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ABSTRACT In this work, for nonlinear multi-agent systems, we mainly study distributed double-integrator
finite-time and fixed-time containment control with undirected heterogeneous networks. At the first,
two controllers to realize finite-time containment and two controllers to achieve fixed-time containment
were designed. Second, we design appropriate finite-time and fixed-time containment protocols to ensure
followers can move to geometric region formed by leaders, and settling time can be estimated. We can obtain
that the calculation of convergence time of finite-time containment control is associated to the initial state.
And the settling time of the fixed-time containment control is related to the parameters. Finally, correctness
of the theory is verified by mathematical simulation experiments.

INDEX TERMS Finite-time containment, fixed-time containment, heterogeneous networks, sliding mode
control, second-order systems.

I. INTRODUCTION
Over the decade years, due to the wide application [1],
[2] of multi-agent systems [3], [4], research on distributed
cooperative control has attracted a lot of attention from
researchers. Depend on the number of leader, we can study
consensus from following aspects: leaderless consensus,
leader-following consensus and containment control. Con-
tainment control, as a special type of multi leader consen-
sus, has great application value in fields such as ground
monitoring, investigation, and environmental exploration.
Containment control has become one of the key contents
of multi leader collaborative control research. The aim of
containment control is all follower agents will reach convex
hull spanned by leaders.

It can be observed that, studies on multi-agent systems
were represented in the past by first-order models [5], [6],
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[7], and agents dynamics are linear model [8], [9], [10].
In [5], distributed containment control was studied with many
dynamic or stationary leaders and switching and fixed topol-
ogy. Proportional-derivative(PD) control containment was
considered with directed graph and time-delay in work [6].
In [7], authors studied first-order bipartite containment con-
trol with static leaders and switching communication graph.
In [8], containment control for linear dynamics systems was
mentioned with graph which is directed. In [9], authors talked
about formation-containment control with output problem
based on hybrid active controller and linear systems is
heterogeneous. Containment control of linear continuous-
time single-integrator and double-integrator system were
investigated in work [10].

Nonetheless, in engineering examples, multi-agent sys-
tems are mostly use nonlinear models [11], [12], [13]. This
is because the nonlinear models are more complex and more
realistic. Therefore, the rise of first-order systems to second-
order systems [14], [15], [16] will be beneficial to obtain a
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wide range of applications. In [11], nonlinear containment
was investigated for second-order system with and without
centralized event-triggered strategy. Containment control for
second-order nonlinear system with intermittent position
measurements at irregular intervals, which introduced a
filter to deal with problem of relative velocity measurement
and used relative positive measurement was investigated
in work [12]. In [13], it proved that containment for
nonlinear system with leaders and followers will expo-
nentially converge into convex hull spanned by dynamics
leaders. In [14], authors studied tracking consensus for
second-order systems affected by disturbance. In [15],
authors given controller of second-order dynamics systems
under nonlinear function for reaching asymptotic leader-
following consensus. Second-order systems containment was
investigated in [16] under directed graph with and without
communication delay.

When talking about containment control, convergence time
is the focus of discussion. However, the above controllers
only guarantee to achieve asymptotic convergence. So the
top priority of the research is to find a proper method to
obtain a faster convergence speed for better practical system
performance. Thus, finite-time containment control turns out
to be a popular research problem. Researchers have given
distributed controllers for linear and nonlinear system for
accomplishing finite-time containment [17], [18], [19], [20].
In [17], problem of fuzzy control of nonlinear dynamics
systems with time-delay and adaptive was discussed. Adap-
tive containment has been studied for uncertain manipulator
systemswith novel distributed adaptive backstepping strategy
in [18]. In [19], authors studied finite-time containment
control for systems with disturbances and uncertainties. In
the study of multi-agent systems, we generally focus on
continuous-time control, which may waste communication
resources. Based on this, event-triggered intermittent con-
trol strategies can be studied. Therefore, in [20], authors
investigated the finite-time synchronization control problem
of complex networks with time-delay using event-triggered
control methods. It is thought-provoking that convergence
time of finite-time containment control is related to initial
value. Based on this, many scholars nowadays prefer to
study fixed-time controllers. The reason is that a fixed-time
controller controller will not depend on initial state compared
to finite-time controller laws. In [21], state observer and
input observer proposed by authors are used to observe state
and input. Distributed fixed-time controllers are proposed
to enable follower states to track the leader. In [22],
a suitable fixed-time consensus controller is proposed to solve
heterogeneous tracking consensus problem for nonlinear
systems. Several agents are studied in above papers, some of
which are first-order systems and some of which are second-
order systems. In [23], the distributed optimization problem
was posed, and this optimization problem includes global and
local optimization.

Moreover, it should be noted that containment control
of second-order system is mostly with same position and
velocity topology graph. But in some practical situations,
different methods may be used to measure position and
velocity, for example, using different sensors. Therefore,
the position and velocity measurements will communicate
between the agents under the different network topologies
through the different communication devices. Even if the
same way strategy, and the same way of transmission,
information loss leads to a different topology of position
and velocity. To solve this problem, second-order systems
which communicating with topologies of different position
and velocity are studied in [24], [25], and [26], which are
called heterogeneous networks.

In this work, finite-time and fixed-time containment are
studied for second-order system with nonlinear function
under heterogeneous networks. Regarding the design of
finite-time and fixed-time control protocols, it depends
mainly on states of neighboring agents and relative state
errors. By means of graph theory, Lyapunov theory and other
related control knowledge, the corresponding controllers are
designed to realize finite-time and fixed-time containment
control of second-order dynamics systems. Our control
objective is to enable followers to enter the convex hull
formed by leaders in finite-time or fixed time. Finite-time
containment control [27] refers to the follower entering the
convex hull formed by the leader within a finite time. Fixed-
time containment control [28] refers to the follower entering
the convex hull formed by the leader within a fixed time.
The convergence time of finite-time containment control
depends on the initial state of the system, while fixed-time
containment control does not depend on the initial state of the
system. Design controllers in this work by using nonsingular
terminal sliding mode control way, and role of sliding mode
is to suppress disturbance.

Main contributions of this work:
(1) Compared to position and velocity using the same

topologies, we study heterogeneous topologies about position
and velocity. In real life, it is necessary to study hetero-
geneous networks because of the different measurement
methods, or the same measurement methods but different
sensors. To the best of our knowledge, there are few studies
on finite-time and fixed-time of heterogeneous networks, so it
is necessary to study containment control in finite-time and
fixed-time under heterogeneous networks.

(2) In this paper, we establish sufficient conditions for con-
trol protocols designed under fixed topology with finite-time
and fixed-time by using nonsingular terminal sliding mode
control methods. The results show that the settling time of
convex hull formed by leaders reached by follower can be
calculated explicitly under the proposed control protocol.

The remaining articles are organized as follows. Intro-
ducing graph theory and useful lemmas in Section II.
In section III, problem to be studied is described. Finite-time
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containment control with and terminal sliding mode non-
singular terminal sliding mode was proposed in Section IV.
Section V proposed fixed-time containment control with and
terminal sliding mode nonsingular terminal sliding mode.
Section VI verifies the correctness of theory by giving some
examples. At the end, conclusion is drawn in Section VII.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. NOTATIONS
Rp represents set of p dimensional vectors, Rp×q represents
p × q dimensional matrix. Define Ipm to be pm dimensional
identity matrix. ∥•∥ denotes norm of vector. Given a vector
Q =

[
Q1,Q2, · · · ,Qp

]T , diag (Q) denotes a p × p diagonal
matrix where Q1,Q2, · · · ,Qp are diagonal elements. Define
sign (Q) = [sign (Q1) , sgin (Q2) , · · · , sign (Qn)]T , where
sign (•) is signum function. λmin (M) and λmax (M) represent
minimum and maximum eigenvalues of a real symmetric
matrix M . The max and min represent maximum and
minimum value of a real symmetric matrixM .

B. GRAPH THEORY
An undirected graph Gb = {Vb,Eb,Ab} is to describe
information interaction of agents. Set of nodes is defined
as Vb = {v1, v2, · · · , vM+N }, set of edges is defined as
Eb ⊆ Vb × Vb. Denotes adjacent matrix of Gb is Ab =[
aij
]

∈ R(M+N )×(M+N ), where aij > 0 if
(
vi, vj

)
∈ Eb and

aij = 0 otherwise. L =
[
lij
]

∈ R(M+N )×(M+N ) is Laplacian
matrix which related to adjacency matrix, where lii =∑M+N

j=1,j̸=i aij, lij = −aij, j ̸= i, i, j = {1, 2, · · · ,M + N }.
The topologies of position and velocity can be described by
Gw =

{
V ,Ew,Aw =

[
awij
]}

and Gs =

{
V ,Es,As =

[
asij
]}

,

respectively. And Laplacian matrices of position and velocity
can be expressed by

Lw =

(
Lw1 Lw2
0M×N 0M×M

)
and

Ls =

(
Ls1 Ls2

0M×N 0M×M

)
where Lw =

[
lwij
]

∈ R(M+N )×(M+N ),Aw =

[
awij
]

∈

R(M+N )×(M+N ), Ls =

[
lsij
]

∈ R(M+N )×(M+N ),As =[
asij
]

∈ R(M+N )×(M+N ), and −L−1
w1 Lw21M×1 = 1N×1,

−L−1
s1 Ls21M×1 = 1N×1.
Suppose it is a system with N followers and M leaders.

An agent is called leader if agent has no neighbor, and
a follower if agent has at least one neighbor. We assume
that followers indexed by 1, · · · ,N and leaders indexed by
N + 1, · · · ,N + M . Follower set is F = {1, · · · ,N } and
leader set is L = {N + 1, · · · ,N +M}.

C. SOME USEFUL LEMMAS AND DEFINITIONS
Definition 1 [29]: Let Ch be a set in a real vector

space R ⊆ RP. The set is convex if, for any xh and

yh in Ch, point (1 − αh) xh + αhyh ∈ Ch for any
αh ∈ [0, 1]. Convex hull for a set of points χp :={
x1p, · · · , xmp

}
, denoted by Co

(
χp
)
, that is, Co

(
χp
)

:={∑m
i=1 βipxip

∣∣xip ∈ χp, βip ≥ 0,
∑m

i=1 βip = 1
}
.

Definition 2 [30]: For (2) and (3), containment will be
get if and only if there is a control laws ui and Tn > 0,
such that followers’ positions and velocities enter convex hull
Co (XbL) and Co (VbL), respectively. And

Co (XbL) =

{∑N+M

N+1
θixi |θi ≥ 0,

∑N+M

N+1
θi = 1

}
Co (VbL) =

{∑N+M

N+1
θivi |θi ≥ 0,

∑N+M

N+1
θi = 1

}
.

Definition 3 [31]: Nonlinear dynamics system is

ż = h (z) , h (0) = 0, z (0) = z0, (1)

where z ∈ Rq is state, h : Rq → Rq is continuous. Equilibrium
point of (1) is finite-time stable, if for all z0 ∈ Rq, there is a
settling time Th (z0), such that z (th) = 0 is get for all th >

Th (z0).
Lemma 1 [31]: If there is a positive define continuous

function such that

V̇p (p) ≤ −λpV
αp
p (p) ,

where λp > 0, 0 < αp < 1. Then, system (1) is finite-time
stable, and convergence time Tf (p0) is set as

Tf (p0) ≤
V
1−αp
p (p0)

λp
(
1 − αp

) .
Lemma 2 [32]: If there is a continuous function which is

positive define such that

V̇h (x) ≤ −αhV ph (x) − βhV qh (x) ,

where αh, βh > 0, 0 < ph < 1, qh > 1. Then origin is
fixed-time stable equilibrium of system (1) and convergence
time Th (x0) is defined as

Th ≤
1

αh (1 − ph)
+

1
βh (1 − qh)

.

III. PROBLEM FORMULATION
Followers are represented by the model{

ẋi = vi
v̇i = ui + fi (xi, vi, t) ,

i ∈ F = {1, · · · ,N } , (2)

where xi ∈ Rn is position,vi ∈ Rn is velocity, ui ∈ Rn is
control input of ith follower. fi (xi, vi, t) is intrinsic nonlinear
dynamics function.

Leaders are represented by the model{
ẋj = vj
v̇j = fj

(
xj, vj, t

)
,

j ∈ L = {N + 1, · · · ,N +M} , (3)
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where xj ∈ Rn is position, vj ∈ Rn is velocity, uj ∈ Rn is
control input of jth leader. fj

(
xj, vj, t

)
is intrinsic nonlinear

dynamics.

Assumption 1 [33]: Given ϖ s
1, · · · , ϖ s

M , satisfying
M∑
j=1

ϖ s
j = 1 and ϖ s

j ≥ 0, there are two constants ρs1, ρ
s
2 > 0,

such that for ms, ns,msj , n
s
j ∈ Rn, j = 1, 2, · · · ,M ,∥∥∥∥∥∥f (ms, ns, t)−

M∑
j=1

ϖ s
j fj
(
msj , n

s
j , t
)∥∥∥∥∥∥

≤ ρs1

∥∥∥∥∥∥ms −

M∑
j=1

ϖ s
j m

s
j

∥∥∥∥∥∥+ ρs2

∥∥∥∥∥∥ns −

M∑
j=1

ϖ s
j n

s
j

∥∥∥∥∥∥ .

Assumption 2: For every follower, at least a leader is
connected to follower.

For markup purposes, define

Xf (t) = {x1, · · · , xN }
T ,

Vf (t) = {v1, · · · , vN }
T ,

Uf (t) = {u1, · · · , uN }
T ,

Xl (t) = {xN+1, · · · , xN+M }
T ,

Ff (t) = {f1, · · · , fN }
T ,

Vl (t) = {vN+1, · · · , vN+M }
T ,

Fl (t) = {fN+1, · · · , fN+M }
T .

Define error functions
exi =

N+M∑
j=1

awij
(
xi (t) − xj (t)

)
evi =

N+M∑
j=1

asij
(
vi (t) − vj (t)

)
,

i ∈ {1, 2, · · · ,N } , (4)

and ex = {ex1, · · · , exN }
T , ev = {ev1, · · · , evN }

T .
We can describe (4) in abbreviated form{

ex = (Lw1 ⊗ Im)Xf (t) + (Lw2 ⊗ Im)Xl (t)
ev = (Ls1 ⊗ Im)Vf (t) + (Ls2 ⊗ Im)Vl (t)

and let

ηx = Xf (t) +

(
L−1
w1 Lw2 ⊗ Im

)
Xl (t)

ηv = Vf (t) +

(
L−1
s1 Ls2 ⊗ Im

)
Vl (t) (5)

where ηx = {ηx1, ηx2, · · · ηxN }
T , ηv = {ηv1, ηv2, · · · ηvN }

T .
Take derivative of (5)

η̇x = ηv

η̇v = V̇f (t) +

(
L−1
s1 Ls2 ⊗ Im

)
V̇l (t)

= Uf (t) + Ff (t) +

(
L−1
s1 Ls2 ⊗ Im

)
Fl (t) (6)

Definition −L−1
s1 Ls2 =

(
ξT1 , ξT2 , · · · , ξTN

)T , where ξi =

(ξi1, ξi2, · · · , ξiM ) and ξij ≥ 0. According to Assumption 1,

we have∥∥∥Ff +

(
L−1
s1 Ls2 ⊗ In

)
Fl
∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥



[
f1 (x1, v1, t) −

M∑
j=1

ξ1jfj
(
xj, vj, t

)]T
,

· · · ,[
fN (xN , vN , t) −

M∑
j=1

ξNjfj
(
xj, vj, t

)]T



∥∥∥∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥∥∥∥∥


ρ1

∥∥∥∥∥x1 −

M∑
j=1

ξ1jxj

∥∥∥∥∥+ ρ2

∥∥∥∥∥v1 −

M∑
j=1

ξ1jvj

∥∥∥∥∥ ,

· · · ,

ρ1

∥∥∥∥∥xN −

M∑
j=1

ξNjxj

∥∥∥∥∥+ ρ2

∥∥∥∥∥vN −

M∑
j=1

ξNjvj

∥∥∥∥∥



∥∥∥∥∥∥∥∥∥∥∥∥
≤

∥∥∥ρ1 (Xf +

(
L−1
s1 Ls2 ⊗ In

)
Xl
)∥∥∥

+

∥∥∥ρ2 (Vf +

(
L−1
s1 Ls2 ⊗ In

)
Vl
)∥∥∥

= ρ1 ∥ηxv∥ + ρ2 ∥ηv∥ (7)

where ηxv = Xf +

(
L−1
s1 Ls2 ⊗ In

)
Xl and ηxv =

{ηxv1, ηxv2, · · · ηxvN }
T .

IV. FINITE-TIME CONTAINMENT CONTROL
Generally speaking, leaders are assumed to be dynamic in
system. In fact, static leaders can be regards as special form
of dynamic leaders which make velocity is equal to zero.

A. FINITE-TIME CONTAINMENT WITH TERMINAL SLIDING
MODE
Sliding mode control can eliminate disturbances, therefore,
we introduce terminal sliding mode. Compared with the
linear sliding mode, the traditional terminal sliding mode
control improves the speed of convergence to the equilibrium
state due to the introduction of the nonlinear part, and
the farther away from the equilibrium state the faster the
convergence speed.

At first, we introduce terminal sliding mode. So sliding
mode can be expressed

si1 = ηvi + β1|ηxi|
α1 , i ∈ {1, 2, · · · ,N } , (8)

with 0 < α1 < 1, and β1 > 0.
Sliding mode (8) can be expressed in a simple form

S1 = ηv + β1|ηx |
α1 ,

with S1 = {s11, s21, · · · , sN1}
T .

Take derivative (8) get

ṡi1 = η̇vi + β1α1|ηxi|
α1−1ηvi.
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According to terminal sliding mode error, following
containment controller is proposed as

ui1 =

N+M∑
j=1

asij

−1

(−k21 |ηvi| sign (si1)

− k11 |ηxvi| sign (si1) − k41(ηxi)α1−1ηvi

−sign (si1) +

N∑
j=1

asijuj1

 (9)

with k11 > 0, k21 > 0, k41 > 0.
Controller (9) can be rewritten in a simple form

Uf 1 =

(
L−1
s1 ⊗ Im

) (
−k41ηv(ηx)α1−1

−diag (k11 |ηxv| + k21 |ηv| + 1) sign (S1))

with Uf 1 = {u11, u21, · · · , uN1}
T

Theorem 1: Consider the Assumption 1 to 2 hold and the
communication graph is undirected. There is a controller (9)
and terminal sliding mode (8), which make system (2) and (3)
can achieve second-order multi-agent containment in finite
time, if following inequalities are satisfied

k11 ≥ ρ1λ
1
2
max (P) (10)

k21 ≥ ρ2λ
1
2
max (P) ,

k41 > β1α1λ
1
2
max (P) . (11)

where P = LTs1Ls1.
Proof: Design following Lyapunov function

V1 = ST1 (Ls1 ⊗ I ) S1. (12)

Differentiating (12), one can gets

V̇1 = ST1 (Ls1 ⊗ I ) Ṡ1

= ST1 (Ls1 ⊗ I )
(
η̇v + β1α1|ηx |

α1−1ηv

)
= ST1 (Ls1 ⊗ Im)

(
Uf (t) + Ff (t)

)
+ ST1 (Ls2 ⊗ Im)Fl (t)

+ ST1 β1α1(ex)α1−1 (Ls1 ⊗ I ) ηv. (13)

Substituting (9) into (13), one has

V̇1 = ST1 (Ls1 ⊗ I ) Ṡ1
= ST1 (Ls1 ⊗ Im)Ff (t) + ST1 (Ls2 ⊗ Im)Fl (t)

+ ST1 β1α1(ηx)
α1−1 (Ls1 ⊗ I ) ηv

−ST1 k41(ηx)
α1−1ηv

−ST1 (diag (k11 |ηxv| + k21 |ηv| + 1) sign (S1)) . (14)

Combine (4), (7), with (10), one can proved that

ST1 (Ls1 ⊗ Im)Ff (t) + ST1 (Ls2 ⊗ Im)Fl (t)

= ST1 (Ls1 ⊗ Im)
(
Ff (t) +

(
L−1
s1 Ls2 ⊗ Im

)
Fl (t)

)
≤

∥∥∥ST1 ∥∥∥ ∥(Ls1 ⊗ Im)∥

×

∥∥∥(Ff (t) +

(
L−1
s1 Ls2 ⊗ Im

)
Fl (t)

)∥∥∥
≤ ∥S1∥ ∥(Ls1 ⊗ Im)∥ (ρ1 ∥ηxv∥ +ρ2 ∥ηv∥)

≤ λ
1/2
max

(
LTs1Ls1

)
(ρ1 |ηxv| ∥S1∥ + ρ2 |ηv| ∥S1∥) . (15)

Otherwise, by (11),

ST1 β1α1(ηx)
α1−1 (Ls1 ⊗ I ) ηv

−ST1 k41(ηx)
α1−1ηv

≤ λ
1
2
max

(
LTs1Ls1

)
β1α1ST1 (ηx)

α1−1ηv

− k41ST1 (ηx)
α1−1ηv ≤ 0. (16)

Combine (15) and (16), (14) can lead to

V̇1 ≤ −ST1 sign (S1) = −
√
2V

1
2
1 .

By Lemma 1, it can get conclusion that system will reach
sliding mode si1 = 0 surface

t1 =
√
2V

1
2
1 (0) .

When t > t1, terminal sliding mode be expressed as

si1 = ηvi + β1sig(ηxi)α1 = 0, i ∈ F .

That is,

ηvi = η̇xi = −β1sig(exi)α1 .

We choose proper Lyapunov function as

V2 =
1
2
ηTx ηx .

By Definition 2, one gets

V̇2 = ηTx η̇x = −ηTx β1sig(ηx)α1

= −β1(ηx)
α1+1

≤ −β12
α1+1
2 V

α1+1
2

2

One can obtains

t2 =
V2

1−α1
2 (t1)

β12
α1+1
2

(
1−α1
2

) .

In same way, one can gets

lim
t→t2

ηv = 0.

So, it can get converge time is

T1 = t1 + 2t2.
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B. FINITE-TIME CONTAINMENT CONTROL
We can see when ηx = 0, ηv ̸= 0, ηx → 0, control
protocol (9) will be zero.

In this subsection, a nonsingular terminal sliding mode
control is applied to deal with this issue. Furthermore,
we investigate finite-time containment control under a
undirected interaction topology.

We introduce nonsingular terminal sliding mode. So slid-
ing mode can be expressed

si2 = ηxi + β2sig(ηvi)α2 , i ∈ {1, 2, · · · ,N } , (17)

with β2 > 0, 1 < α2 < 2.
(17) can be described in a simple form

S2 = ηx + β2sig(ηv)α2 ,

with S2 = {s12, s22, · · · , sN2}
T .

Deriving the derivative for the sliding mode (17) yields

ṡi2 = η̇xi + α2β2diag
(
(ηvi)

α2−1
)
ėvi.

Based on nonsingular terminal sliding mode, controller is
able to be expressed as

ui2 =

N+M∑
j=1

asij

−1

(−sign (si2)

−
evi

β2α2(ηvi)
α2−1 +

N∑
j=1

asijuj2

−k12 |ηxvi| sign (si2) − k22 |ηvi| sign (si2)) , (18)

with k12, k22 > 0.
Controller (18) can be simply described as

Uf 2 =

(
L−1
s1 ⊗ Im

)(
−diag

(
ηv (Ls1 ⊗ Im)

β2α2(ηv)
α−1

)
−diag(1 + k12 |ηxv| + k22 |ηv|)sign (S2))

with Uf 2 = {u12, u22, · · · , uN2}
T .

Theorem 2: Based on Assumptions 1 and 2, as well as
topology graph is undirected, the existence of controllers (18)
and nonsingular terminal sliding modes (17) enables the
second-order system (2) and (3) to achieve finite-time
containment control if following inequalities are satisfied

k12 ≥ ρ1λ
1/2
max

(
LTs1Ls1

)
,

k22 ≥ ρ2λ
1/2
max

(
LTs1Ls1

)
Proof: Design following Lyapunov function

V3 = ST2 (Ls1 ⊗ I ) S2.

Differentiating V1, we can obtain

V̇3 = ST2 (Ls1 ⊗ I ) Ṡ2

= ST2 α2β2diag
(
(ηv)

α2−1
)

(Ls1 ⊗ Im)Ff (t)

+ ST2 α2β2diag
(
(ηv)

α2−1
)

(Ls2 ⊗ Im)Fl (t)

+ ST2 (Ls1 ⊗ I ) ηv

+ ST2 α2β2diag
(
(ηv)

α2−1
)(

−diag
(

ηv (Ls1 ⊗ Im)

β2α2(ηv)
α2−1

)
−diag(1 + k12 |ηxv| + k22 |ηv|)sign (S2)) ,

Similar to Theorem 1, we have

V̇3 ≤ −α2β2diag
(
(ηv)

α2−1
)
ST2 sign (S2) .

When ηvr ̸= 0, r = 1, · · · ,N , define

R = min
{
α2β2diag

(
(ηv1)

α2−1
)

,

· · · , α2β2diag
(
(ηvN )α2−1

)}
,

and R > 0, one can gets V̇3 ≤ −RST2 sign (S2) = −
√
2RV

1
2
3 .

When ηvr = 0, r = 1, 2, · · · ,N , from the equation (6)
and (18) a new equation can be obtained

η̇v = Uf 2 (t) + Ff (t) +

(
L−1
s1 Ls2 ⊗ Im

)
Fl (t)

=

(
L−1
s1 ⊗ Im

)
(−diag(1 + k12 |ηxv|)sign (S2))

+ Ff (t) +

(
L−1
s1 Ls2 ⊗ Im

)
Fl (t)

It can gets when si2 > 0, η̇vr < 1 and si2 < 0, η̇vr >

1 according to Assumption 1-2.
Consider situation first si2 > 0. There will be

diag
(
Ṡ2 (t)

)
= diag (ηv (t)) ≤ diag (−t1n), and S2 (t3) = 0,

t3 is setting time of finite-time containment control, in other
words, when t > t3, sliding mode si2 will converge to
0 and remain on the sliding mode surface. For the other case,
the same analysis is used. Thus, by Definition 2, it can get
conclusion that sliding mode surface si2 = 0 can reached in

finite time, and convergence time is t3 =

√
2V

1
2
3 (0)
R .

When t > t3, sliding mode be described as

si2 = ηxi + β2sig(ηvi)α2 = 0. (19)

Derivative of (19) is

ṡi2 = η̇xi + β2α2(ηvi)
α2−1η̇vi = 0.

That is

η̇vi = −
η̇xi

β2α2(ηvi)
α2−1 .

One selects the proper Lyapunov function as

V4 =
1
2
ηTv ηv.
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One can acquires

V̇4 = ηTv η̇v = −ηTv
η̇x

β2α2(ηv)
α2−1

=
1

β2α2
(ηv)

3−α2 ≤ −
1

β2α2
2

3−α2
2 V

3−α2
2

4

By Definition 2, one gets

t4 =
β2α2V

α2−1
2

4 (t3)

2
3−α2
2

(
α2−1
2

) .

In same way, one will obtains

lim
t→t4

ηx = 0.

So, it can get converge time is

T2 = t3 + 2t4.

V. FIXED-TIME CONTAINMENT CONTROL
A. FIXED-TIME CONTAINMENT WITH TERMINAL SLIDING
MODE
Terminal sliding mode is expressed as

si3 = ηvi + β3|ηxi|
α3 + β4|ηxi|

α4 , (20)

with i ∈ {1, 2, · · · ,N }, 0 < α3 < 1, α4 > 1, and β3, β4 > 0.
Sliding mode (20) can be expressed in a simple form

S3 = ηv + β3|ηx |
α3 + β4|ηx |

α4 ,

with S3 = {s13, s23, · · · , sN3}
T .

Take derivative of (20) has following form

ṡi3 = η̇vi + β3α3|ηxi|
α3−1η̇xi + β4α4|ηxi|

α4−1η̇xi.

Containment controller is proposed as

ui3 =

N+M∑
j=1

asij

−1

(−k13 |ηxvi| sign (si3)

− k23 |ηvi| sign (si3) −

(
s
m
n
i3 + s

p
q
i3

)
sign (si3)

+

N∑
j=1

asijuj3 − k43(ηxi)α3−1η̇xi

−k33(ηxi)α4−1η̇xi

)
(21)

with k13 > 0, k23 > 0, k33 > 0, k43 > 0, p > q,m < n.
Controller (21) can be rewritten in a simple form

Uf 3 =

(
L−1
s1 ⊗ Im

)(
−

(
S
m
n
3 + S

p
q
3

)
sign (S3)

− k33diag (η̇x) (ηx)
α4−1

− k43diag (η̇x) (ηx)
α3−1

−diag (k13 |ηxv| + k23 |ηv|) sign (S3))

with Uf 3 = {u13, u23, · · · , uN3}
T .

Theorem 3: Consider the Assumption 1 to 2 hold and the
communication graph is undirected. There is a controller (21)
and terminal sliding mode (20), which make system (2)
and (3) can achieve second-order multi-agent containment in
fixed time, if following inequalities are satisfied

k13 ≥ ρ1λ
1
2
max (P)

k23 ≥ ρ2λ
1
2
max (P) ,

k33 > α4β4λ
1
2
max (P)

k43 > α3β3λ
1
2
max (P)

where P = LTs1Ls1.
Proof: Design following Lyapunov function

V5 = ST3 (Ls1 ⊗ I ) S3. (22)

Differentiating (22), it can get

V̇5 = ST3 (Ls1 ⊗ I ) Ṡ3

= ST3 (Ls1 ⊗ I )
(
η̇v + β3α3|ηx |

α3−1η̇x

)
+ ST3 (Ls1 ⊗ I ) β4α4|ηx |

α4−1η̇x

= ST3 (Ls1 ⊗ I )
(
L−1
s1 Ls2 ⊗ Im

)
Fl (t)

+ ST3 (Ls1 ⊗ I )
(
Uf (t) + Ff (t)

)
+ ST3 (Ls1 ⊗ I ) β3α3|ηx |

α3−1η̇x

+ ST3 (Ls1 ⊗ I ) β4α4|ηx |
α4−1η̇x

= ST3 (Ls1 ⊗ Im)Ff (t) + ST3 (Ls2 ⊗ Im)Fl (t)

+ ST3 (Ls1 ⊗ I ) β3α3(ηx)
α3−1diag (η̇x)

+ ST3 (Ls1 ⊗ I ) β4α4|ηx |
α4−1diag (η̇x)

+ ST3
(
−k43diag (η̇x) (ηx)

α3−1

− k33diag (η̇x) (ηx)
α4−1

−

(
S
m
n
3 + S

p
q
3

)
sign (S3)

−diag (k13 |ηxv| + k23 |ηv|) sign (S3))

Similar to Theorem 1, on can leads to

V̇5 ≤ −ST3 S
m
n
3 sign (S3) − ST3 S

p
q
3 sign (S3)

= −
√
2
m
n +1

V
m+n
2n

5 −
√
2
p
q+1

V
p+q
2q

5 .

By Lemma 2, it can get conclusion that system will reach
sliding mode si3 = 0 surface

t5 =
1

√
2
m
n +1 (

1 −
m+n
2n

) +
1

√
2
p
q+1

(
1 −

p+q
2q

) .

When t > t5, terminal sliding mode be expressed as

si5 = ηvi + β3|ηxi|
α3 + β4|ηxi|

α4 = 0, i ∈ F .

That is,

ηvi = η̇xi = −β3|ηxi|
α3 − β4|ηxi|

α4 .
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One chooses proper Lyapunov function as

V6 =
1
2
ηTx ηx .

One can obtains

V̇6 = ηTx η̇x

= ηTx
(
−β3|ηxi|

α3 − β4|ηxi|
α4
)

= −β3(ηx)
α3+1

− β4(ηx)
α4+1

≤ −β32
α3+1
2 V

α3+1
2

6 − β42
α4+1
2 V

α4+1
2

6 .

By Definition 2, one gets

t6 =
1

β32
α3+1
2

(
1 −

α3+1
2

)
+

1

β42
α4+1
2

(
1 −

α4+1
2

) .

In same way, one can owns

lim
t→t6

ηv = 0.

So, it can get converge time is

T3 = t5 + 2t6.

B. FIXED-TIME CONTAINMENT CONTROL
Define nonsingular terminal sliding mode as

si4 = ηxi + β5|ηvi|
α5 + β6|ηvi|

α6 , (23)

with 0 < α5 < 1, α6 > 1, β5, β6 > 0 and i ∈ {1, 2, · · · ,N }.
Sliding mode (23) can be expressed in a simple form

S4 = ηx + β5|ηv|
α5 + β6|ηv|

α6 ,

with S4 = {s14, s24, · · · , sN4}
T .

Find the derivative of the (23) and obtain

ṡi4 = η̇xi + β5α5|ηvi|
α5−1η̇vi + β6α6|ηvi|

α6−1η̇vi.

Thus, controller is designed to

ui4 =

N+M∑
j=1

asij

−1

(−k14 |ηxvi| sign (si4)

− k24 |ηvi| sign (si4)

−

(
s
m
n
i4 + s

p
q
i4

)
sign (si4) +

N∑
j=1

asijuj4

−
evi

β5α5|ηvi|
α5−1

+ β6α6|ηvi|
α6−1

)
(24)

with k14 > 0, k24 > 0, k34 > 0, k44 > 0, p > q,m < n.

The controller (24) can be abbreviated as

Uf 4 =

(
L−1
s1 ⊗ In

)(
−

(
S
m
n
4 + S

p
q
4

)
sign (S4)

−diag (k14 |ηxv| + k24 |ηv|) sign (S4)

−diag

(
ev

β5α5diag
(
|ηv|

α5−1)
+ β6α6diag

(
|ηv|

α6−1)
))

with Uf 4 = {u14, u24, · · · , uN4}
T .

Theorem 4: Under Assumption 1 to 2 hold, consider
second-order system (2) and (3) with proposed controller (24)
and nonsingular terminal sliding mode (23). Then, connec-
tivity among agents can be preserved and the containment
control will reach in finite time, if following inequalities are
satisfied

k14 ≥ ρ1λ
1/2
max

(
LTs1Ls1

)
,

k24 ≥ ρ2λ
1/2
max

(
LTs1Ls1

)
.

Proof: Design following Lyapunov function

V7 = ST
4

(Ls1 ⊗ I ) S4. (25)

Differentiating V7, we can get (26), as shown at the bottom
of the next page.
Similar to Theorem 2, we have

V̇7 ≤ −ST4

(
S
m
n
4 + S

p
q
4

)
sign (S4)(

β5α5diag
(
|ηv|

α5−1
)

+ β6α6diag
(
|ηv|

α6−1
))

.

When ηvm ̸= 0, r = 1, 2, · · · ,N , defineM =

min
{
β5α5diag

(
|ηv1|

α5−1
)

+ β6α6diag
(
|ηv1|

α6−1
)

,

· · · , β5α5diag
(
|ηvN |

α5−1
)

+ β6α6diag
(
|ηvN |

α6−1
)}

,

and M > 0, we can get

V̇7 ≤ −MST4

(
S
m
n
4 + S

p
q
4

)
sign (S4)

≤ −M
√
2
m
n +1

V
m+n
2n

7 −M
√
2
p
q+1

V
p+q
2q

7 .

When ηvm = 0,m = 1, 2, · · · ,N , similar to Theorem 1,
when t > t3, all sliding mode si4 = 0 could be obtained. And
settling time is t7 =

1

M
√
2
m
n +1

(1−m+n
2n )

+
1

M
√
2
p
q+1

(
1− p+q

2q

) .
When t > t7, nonsingular terminal sliding mode be

expressed as

si4 = ηxi + β5|ηvi|
α5 + β6|ηvi|

α6 = 0, i ∈ F . (27)

Derivative of (27) is

η̇xi = −α5β5|ηvi|
α5−1η̇vi − α6β6|ηvi|

α6−1η̇vi.

That is,

η̇vi =
η̇xi

−α5β5|ηvi|
α5−1

− α6β6|ηvi|
α6−1

=
ηvi

−α5β5|ηvi|
α5−1

− α6β6|ηvi|
α6−1 .
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One chooses Lyapunov function as

V8 =
1
2
ηTv ηv.

It can obtain

V̇8 = ηTv η̇v

= ηTv

(
ηv

−α5β5|ηv|
α5−1

− α6β6|ηv|
α6−1

)
= −

η
3−α5
v

α5β5
−

η
3−α6
v

α6β6

≤ −
2

3−α5
2 V

3−α5
2

8

α5β5
−

2
3−α6
2 V

3−α6
2

8

α6β6
.

By Definition 2, one gets

t8 =
α5β5

2
3−α5
2

(
1 −

3−α5
2

) +
α6β6

2
3−α6
2

(
1 −

3−α6
2

) .

In same way, one gets

lim
t→t4

ηx = 0.

So, it can obtain converge time is

T4 = t7 + 2t8.

Remark 1: For controller (9), ‘‘sign(.)’’ is used, which can
cause chattering behavior. This is a common problem in
dynamical systems with non-Lipschitz right-hand side. The
sat function is usually used as a Lipschitz approximation
of the sign function and is used to eliminate chattering. sat
function can be designed as

sat (si) =


−1 si < −a
si
a

|si| ≤ a

1 si > a

FIGURE 1. The position and velocity topology graph.

Remark 2: Theorem 1 is to solve finite-time containment
control using terminal sliding mode method, and Theorem 2
is to solve finite-time containment control using nonsingular
terminal sliding mode method. Terminal sliding mode may
cause singularity in the system, therefore Theorem 2 uses
nonsingular terminal sliding mode to solve finite-time con-
tainment control problems. Theorem 3 is to solve fixed-time
containment control using terminal slidingmodemethod, and
Theorem 4 is to solve fixed-time containment control using
nonsingular terminal sliding mode method. The comparison
between Theorem 3 and Theorem 1, aswell as the comparison
between Theorem 4 and Theorem 2, are aimed at highlighting
the advantages of fixed-time containment control. Terminal
sliding mode may cause singularity in the system, therefore
Theorem 4 uses nonsingular terminal sliding mode to solve
fixed-time containment control problems.

■

VI. SIMULATIONS
In this section, assume nine agents with 6 followers and
3 leaders. Communication topology graph of position and
velocity be designed as Figure 1. We implement finite-time
and fixed-time containment controllers in four cases.

V̇7 = ST4 (Ls1 ⊗ I ) Ṡ4

= ST4 (Ls1 ⊗ I )
(
η̇x + β5α5diag

(
|ηv|

α5−1
)

η̇v +β6α6diag
(
|ηv|

α6−1
)

η̇v

)
= ST4 (Ls1 ⊗ I ) ηv

+ ST4 (Ls1 ⊗ I )
(
β5α5diag

(
|ηv|

α5−1
)

+ β6α6diag
(
|ηv|

α6−1
)) (

Uf 4 (t) + Ff (t) +

(
L−1
s1 Ls2 ⊗ Im

)
Fl (t)

)
= ST4

(
β5α5diag

(
|ηv|

α5−1
)

+ β6α6diag
(
|ηv|

α6−1
)) (

(Ls1 ⊗ Im)
(
Uf 4 (t) + Ff (t)

)
+ (Ls2 ⊗ Im)Fl (t)

)
+ ST4 (Ls1 ⊗ I ) ηv

= ST4
(
β5α5diag

(
|ηv|

α5−1
)

+ β6α6diag
(
|ηv|

α6−1
)) (

(Ls1 ⊗ Im)Ff (t) + (Ls2 ⊗ Im)Fl (t)
)

+ ST4
(
β5α5diag

(
|ηv|

α5−1
)

+ β6α6diag
(
|ηv|

α6−1
))

(
−diag

(
ev

β5α5diag
(
|ηv|

α5−1)
+ β6α6diag

(
|ηv|

α6−1)
)

− diag (k14 |ηxv| + k24 |ηv|) sign (S4) −

(
S
m
n
4 + S

p
q
4

)
sign (S4)

)
+ ST4 (Ls1 ⊗ Im) ηv (26)
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FIGURE 2. The position and velocity change of eight agents.

FIGURE 3. The position and velocity error of eight agents.

Example 1: We consider second-order system with six
followers and three leaders. Label 7,8,9 are leaders and
1,2,3,4,5,6 are followers. In Theorem 1, the initial value of
followers’ position is x (0) = {4, 0.3, 2, −5, −2, 3} , i =

1, · · · 6. The initial value of velocity of followers is v (0) =

{−1, −1, 5, −0.05, −1.8, 1} , i = 1, · · · 6. And leaders’
position initial value was set x (0) = {−1, 1, 1} , i =

7, 8, 9, and leaders’ velocity initial value was set v (0) =

{2, 2, 3} , i = 7, 8, 9. Controller parameters can be designed
as k11 = 30, k21 = 3, k41 = 3, and sliding mode parameters
can be designed β1 = 7, α1 = 0.5.

We can get Figure 2 to Figure 3. Figure 2 depicts position
and velocity change of six followers and two leaders. Figure 3

FIGURE 4. The position and velocity change of eight agents.

FIGURE 5. The position and velocity error of eight agents.

presents position error and velocity error for leaders.From
the Figure 2 to Figure 3, we can see that the position and
velocity of the followers will enter the convex hull formed
by the position and velocity of the leaders, and the position
and velocity error between the followers and the leaders will
converge to 0. Therefore, our proposed controller is effective.
Example 2:We consider same system in Example 1 by (2)

and (3). We use the same initial values as Example 1.
We design controller parameters as k12 = 20, k22 = 1, and
sliding mode parameters β2 = 0.4, α2 = 1.5 and get Figure 4
to Figure 5. Figure 4 shows position and velocity change of
all agents. Figure 5 presents position error and velocity error.
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FIGURE 6. The position and velocity change of eight agents.

FIGURE 7. The position and velocity error of eight agents.

Figure 4 expresses the followers can enter into the convex hull
spanned by leaders, and from Figure 5 can see that the error
can converge to 0 in finite-time. Therefore, the controller
proposed by Theorem 2 is correct and suitable.
Example 3: We also consider same system in Example

1 by (2) and (3). We use the same initial values as Example
1. We design controller parameters as k13 = 3, k23 =

5, k33 = 3, k43 = 5, and sliding mode parameters β3 =

20, α3 = 0.9, β4 = 0.9, α4 = 1.5. One can gets Figure 6
to Figure 7. Figure 6 depicts position and velocity change
of six followers and two leaders. Figure 6 presents position
error and velocity error for leaders and followers. From the
Figure 6, we can see that the red dashed line represents the

FIGURE 8. The position and velocity change of eight agents.

FIGURE 9. The position and velocity error of eight agents.

leader’s position trajectory, while the magenta dashed line
represents the leader’s velocity trajectory. The position of the
followers can enter the convex hull formed by the red dashed
line, and the velocity of the followers can enter the convex
hull formed by the magenta dashed line. From the Figure 7,
the position and velocity error between the followers and the
leaders will converge to 0. Therefore, the controller proposed
in Theorem 3 is effective.
Example 4:We consider same system in Example 1 by (2)

and (3). We use the same initial values as Example 1.
We design controller parameters as k14 = 2, k24 = 3, k34 =

3, k44 = 4, and sliding mode parameters β5 = 0.1, α5 =

0.9, β6 = 0.9, α6 = 1. We can get Figure 8 to Figure 9.
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Figure 8 shows position and velocity change of all agents.
Figure 9 presents position error and velocity error. From the
Figure 8, we can see that followers can enter the convex
hull formed by the position and velocity of leaders. From the
Figure 9, the position and velocity error between the followers
and the leaders will converge to 0. Therefore, the controller
proposed in Theorem 4 is effective.

VII. CONCLUSION
In the paper, two different controllers were proposed to
solve the finite-time and fixed-time containment control
problems for multi-agent systems with nonlinear dynamic
function under heterogeneous networks. Controllers were
designed according to sliding mode control to deal with
containment problem. By using relevant control theories
such as Lyapunov theory and graph theory, four containment
controls are verified and the effects of containment are
achieved. We also calculate the convergence time of the
converged final containment state. Finally, using simulations,
the validity of both theories is verified.

The prospect of this work is to consider that sliding
mode control can eliminate the effects of disturbances. In a
heterogeneous topology, finite-time and fixed-time contain-
ment control were achieved by designing corresponding con-
trollers. Due to various reasons, the communication topology
of position and velocity between multi-agent systems can
adopt different topologies, making heterogeneous topologies
more meaningful for research. The limitation is that the
controller may experience nesting, increasing computational
complexity. Therefore, we hope that the proposed controller
can reduce computational complexity to achieve the goal.
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