there are four interconnected
blocks at different depths, each containing two improved

ResNet18 residual blocks. In these modified blocks, the first
3×3 convolution is replaced with PyConv. The pyramid
convolution utilizes distinct parameters to extract multi-scale
features of facial expressions, enhancing the network’s
feature extraction capability. Subsequently, an improved
attentional mechanism referred to as ECBAM is employed
to allocate attentional weights to the extracted multiscale
features across both channel and spatial dimensions. This
attention mechanism highlights key facial expression fea-
tures, resulting in improved recognition accuracy. Finally,
the second 3×3 convolution in the ResNet18 residual block
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FIGURE 4. Workflow of the proposed method.

FIGURE 5. Structure of the proposed method.

is used to integrate the extracted information. The model
incorporates a GAP layer after the PCAR Block3 to alleviate
overfitting. A fully connected layer is used for classification.

1) PYCONV
To address the challenges posed by datasets containing
incomplete facial information, such as occlusion or deflec-
tion, this paper proposes the use of pyramid convolution for
extracting multi-scale features that capture both global and
local information about the face. Particularly in scenarios
with incomplete facial information, global information plays
a crucial role in facial recognition. Pyramid Convolution
(PyConv) employs multiple convolution kernels of varying
scales to process the input data. To enable the utilization
of distinct kernel at varying levels within PyConv, the input

feature maps undergo segmentation into separate groups.
Subsequently, independent kernel applications are performed
for each group of input feature maps. It utilizes smaller
kernels to capture fine-grained details of the image and
larger kernels to capture global information across a broader
receptive field. Due to the increased computational effort
associated with larger convolution kernels, PyConv utilizes
a grouped convolution operation. PyConv increasing the
number of groups as the size of the convolution kernel
increases. By doing so, PyConv is able to extract multi-scale
information without significantly increasing the compu-
tational workload. This approach enhances the model’s
performance. As the model’s depth increases, the size of the
feature map decreases. To account for this, the paper uses
four PyConv layers with distinct parameters based on the
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FIGURE 6. PyConv layers.

feature map size. The Relu activation function is applied after
each PyConv layer to enhance the neural network’s nonlinear
fitting capability and improve the model’s expressiveness.
The architecture of the four PyConv layers is depicted in
Fig. 6, where ‘‘C’’ represents the number of channels and
‘‘G’’ denotes the number of groups used for grouping the
convolutions.

2) ECBAM
When generating channel attention, the CBAM module
first downsizes the feature map and then extracts channel
features by mapping each feature using a fully connected
layer. To capture larger spatial feature information, a 7×7
convolution kernel is used in the spatial attention to
extract spatial features from the samples. However, the
PyConv module utilizes grouped convolution, which can
result in limited information exchange between channels
due to data being confined within each group, resulting
in information blocking. To enhance channel interaction
across different scales, this study draws inspiration from the
literature [23] and replaces the fully connected layer with
1D-convolution operations using adaptive kernel sizes. This
approach strengthens the exchange of feature information
in the channel dimension by aggregating information from
neighboring channels. Moreover, it avoids the negative
impact of channel dimensionality reduction on the attention
mechanism. To account for the low image resolution of
the dataset utilized in this paper, two 3×3 convolutions are
employed in spatial attention as a replacement for the original
7×7 convolution. This modification allows for the extraction
of spatial features effectively. The improvedmodule proposed
in this study is called ECBAM.

The improved channel attention module first aggregates
the multi-scale feature information through global pooling
and maximum pooling operations. This generates global
pooled features and maximum pooled features. Next, the
two features undergo 1D-convolution with an adaptive
convolution kernel size. The resulting features are then
added together and passed through the Sigmoid function and

the resulting output is expanded to match the size of the
input feature map. Finally, the expanded result is multiplied
element-wise with the input feature map to obtain the feature
map after the addition of channel attention. The improved
channel attention mechanism is depicted in Fig. 7.

Specifically, the process of calculating channel attention
can be represented as follows:

MC (F) = δ
(
f k1D (Avgpool (F)) + f k1D (Maxpool (F))

)
= δ

(
f k1D

(
FCAvg

)
+ f k1D

(
FCMax

))
(1)

where δ represents the Sigmoid activation function and f k1D
represents the adaptive one-dimensional convolution with a
convolution kernel size. The size of the adaptive convolution
kernel k is determined by the equation mentioned in the
literature [23]:

k =

∣∣∣∣ log2 Cγ
+
b
γ

∣∣∣∣ (2)

C represents the number of channels in the input feature
map. The coefficients γ and b are adjustable parameters
for customization. In this paper, we use the parameters that
gave the best results in the literature [23], γ is assigned a
value of 2, and b is assigned a value of 1. The notation |t|odd
denotes the nearest odd number to t.

The improved spatial attention module conducts global
pooling and maximum pooling operations on the feature
map after channel attention. This process generates global
pooled features and maximum pooled features. The two
spatial features are then concatenated along the channel axis.
Next, two 3×3 convolutions are applied to assign weights
to different regions of the spatial features, and the resulting
features from these convolutions undergo Sigmoid activation
function operations. The generated output is subsequently
expanded to match the size of the input feature map. Finally,
the expanded output is element-wise multiplied with the input
feature map to obtain the feature map with added spatial
attention. The improved spatial attention module is illustrated
in Fig. 8.
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FIGURE 7. Improved channel attention.

FIGURE 8. Improved spatial attention.

The spatial attention calculation process can be represented
as follows:

MS (F) = δ
(
f 3con

(
f 3con [Avgpool (F) ;Maxpool (F)]

))
= δ

(
f 3con

(
f 3con

[
FSAvg;F

S
Max

]))
(3)

where δ represents the Sigmoid activation function and f 3con
represents a convolution with a kernel size of 3.

IV. ANALYSIS OF EXPERIMENTAL RESULTS
A. DATA SET
In this paper, we conducted experiments using three pub-
licly available face expression datasets: Fer2013, RAF-DB
dataset, and CK+ dataset.

The Fer2013 dataset, obtained from a Kaggle competition
project, consists of 7 expression categories. It includes a
training set with 28,709 images and two test sets, each
containing 3,589 images. As shown in Fig. 9.
The RAF-DB dataset comprises approximately 30,000

images collected from the internet. These images have been
manually annotated and reliably estimated to provide samples
with 7 basic expression labels and 11 composite expression
labels. For this experiment, we utilized the 7 basic facial
expressions from the RAF-DB dataset. The training set
consists of 12,271 images, and the test set contains 3,068
images. As shown in Fig. 10.
The CK+ dataset is an extension of the CK dataset and

consists of 593 videos of 123 sampled individuals, encoded
using peak frames. From the CK+ dataset, we selected
327 emotion sequences. As shown in Fig. 11.

FIGURE 9. Example of Fer2013 dataset.

B. EXPERIMENTAL SETUP
The experimental setup for this study is as follows: a
Windows 10 system with an Intel Core i5-12400F CPU,
16GB of RAM, and an NVIDIA GeForce RTX3060 (12GB)
GPU. The deep learning framework used for training is
Pytorch. The weight updates are performed using stochastic
gradient descent with a momentum of 0.9. The loss function
is the cross-entropy loss function. All three datasets were
trained using a batch size of 32

For the Fer2013 dataset, the random cropping size is set
to 44×44. The initial learning rate is 0.008, and it decreases
by a factor of 0.9 every 5 iterations after 50 iterations. The
total number of iterations is set to 250. In this experiment,
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FIGURE 10. Example of RAF-DB dataset.

FIGURE 11. Example of CK+ dataset.

the public test set of the Fer2013 dataset is used for model
selection, while the private test set is used to evaluate the
selected model.

For the RAF-DB dataset, the random cropping size is set
to 92×92. The initial learning rate is 0.01, and it decreases by
a factor of 0.9 every 5 iterations after 40 iterations. The total
number of iterations is set to 200.

As for the CK+ dataset, the random cropping size is
44×44. The initial learning rate is 0.008, and it decreases
by a factor of 0.9 every 5 iterations after 20 iterations. The
total number of iterations is set to 100. Due to the limited
number of samples in the CK+ dataset, a 10-fold cross-
validation approach is used during testing to calculate the
final recognition rate of the model.

Furthermore, during the testing phase, an ensemble
approach is employed to reduce the impact of interfering
factors. Specifically, 10 images are collected for each test
sample. The top left corner, bottom left corner, top right
corner, bottom right corner, and center of each image are
cropped to obtain 5 images. These cropped images are
then horizontally flipped to obtain 5 additional images. The
final decision is made by averaging the results of these
10 processed images, thereby reducing the classification
error.

C. EXPERIMENTAL RESULTS ON DATASETS
This paper conducts experiments on three datasets, namely
Fer2013, RAF-DB, and CK+ to validate the effectiveness
of the proposed face expression recognition method. The
experimental results are then visualized.

FIGURE 12. Fer2013 training accuracy curve.

Fig. 12 illustrates the training accuracy curve of the
model on the Fer2013 dataset. Upon analyzing the graph,
it can be deduced that the curve exhibits an overall upward
trend as the number of iterations increases, indicating an
improvement in training accuracy. In the initial 20 epochs,
the training accuracy shows the fastest improvement rate.
Subsequently, the curve’s rate of ascent begins to decelerate,
resulting in a gradual decrease in slope. However, around
the 50th epoch, the curve experiences an accelerated rise
once again. After approximately 150 epochs, the curve
becomes smooth, and the training accuracy reaches a state
of relative stability, with no significant further changes.
Meanwhile, during the early stages of training, before the
20th epoch, the test accuracy demonstrates the most rapid
improvement. However, thereafter, the overall direction of the
curve gradually stabilizes, the slope diminishes, and the rate
of accuracy improvement slows down until convergence is
ultimately achieved.

FIGURE 13. RAF-DB training accuracy curve.

Fig. 13 depicts the training accuracy curve derived from the
model on the RAF-DB dataset. Upon careful analysis of the
graph, it can be inferred that the curve exhibits a consistent
upward trend as the number of iterations increases, indicating
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a constant improvement in training accuracy. The most
significant improvement in training accuracy is observed in
the initial stages of the training phase, specifically before
25 epochs. Subsequently, between 20 and 100 epochs, the
rate of increase in accuracy begins to diminish, and the slope
of the curve gradually decreases. After 100 epochs, the curve
becomes smoother, and the training accuracy ceases to exhibit
significant changes until it ultimately converges. The rate
of increase in test accuracy is highest in the early stages
of training, i.e., the first 20 epochs. However, as the curve
stabilizes, the slope gradually decreases, and the rate of
improvement in accuracy slows down until convergence.

To further analyze the recognition accuracy of the model
for different types of expressions, this paper presents the
confusion matrices of the recognition results on three
datasets: Fer2013, RAF-DB, and CK+.

FIGURE 14. Fer2013 confusion matrix.

The confusion matrix depicting the performance of the
proposed method on the Fer2013 test set is presented in
Fig. 14. It is evident from thematrix that the proposedmethod
attains superior recognition accuracy specifically for happy
and surprised facial expressions, with accuracies of 0.90 and
0.86, respectively. However, the recognition rates for the
fear, anger, and sadness expressions are comparatively lower.
This observation can be attributed to the fact that the facial
features associated with happy and surprised expressions are
more distinct, enabling the neural network to extract relevant
features more easily and achieve higher recognition rates. For
instance, facial expression images of happy individuals tend
to exhibit clear differentiation in feature information, such
as the upward movement of the corners of the mouth and
the presence of lines at the corners of the eyes. Similarly,
surprised expressions are characterized by widened eyes and
an open mouth.

In contrast, the recognition rates for fear, anger, and
sadness expressions are relatively low. Among these, the
fear category is particularly challenging to recognize due

to the similarity between fear and surprise expressions.
Both expressions involve mouth opening, albeit with slightly
different magnitudes, leading to potential confusion between
the two categories. Furthermore, the remaining two cat-
egories, anger and sadness are both negative emotional
expressions, sharing similar facial features and exhibiting
minimal differences in key facial points. Consequently, there
is a high likelihood of confusion, resulting in relatively
low recognition accuracy for these three categories of
expressions.

FIGURE 15. RAF-DB confusion matrix.

The confusion matrix of the RAF-DB test set, as depicted
in Fig. 15, reveals that the algorithm achieves a higher
average recognition rate on the RAF-DB dataset compared
to the Fer2013 dataset. This disparity can be attributed to the
larger dissimilarity between similar samples in the RAF-DB
dataset, as well as the higher pixel value of the RAF-DB data
(100×100) in comparison to the Fer2013 dataset’s 48×48,
resulting in clearer images. Consequently, the algorithm
exhibits a higher average recognition rate on the RAF-DB
dataset than on the Fer2013 dataset.

Furthermore, the confusion matrix of the CK+ test set,
illustrated in Fig. 16, demonstrates a significant improvement
in the accuracy of recognizing the seven expressions when
compared to both the previous Fer2013 test set and the
RAF-DB dataset. This improvement is attributed to the
CK+ dataset being captured under controlled laboratory
conditions, minimizing the impact of environmental and
human factors. Consequently, the CK+ dataset ensures
higher image quality, leading to even better recognition
accuracy for the model.

D. ABLATION EXPERIMENT
To assess the efficacy of each component of the pyramidal
convolutional attention residual network (PCARNet) pro-
posed in this study, ablation experiments were conducted on

VOLUME 12, 2024 24617



H. Qi et al.: Novel Attention Residual Network Expression Recognition Method

FIGURE 16. CK+ Confusion Matrix.

each module. The PyConv module represents the pyramidal
convolutional structure, while the ECBAMmodule represents
the optimized convolutional attention mechanism. Initially,
facial expression images underwent data augmentation before
being fed into the network. Subsequently, the improved
pyramidal convolutional structure facilitated the extraction of
facial expression features at multiple scales, thereby enhanc-
ing the model’s representational capacity. Furthermore,
the ECABM attention mechanism facilitated information
fusion across channels, enabling the extraction of deeper
facial expression features and improving the accuracy of
network recognition. The results of the PCARNet ablation
experiments are presented in Table 1.

TABLE 1. PCARNet ablation experiment.

As depicted in Table 1, this study utilizes pyramid convo-
lution for feature extraction, resulting in accuracy improve-
ments of 0.5%, 0.8%, and 0.4% on the Fer2013, CK+, and
RAF-DB datasets, respectively, compared to the baseline
method. The classification performance is enhanced. Conse-
quently, the utilization of pyramid convolution enhances the
model’s feature extraction capability by utilizing convolution
kernels of various sizes to capture both global and local
facial information. The impact of this enhancement is more
pronounced on the Fer2013 and RAF-DB datasets compared
to the CK+ dataset. This discrepancy arises from the fact

that the CK+ dataset is obtained under controlled laboratory
conditions, providing more complete facial information.
Conversely, the Fer2013 and RAF-DB datasets represent
real-world scenarios, where some of facial information
is incomplete. Pyramid convolution effectively addresses
this issue by extracting both local and global information.
Furthermore, the integration of the ECBAM module proves
to be valuable in improving expression recognition accuracy.
The attention module facilitates the extraction of key
features within the focus area, enhancing the discriminative
power of the network. The combination of the ECBAM
module and pyramid convolution synergistically enhances
the extraction of multi-scale information while promoting
effective information exchange across different channels.
This comprehensive approach yields the best results for
expression recognition.

V. COMPARISON EXPERIMENT
To assess the efficacy of the PCARNet algorithm proposed in
this paper for facial expression recognition on human faces,
we conduct a comparative analysis with the latest expression
recognition algorithms from recent years.

TABLE 2. Comparison experiments with other methods.

Specifically, we compare our method with the ones
mentioned in literatures [24], [25], [26], and [27] using
the Fer2013 dataset. In literature [24], the Softmax loss is
improved by exploring different cosine values and input
feature lengths. This enables the learning of more discrim-
inative features and leads to better performance through
an optimized loss function. In literature [25], a lightweight
convolutional neural network structure is employed to extract
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expression features. Additionally, a compression excitation
module is incorporated to enhance the network’s feature
extraction capability for facial expressions, utilizing different
compression rates. Literature [26] introduces a feature
filtering module and proposes a residual multiscale feature
fusion attention mechanism model. This model is based
on feature filtering combined with improved convolution
techniques. Literature [27] introduces amulti-scale integrated
attention mechanism network (MIANet) that incorporates
an Inception structure for extracting multi-scale feature
information from an image. The network utilizes an efficient
channel attention (ECA) mechanism to highlight regions
associated with facial expressions and suppress irrelevant
background regions, thereby enhancing the representation of
crucial facial features.

Moving on to the RAF-DB dataset, we compare our
method with the literatures [28], [29], [30], and [31].
Literature [28] presents a novel approach called Label
Distribution Learning on Assisted Label Space Graphs
(LDL-ALSG). This method utilizes label topology infor-
mation from related but distinct tasks to improve facial
expression recognition. In literature [29], a multiple atten-
tion network is proposed to recognize facial expressions.
This network incorporates attention-enhanced features to
improve accuracy. Literature [30] proposes an adaptively
adjusted confidence threshold for semi-supervised deep facial
expression recognition. This method aims to enhance recog-
nition performance by dynamically adjusting the confidence
threshold. Literature [31] introduces a weakly supervised
local-global attention network (WS-LGAN). This network
employs the attention mechanism to address partial location
and feature fusion challenges in facial expression recognition.

At last, we compare the results of literatures [32], [33],
[34], and [35] with the proposed method on the CK+ dataset.
Literature [32] employs an extended deep neural network for
expression recognition, while literature [33] uses a Gabor
filter and a genetic algorithm. Literature [34] combines a
mildly boosted decision tree with a neural network, and
literature [35] uses adaptive pooling in a CNN for expression
recognition. Table 2 displays the results of the comparisons.
Based on the experiments conducted, it is evident that the

pyramid convolutional attention residual network proposed
in this paper achieves the highest accuracy and precision rate
in facial expression recognition. Due to the fact that Precision
and recall metrics involve a trade-off, the recall of the method
presented in this paper may not be the highest. However, the
F1 metric for this proposed method is the highest. The F1
metric takes into account both precision and recall, and the
table demonstrates that the proposed method in this paper is
superior overall and exhibits higher quality.

VI. CONCLUSION
To address the issue of insufficient ability to extract
facial expression features in the presence of incomplete
facial information, leading to low recognition accuracy,
this paper proposes a novel algorithm called PCARNet for

face expression recognition. The proposed model utilizes
pyramidal convolution to extract both global and local fea-
tures of the face. Furthermore, an adaptive one-dimensional
convolution is applied in the attention mechanism to avoid
the negative impact of channel dimensionality reduction
on feature weights. This approach also promotes infor-
mation fusion among multiscale features, enhancing key
features within the extracted multi scale features from
the pyramid convolution and improving the accuracy of
expression recognition. To evaluate the effectiveness of the
proposed model, comparative experiments are conducted in
an end-to-end manner on publicly available face expression
datasets, namely Fer2013, RAF-DB, and CK+. The results
demonstrate that the proposed method significantly enhances
the accuracy of expression recognition. It also indicates the
importance of considering both global and local information
in facial expression recognition. However, it is worth noting
that this method does not take into account the relationship
between facial expressions and ethnicity or age.Future work
would focus on integrating these factors with expression
features and applying them in real-world scenarios to
further enhance the accuracy and practicality of expression
recognition.
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