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ABSTRACT Attacks and defences in adversarial machine learning literature have primarily focused on
supervised learning. However, it remains an open question whether existing methods and strategies can
be adapted to unsupervised learning approaches. In this paper we explore the challenges and strategies in
attacking a k-means clustering algorithm and in enhancing its robustness against adversarial manipulations.
We evaluate the vulnerability of clustering algorithms to adversarial attacks on two datasets (MNIST and
Fashion-MNIST), emphasising the associated security risks. Our study investigates the impact of incremental
attack strength on training, introduces the concept of transferability between supervised and unsupervised
models, and highlights the sensitivity of unsupervised models to sample distributions. We additionally
introduce and evaluate an adversarial training method that improves testing performance in adversarial
scenarios, and we highlight the importance of various parameters in the proposed training method, such
as continuous learning, centroid initialisation, and adversarial step-count. Overall, our study emphasises the
vulnerability of unsupervised learning and clustering algorithms to adversarial attacks and provides insights
into potential defence mechanisms.

INDEX TERMS Adversarial examples, adversarial machine learning, adversarial robustness, adversarial
training, k-means clustering, unsupervised learning.

I. INTRODUCTION Amongst the unsupervised techniques, clustering is poten-
In recent years, the field of machine learning has wit- tially the most popular. The primary objective of clustering
nessed remarkable progress, with advancements particularly is to partition data such that similar samples are grouped
in unsupervised learning techniques, providing solutions together, while dissimilar ones are kept in separate clus-
to complex problems where unlabelled data is plentiful. ters [5]. Machine learning literature contains a broad range of

However, this progress is now accompanied by a growing clustering algorithms and their applications, including but not
concern for reliability and adversarial robustness [1], [2]. limited to density-based (e.g., DBSCAN [6]), distribution-
As unsupervised learning becomes integral to various based (e.g., Gaussian mixture model [7]), centroid-based

artificial intelligence applications, its robustness becomes (e.g., k-means [8]) and hierarchical-based (e.g., BIRCH [9])
synonymous with the reliability of the entire system. A failure clustering algorithms.

to address adversarial vulnerabilities may lead to undesirable The k-means clustering algorithm in particular, iteratively
consequences, ranging from biased decision-making to com- assigns each sample to the cluster with the closest center,
promised security [3]. Hence, understanding and addressing relying on similarity measurements to update the cluster
adversarial vulnerabilities in unsupervised learning is crucial, centres. Due to its simplicity and versatility, k-means is
as it directly impacts the real-world applicability of such  often used in the initial stages of data exploration and
models [4]. analysis. However, these traits also makes it highly vulnerable

to adversarial attacks [4]. Namely, k-means relies on the

Euclidean distance between samples and cluster centres

The associate editor coordinating the review of this manuscript and to assign samples to clusters. Hence perturbed samples
approving it for publication was Tiago Cruz . can disrupt the clustering process by pushing samples
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across cluster boundaries, leading to different clustering
results [10].

Biggio et al. [11] were one of the first to consider adversar-
ial attacks to clustering, where they described the obfuscation
and poisoning attack settings, and provided results on single-
linkage hierarchical clustering. They also considered evasion
attacks against surrogate models in a limited-knowledge
scenario [12]. Recently, Crussell and Kegelmeyer [13] pro-
posed a poisoning attack specific to DBSCAN clustering,
and Chhabra et al. [4] proposed a black-box attack for
k-means clustering on a subset of the MNIST dataset, while
Demontis et al. [14] provided a comprehensive evaluation on
transferability and the factors contributing to the somewhat
model-agnostic nature of adversarial examples.

To mitigate the threat of adversarial examples, a large
variety of defence methods have been proposed, including
adversarial training, which involves incorporating adversarial
examples during the training process [15], [16], [17]; input
transformations, which involve altering the input data via
augmentation, smoothing or normalisation to improve model
robustness [18], [19]; de-noising, which removes or reduces
noise from input data with filtering techniques [20]; and
certified defence, which provides bounds and guarantees
for a model’s output [21], [22]. However, these existing
methods are heavily specialised towards supervised training.
Among them, TRadeoff-inspired Adversarial DEfense via
Surrogate-loss minimization (TRADES) [17] and Projected
Gradient Descent Adversarial Training [ 16] are the most pop-
ular adversarial training methods. as they provide consistent
improvements on robustness against various attacks.

In this paper, we take inspiration from these methods
and introduce an adversarial training algorithm designed to
enhance the robustness of a k-means clustering algorithm.
Our method involves manipulating proportions of clean and
perturbed samples in training data and iteratively training
k-means in a continuous manner. An underlying intention of
this method is to establish a much needed baseline for adver-
sarial training for unsupervised algorithms. Our experimental
results, conducted on widely recognised benchmark datasets,
(i.e., MNIST [23] and Fashion-MNIST [24], see Fig. 1 for
examples from each set), demonstrate the effectiveness of
our simple adversarial learning algorithm. It significantly
enhances the robustness of the clustering algorithm while
also maintaining its overall performance. Importantly, since
our method is directed towards manipulating training data
distributions, it can be seamlessly integrated into various
unsupervised learning frameworks to bolster their robustness.

In summary, the key contributions of this paper are
threefold. Firstly, we introduce an unsupervised adversar-
ial training method and demonstrate its effectiveness in
enhancing the robustness of unsupervised models against
adversarial attacks. Secondly, we apply and validate this
training method with k-means clustering. We note the
potential extension of this method to other unsupervised
learning techniques. Finally, we highlight the effectiveness
of transferability by utilising a supervised model in targeting
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FIGURE 1. Collages of 8 x 8 randomly-picked images of handwritten
digits and fashion items, respectively from the MNIST and Fashion-MNIST
training datasets. Both datasets have a total of 70,000 samples with
60,000 images for training and 10,000 for testing. Collages

(a) and (b) contain clean examples, while collages (c) and (d) contain
adversarial examples of (a) and (b). For both (c) and (d), the adversarial
examples are generated with I-FGSM.

an unsupervised model, with both trained on different
datasets.

Il. BACKGROUND

In this section we introduce the machine learning concepts of
adversarial examples and adversarial training. With the latter
representing an effective defence strategy against the former.

A. ADVERSARIAL EXAMPLES

Given a standard clustering task, let x be an image and g be a
clustering model. An adversarial example to g can be crafted
through solving the following optimisation problem:

main d(x, x 4 8) such that g(x) # g(x +§), €))

where d measures similarity. This optimisation problem
searches for a minimal perturbation § that can change the
class assignment for x or expected output of the model [25].

Depending on g’s application, the adversarial example
x’ = x + & can have devastating effects [3], [26], [27].
Moreover, in some instances, x’ can be somewhat model-
agnostic, such that when generated for model g, it can be
effective in fooling another model f, which is either different
in architecture, training dataset or both [14]. We exploit this
exact phenomenon in generating adversarial examples for
k-means clustering.

B. ADVERSARIAL TRAINING

Mitigating the effects of adversarial examples commonly
involves adversarial training. This defence strategy utilises
adversarial examples during training to improve a model’s
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performance on similar examples during deployment.
Existing adversarial training methods primarily focus on
supervised learning approaches. This defence strategy can be
formulated as a minimax optimisation problem [16]:

inE L 5,y,0)1, 2
min K y) D[{snean (x+34,y,60)] 2

where A is the perturbation set, L(x, y, 6) is the loss function
of a neural network with parameters 6 and (x,y) is the
input-label pair taken from the distribution D. This minimax
problem is often solved by first crafting adversarial examples
to solve the loss maximisation problem maxsea L(x+36, y, 0)
and then optimising the model parameters 6 using the
generated adversarial examples.

lll. METHODOLOGY

In this section, we detail our use of transferability. We also
detail the specifics of our proposed adversarial training
algorithm and its application to k-means clustering.

A. EXPLOITING TRANSFERABILITY

Generally, Eq. (2) cannot be directly applied to unsupervised
algorithms due to its dependence on label y. However, this
equation can be approximated by either replacing y with
g(x) or f(x) such that f(x) ~ g(x) and 6 = 0, with f
representing the surrogate or substitute model, g the target
model (e.g., k-means) and g(x) a cluster identifier. The input
pair (x, y) then becomes (x, g(x)) in the absence of a substitute
model, or conversely, (x, f(x)).

Having f (x) & g(x) can be achieved by constructing f such
that the outputs of f are similar in dimension to the outputs
of g. Thereafter f can be trained on the outputs of g for a
given input x. Typically in traditional adversarial training, f is
a neural network designed to approximate the behaviour of
the target model g.

In cases where labels are readily available for the datasets,
it is hypothetically possible to use a pre-trained supervised
model as a surrogate model f to approximate the loss function
L(x + 4, y, 0) for an unsupervised target model g. In such a
situation, the concept of transferability may be leveraged to
generate adversarial examples x 4 § for model f and utilised
to enhance the robustness of model g. This situation exploits
the fact that adversarial examples crafted for one model can
be effective against other models [14], and that most machine
learning models rely on inductive bias [28], [29]. In this
paper, we try to realise and demonstrate this hypothesis.

B. IMPROVING ROBUSTNESS
For the purposes of realising and demonstrating the hypoth-
esis above, we use ground-truth label y in solving Eq. (2).
Despite the presence of y, target model g is trained in
an unsupervised manner and the ground-truth label is not
required for the proposed adversarial training method to
function.

To ensure that the target model g, (i.e., k-means), maintains
competitive accuracies on both clean and adversarial data
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with the proposed training method, we manipulate the
proportion n of clean and adversarial examples in the
training dataset D’. Furthermore, we increment training
attack strength € values at each step s with € = s/, where
B is the maximum number of steps or alternatively referred
to as the adversarial step-count, and train k-means on both
clean and adversarial examples in D’. In each training step s
we anchor clusters by initialising each step with the centroids
from the previous step centroidss_;. After training, the
final centroids centroidsg can be utilised appropriately
in the required application. For more details, see Algorithm 1
below.

Algorithm 1 k-Means Adversarial Training
Input: training dataset D, number of clusters k, proportion
size n, surrogate model f'(-), adversarial step-count 8
Output: k-means.CENTROIDS
initialise: centroids = k-means™H(D, k)
initialise: A = random.uniform(D, |D| x n)
initialise: B=D — A
k-means.TRAIN(D)
for eachsin[l,..., 8] do
¢ =s/p
A =
FGSM
D'=AUB
9: k-means.TRAIN(D')
10: end for

NN RN

attack(A,f,e€) > apply I-

*®

IV. METHODS AND RESOURCES

In this section, we detail the datasets and attacks utilised in
our experiments. We also provide the necessary implementa-
tion details for replication.

A. DATASETS

To evaluate our method, we utilise the MNIST [23] and
Fashion-MNIST [24] datasets. MNIST and Fashion-MNIST
each contain a total of 70,000 samples, with 60,000
training and 10,000 testing. In both sets, each sample is a
28 x 28 monochrome 0 to 255 normalised image. MNIST
contains handwritten digits, while Fashion-MNIST consists
of various fashion products, (see Fig. 1). These datasets
are primarily chosen due to their use in benchmarking, but
also due to their simplicity, accessibility, popularity and
resource-efficiency.

B. ADVERSARIAL ATTACKS

For attacks, we utilise the iterative Fast Gradient Sign
Method (I-FGSM). This is one of many £, attacks that can be
substituted into our training method. I-FGSM is an iterative
version of the Fast Gradient Sign Method (FGSM), which
operates by adjusting the input data in an attempt to maximise
loss at each adversarial step. For more details on the attack
algorithm, we refer the interested reader to [16].
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C. IMPLEMENTATION DETAILS

For software, we use Python 3.9 and we implement
our adversarial attacks with the Adversarial-Robustness-
Toolbox [30]. The attack parameters for I-FGSM are set
to default, except for the epsilon step-size «, which is set
to €/4. We implement k-means with the scikit-learn Python
library [31]. To determine the number of clusters k for
k-means, we use the elbow method heuristic [32]. In all our
experiments we use k = 856 and translate the clusters into
classes with majority voting to calculate clustering accuracy
relative to the ground-truth labels. For the surrogate model f,
we use ResNet-18 [33] trained on the MNIST dataset. For
adversarial training parameters, we use proportion size n =
1/2 and adversarial training step-count 8 = 40, unless stated
otherwise. To evaluate the performance of the clustering
algorithm under attack, we set ¢ = 1 for attacks on
testing data and report clustering accuracy. We repeat the
experiments 30 times and report the average results. For
hardware, we conduct our experiments on an Amazon Web
Services cloud computer containing an NVIDIA Tesla T4
16GB 585MHz GPU and an Intel Xeon Platinum 8259CL 16
Cores 2.50GHz CPU.

V. RESULTS AND DISCUSSION

Here we evaluate the performance of k-means clustering
under adversarial attacks and the effectiveness of our
adversarial training algorithm. As demonstrated in Fig. 2,
several trends and patterns emerge. Each shedding light on
the impact of epsilon values on accuracy, the behaviour
of accuracy with or without continuous learning, and the
relationship between data distribution, robustness and clean
performance.

One notable observation from Fig. 2 is the effectiveness of
transferability. Transferability, in machine learning, refers to
the ability of adversarial attacks generated for one model or
dataset to successfully impact the performance of a different
model or dataset. This concept has been studied extensively
in previous work for evasion attacks, e.g., [34], [35], [36],
[371, [38], and [39]. Notably, Biggio et al. [12] were the
first to consider evasion attacks against surrogate models in
a limited-knowledge scenario, while Goodfellow et al. [15],
Tramer et al. [40], and Moosavi-Dezfooli et al. [41] were
some of the first to make the observation that different
models might learn intersecting decision boundaries in both
benign and adversarial dimensions. In practical scenarios,
adversarial attacks often exploit surrogate models due to
limited access to the target model’s architecture or loss
function [37]. To our knowledge however, the work presented
here is the first example of a supervised model being utilised
as a surrogate model in targeting an unsupervised model and
a surprising example of transferability working across two
different datasets.

Namely, in all our experiments, the surrogate model f
was a ResNet-18 model trained on the MNIST handwritten
digits dataset. The model did not receive any further
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FIGURE 2. Clean (CInAcc) and adversarial (AdvAcc) clustering accuracies,
on MNIST and Fashion-MNIST. For all the provided plots we have I-FGSM
as the attack and adversarial training algorithm, the attack strength (¢)
used in training along the x-axis and the clustering accuracies (%) along
the y-axis. In each plot, the solid lines represent the average results from
30 experiments, while shaded areas illustrate the error bars for a
confidence level of 99%. In the first column we have results for MNIST
and Fashion-MNIST in the second. In (a) and (b) we have the full
implementation of the proposed adversarial training algorithm. In (c) to
(f) we have parameter sensitivity results. In (c) and (d) we have k-means
trained in a similar manner as to that in (a) and (b), however without the
initialisation of centroids from previous steps, i.e., no continuous
learning. In (e) and (f) we have fully perturbed training sets as opposed to
half of the training sets, i.e., n = 1.

training or tuning. The generated attacks on Fashion-MNIST
for model g (k-means) were generated with f, without
any further training on Fashion-MNIST. That is, trans-
ferability was exploited explicitly in crafting adversarial
examples using a supervised ResNet-18 model, which
was trained on the MNIST dataset, to attack an unsuper-
vised k-means clustering model on the Fashion-MNIST
dataset. Considering this, we observe some very surprising
results in Fig. 2(a-f). We observe that each row illustrates
strikingly similar behaviour, where plots in the first col-
umn illustrate performance on MNIST and the second
on Fashion-MNIST. We note that any observable differ-
ences in performance between MNIST and Fashion-MNIST
(e.g., Fig. 2(c) and 2(d)) may be a result of MNIST being a
simpler dataset than Fashion-MNIST. That is, any difference
in performance may not be strictly due to the quality or
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FIGURE 3. Parameter sensitivity results on various adversarial to clean proportions, without incremental training, i.e., different
values for y and when adversarial step-count g = 1. Along the x-axis we have proportion size 5, used in controlling the ration
between clean and adversarial data. Along the y-axis we have the clustering accuracies (%). Each shaded bar illustrates average
testing accuracies on MNIST and Fashion-MNIST after 30 experiments. Error bars are for a confidence level of 99%. I-FGSM is
the attacking and defending algorithm. For all proportions, both training and testing attack strengths use ¢ = 1.

efficacy of the adversarial examples generated with surrogate
model f.

In Fig. 2(a) and 2(b) we also observe how epsilon
values affect accuracy metrics. As € increases, we notice a
consistent decline in accuracy on clean test data, i.e., from
approximately 92% to 90% for MNIST (Fig. 2(a)), and 79%
to 78% for Fashion-MNIST (Fig. 2(b)). Conversely, accuracy
on adversarial test data shows a gradual increase with each
increase in epsilon, i.e., from 43% to 80% for MNIST,
and 38% to 74% for Fashion-MNIST. This behaviour
demonstrates a well-established trade-off between robustness
against adversarial attacks and performance on clean data.
As models are made more robust, their performance on clean
data tends to degrade. However in our case, we only witness
slight degradation.

Switching focus to our parameter sensitivity studies, in
Fig. 2(c-f), we observe the effects of two key param-
eters of our adversarial training algorithm. Comparing
Fig. 2(a) and 2(c) we observe the importance of initialising
the centroids of each step centroids,; with centroids
from the previous step centroidss_i, thereby anchoring
learnt clusters and establishing continuous learning. The
same observation can be made for Fashion-MNIST when
comparing Fig. 2(b) and 2(d), where the continuous learning
strategy clearly stabilises both clean and adversarial testing
accuracy. In Fig. 2(e) and 2(f) we observe the importance of
having an even proportion of clean and adversarial examples.
In Fig. 2(e) and 2(f) we have n = 1 as opposed to n = 1/2 as
in Fig. 2(a) and 2(b).

The importance of controlling clean and adversarial
proportions with n is further highlighted in Fig. 3. Here
we observe that a proportion of n = 1/2 orn = 2/3
adversarial examples results in competitive performance for
both datasets, with the former having slightly better clean test
accuracy (i.e., 89.9% vs. 89.1% for MNIST and 77.6% vs.
77.2% for Fashion-MNIST) and the latter having slightly
better adversarial testing accuracy (i.e., 73.3% vs. 74.3%
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for MNIST and 67.4% vs. 69.1% for Fashion-MNIST).
A proportion of n = 5/6 adversarial examples results in
the best adversarial testing accuracy (78.4% for MNIST
and 70.9% for Fashion-MNIST), however at the expense of
clean testing accuracy (i.e., 88.7% for MNIST and 76.0% for
Fashion-MNIST). For our purposes, the choice between n =
1/2,n = 2/3 and n = 5/6 considered both time efficiency
and performance. n = 1/2 resulted in the least amount of
time and training data required for acceptable performance,
especially when statistically significant replications of each
experiment had to be conducted.

Continuing with further observations from Fig. 3, we see
that when n = 1, we have the worst clean (17.5%)
and adversarial testing (62.4%) performance for Fashion-
MNIST and acceptable performance for MNIST (i.e., 41.5%
and 73.9%, respectively). For both datasets, we observe
the greatest amount of variance when n = 1. We also
coincidentally observe the importance of the step-count
parameter B, i.e., incremental training. Namely whenn = 1
and incremental training is absent, the adversarial testing
accuracy is relatively acceptable for MNIST (i.e., 73.9%) and
considerably low for Fashion-MNIST (62.4%). Conversely,
when the entire training set is perturbed with an adversarial
step-count of B = 40, i.e., when incremental training is
available, the k-means algorithm attains an adversarial testing
accuracy of 84% on MNIST and 75% on Fashion-MNIST,
as shown in Fig. 2(e) and 2(f) respectively.

These results generally highlight the importance of con-
tinuous learning via centroid initialisation and emphasise
the sensitivity of unsupervised models to sample distri-
butions. For sensitivity in particular, unsupervised algo-
rithms, unlike their supervised counterparts, operate without
reliance on labelled data or environmental signals [42], [43].
Hence sample distributions determine equitable or non-
equitable exposure, either enhancing or degrading an
algorithm’s performance in recognising and characterising
underlying patterns [44].
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Before concluding, we emphasise that the work presented
here is a special case of our proposed adversarial training
method. In a strict unsupervised scenario, the input pair
(x,y) in Eq. 2 must be approximated. In the case where a
label-independent attack exists (e.g., evolutionary attack [45]
with modification) and target model g has an accessible
loss function L, then the input pair can be approximated
with (x, g(x)), where g(x) is a cluster identifier. Otherwise
in the case where g’s loss function is not accessible or
expressible, then a surrogate model f must be constructed
to approximate g, such that f(x) ~ g(x), and the input pair
(x,y) can be replaced with (x, f (x)) and model parameters 6
with 6. Additionally, as presented in this work, if ground-
truth label y is available but an appropriate attack or loss
function L for g is not readily available, then the model
parameters 6 are replaced with 6. If y and g(x) have different
dimensions, then a post-processing step such as majority
voting or the Hungarian method can be utilised in resolving
this assignment problem [46].

Due to the effectiveness of transferability, we consider it
immaterial whether the substitute model f is a pre-trained
model or not. Our focus on pre-trained models is a result
of their ubiquity and their permissibility as vectors in
generating and transferring adversarial attacks. The choice of
datasets follows a similar vein, i.e., the MNIST and Fashion-
MNIST datasets are accessible, popular and are often used
for benchmarking. The two datasets also contain features
that are representative of broader image datasets, enabling
results generated from these datasets to be potentially
applicable to practical scenarios involving image analysis
and clustering (e.g., image segmentation and anomaly
detection). Additionally, since MNIST and Fashion-MNIST
have relatively limited feature spaces and homogeneous
backgrounds compared to more complex image datasets, they
have allowed us to study a scenario in which adversaries
have limited ability in camouflaging manipulations. But more
importantly, they have allowed us to establish one of the first
baselines for unsupervised adversarial training.

Finally, the findings discussed here extend beyond image
analysis and clustering, and have significant implications
for the security and reliability of unsupervised learning and
clustering applications in general. For instance, applications
such as customer segmentation in targeted marketing for
e-commerce platforms or disease sub-typing based on patient
data in healthcare applications may face accuracy and
reliability challenges amid adversarial modifications. Addi-
tional examples also include manufacturing and autonomous
vehicles, where adversarial examples could lead to safety
and quality control concerns if adversarial manipulations
mislead the clustering process. It is due to these examples,
and others, that we stress the importance of developing robust
algorithms.

VI. CONCLUSION
Our evaluation of the performance of k-means clustering
under adversarial attacks and the effectiveness of our
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adversarial training algorithm sheds light on several impor-
tant factors. We have observed the impact of adversarial
step-count 8 on accuracy, the trade-off between robustness
against adversarial attacks and performance on clean data,
and the significance of key parameters in our adversarial
training algorithm.

One notable finding is the effectiveness of transferability,
which highlights the potential of using supervised models
as surrogates for target unsupervised models. This finding
emphasises the importance of considering diverse scenarios
in model training and evaluation, since real-world appli-
cations often involve models facing data distributions not
encountered during training.

This paper also highlights the sensitivity of unsupervised
models to sample distributions, emphasising the need for
careful control of clean and adversarial example proportions.
Our results underscore the importance of continuous learning
and proper initialisation of centroids, which can significantly
enhance both clean and adversarial testing accuracy. For
practical implications, we consider that the insights generated
in this study may find utility in deployed machine learning
models, especially those utilising unsupervised learning or
clustering algorithms.

Overall, our study emphasises the vulnerability of unsu-
pervised learning and clustering algorithms to adversarial
attacks and provides insights into potential defence mech-
anisms. Future research could explore dynamic defence
mechanisms that adapt to the specific characteristics of the
surrogate model and the target model. Future studies may
also investigate the incorporation of domain knowledge to
enhance model robustness, i.e., understanding the inher-
ent characteristics of different datasets could inform the
development of more resilient models. Finally, extending
our method to diverse real-world applications, such as
medical imaging or cyber-security, could provide a more
comprehensive understanding of the practical implications
and generalisability of our findings. We hope these avenues,
and others, will contribute to the ongoing efforts to fortify
machine learning models.
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