
Received 21 December 2023, accepted 22 January 2024, date of publication 13 February 2024, date of current version 20 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3365578

Deep Q-Learning Aided Energy-Efficient Caching
and Transmission for Adaptive Bitrate Video
Streaming Over Dynamic Cellular Networks
JUNFENG XIE
School of Information and Communication Engineering, North University of China, Taiyuan 030051, China

e-mail: xiejunfeng@nuc.edu.cn

This work was supported in part by the Research Project supported by the Shanxi Scholarship Council of China under Grant 2022-147, and
in part by the Research Project supported by the Fundamental Research Program of Shanxi Province under Grant 202203021212151 and
Grant 202203021221117.

ABSTRACT Adaptive bitrate video streaming (ABRVS) and edge caching are two techniques that hold
the potential to improve user-perceived video viewing experience. In this paper, we investigate the content
caching, transcoding and transmission for ABRVS in cache-enabled cellular networks. Considering the
dynamic characteristics of video popularity distribution and wireless network environment, to improve
energy efficiency and minimize system energy consumption, we begin by formulating a long-term
optimization problem that focuses on both video caching and user association (UA). The problem is then
transformed into aMarkov decision process (MDP), which is solved by designing a deep Q-learning network
(DQN)-based algorithm. Using this algorithm, we can obtain the optimal video caching and UA solutions.
Since the action space of the MDP is huge, to cope with the ‘‘curse of dimensionality’’, linear approximation
is integrated into the designed algorithm. Finally, the proposed algorithm’s convergence and effectiveness in
reducing long-term system energy consumption are demonstrated through extensive simulations.

INDEX TERMS Adaptive bitrate video streaming, edge caching, energy efficiency, deep Q-learning.

I. INTRODUCTION
In recent years, driven by mobile network technologies’
rapid advance and smart devices’ popularization, mobile data
traffic is experiencing an explosive growth. According to the
report from Ericsson [1], the total global mobile data traffic
will reach 325EB every month in 2028, which is nearly four
times of 2022. Meanwhile, the unprecedented increase of
multimedia applications results in video service being one of
themost popular services. It is estimated that video trafficwill
account for 80 percent of all mobile data traffic in 2028 [1].
Thus, enhancing user-perceived video viewing experience in
cellular networks becomes very important.

Edge caching [2], [3], [4] and adaptive bitrate video
streaming (ABRVS) are two techniques that hold the potential
to improve user-perceived video viewing experience. Edge
caching brings videos much closer to users by caching a part

The associate editor coordinating the review of this manuscript and

approving it for publication was Stefan Schwarz .

of high-popular videos at the mobile network edge (e.g., base
station (BS)) in advance during off-peak hours. Once the
video requested by a mobile user has already been cached,
it will be transmitted to the user directly, thereby reducing
the end-to-end content delivery latency, mitigating duplicate
content transmissions, saving backhaul resources, alleviating
network congestions, as well as improving mobile users’
quality of experience (QoE).

Considering the heterogeneity of mobile users’ devices
and the time-varying wireless channel conditions, ABRVS
[5], [6], [7] has been proposed. ABRVS divides a video
into small chunks and encodes each chunk into multiple
versions with different resolutions and bitrates. This allows
ABRVS to adjust the video quality in real-time based on
users’ preferences and network conditions, providing an
adaptive and seamless viewing experience to mobile users.
For example, when a mobile user’s device is highly capable
and the wireless network condition is good, he can receive
high quality videos, whereas the mobile user can receive

24232

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-0633-2420
https://orcid.org/0000-0002-4065-2906

J. Xie: Deep Q-Learning Aided Energy-Efficient Caching and Transmission

low quality videos when the wireless network condition is
poor.

Based on the above analysis, combining edge caching
and ABRVS can improve user-perceived video viewing
experience. However, it is particularly challenging due to
the following two major reasons. First, with ABRVS, both
different videos and different quality versions of the same
video will compete for edge nodes’ limited caching capacity.
Second, if a mobile user requests a certain quality version of
a video that has not been cached, but a higher quality version
of the same video has already been cached, the edge node
will first transcode the cached higher quality version to the
requested quality version before transmitting it to the mobile
user.

In general, video delivery in cache-enabled cellular
networks consists of video caching and video transmission.
For video caching, BSs or other mobile edge nodes prefetch
high-popular videos and cache them in advance. Considering
the conflict between mobile edge nodes’ limited caching
capacity and the massive number of videos, mobile edge
nodes can only cache a part of videos. Therefore, in order
to satisfy as many users’ requests as possible, it is a critical
problem to make caching policy decision to select the proper
videos for each mobile edge node to cache. For video
transmission, considering the densification trend of radio
access networks (RANs), it is high-probability for mobile
users to be covered bymultiple edge nodes [8], [9]. Therefore,
it is a critical problem to make user association (UA) strategy
decision to obtain the appropriate association relationship
between mobile users and edge nodes. The UA strategy in
cache-enabled cellular networks should consider not only
the wireless channel conditions, but also the mobile users’
requirements and edge nodes’ cache status. For example,
to reduce content delivery latency, the mobile user may prefer
to associate with the edge node that has cached the requested
video instead of the edge node with the best wireless channel
condition. Apparently, caching policy and UA strategy
are naturally coupled. In cache-enabled cellular networks,
caching policy strongly depends on the video popularity
distribution (VPD), while UA strategy is largely affected by
the wireless channel state information (WCSI). Considering
the dynamic time-varying characteristics of VPD and WCSI,
as well as the strong coupled relationship between the video
caching stage and the video transmission stage, the caching
policy and UA strategy should be optimized jointly. As a
result, it is of great significance to design efficient caching
policy andUA strategy for ABRVS in dynamic cache-enabled
cellular networks.

A. RELATED WORKS
Due to the potential to enhance video delivery efficiency and
mobile users’ QoE, cache-enabled ABRVS has been widely
investigated. Literature [10] proposes a two-step approach
to optimize the transcoding configuration and caching space
allocation. In [11], the authors propose a JCCPA algorithm
to minimize the delivery delay and energy consumption by

optimizing caching, computing and power allocation. The
authors in [12] optimize the two time-scale video caching
and transmission to maximize the backhaul saving and video
quality. In [13], to improve the system energy efficiency,
video caching and scheduling are optimized jointly. The
authors in [6] optimize the video caching and processing to
minimize the expected delay cost. Literature [14] exploits a
cooperative transfer learning-based algorithm to balance the
content quality and hit ratio. In order to improve the ABRVS
services, a flexible transcoding strategy is presented in [15].
However, these works studied in static scenarios, whereas
the dynamic characteristics of the system states in practical
scenarios were largely ignored. Considering the time-varying
VPD and WCSI, the optimal system performance at a certain
time slot cannot guarantee the optimal system performance
over a long time period.

There have been studies that specifically focus on video
caching and transmission in dynamic scenarios. In [16],
the cache hit rate is maximized by utilizing a DQN-
based content caching algorithm. Literature [17] proposes
a learning-based algorithm to predict the future content
popularity and optimize the edge caching policy. The authors
in [18] focus on the two time-scale caching placement and
UA problem, and propose a BP-based UA algorithm and
DDPG-based caching placement algorithm. Literature [19]
uses Q-learning algorithm to optimize caching placement and
resource allocation. Literature [20] adopts the Stackelberg
game to optimize UA, power allocation of non-orthogonal
multiple access (NOMA), unmanned aerial vehicle (UAV)
deployment and caching placement to minimize the content
delivery delay. In [21], the authors improve the content
caching and sharing of D2D networks by a CAQL-based
caching placement algorithm. Taking into account Coor-
dinated MultiPoint (CoMP) joint transmission technique,
a reinforcement learning (RL)-based algorithm is presented
in [22] to maximize the delay reduction. However, these
works just considered multiple single videos, whereas the
video contents with multiple quality versions and the video
transcoding between different quality versions were not taken
into account.

Recently, as artificial intelligence (AI) and machine learn-
ing algorithms continue to advance rapidly, many researchers
have studied on the integration of intelligence technology and
wireless communication system optimization [23]. RL-based
algorithms, as one critical category of AI algorithms, have
been widely used in many domains, such as blockchain, edge
caching, computation offloading and resource allocation.
Considering the immersive VR video services, literature
[24] provides an asynchronous advantage actorâĂŞcritic
(A3C)-based algorithm to minimize the long-term energy
consumption of Terahertz wireless networks. In [25], the
authors propose an A3C-based algorithm to maximize
the computation rate and the transaction throughput of
blockchain-enabled Mobile Edge Computing (MEC) sys-
tems. Another notable work is [26], which proposes a
RL-based energy-aware resource management scheme for

VOLUME 12, 2024 24233

J. Xie: Deep Q-Learning Aided Energy-Efficient Caching and Transmission

wireless VR streaming in industrial Internet of Things
(IIoTs). In [27], quantum collective learning and many-
to-many matching game are adopted to solve the spectrum
resource allocation problem and the distributed vehicles
selection problem respectively. The authors in [28] aim
at obtaining the optimal intelligence sharing policy by a
collective deep reinforcement learning algorithm. Literature
[29] improves the scalability of a service-oriented blockchain
system by considering consensus protocols selection, block
producers selection and network bandwidth allocation jointly.

B. MOTIVATION AND CONTRIBUTION
As discussed above, most of the existing research on the
video caching and transmission optimization problem rarely
took into account the time-varying VPD and WCSI. Some
research contributions considered the dynamic scenarios,
but they just considered multiple single videos and ignored
the video contents with multiple quality versions. To fulfill
this gap, this article focuses on optimizing video caching
and UA for ABRVS in dynamic cache-enabled cellular
networks with time-varying VPD and WCSI. Due to the
surging energy cost of information industry, developing green
communication becomes very urgent and important, which
makes the energy efficiency a key performance indicator in
current 5G and future 6G networks [30], [31], [32]. Thus,
we adopt energy efficiency as the performance metric and
aim at minimizing the long-term system energy consumption.
Deep Q-learning network (DQN) is proposed to solve the
problem. More specifically, the main contributions of this
article are summarized as follows:
• We focus on the content caching and transmission of

ABRVS in cache-enabled cellular networks. Considering
the time-varying VPD and WCSI, a joint video caching
and UA optimization problem is formulated to enhance the
energy efficiency byminimizing the long-term system energy
consumption, which is composed of video transmission
energy consumption, video transcoding energy consumption
and caching energy consumption.
• The formulated problem is then transformed into a

discrete Markov decision process (MDP), which is solved
by designing a DQN-based algorithm. Using this algorithm,
we can obtain the optimal video caching and UA solutions.
Considering the large state space and action space of the
MDP, to cope with the ‘‘curse of dimensionality’’, linear
approximation is integrated into the designed algorithm.
• Finally, during the simulations, the proposed algorithm’s

convergence is evaluated and its effectiveness is verified.
The results show that the proposed algorithm outperforms
benchmark algorithms in terms of energy efficiency and
system energy consumption reduction over a long period.

C. ORGANIZATION
The remainder of this paper is organized as follows. Section II
introduces the system model and formulates the optimization
problem for video caching and UA. In Section III, we propose

FIGURE 1. The cache-enabled cellular network architecture.

a DQN-based algorithm to solve the problem. The simulation
settings, results, analysis and discussions are presented in
Section IV. Finally, we conclude our work in Section V.

II. SYSTEM DESCRIPTION
In this section, we first present the system model, including
network model, video request and caching model, transmis-
sion model and energy consumption model. Then the joint
video caching and UA optimization problem for ABRVS is
formulated.

A. SYSTEM MODEL
1) NETWORK MODEL
As illustrated in Figure 1, we are interested in delivering video
content in a cache-enabled cellular network that consists of
M ground BSs and N users. LetM = {1, 2, . . . ,m, . . .M}
and N = {1, 2, . . . , n, . . .N } denote the set of M ground
BSs and the set of N users, respectively. Each ground BS
is equipped with a MEC server with limited computing and
caching resources, which are denoted as Ccomp

m and Ccache
m

respectively. The ground BSs are connected to the core
network using wired backhaul links, which have a limited
capacity. Meanwhile, users communicate with the ground
BSs through radio access links, the bandwidth of which is
assumed to be B. This bandwidth is shared among all the
ground BSs.

Suppose that there are total F video chunks in the network,
the set of which is denoted as F = {1, 2, . . . , f , . . .F}. Each
video chunk has K different quality versions with different
bitrates and resolutions. Let K = {1, 2, . . . , k, . . .K } denote
the set ofK quality versions.We assume that quality version 1
has the lowest bitrate and resolution, while quality version
K has the highest bitrate and resolution. Let vf ,k denote the
video chunk f with quality version k .

In general, caching policy in cache-enabled cellular
networks strongly depends on the VPD, while UA strategy

24234 VOLUME 12, 2024

J. Xie: Deep Q-Learning Aided Energy-Efficient Caching and Transmission

is largely affected by the WCSI. It is assumed that the
VPD and WCSI vary in different time slots. Suppose
that the equal-sized time series is represented as T =

{1, 2, . . . , t, . . .}, where t denotes a time slot. Therefore,
at the beginning of each time slot, the caching policy decision
and UA strategy decision are made and updated.

2) VIDEO REQUEST AND CACHING MODEL
Note that the VPD is based on users’ video interest
and preference. In this article, the VPD, i.e., the request
probabilities of different video chunks are modeled as a Zipf-
like distribution [33], [34]. Let p(t)n,f be the probability that user
n requests video chunk f at time slot t and sort all F video
chunks in a descending order based on their corresponding
request probabilities, i.e., p(t)n,1 > p(t)n,2 > · · · > p(t)n,f > · · · >

p(t)n,F . Thus, p
(t)
n,f can be expressed as

p(t)n,f =
f −η

(t)
n∑F

i=1 i
−η

(t)
n

(1)

where η(t)n is the skewness factor of user n at time slot t .
For each video chunk, the request probabilities of different

quality versions are modeled as a normal distribution. The
mean of this distribution is denoted byϑ , which represents the
dominant quality version [35]. Thus, the request probability
of quality version k can be expressed as

pk = e−(k−ϑ)
2/2σ 2/√2πσ (2)

where σ 2 is the variance of the request probabilities of quality
versions. A smaller σ leads to more concentrated requests of
the dominant quality version ϑ . Based on p(t)n,f and pk , the
probability of user n requesting vf ,k at time slot t can be
obtained by

p(t)n,f ,k = p(t)n,f · pk (3)

Denote p(t)n =
{
p(t)n,1,1, . . . , p

(t)
n,1,K ; . . . ; p

(t)
n,F,1, . . . , p

(t)
n,F,K

}
as user n’s preference for all video chunks with different qual-
ity versions at time slot t . The time-varying VPD is modeled
as a finite state Markov chain (FSMC). The corresponding
state set is represented as P = {p (η1) , p (η2) , . . . , p (ηH)},
where p (ηH) is the H -th state of VPD with skewness factor
ηH . The total number of states is H and each state is a
probability distribution of users requesting video chunks. The
VPD transfers over time slots and the transition probability
from one state to another state is denoted as P

(
p(t+1)n

∣∣∣p(t)n),
where p(t)n ∈ P, p(t+1)n ∈ P .

As for the video caching model, we denote the
caching policy decision at time slot t as X (t)

={
x(t)m,f ,k |m ∈M, f ∈ F , k ∈ K

}
, where x(t)m,f ,k ∈ {0, 1}. If

BS m caches vf ,k at time slot t , x(t)m,f ,k = 1; otherwise,

x(t)m,f ,k = 0. Due to the limited caching resources, each BS can
only store a part of video chunks. Here, we assume that BS

m can store at most Ccache
m video chunks and Ccache

m < F ·K .
Under the caching capacity constraint, x(t)m,f ,k satisfies

F∑
f=1

K∑
k=1

x(t)m,f ,k ≤C
cache
m , ∀m ∈M (4)

Given the caching policy decision, the caching energy
consumption at time slot t can be represented as

E (t)
cache =

M∑
m=1

F∑
f=1

K∑
k=1

wcachex
(t)
m,f ,ksf ,k (5)

where sf ,k denotes the size of vf ,k , wcache denotes the energy
of caching one bit data in MEC servers (in J/bit).

3) TRANSMISSION MODEL
We denote the UA strategy decision at time slot t as Y (t)

={
y(t)m,n |m ∈M, n ∈ N

}
, where y(t)m,n ∈ {0, 1}. If user n is

associated with BS m at time slot t , y(t)m,n = 1; otherwise,
y(t)m,n = 0. We assume that one user can only be associated
with one BS at each time slot, therefore, y(t)m,n satisfies

M∑
m=1

y(t)m,n = 1, ∀n ∈ N (6)

If user n is associated with BSm at time slot t , the downlink
transmission rate from BS m to user n can be represented as

R(t)m,n =
B∑N

n=1 y
(t)
m,n

log
(
1+ γ (t)

m,n

)
(7)

where γ (t)
m,n denotes the received signal-to-interference-plus-

noise-ratio (SINR) of user n from BS m at time slot t ,∑N
n=1 y

(t)
m,n is the number of users associated with BSm. Here,

B is equally allocated to all associated users [17]. The time-
varying WCSI, i.e., the SINR γ

(t)
m,n, is modeled as a FSMC

[36], [37]. In this model, the value range of γ (t)
m,n is quantized

into D discrete levels: if γ ∗0 ≤ γ
(t)
m,n < γ ∗1 , γ1; if γ

∗

1 ≤

γ
(t)
m,n < γ ∗2 , γ2; . . .; if γ

(t)
m,n ≥ γ

∗

D−1, γD. Each level is a state
of the FSMC and the corresponding state set is represented
as ℜ = {γ1, γ2, . . . , γD}. The SINR transfers over time slots
and the transition probability from one state to another state
is denoted as P

(
γ
(t+1)
m,n

∣∣∣γ (t)
m,n

)
, where γ (t)

m,n ∈ ℜ, γ
(t+1)
m,n ∈ ℜ.

4) CONTENT DELIVERY ENERGY CONSUMPTION MODEL
Let E (t)

m,n denote the content delivery energy consumption
from BS m to user n at time slot t . Because of the computing
and caching resources available fromMEC servers, BSs have
the ability to cache video chunks as well as transcode a
video chunk from a higher quality version to a lower quality
version. Depending on whether BSs cache the requested
quality version or a higher quality version, there are three
cases to handle requests from users. In the following, the
content delivery energy consumption of these three cases will
be discussed.

VOLUME 12, 2024 24235

J. Xie: Deep Q-Learning Aided Energy-Efficient Caching and Transmission

Case 1: BS m has cached the requested vf ,k at time slot t
(i.e., x(t)m,f ,k = 1), and vf ,k can be delivered to user n directly.

In this case, E (t)
m,n only contains the energy consumption for

downlink radio transmission of the requested vf ,k from BS m
to user n denoted as E (t),trans

m,n,f ,k . Thus, E
(t)
m,n can be calculated

by

E (t),1
m,n =

F∑
f=1

K∑
k=1

p(t)n,f ,kx
(t)
m,f ,kE

(t),trans
m,n,f ,k (8)

where E (t),trans
m,n,f ,k is given as E (t),trans

m,n,f ,k = Pm
sf ,k
R(t)m,n

. Pm is the

transmission power of BS m.
Case 2: BS m does not cache the requested vf ,k at time

slot t (i.e., x(t)m,f ,k = 0), but caches a higher quality version

(i.e., h(t)m,f ,k = min
{∑K

k ′=k+1 x
(t)
m,f ,k ′ , 1

}
= 1). In this

case, handling users’ requests is divided into two steps:
transcoding and downlink radio transmission. Thus, E (t)

m,n

containsE (t),trans
m,n,f ,k and the energy consumption for transcoding

the cached higher quality version to the requested quality
version denoted as E (t),comp

m,n,f ,k . E (t)
m,n can be calculated by

E (t),2
m,n

=

F∑
f=1

K∑
k=1

p(t)n,f ,k
(
1−x(t)m,f ,k

)
h(t)m,f ,k

(
E (t),trans
m,n,f ,k +E

(t),comp
m,n,f ,k

)
(9)

where h(t)m,f ,k ∈ {0, 1}. If BS m caches at least one
quality version of video chunk f higher than k at time
slot t , h(t)m,f ,k = 1; otherwise, h(t)m,f ,k = 0. E (t),comp

m,n,f ,k is

given as E (t),comp
m,n,f ,k = P(t),compm,n

w0
(
sf ,k∗−sf ,k

)
c(t)m,n

, where P(t),compm,n

represents the transcoding power consumption of BS m

to handle user n’s request at time slot t ,
w0
(
sf ,k∗−sf ,k

)
c(t)m,n

represents the transcoding time [38], w0 represents the CPU
cycles required to transcode one bit data (in cycles/bit),
k∗ =

{
k ′
∣∣∣min

(
k ′ − k

)
, k < k ′, x(t)m,f ,k ′ = 1

}
represents the

minimum cached quality version of video chunk f higher
than k , c(t)m,n represents the computing resources allocated
to user n by BS m at time slot t . Similar to [39] and [40],

wemodelP(t),compm,n asP(t),compm,n = wcomp
(
c(t)m,n

)3
, wherewcomp

is a constant coefficient related to the CPU chip architecture.
Here, we assume that the computing resources of BSs are
equally allocated to all associated users. Thus, c(t)m,n can be
expressed as c(t)m,n =

Ccompm∑N
n=1 y

(t)
m,n

.

Case 3: BS m caches neither the requested vf ,k at time slot
t (i.e., x(t)m,f ,k = 0) nor a higher quality version (i.e., h(t)m,f ,k =
0). In this case, handling users’ requests is also divided
into two steps: backhaul link transmission and downlink
radio transmission. Here, we assume that different quality
versions of all video chunks are available in the core network.
Thus, E (t)

m,n contains E
(t),trans
m,n,f ,k and the energy consumption for

backhaul link transmission of the requested vf ,k from the core

network to BS m denoted as E (t),BH
m,n,f ,k . E

(t)
m,n can be calculated

by

E (t),3
m,n

=

F∑
f=1

K∑
k=1

p(t)n,f ,k

(
1−

K∑
k ′=k

x(t)m,f ,k ′

)(
E (t),trans
m,n,f ,k +E

(t),BH
m,n,f ,k

)
(10)

where E (t),BH
m,n,f ,k is given as E (t),BH

m,n,f ,k = wBH sf ,k
sf ,k

R(t),BHm,n
. wBH

represents the power of backhaul links to transmit one
bit data (in Watt/bit). R(t),BHm,n represents the backhaul link
transmission rate allocated to user n by BS m at time
slot t . Here, the backhaul link transmission rate of BSs is
equally allocated to all associated users. Thus, R(t),BHm,n can be

expressed as R(t),BHm,n =
RBHm∑N
n=1 y

(t)
m,n

.

Based on the above analysis of the content delivery energy
consumption of these three cases, E (t)

m,n is given by

E (t)
m,n = E (t),1

m,n + E
(t),2
m,n + E

(t),3
m,n (11)

Therefore, the total content delivery energy consumption
at time slot t can be represented as

E (t)
delivery =

M∑
m=1

N∑
n=1

y(t)m,nE
(t)
m,n (12)

B. PROBLEM FORMULATION
Given the abovemodels, the total energy consumption at each
time slot consists of the caching energy consumption and the
content delivery energy consumption, which can be expressed
as

E (t)
total = E (t)

cache + E
(t)
delivery (13)

In this article, our goal is to minimize the long-term system
energy consumption by jointly optimizing video caching and
UA with the given WCSI γ (t)

m,n,∀m ∈M,∀n ∈ N and VPD
p(t)n ,∀n ∈ N in dynamic networks. To achieve this goal,
according to (13), we formulate the long-term optimization
problem as follows:

min
X (t),Y (t)

∑
t∈T

E (t)
total (14)

s.t.
F∑
f=1

K∑
k=1

x(t)m,f ,k ≤C
cache
m , ∀m ∈M (14a)

M∑
m=1

y(t)m,n = 1, ∀n ∈ N (14b)

x(t)m,f ,k ∈ {0, 1} , ∀m ∈M,∀f ∈ F ,∀k ∈ K (14c)

y(t)m,n ∈ {0, 1} , ∀m ∈M,∀n ∈ N (14d)

where (14a)-(14d) show the constraints. Constraint (14a)
indicates the caching capacity limitation of each BS. Con-
straint (14b) indicates that one user can only be associated
with one BS at each time slot. Constraints (14c) and (14d)

24236 VOLUME 12, 2024

J. Xie: Deep Q-Learning Aided Energy-Efficient Caching and Transmission

indicate that x(t)m,f ,k and y
(t)
m,n are both binary variables, i.e., the

values of them are either 0 or 1.
So far, the joint video caching and UA optimization

problem has been formulated. In Section III, we will show
how to solve the problem (14) and present a solution to it.

III. SOLUTION TO JOINT VIDEO CACHING AND UA
OPTIMIZATION PROBLEM
In this section, aiming at minimizing the long-term total
energy consumption in dynamic networks, we first transform
the optimization problem (14) into a MDP. Then, for each
time slot, given VPD p(t)n ,∀n ∈ N and WCSI γ (t)

m,n,∀m ∈
M,∀n ∈ N , a DQN-based algorithm is designed, using
which the optimal video caching and UA solutions can be
obtained.

A. MARKOV DECISION PROCESS MODEL
In general, a MDP problem is defined by a tuple {S,A,P, r},
where S represents state space, A represents action space,
P represents state transition probability, r represents the
immediate reward. Specifically, according to the optimization
problem (14), the key elements of MDP are defined as
follows.

1) STATE SPACE
S contains all possible states in dynamic networks, so S(t) ∈
S, where S(t) represents the network state at time slot t . S(t)

is composed of VPD and WCSI at time slot t . Therefore, S(t)

is defined as

S(t) =
{
p(t), γ (t)

}
(15)

where p(t) =
{
p(t)n |n ∈ N

}
, γ (t)

=

{
γ
(t)
m,n |m ∈M, n ∈ N

}
.

2) ACTION SPACE
A is the set of feasible actions in dynamic networks, so A(t) ∈
A, where A(t) represents the action at time slot t . A(t)

is composed of video caching policy decision X (t)
={

x(t)m,f ,k |m ∈M, f ∈ F , k ∈ K
}
and UA strategy decision at

time slot t Y (t)
=

{
y(t)m,n |m ∈M, n ∈ N

}
. Therefore, A(t) is

defined as

A(t) =
{
X (t),Y (t)

}
(16)

3) TRANSITION PROBABILITY
The state transition probability is defined as P(S(t+1)|S(t),
A(t)).

4) REWARD FUNCTION
At time slot t , an agent first observes and senses the state of
the dynamic network environment S(t). Then, according to a
certain policy function π , the agent performs an action A(t).
After the action is taken, the agent can obtain an immediate
reward. Since the goal of the optimization problem (14) is to
minimize the energy consumption, to achieve this goal, the

energy consumption is set as the main reward. Therefore, the
immediate reward is defined as

r
(
S(t),A(t)

)
= −E (t)

total (17)

The MDP problem can be solved by determining the
optimal policy π∗ that maximizes the long-term system
reward. Here,π : S→ A is a policy function that maps a state
S ∈ S to an action A ∈ A. There are two popular methods
to assess the long-term system reward, namely state value
function and state-action value function. Given a policy π ,
the state value function in state S is defined as

V π (S) = Eπ
[
ψ (t)

∣∣∣S(t) = S
]

(18)

where Eπ [·] represents the mathematical expectation,ψ (t)
=

∞∑
τ=t

βτ−tr
(
S(τ),A(τ)

)
. β ∈ (0, 1] is the discount factor to

determine the importance of immediate reward and future
rewards. Similarly, the state-action value function in state S
and action A is defined as

Qπ (S,A) = Eπ
[
ψ (t)

∣∣∣S(t) = S,A(t) = A
]

(19)

RL algorithms as a branch of machine learning algorithms
are generally used to solve the MDP problem. Q-learning
algorithm [41] is a classical RL algorithm, which aims to
train an agent to learn π∗. Since the state-action value
function is used to assess the long-term system reward,
learning π∗ is equivalent to learning the optimal state-action
value function Q∗ (S,A). π∗ can be determined by Q∗ (S,A),
i.e., π∗ (S) = argmax

A∈A
Q∗ (S,A) ,∀S ∈ S. In order to

learn Q∗ (S,A), the agent needs to interact with the dynamic
network environment repeatedly. Specifically, during each
interaction step, the agent observes the environment’s state,
chooses an action, executes it, and receives an immediate
reward. As a result of executing the action, the state S is
transferred to the next state S ′. Then, the state-action value
function is updated by

Q (S,A)←(1−ζ)Q (S,A)+ζ
[
r (S,A)+β max

A′∈A
Q
(
S ′,A′

)]
(20)

where ζ ∈ (0, 1] represents the learning rate. After several
interaction steps, the agent can eventually learn π∗ and
Q∗ (S,A).

During the learning process, there are two methods for
the agent to select an action, namely ‘‘exploitation’’ and
‘‘exploration’’. ‘‘Exploitation’’ means that the agent selects
the action with the highest state-action value. ‘‘Exploration’’
means that the agent randomly selects an action except for the
action with the highest state-action value. The ‘‘exploitation’’
process can maximize the long-term system reward, while
the ‘‘exploration’’ process can avoid the Q-learning algorithm
converging into a local optimum. Therefore, to learn π∗, the
‘‘exploitation’’ and ‘‘exploration’’ need to be balanced when
selecting an action under a given state.

VOLUME 12, 2024 24237

J. Xie: Deep Q-Learning Aided Energy-Efficient Caching and Transmission

B. THE DQN-BASED CACHING AND UA ALGORITHM
In the Q-learning algorithm, the state-action values of all
state-action pairs are stored in a Q-table. However, with
the increase of state space and action space, the Q-learning
algorithm faces the challenge of ‘‘curse of dimensionality’’,
which means that when the number of state-action pairs is
huge, storing and searching the Q-table will take lots of time
and space, leading to a slow learning speed and influencing
the convergence efficiency.Motivated by deep learning, DQN
[42] has been proposed to overcome the above challenges.

Based on deep neural networks (DNNs)’ nonlinear
nature, deep learning can utilize DNNs to approximate
almost any function by finding the low-dimensional features
of high-dimensional data. The core idea of DQN is to
combine Q-learning algorithm with deep learning. DNNs
are utilized to approximate the state-action value function,
i.e., Q (S,A; θ) ≈ Q (S,A), where θ represents the set of
weights and biases in DNNs. Two outstanding innovations
are applied to make DQN more efficient and robust:

1) EXPERIENCE REPLAY
Experience replay utilizes a finite-sized replay memory to
store the agent’s past learning experience, i.e., (S(t),A(t), r (t),
S(t+1)). By this way, the DQN can break the temporal
correlations among past learning experiences and make the
DNNs updating more efficient.

2) FIXED TARGET DNN
There are two DNNs in DQN, i.e., the evaluated DNN and
the target DNN, which have the same architecture. At each
training step, the weights and biases in the evaluated DNN
are updated. However, the weights and biases in the target
DNN are kept fixed for a period of time and are only updated
with the evaluated DNN periodically. Here, we assume that
the weights and biases in the target DNN are updated every
G training steps, i.e., θ−(t) = θ (t−G), where θ and θ− are
the weights and biases in the evaluated DNN and the target
DNN respectively. This innovation can stabilize and smooth
the learning process.

Both the evaluated DNN and the target DNN take the
state S ∈ S as input and all actions’ state-action values
under the state S as output. At each training step, the agent
randomly selects a mini-batch of samples from the replay
memory and updates the weights and biases in the evaluated
DNN to minimize loss function Loss (θ), which is defined as
the mean-squared deviation between the target state-action
value Qtarget = r (S,A) + β max

A′∈A
Q
(
S ′,A′; θ−

)
and the

estimated state-action value Q (S,A; θ), i.e., Loss (θ) =
E
[(
Qtarget − Q (S,A; θ)

)2]. The workflows of DQN are
presented in Figure 2.

In the standard DQN algorithm, the output of the evaluated
DNN and the target DNN is all actions’ state-action values.
So the output layer’s dimension in the evaluated DNN and the
target DNN is related to the size of the action space, which is

FIGURE 2. The workflows of DQN.

|A| =
(

FK
Ccache
m

)M (
2MN

)
in the formulated MDP problem.(

FK
Ccache
m

)M
is the number of all possible caching policies

and 2MN is the number of all possible UA strategies. It is
obvious that as the number of video chunks F , the number
of ground BSs M and the number of users N increasing, the
size of the action space increases exponentially, resulting in
the challenge of ‘‘curse of dimensionality’’. To overcome the
challenge, we integrate linear approximation into the DQN
algorithm, which reduces the action space from exponential

size
(

FK
Ccache
m

)M (
2MN

)
to linear size MFK +MN . In linear

approximation-integrated DQN algorithm, the first MFK
outputs of the evaluated DNN are used to select the caching
policy X (t) and the last MN outputs of the evaluated DNN
are used to select the UA strategy Y (t), both of which are
combined as the action A(t) =

{
X (t),Y (t)

}
.

Specifically, we denote the first MFK outputs of the
evaluated DNN under a state as {Q1,Q2, . . . ,QMFK }. Then,
the elements of BS 1’s caching policy that correspond with
the largest Ccache

m values in {Q1,Q2, . . . ,QFK } are set to
1 and the other elements are set to 0. Similarly, the elements
of BS 2’s caching policy that correspond with the largest
Ccache
m values in {QFK+1,QFK+2, . . . ,Q2FK } are set to 1 and

the other elements are set to 0. By this way, all M BSs’
caching policies X (t) can be obtained. Moreover, we denote
the last MN outputs of the evaluated DNN under a state
as {QMFK+1,QMFK+2, . . . ,QMFK+MN }. Then, the element
of user 1’s UA strategy that corresponds with the largest
value in {QMFK+1,QMFK+2, . . . ,QMFK+M } is set to 1 and
the other elements are set to 0. Similarly, the element of user
2’s UA strategy that corresponds with the largest value in
{QMFK+M+1,QMFK+M+2, . . . ,QMFK+2M } is set to 1 and the
other elements are set to 0. By this way, all N users’ UA
strategies Y (t) can be obtained. Thus, we can ensure that the
obtained X (t) satisfies the constraint (14a) and the obtained
Y (t) satisfies the constraint (14b).
According to the basic principle of DQN and linear

approximation, a DQN-based caching and UA algorithm,
i.e., Algorithm 1 is presented to solve the optimization
problem (14). ε-greedy policy (lines 10-15) is used to select

24238 VOLUME 12, 2024

J. Xie: Deep Q-Learning Aided Energy-Efficient Caching and Transmission

an action under the observed state aiming at balancing the
‘‘exploitation’’ and ‘‘exploration’’.

Algorithm 1 The DQN-Based Caching and UA Algorithm
1: Initialization:
2: Initialize the maximum number of training episodes
4max and the maximum number of steps in each episode
gmax.

3: Initialize the experience replay memory and the mini-
batch size.

4: Initialize the discount factor β, the learning rate ζ and the
exploration probability ε.

5: Initialize the weights and biases in the evaluated DNN
with θ .

6: Initialize the weights and biases in the target DNN with
θ− = θ .

7: for episode = 1, 2, . . . , 4max do
8: Reset the environment with the initial state Sini,

i.e., S(t) = Sini.
9: for t = 1, 2, . . . , gmax do
10: Choose a random probability p.
11: if p > ε then
12: Select an action A(t) with linear approximation.
13: else
14: Randomly select an action A(t).
15: end if
16: Execute the selected action, obtain the immediate

reward r (t) and observe the next state S(t+1).
17: Store

(
S(t),A(t), r (t), S(t+1)

)
into the experience

replay memory.
18: Randomly select a mini-batch of samples from the

experience replay memory.
19: Calculate the estimated state-action value

Q (S,A; θ).
20: Calculate the target state-action value Qtarget by

Qtarget = r (S,A)+ β max
A′∈A

Q
(
S ′,A′; θ−

)
.

21: Train the evaluated DNN to minimize the loss
function Loss (θ) = E

[(
Qtarget − Q (S,A; θ)

)2].
22: Update θ− every G training steps.
23: Set S(t)← S(t+1).
24: end for
25: end for

IV. SIMULATION RESULTS AND DISCUSSIONS
In this section, we employ computational simulation method
to evaluate the effectiveness of the proposed DQN-based
caching and UA algorithm. For the sake of simplicity in our
simulations, the algorithm is referred to as ‘‘DQN-based CA
and UA’’. All simulations are conducted on a X64-based
laptop, which is equipped with 2.8GHz Intel Core i7, 32GB
LPDDR3 and 512GB memory. The proposed algorithm is
implemented in PyTorch 1.12.1 with Python 3.9.We consider
a cellular network with M = 3 BSs and N = 10 users.
We set F = 10, K = 3, Ccache

m = 4, Ccomp
m = 3.4GHz,

Pm = 46dBm [20], B = 20MHz, ϑ = 2, w0 = 400cycles/bit
[38], RBHm = 1.5Mbps [21], wcache = 8 × 10−8J/bit [43],
wcomp = 10−27 [40],wBH = 8×10−6Watt/bit [44]. Besides,
the sizes of video chunks with three quality versions are set
as 1, 2 and 4Mbit. Furthermore, the VPD is set as a three-state
FSMC with three different skewness factors {η1, η2, η3} =
{0.2, 0.5, 0.8}. Their transition probability matrix is assumed
as

Pη =

 0.6 0.3 0.1
0.1 0.6 0.3
0.3 0.1 0.6

 (21)

Similarly, the WCSI is set as a three-state FSMC with
three different spectrum efficiency parameters, i.e., 10, 2 and
0.2, which means that the state of wireless channels between
BSs and users are good, medium and bad respectively. Their
transition probability matrix is assumed as

PSE =

 0.6 0.2 0.2
0.1 0.7 0.2
0.2 0.3 0.5

 (22)

For comparison, the following three benchmark algorithms
are considered:

A. ‘‘DQN-BASED CA ONLY’’
In this algorithm, the learning agent only tries to learn the
optimal caching policy, but makes UA strategy decision
randomly. That is to say, users are associated with BSs
randomly. Compared with ‘‘DQN-based CA and UA’’, the
potential benefits of optimizing UA strategy can be indicated.

B. ‘‘DQN-BASED UA ONLY’’
In this algorithm, the learning agent only tries to learn the
optimal UA strategy, but makes caching policy decision
randomly. That is to say, each BS caches video chunks
randomly until its caching capacity is filled up. Compared
with ‘‘DQN-based CA and UA’’, the potential benefits of
optimizing caching policy can be indicated.

C. ‘‘RANDOM CA AND UA’’
In this algorithm, the learning agent makes both caching
policy and UA strategy decisions randomly. Compared with
‘‘DQN-based CA and UA’’, the potential benefits of jointly
optimizing caching policy and UA strategy can be indicated.
We first investigate the convergence performance of all the

algorithms. Here, we set ζ = 0.01, β = 0.9, ε = 0.1. In
Figure 3, the abscissa denotes the number of episodes (each
episode contains 40 time slots) and the ordinate represents
the values of reward per episode, i.e., the system energy
consumption. It can be seen that all DQN-based algorithms
can gradually converge to a stable value with the number
of episodes increasing. Specifically, ‘‘DQN-based CA and
UA’’, ‘‘DQN-based CA only’’ and ‘‘DQN-based UA only’’
reach stability after about 1150 episodes, 650 episodes
and 2600 episodes respectively. Besides, it shows that the
converged stable value of ‘‘DQN-based CA and UA’’ is

VOLUME 12, 2024 24239

J. Xie: Deep Q-Learning Aided Energy-Efficient Caching and Transmission

FIGURE 3. Convergence of the proposed algorithm.

FIGURE 4. Total energy consumption under different values of the
caching capacity of each BS.

the smallest, the corresponding value of ‘‘Random CA and
UA’’ is the largest, while the corresponding values of other
algorithms are medium. This demonstrates the potential
benefits of jointly optimizing caching policy and UA strategy.

Figure 4 illustrates the system energy consumption of all
the algorithms under different values of the caching capacity
of each BS Ccache

m . We observe that the system energy
consumption of all the algorithms decreases with the increase
of Ccache

m . This is intuitive, when Ccache
m is larger, each BS

can cache more video chunks, and more users’ requests can
be satisfied locally without incurring video transcoding and
backhaul link transmission. As a result, the video transcoding
energy consumption and backhaul link transmission energy
consumption are decreased, which leads to the decrease of
the total energy consumption. This figure also shows that the
total energy consumption achieved by the proposed algorithm
is smaller than the other benchmark algorithms.

The impact of computing capacity of each BS Ccomp
m on

the performance of all the algorithms is revealed in Figure 5.
As expected, when Ccomp

m becomes larger, the system energy
consumption of all the algorithms increases. The reason is
that larger Ccomp

m means a larger P(t),compm,n and a smaller

FIGURE 5. Total energy consumption under different values of the
computing capacity of each BS.

FIGURE 6. Total energy consumption under different values of the
number of users.

time of transcoding the cached higher quality version to a
lower quality version. As a result, the video transcoding
energy consumption E (t),comp

m,n,f ,k is increased, which leads to the
increase of the total energy consumption.

Figure 6 reveals the relationship between the performance
of all the algorithms and the number of users N . As we can
see, the larger the number of users, the larger the system
energy consumption of all the algorithms, which is in line
with the intuition. Larger N leads to the increase of the
number of video requests. In this case, given the VPD
and caching capacity, more video requests consume more
radio transmission energy consumption, video transcoding
energy consumption and backhaul link transmission energy
consumption, resulting in the increase of the total energy
consumption. Besides, as N increases, the performance gap
between the proposed algorithm and the other benchmark
algorithms becomes more pronounced. The reason is that
when N is small, the impact of optimizing caching policy
and UA strategy on the performance is small, while when N
becomes larger, optimizing caching policy and UA strategy
plays a more important role for the performance.

24240 VOLUME 12, 2024

J. Xie: Deep Q-Learning Aided Energy-Efficient Caching and Transmission

FIGURE 7. Total energy consumption under different values of the
number of video chunks.

FIGURE 8. Total energy consumption under different values of the
bandwidth of radio access links.

How the number of video chunksF affects the performance
of all the algorithms is illustrated in Figure 7. As we can
see, the system energy consumption of all the algorithms
gradually increases with the increase of F . The reason is that
when F becomes larger, users’ requests scatter more widely,
which leads to higher cachemiss rate and definitely consumes
larger content delivery energy consumption, which leads to
the increase of the total energy consumption.

Figure 8 reveals the impact of the bandwidth of radio
access links B on the performance of all the algorithms.
As expected, with the increase of B, the system energy
consumption of all the algorithms gradually decreases. The
reason is that when B becomes larger, R(t)m,n increases which
leads to the decrease of radio transmission delay and energy
consumption. As a result, the total energy consumption is
reduced.

Next, we demonstrate the performance of all the algorithms
under different values of the backhaul link transmission
rate RBHm . As shown in Figure 9, when RBHm is larger, the
system energy consumption of all the algorithms decreases.
This is intuitive, larger RBHm means smaller backhaul link

FIGURE 9. Total energy consumption under different values of the
backhaul link transmission rate.

transmission delay and energy consumption, which leads to
the decrease of the total energy consumption.

V. CONCLUSION
This article has investigated the content caching, transcoding
and transmission for ABRVS in cache-enabled cellular
networks. Taking into account the dynamic characteristics
of video popularity distribution and wireless channels,
we focused on reducing the long-term system energy
consumption. To achieve this, we formulated the problem
of optimizing video caching and UA as a MDP. We
utilized both DQN and linear approximation techniques
to tackle the MDP problem and determine the optimal
video caching and UA decisions. Simulation results have
demonstrated that both video caching and UA decisions have
effect on the system energy consumption, and the proposed
algorithm yields significant performance gains in enhancing
the energy efficiency compared with benchmark algorithms.
In our future works, UAV-assisted cellular networks will
be considered, and UAV deployment, UA, content caching
and resource allocation will be jointly optimized to improve
users’ QoE for ABRVS.

REFERENCES
[1] Ericsson. (Nov. 2022). Ericsson Mobility Report. [Online]. Available:

https://www.ericsson.com/en/reports-and-papers/mobility-report
[2] Z. Piao, M. Peng, Y. Liu, and M. Daneshmand, ‘‘Recent advances of

edge cache in radio access networks for Internet of Things: Techniques,
performances, and challenges,’’ IEEE Internet Things J., vol. 6, no. 1,
pp. 1010–1028, Feb. 2019.

[3] J. Yao, T. Han, and N. Ansari, ‘‘On mobile edge caching,’’ IEEE Commun.
Surveys Tuts., vol. 21, no. 3, pp. 2525–2553, 3rd Quart., 2019.

[4] B. Jedari, G. Premsankar, G. Illahi, M. D. Francesco, A. Mehrabi, and
A. Ylä-Jääski, ‘‘Video caching, analytics, and delivery at the wireless edge:
A survey and future directions,’’ IEEE Commun. Surveys Tuts., vol. 23,
no. 1, pp. 431–471, 1st Quart., 2021.

[5] Y. Sani, A. Mauthe, and C. Edwards, ‘‘Adaptive bitrate selection:
A survey,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2985–3014,
4th Quart., 2017.

[6] T. X. Tran and D. Pompili, ‘‘Adaptive bitrate video caching and processing
in mobile-edge computing networks,’’ IEEE Trans. Mobile Comput.,
vol. 18, no. 9, pp. 1965–1978, Sep. 2019.

[7] J. Zhang, H. Wu, X. Tao, and X. Zhang, ‘‘Adaptive bitrate video streaming
in non-orthogonal multiple access networks,’’ IEEE Trans. Veh. Technol.,
vol. 69, no. 4, pp. 3980–3993, Apr. 2020.

[8] M. Kamel, W. Hamouda, and A. Youssef, ‘‘Ultra-dense networks:
A survey,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2522–2545,
4th Quart., 2016.

VOLUME 12, 2024 24241

J. Xie: Deep Q-Learning Aided Energy-Efficient Caching and Transmission

[9] Y. Teng, M. Liu, F. R. Yu, V. C. M. Leung, M. Song, and Y. Zhang,
‘‘Resource allocation for ultra-dense networks: A survey, some research
issues and challenges,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 3,
pp. 2134–2168, 3rd Quart., 2019.

[10] Y. Jin, Y. Wen, and C. Westphal, ‘‘Optimal transcoding and caching
for adaptive streaming in media cloud: An analytical approach,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 25, no. 12, pp. 1914–1925,
Dec. 2015.

[11] W. Liu, H. Zhang, H. Ding, and D. Yuan, ‘‘Delay and energy minimization
for adaptive video streaming: A joint edge caching, computing and
power allocation approach,’’ IEEE Trans. Veh. Technol., vol. 71, no. 9,
pp. 9602–9612, Sep. 2022.

[12] Y. Guo, Q. Yang, F. R. Yu, and V. C. M. Leung, ‘‘Cache-enabled adaptive
video streaming over vehicular networks: A dynamic approach,’’ IEEE
Trans. Veh. Technol., vol. 67, no. 6, pp. 5445–5459, Jun. 2018.

[13] L. Li, D. Shi, R. Hou, R. Chen, B. Lin, and M. Pan, ‘‘Energy-
efficient proactive caching for adaptive video streaming via data-driven
optimization,’’ IEEE Internet Things J., vol. 7, no. 6, pp. 5549–5561,
Jun. 2020.

[14] N.-N. Dao, D. T. Ngo, N.-T. Dinh, T. V. Phan, N. D. Vo, S. Cho, and
T. Braun, ‘‘Hit ratio and content quality tradeoff for adaptive bitrate
streaming in edge caching systems,’’ IEEE Syst. J., vol. 15, no. 4,
pp. 5094–5097, Dec. 2021.

[15] C. Liu, H. Zhang, H. Ji, and X. Li, ‘‘MEC-assisted flexible transcoding
strategy for adaptive bitrate video streaming in small cell networks,’’China
Commun., vol. 18, no. 2, pp. 200–214, Feb. 2021.

[16] F. Jiang, Z. Yuan, C. Sun, and J. Wang, ‘‘Deep Q-learning-based content
caching with update strategy for fog radio access networks,’’ IEEE Access,
vol. 7, pp. 97505–97514, 2019.

[17] Y. Jiang, M. Ma, M. Bennis, F. Zheng, and X. You, ‘‘User preference
learning-based edge caching for fog radio access network,’’ IEEE Trans.
Commun., vol. 67, no. 2, pp. 1268–1283, Feb. 2019.

[18] T. Zhang, Y. Wang, W. Yi, Y. Liu, C. Feng, and A. Nallanathan,
‘‘Two time-scale caching placement and user association in dynamic
cellular networks,’’ IEEE Trans. Commun., vol. 70, no. 4, pp. 2561–2574,
Apr. 2022.

[19] T. Zhang, Z. Wang, Y. Liu, W. Xu, and A. Nallanathan, ‘‘Caching
placement and resource allocation for cache-enabling UAV NOMA
networks,’’ IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 12897–12911,
Nov. 2020.

[20] T. Zhang, Z. Wang, Y. Liu, W. Xu, and A. Nallanathan, ‘‘Joint resource,
deployment, and caching optimization for AR applications in dynamic
UAV NOMA networks,’’ IEEE Trans. Wireless Commun., vol. 21, no. 5,
pp. 3409–3422, May 2022.

[21] T. Zhang, X. Fang, Z. Wang, Y. Liu, and A. Nallanathan, ‘‘Stochastic
game based cooperative alternating Q-learning caching in dynamic D2D
networks,’’ IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 13255–13269,
Dec. 2021.

[22] P. Lin, Q. Song, J. Song, A. Jamalipour, and F. R. Yu, ‘‘Cooperative caching
and transmission in comp-integrated cellular networks using reinforcement
learning,’’ IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5508–5520,
May 2020.

[23] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, ‘‘A survey
of machine learning techniques applied to software defined networking
(SDN): Research issues and challenges,’’ IEEE Commun. Surveys Tuts.,
vol. 21, no. 1, pp. 393–430, 1st Quart., 2019.

[24] J. Du, F. R. Yu, G. Lu, J. Wang, J. Jiang, and X. Chu, ‘‘MEC-assisted
immersive VR video streaming over terahertz wireless networks: A deep
reinforcement learning approach,’’ IEEE Internet Things J., vol. 7, no. 10,
pp. 9517–9529, Oct. 2020.

[25] J. Feng, F. R. Yu, Q. Q. Pei, X. L. Chu, J. B. Du, and L. Zhu, ‘‘Cooperative
computation offloading and resource allocation for blockchain-enabled
mobile-edge computing: A deep reinforcement learning approach,’’ IEEE
Internet Things J., vol. 7, no. 7, pp. 6214–6228, Jul. 2020.

[26] P. Lin, Q. Song, D. Wang, F. R. Yu, L. Guo, and V. C. M. Leung,
‘‘Resource management for pervasive-edge-computing-assisted wireless
VR streaming in industrial Internet of Things,’’ IEEE Trans. Ind. Informat.,
vol. 17, no. 11, pp. 7607–7617, Nov. 2021.

[27] Y. Ren, R. Xie, F. R. Yu, T. Huang, and Y. Liu, ‘‘Quantum collective
learning and many-to-many matching game in the metaverse for connected
and autonomous vehicles,’’ IEEE Trans. Veh. Technol., vol. 71, no. 11,
pp. 12128–12139, Nov. 2022.

[28] Q. Tang, R. Xie, F. R. Yu, T. Chen, R. Zhang, T. Huang, and Y. Liu,
‘‘Collective deep reinforcement learning for intelligence sharing in the
internet of intelligence-empowered edge computing,’’ IEEE Trans. Mobile
Comput., vol. 22, no. 11, pp. 6327–6342, Nov. 2023.

[29] C. Qiu, H. Yao, F. R. Yu, C. Jiang, and S. Guo, ‘‘A service-oriented
permissioned blockchain for the Internet of Things,’’ IEEE Trans. Services
Comput., vol. 13, no. 2, pp. 203–215, Mar. 2020.

[30] A. H. Sodhro, S. Pirbhulal, Z. Luo, K. Muhammad, and N. Z. Zahid,
‘‘Toward 6G architecture for energy-efficient communication in IoT-
enabled smart automation systems,’’ IEEE Internet Things J., vol. 8, no. 7,
pp. 5141–5148, Apr. 2021.

[31] B. Mao, F. Tang, Y. Kawamoto, and N. Kato, ‘‘AI models for green
communications towards 6G,’’ IEEECommun. Surveys Tuts., vol. 24, no. 1,
pp. 210–247, 1st Quart., 2022.

[32] U. M. Malik, M. A. Javed, S. Zeadally, and S. U. Islam, ‘‘Energy-efficient
fog computing for 6G-enabled massive IoT: Recent trends and future
opportunities,’’ IEEE Internet Things J., vol. 9, no. 16, pp. 14572–14594,
Aug. 2022.

[33] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, ‘‘Web caching
and Zipf-like distributions: Evidence and implications,’’ in Proc. IEEE
INFOCOMConf. Comput. Commun. 18th Annu. Joint Conf. IEEEComput.
Commun. Soc., New York, NY, USA, vol. 1, 1999, pp. 126–134.

[34] L. Cherkasova and M. Gupta, ‘‘Analysis of enterprise media server
workloads: Access patterns, locality, content evolution, and rates of
change,’’ IEEE/ACM Trans. Netw., vol. 12, no. 5, pp. 781–794, Oct. 2004.

[35] B. Shen, S.-J. Lee, and S. Basu, ‘‘Caching strategies in transcoding-enabled
proxy systems for streaming media distribution networks,’’ IEEE Trans.
Multimedia, vol. 6, no. 2, pp. 375–386, Apr. 2004.

[36] Y. He, Z. Zhang, F. R. Yu, N. Zhao, H. Yin, V. C. M. Leung, and
Y. Zhang, ‘‘Deep-reinforcement-learning-based optimization for cache-
enabled opportunistic interference alignment wireless networks,’’ IEEE
Trans. Veh. Technol., vol. 66, no. 11, pp. 10433–10445, Nov. 2017.

[37] F. X. Guo, F. R. Yu, H. L. Zhang, H. Ji, M. T. Liu, and V. C. M. Leung,
‘‘Adaptive resource allocation in future wireless networks with blockchain
and mobile edge computing,’’ IEEE Trans. Wireless Commun., vol. 19,
no. 3, pp. 1689–1703, Mar. 2020.

[38] P. Zhao, H. Tian, C. Qin, and G. Nie, ‘‘Energy-saving offloading by jointly
allocating radio and computational resources for mobile edge computing,’’
IEEE Access, vol. 5, pp. 11255–11268, 2017.

[39] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, ‘‘Stochastic joint
radio and computational resource management for multi-user mobile-
edge computing systems,’’ IEEE Trans. Wireless Commun., vol. 16, no. 9,
pp. 5994–6009, Sep. 2017.

[40] J. Du, W. Liu, G. Lu, J. Jiang, D. Zhai, F. R. Yu, and Z. Ding,
‘‘When mobile-edge computing (MEC) meets nonorthogonal multiple
access (NOMA) for the Internet of Things (IoT): System design and
optimization,’’ IEEE Internet Things J., vol. 8, no. 10, pp. 7849–7862,
May 2021.

[41] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[42] V. Mnih, ‘‘Human-level control through deep reinforcement learning,’’
Nature, vol. 518, pp. 529–533, Feb. 2015.

[43] J. Hachem, N. Karamchandani, and S. Diggavi, ‘‘Content caching and
delivery over heterogeneous wireless networks,’’ in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2015, pp. 756–764.

[44] R. Xie, Z. Li, J. Wu, Q. Jia, and T. Huang, ‘‘Energy-efficient joint caching
and transcoding for HTTP adaptive streaming in 5G networks with mobile
edge computing,’’ China Commun., vol. 16, no. 7, pp. 229–244, Jul. 2019.

JUNFENG XIE received the B.S. degree in
communication engineering from theUniversity of
Science and Technology, Beijing, in 2013, and the
Ph.D. degree from the School of Information and
Communication Engineering, Beijing University
of Posts and Telecommunications, in 2019. From
September 2017 to September 2018, he visited
Carleton University, Ottawa, ON, Canada, as a
Visiting Ph.D. Student. He is currently an Assis-
tant Professor with the North University of China.

His research interests include machine learning, content delivery networks,
resource management, and wireless networks.

24242 VOLUME 12, 2024

