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ABSTRACT Aiming at the objective uncertainty, subjective uncertainty, and extreme events may be in a
dynamic system simultaneously. This paper focuses on the differential game problem of a linear quadratic
jump uncertain stochastic system. The system is described by both a jump uncertain differential equation
and a stochastic differential equation. The principle of optimality and equation of optimality are established.
Then, a differential game model based on linear quadratic jump uncertain stochastic system is constructed.
Furthermore, Nash equilibrium are discussed by using the obtained equation. Finally, its application in the
dynamic investment decision of enterprises is given, and numerical simulations are performed. This approach
offers a new method for quantitative analysis in future studies.

INDEX TERMS Linear quadratic, jump uncertainty, stochastic, Nash equilibrium, enterprise investment.

I. INTRODUCTION
In the real world, non-deterministic information is
everywhere. The emergence of information or events
is subject to various accidental and unpredictable fac-
tors. Non-deterministic information can be categorized
as objective uncertainty or subjective uncertainty. The
objective indeterminacy is viewed as a random variable
or a stochastic process whose probability distribution can
be estimated by amounts of historical data. In practice,
there is non-deterministic information that stems from
human subjective consciousness or is expressed in human
language. The sample data of these indeterminate factors
maybe not enough to estimate. Estimating the distributions
of these uncertain factors may be challenging due to
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insufficient sample data. To tackle this kind of subjective
non-deterministic information, Liu proposed the uncertainty
theory [1], [2].

In many cases, objective indeterminacy and subjective
indeterminacy together. Therefore, only considering ran-
domness is not enough, as uncertainty also needs to be
considered. To describe this phenomenon, Liu first proposed
the concept of uncertain random variables [3]. Managing
such a complex system cannot be easily achieved through
probability theory or uncertainty theory alone. Consequently,
Liu [3], [4] put forward chance theory as a modeling tool
for uncertain stochastic systems. Chance theory is a useful
tool to deal with the analysis of indeterminacy including both
uncertainty and randomness. However, objective uncertainty,
subjective uncertainty, and extreme events may occur simul-
taneously. There are limited studies focusing on uncertain
stochastic optimal control problems and jump uncertain
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stochastic optimal control problems. For instance, Chen
and Jin [5] researched the optimal control of a multistage
uncertain random system. Chen et al. [6] also studied
the optimal control problem of jump uncertain stochastic
dynamic systems. Chen and Zhu [7] developed an optimal
control model for multistage uncertain random dynamic
systems with multiple time delays. Subsequently, Chen et
al. [8] investigated uncertain random discrete-time noncausal
systems and optimal control problems.

The linear quadratic problem is a commonly used model in
scientific research and industrial production. Linear quadratic
are widely adopted as a general framework for easy numerical
computation in analysis [10]. In 1960, Kalman [11] first
studied the linear quadratic optimal control problem for
deterministic systems. Then, in 1968, Wonham [12] extended
the linear quadratic optimal control problem to stochastic
systems. Deng and Zhu [9] conducted detailed research
on linear quadratic uncertain optimal control with jumps.
Zhang [13] carried out in-depth analysis on linear quadratic
uncertain differential games with jumps. Chen et al. [14]
proposed an linear quadratic model based on multistage
uncertain random systems. Later, Chen and Zhu investigated
linear quadratic optimal control problems for two types
of uncertain random systems that consider the coefficient
of the perturbed term as either a constant vector or a
vector-valued function of state vector and control vector [15].
Chen and Zhu [16] also studied two types of linear quadratic
optimal control models for multistage uncertain random
systems.

Financial activities are the results of the participation of
two or more parties in transactions, and they are a game
behavior that involves mutual influence, interdependence,
and mutual constraint. Differential game specifically refers
to the continuous evolution process of multiple participants
engaging in ongoing games, which is reflected as a change
trajectory described by a differential equation. Under such
constraints on state evolution, each participant strives to
optimize their own independent and conflicting goals and
ultimately obtain strategies that evolve over time for all
participants to achieve Nash equilibrium. Therefore, the
differential game model is an appropriate tool for studying
decision-making problems in enterprises. By using it to
construct enterprise differential game models, dynamic
competition and strategic interactions among enterprises can
be effectively characterized.

Differential games originated with Rufus Isaacs in the
early 1940s as a pursuit and evasion problem for missile
guidance [17]. Its adequate explanation of dynamics in
conflict [18] leads to a proliferation of studies. The
nonzero-sum situations explored by Starr and Ho [19]
extend the utility to non-antagonistic conflicts where multi
players minimize their own quadratic performance criteria
differently. These more suitable features cover diverse
application scenarios [20], [21], [22].

To sum up, Chen et al. [6] investigated the optimal control
problem of jump uncertain stochastic dynamic systems and
its application in advertising. However, there is still a lack
of research results and applications regarding the theory of
linear quadratic jump uncertain stochastic differential games.
A jump uncertain stochastic differential game problem is
established by further studying a jump uncertain stochastic
optimal control problem. This differs from other problems
such as the stochastic differential game problem [23],
linear quadratic uncertain differential game [24], jump
linear quadratic uncertain differential game problem [8],
discrete-time uncertain differential game problem [25],
uncertain stochastic optimal control problem [6], two-
person games for uncertain random singular dynamic
systems [26], and discrete-time uncertain stochastic optimal
control problem [17].

The innovations of this paper are as follows. Firstly,
it presents a continuous-time jump uncertain stochastic
differential game problem, which is distinct from the works in
Chen et al. [6]. Secondly, it extends the equilibrium equations
obtained in [6] and [25]. Lastly, it discusses an investment
decision problem for enterprises using the equation acquired
based on [13].

Consequently, there are two main obstacles. The first chal-
lenge is to derive the Nash equilibrium in jump uncertainty
stochastic system, which are common in the real world.
Secondly, due to mathematical complexities, we utilized
Simulink to solve the coupled Ricardi differential equation
and provide a numerical simulation of the equilibrium
investment strategy.

The rest of this paper is organized as follows. In Section II,
the uncertain stochastic dynamic system with jump is
introduced, and then principle of optimality and equation of
optimality are get. The equilibrium strategy and equilibrium
value function are discussed of jump uncertain stochastic
differential game in Section III. Finally, we apply the afore-
mentioned conclusions to address an investment decision
problem, solve the analytical expression of the equilibrium
investment strategy and value function of the enterprise, and
give a numerical simulation in Sections IV.

Notation: R reprsents the 1-dimensional real Euclidean
space, ECh denotes the expected value of the uncertain
random variable in the sense of chance measure.

II. JUMP UNCERTAINTY STOCHASTIC DIFFERENTIAL
GAME MODEL
In real situations, companies invest in both traditional
and emerging products. For the traditional products whose
probability distributions of price can be estimated by a large
amount of historical data, but for the emerging products,
we need invited experts to make an assessment and gived
belief degree. Such system behaves both randomly and
uncertainly, and cannot explain clearly by stochastic system
or uncertain system. They can modeled by random variables
while some others by uncertain variables.
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The dynamic phenomena with objective randomness is
described by as follows{

dx (t) = f (t, x, u, v) dt + g1 (t, x, u, v) dW (t) ,

x (0) = x0,
(1)

where x ∈ R is the state vector of the system at time t with
the initial condition x0, u ∈ U and v ∈ V are the control input
of the system at time t , f : [0,T ] × R × R × R → R and
g1 : [0,T ]×R×R×R → R are valued function. In addition,
W (t) is a standard Wiener processes.
Uncertain differential equations are used to describe

dynamic phenomena with subjective uncertainty. In the case
of sudden changes, a jump uncertain differential equation can
be written as follows

dy (t) = f̄ (t, y, u, v) dt + g2 (t, y, u, v) dC (t)

+ g3 (t, y, u, v) dV (t) , y (0) = y0, (2)

where y ∈ R is the state vector of the system at time t with
the initial value y0, f̄ : [0,T ]×R×R×R → R, g2 : [0,T ]×
R×R×R → R and g3 : [0,T ]×R×R×R → R are valued
function. In addition, C (t) is a canonical Liu processes, V (t)
is a V jump uncertainty process with a parameter of r1 and r2,
W (t), C (t) and V (t) are independent. For further literature
on jump uncertainty, we can refer to [9] and [21]. The chance
theory is the more suitable approach for uncertain stochastic
systems. Next, we assume that the objective function is

J1 (0, x0, y0) ≡

min
u
ECh

{∫ T

0
g

(
t, x, y, u, v∗

)
dt+N1T

(
x1T

)2
+N̄1T

(
y1T

)2}
,

J2 (0, x0, y0)≡

min
v
ECh

{∫ T

0
ḡ

(
t, x, y, u∗, v

)
dt+N2T

(
x2T

)2
+N̄2T

(
y2T

)2}
,

(3)

where g : [0,T ] × R × R × R × R → R and ḡ : [0,T ] ×

R × R × R × R → R are the objective function, NiT
(
x iT

)2
and N̄iT

(
yiT

)2
, i = 1, 2 are the terminal-reward function.

Next, we present the principle of equilibrium equations for
the jump uncertain stochastic differential game model.
Theorem 2.1: (Equilibrium Equations) Let J (t, x, y) be a

twice continuously differentiable function on [0,T ] × R ×

R. Then, the Nash equilibrium solution of the uncertain
stochastic differential game problem with jump for two
players satisfy the following equations

−J1t (t, x, y) = max
u∈U

[
g

(
t, x, y, u, v∗

)
+ f

(
t, x, y, u, v∗

)
J1x

+ f̄
(
t, x, y, u, v∗

)
J1y+

1
2
g21

(
t, x, y, u, v∗

)
J1xx

+
3 − r1 − r2

4
g3

(
t, x, u, v∗

)
J1x

]
,

−J2t (t, x, y) = max
v∈V

[
ḡ

(
t, x, y, u∗, v

)
+ f

(
t, x, y, u∗, v

)
J2x

+ f̄
(
t, x, y, u, v∗

)
J2y+

1
2
g21

(
t, x, y, u∗, v

)
J2xx

+
3 − r1 − r2

4
g3

(
t, x, y, u∗, v

)
J2x

]
. (4)

where Jit (t, x, y) is the partial derivative of function Ji(t, x, y)
in t , Jix(t, x, y) and Jiy(t, x, y) are the partial derivative of
function Ji(t, x, y) in x and y, respectively, Jixx(t, x, y), i =

1, 2 are the quadratic differentiable of function Ji(t, x, y) in x.
Proof: Similar to Theorem 3.2 in [6], the proof is omitted
here.

III. LINEAR QUADRATIC JUMP UNCERTAINTY
STOCHASTIC NON-ZERO-SUM DIFFERENTIAL GAME
The linear quadratic differential game is one of the most
significant and fundamental classes of differential game
theory. In this part, the linear quadratic differential game for
jump uncertain stochastic dynamic systems are discussed.
Then, its application in corporate investment decisions is
given. In practice, it is an interesting and important model.
Considering the following linear quadratic jump uncertain
stochastic system

dx (t) = [β1 (t) x (t) + β2 (t) u (t) + β3 (t) v (t)] dt

+ γ1 (t) x (t) dW (t) , x (0) = x0, (5)

dy (t) =
[
β̄1 (t) y (t) + β̄2 (t) u (t) + β̄3 (t) v (t)

]
dt

+ γ2 (t) y (t) dC (t) + δ (t) y (t) dV (t) , y (0) = y0,

(6)

where β1 (t), β2 (t) ,β3 (t), β̄1 (t), β̄2 (t) , β̄3 (t), δ (t) and
γi (t) , i = 1, 2 are continuous functions at time t .

We define the performance indicators of two players as

J1 (0, x0, y0) ≡ inf
u
ECh

{∫ T

0

[
α1 (t) x2(t) + α2 (t) u2(t)

+α3 (t) x(t)u(t) + α4 (t) x(t) + α5 (t) u(t)+α6 (t)

+ξ1 (t) y2(t) + ξ2 (t) y(t)u(t) + ξ3 (t) y(t)
]
dt

+F1T
(
x1T

)2
+ F̄1T

(
y1T

)2}
,

J2 (0, x0, y0) ≡ inf
v
ECh

{∫ T

0

[
ᾱ1 (t) x2(t) + ᾱ2 (t) v2(t)

+ᾱ3 (t) x(t)v(t) + ᾱ4 (t) x(t) + ᾱ5 (t) v(t) + ᾱ6 (t)
+ξ̄1 (t) y2(t) + ξ̄2 (t) y(t)v(t) +ξ̄3 (t) y

]
dt

+F2T
(
x2T

)2
+ F̄2T

(
y2T

)2}
,

(7)

where the initial value x0 > 0, y0 > 0, ξ1 (t), ξ2 (t), ξ3 (t),
ξ̄1 (t), ξ̄2 (t), ξ̄3 (t), αi (t) and ᾱi (t) (i = 1, 2, · · ·, 6) are all
continuous function. F1T , F̄1T , F2T and F̄2T are positive
semidefinite matrices. For simplicity, we omit t .

Define Nash equilibrium of linear quadratic jump uncer-
tain stochastic differential game problems [5], [6], [7] as
follows
Definition 1: ([16], [27]) If the admissible control pair

(u∗, v∗) satisfies{
J1

(
u∗, v∗

)
≤ J1

(
u, v∗

)
, ∀u ∈ U ,

J2
(
u∗, v∗

)
≤ J2

(
u∗, v

)
, ∀v ∈ V ,

(8)
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and the state x∗ (t) and y∗ (t) are defined as{
dx∗ (t) =

(
β1x∗

+ β2u∗
+ β3v∗

)
dt + γ1x∗dW (t),

x (0) = x0,

(9)
dy∗ (t) =

(
β̄1y∗ + β̄2u∗

+ β̄3v∗
)
dt + γ2y∗dC(t)

+δy∗dV (t),
y (0) = y0.

(10)

The strategy (u∗, v∗) satisfying [8], [9], [10] are called
Nash equilibrium for linear quadratic jump uncertainty
stochastic differential game problem, the state x∗ (t) and
y∗ (t) are the optimal trajectory, J1 (u∗, v∗) and J2 (u∗, v∗)
are respectively the optimal performance index of the two
players.

Next, this paper presents the Nash equilibrium solution
for the non-zero-sum differential game problem of uncertain
stochastic systems with jumps for two players.
Theorem 3.1: Suppose that the performance indices

J1 (u, v) and J2 (u, v) is a twice continuously differentiable
function, αi(t), ᾱi(t)(i = 1, 2, · · · , 6), βj(t),β̄j(t), ξj (t),
ξ̄j (t)(j=1,2,3), δ (t), a−1

2 (t) and ᾱ−1
2 (t) are all continuous

and bounded functions. Then, the Nash equilibrium strategy
(u∗, v∗) of linear quadratic uncertain stochastic differential
games problem with jumps for two players are

u∗
= −

A1x + B1y+ C1

2α2
,

v∗ = −
A2x + B2y+ C2

2ᾱ2
,

(11)

where

A1 = α3 + β2P1 + β̄2N1,A2 = ᾱ3 + β3P2 + β̄3N2,

B1 = β̄2R1 + β2N1 + ξ3,B2 = ξ̄3 + β̄3R2 + β3N2,

C1 = α5 + β2Q1 + β̄2S1,C2 = ᾱ5 + β3Q2 + β̄3S2,

and Pi(t), Qi(t), Ri(t), Si(t) and Ni(t), i = 1, 2 follow the
coupled Riccati differential equations

1
2
dP1
dt

+

(
β1 +

1
2
γ 2
2 −

β3A2
2ᾱ2

)
P1 −

A21
4α2

−
β̄3

2ᾱ2
N1A2

+ α1 = 0,P1(T ) = F1T ,

1
2
dR1
dt

−
1

4α2
B21 −

(
β̄3R1 + β3N1

) B2
2ᾱ2

+ β̄1R1 + ξ1

+ rδR1 = 0,R1(T ) = F̄1T ,

dN1

dt
−
A1B1
2α2

−
(
β̄3N1 + β3P1

) B2
2ᾱ2

−
(
β̄3R1 + β3N1

) A2
2ᾱ2

+
(
β̄1 + β1 + rδ

)
N1 = 0,N1(T ) = 0,

dQ1

dt
−
A1C1

2α2
−

(
β3Q1 + β̄3S1

) A2
2ᾱ2

−
(
β̄3N1 + β3P1

) C2

2ᾱ2

+ β1Q1 + α4 = 0,Q1(T ) = 0,
dS1
dt

−
B1C1

2α2
−

(
β̄3S1 + β3Q1

) B2
2ᾱ2

−
(
β̄3R1 + β3N1

) C2

2ᾱ2

+ β̄1S1 + rδS1 + ξ4 = 0, S1(T ) = 0,

dM1

dt
−

C2
1

4α2
−

(
β̄3S1 + β3Q1

) C2

2ᾱ2
+ α6 = 0,M1(T ) = 0,

(12)
1
2
dP2
dt

+

(
β1 −

A1
2α2

β2 +
1
2
γ 2
2

)
P2

−
A22
4ᾱ2

−
A1
2α2

N2β̄2 + ᾱ1 = 0,P2(T ) = F2T ,

Q̇2−
1

2ᾱ2
A2C2−

β2

2α2
(A1Q2 + C1P2) −

β̄2

2α2
(A1S2 + C1N2)

+ β1Q2 + ᾱ4 = 0,Q2 (T ) = 0,

1
2
dR2
dt

−
B22
4ᾱ2

−
B1
2α2

(
β2N2 + β̄2R2

)
+ ξ̄1 + β̄1R2 + rδR2

= 0,R2(T ) = F̄2T ,

Ṅ2 −
A1B1
2ᾱ2

+ β1N2 + β̄1N2 −
β2

2α2
(A1N2 + B1P2)

−
β̄2

2α2
(A1R2 + B1N2) + rδN2

= 0,N2 (T ) = 0,
dS2
dt

−
B2C2

2ᾱ2
−

B1
2α2

(
β2Q2 + β̄2S2

)
−

C1

2α2

(
β2N2 + β̄2R2

)
+ ξ̄4 + β̄1S2 + rδS2 = 0, S2 (T ) = 0,

dM2

dt
−

C2
2

4ᾱ2
+ ᾱ6 −

C1

2α2

(
Q2β2 + S2β̄2

)
= 0,M2 (T ) = 0,

(13)

here r =
(3−r1−r2)

4 .
The corresponding optimal value for the system are

Ji
(
u∗, v∗

)
=

1
2
Pi(0)x20 + Qi(0)x0 +

1
2
Ri(0)y20 + N1(0)x0y0

+ Si(0)y0 +Mi(0), i = 1, 2. (14)

Proof: According to the optimality equation, we have

−J1t = inf
u

{α1x2 + α2u2 + α3xu+ α4x + α5u+ α6

+ ξ1y2 + ξ2yu+ ξ3y+
(
β̄1y+ β̄2u+ β̄3v∗

)
J1y

+
[
β1x + β2u+ β3v∗

]
J1x +

1
2
γ 2
1 x

2J1xx + rδyJ1y}

= inf
u
L1(u, v∗),

−J2t = inf
v

{ᾱ1x2 + ᾱ2v2 + ᾱ3xv+ ᾱ4x + ᾱ5v+ ᾱ6

+ ξ̄1y2 + ξ̄2yv+ ξ̄3y+
(
β̄1y+ β̄2u∗

+ β̄3v
)
J2y

+
[
β1x + β2u∗

+ β3v
]
J2x +

1
2
γ 2
1 x

2J2xx + rδyJ2y}

= inf
v
L2(u∗, v). (15)

Then the optimal control satisfies

∂L1
∂u

= 2α2u+ α3x + ξ2y+ α5 + β2J1x + β̄2J1y = 0,

∂L2
∂v

= 2ᾱ2v+ ᾱ3x + ξ̄2y+ ᾱ5 + β3J2x + β̄3J2y = 0.
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Moreover, because of ∂2L1
∂u2

= 2α2 > 0 and ∂2L2
∂v2

= 2ᾱ2 >

0, then

u∗
= −

α3x + ξ2y+ α5 + β2J1x + β̄2J1y
2α2

,

v∗ = −
ᾱ3x + ξ̄2y+ ᾱ5 + β3J2x + β̄3J2y

2ᾱ2
, (16)

are the minimum point of L1(u, v) and L2(u, v), respectively.
Substituting (16) into (15), we obtain

J1t + α1x2 − α2
(
u∗

)2
+ α4x + α6 + ξ1y2 + ξ3y

+
(
β̄1y+ β̄3v∗

)
J1y +

(
β1x + β3v∗

)
J1x

+
1
2
γ 2
1 x

2J1xx + rδyJ1y = 0,

J2t + ᾱ1x2 − ᾱ2
(
v∗

)2
+ ᾱ4x + ξ̄3y+ ᾱ6 + ξ̄1y2

+
(
β̄1y+ β̄2u∗

)
J2y +

(
β1x + β2u∗

)
J2x

+
1
2
γ 2
1 x

2J2xx + rδyJ2y = 0. (17)

Since Ji (T , xT , yT ) = FiT
(
x iT

)2
+F̄iT

(
yiT

)2
, we conjecture

that

Ji =
1
2
Pix2 + Qix +

1
2
Riy2 + Nixy+ Siy+Mi, i = 1, 2,

then

Jix = Pix + Qi + Niy, Jiy = Riy+ Si + Nix, i = 1, 2. (18)

Substituting equation (18) into (16), we obtain

u∗
= −

A1x + B1y+ C1

2α2
, v∗ = −

A2x + B2y+ C2

2ᾱ2
, (19)

where

A1 = α3 + β2P1 + β̄2N1,A2 = ᾱ3 + β3P2 + β̄3N2,

B1 = β̄2R1 + β2N1 + ξ3,B2 = ξ̄3 + β̄3R2 + β3N2,

C1 = α5 + β2Q1 + β̄2S1,C2 = ᾱ5 + β3Q2 + β̄3S2.

Substituting equations (19) and (18) into equation (17)
yields as (20) and (21), shown at the bottom of the page and
next page.

To separate the variables of the above formula, equa-
tions (12) and (13) are proven. Thus, we know that u∗ and v∗

are the solution of equation (6). Since the objective function
is a convex function, equation (7) will generate a minimum
value. Therefore, u∗ and v∗ represent the Nash equilibrium of
the linear quadratic uncertainty stochastic differential game
with jumps. We obtain the optimal value as equation (14)

J1t + α1x2 + α4x + α6 + ξ1y2 + ξ3y− α2

(
A1x + B1y+ C1

2α2

)2

− (R1y+ N1x + S1) β̄3
A2x + B2y+ C2

2ᾱ2

− β3 (P1x + N1y+ Q1)
A2x + B2y+ C2

2ᾱ2

+ β̄1y (R1y+ N1x + S1) + β1x (P1x + N1y+ Q1)

+
1
2
γ 2
1 x

2P1 + rδy (R1y+ N1x + S1)

= x2
[
1
2
dP1
dt

+

(
β1 +

1
2
γ 2
1 −

β3A2
2ᾱ2

)
P1 −

β̄3N1A2
2ᾱ2

−
A21
4α2

+ α1

]

+ y2
[
1
2
dR1
dt

−
B21
4α2

−
(
β̄3R1 + β3N1

) B2
2ᾱ2

+
(
β̄1 + rδ

)
R1 + ξ1

]

+ xy
[
dN1

dt
−
A1B1
2α2

−
(
β̄3N1 + β3P1

) B2
2ᾱ2

−
(
β̄3R1 + β3N1

) A2
2ᾱ2

+
(
β̄1 + β1 + rδ

)
N1

]
+ x

[
dQ1

dt
−
A1C1

2α2
−

(
β3Q1 + β̄3S1

)
A2

2ᾱ2
−

(
β̄3N1 + β3P1

)
C2

2ᾱ2
+ β1Q1 + α4

]

+ y

[
dS1
dt

−
B1C1

2α2
−

(
β̄3S1 + β3Q1

)
B2

2ᾱ2
−

(
β̄3R1 + β3N1

)
C2

2ᾱ2

+
(
β̄1 + rδ

)
S1 + ξ3

]
+
dM1

dt
−

C2
1

4α2
−

(
β̄3S1 + β3Q1

) C2

2ᾱ2
+ α6 = 0, (20)
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simultaneously in the jump uncertainty stochastic differential
game model.

This completes the proof of Theorem 3.1.

IV. CORPORATE INVESTMENT DECISION-MAKING
Dynamic portfolio management is a trending research
topic. In the realm of corporate investment decision-
making, external extreme events or sudden disturbances
greatly influence uncertain stochastic dynamic systems.
Hence, it becomes imperative to account for jump
scenarios.

The basic idea behind using probability theory or
uncertainty theory is to determine if the available data is
sufficient for estimating its distribution. In the investment
decision-making of enterprises, both traditional products and
emerging products are invested, and the investments between
the two will have mutual influence. Traditional products
have sufficient historical data, and their capital accumulation
process can be described by stochastic differential equations.
Emerging products lack historical data and require experts

from relevant fields to estimate their credibility. The capital
accumulation process of emerging products follows uncertain
differential equations.

A. MODEL SETUP
For investment of traditional products, the capital of enter-
prise is with the initial capital k0

dK (t) = [β1 (t)K (t) + β2 (t) I1 (t) + β3 (t) I2 (t)] dt

+ γ1 (t)K (t) dW (t) ,K (0) = k0, (22)

for investment investment of emerging products, the capital
follows with the initial capital k̄0

dK̄ (t) =
[
β̄1 (t) K̄ (t) + β̄2 (t) I1 (t) + β̄3 (t) I2 (t)

]
dt

+ γ2 (t) K̄ (t) dC (t) + δ (t) K̄ (t) dV (t) , K̄ (0) = k̄0,

(23)

where I1 (t) and I2 (t) are the investment of traditional
products and emerging products, respectively. β1 and β̄1 are
the constant rate of change of capital, β2 and β̄3 represent
the rate of investment change of traditional products and

J2t + ᾱ1x2 − ᾱ2

(
A2x + B2y+ C2

2ᾱ2

)2

+ ᾱ4x + ᾱ6 + ξ̄1y2 + ξ̄4y

+ β1x (P2x + Q2 + N2y) −
A1x + B1y+ C1

2α2
β2 (P2x + Q2 + N2y)

+ β̄1y (R2y+ S2 + N2x) −
A1x + B1y+ C1

2α2
β̄2 (R2y+ S2 + N2x)

+
1
2
γ 2
1 x

2P2 + rδy (R2y+ S2 + N2x)

= x2
[
1
2
dP2
dt

+

(
β1 −

A1
2α2

β2 +
1
2
γ 2
1

)
P2 −

A22
4ᾱ2

−
A1
2α2

N2β̄2 + ᾱ1

]

+ x
[
dQ2

dt
−
A2C2

2ᾱ2
+ ᾱ4 + β1Q2 −

(
Q2β2 + S2β̄2

) A1
2α2

−
C1

2α2

(
P2β2 + N2β̄2

)]
+ y2

[
1
2
dR2
dt

−
B22
4ᾱ2

−
B1

(
β2N2 + β̄2R2

)
2α2

+ ξ̄1 + β̄1R2 + rδR2

]

+ xy

[
dN2

dt
−
A2B2
2ᾱ2

+
(
rδ + β1 + β̄1

)
N2 −

A1
(
N2β2 + R2β̄2

)
2α2

−
B1

(
P2β2 + N2β̄2

)
2α2

]

+ y

[
dS2
dt

−
B2C2

2ᾱ2
−
B1

(
β2Q2 + β̄2S2

)
2α2

−
C1

(
β2N2 + β̄2R2

)
2α2

+ξ̄3 +
(
β̄1 + rδ

)
S2

]
+
dM2

dt
−

C2
2

4ᾱ2
+ ᾱ6 −

C1

2α2

(
Q2β2 + S2β̄2

)
= 0. (21)
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emerging products, β3 and β̄2 are the competition coefficient
of emerging products and traditional products. γ1, γ2 and
δ denote respectively the diffusion coefficient and jump
coefficient of unchanging capital fluctuation.

Assuming that the decision maker’s objective is to
maximize the expected value of investment profits for the
enterprise, then the dynamic profit function are

Li (t) = piQi (K (t)) + p̄iQ̄i
(
K̄ (t)

)
−w− Ii (t) − Ci (Ii (t)) ,

i = 1, 2, (24)

where Li (t) are the dynamic profit function of two enterprises
respectively, Qi (K (t)) and Q̄i

(
K̄ (t)

)
represent the output

of two companies respectively, Ci (Ii (t)) are the adjustment
costs of the two enterprises respectively, pi (t) represent the
traditional product price which can be get a large amount of
data, p̄i (t) , i = 1, 2 stand for the emerging product price
which can’t be obtained much data, w denotes constant labor
wages, a1 and a2 stand for the production technology level of
two enterprises, t represents the time span of investment, b is
the coefficient of the adjusted cost function.

Assuming the production function are Qi (K ) =

aiK (ai > 0) and Q̄i
(
K̄

)
= āiK̄ (āi > 0), the adjusted cost

function are Ci (Ii (t)) =
b
2 Ii

2 (t) , i = 1, 2, then the profit
function are expressed as

Li (t) = piaiK + p̄iāiK̄−w− Ii (t) −
b
2
Ii2 (t) , i = 1, 2.

(25)

Therefore, the investment decision-making model for the
enterprise 1 and 2 are expressed as follows

J1
(
0, k0, k̄0

)
≡ max

I1
E

{∫ T

0

[
p1a1K + p̄1ā1K̄−w− I1 (t)

−
b
2
I12 (t) ] dt + S1T

(
k1T

)2
+ S̄1T

(
k̄1T

)2}
,

J2
(
0, k0, k̄0

)
≡ max

I2
E

{∫ T

0

[
p2a2K + p̄2ā2K̄−w− I2 (t)

−
b
2
I22 (t)

]
dt + S2T

(
k2T

) (
k1T

)2
+ S̄2T

(
k̄2T

)2}
,

s.t.
dK (t) = [β1 (t)K (t) + β2 (t) I1 (t) + β3 (t) I2 (t)] dt

+γ1 (t)K (t) dW (t) ,

dK̄ (t) =
[
β̄1 (t) K̄ (t) + β̄2 (t) I1 (t) + β̄3 (t) I2 (t)

]
dt

+γ2 (t) K̄ (t) dC (t) + δ (t) K̄ (t) dV (t) ,

K (0) = k0, K̄ (0) = k̄0.

(26)

B. MODEL SOLVING
Comparing equation (26) with equations (5)-(7), we have u =

I1, v = I2, x = K , y = K̄ , α1 = α3 = ᾱ1 = ᾱ3 = ξ1 =

ξ2 = ξ̄1 = ξ̄2 = 0, α2 = −
b
2 , ᾱ2 = −

b
2 , α4 = p1a1, ξ3 =

p̄1ā1, ᾱ4 = p2a2, ξ̄3 = p̄2ā2, α5 = ᾱ5 = −1, α6 = ᾱ6 =

−w.

According to Theorem 3.1, we obtain the optimal
investment strategies for traditional products and emerging
products as

I∗1 (t) =
A1K (t) + B1K̄ (t) + C1

b
,

I∗2 (t) =
A2K (t) + B2K̄ (t) + C2

b
, (27)

where

A1 = β2P1 + β̄2N1,A2 = β3P2 + β̄3N2,

B1 = β̄2R1 + β2N1,B2 = β̄3R2 + β3N2,

C1 = β2Q1 + β̄2S1 − 1,C2 = β3Q2 + β̄3S2 − 1,

Pi (t), Qi (t),Ri (t),Ni (t),Si (t) and Mi (t) (i = 1, 2) satisfy
the following Riccati differential equations and boundary
conditions

1
2
dP1
dt

+

(
β1 +

1
2
γ 2
1 +

β3A2
b

)
P1 +

A21
2b

+
β̄3

b
N1A2 = 0,

P1(T ) = F1T ,

1
2
dR1
dt

+
1
2b
B21 +

(
β̄3R1 + β3N1

) B2
b

+ (β̄1 + rδ)R1 = 0,

R1(T ) = F̄1T ,

dN1

dt
+
A1B1
b

+
(
β̄3N1 + β3P1

) B2
b

+
(
β̄3R1 + β3N1

) A2
b

+
(
β̄1 + β1 + rδ

)
N1 = 0,N1(T ) = 0,

dQ1

dt
+
A1C1

b
+

(
β3Q1 + β̄3S1

) A2
b

+
(
β̄3N1 + β3P1

) C2

b
+ β1Q1 + p1a1 = 0,Q1(T ) = 0,

dS1
dt

+
B1C1

b
+

(
β̄3S1 + β3Q1

) B2
b

+
(
β̄3R1 + β3N1

) C2

b
+ (β̄1 + rδ)S1 + p̄1ā1 = 0, S1(T ) = 0,

dM1

dt
+
C2
1

2b
+

(
β̄3S1 + β3Q1

) C2

b
−w = 0,M1(T ) = 0,

(28)

1
2
dP2
dt

+

(
β1 +

A1
b

β2 +
1
2
γ 2
1

)
P2 +

A22
2b

+
A1
b
N2β̄2 = 0,

P2(T ) = 2F2T ,

Q̇2 +
1
b
A2C2 +

β2

b
(A1Q2 + C1P2) +

β̄2

b
(A1S2 + C1N2)

+ β1Q2 + p2a2 = 0,Q2 (T ) = 0,

1
2
dR2
dt

+
B22
2b

+
B1
b

(
β2N2 + β̄2R2

)
+ β̄1R2 + rδR2 = 0,

R2(T ) = F̄2T ,

Ṅ2 +
A1B1
b

+ β1N2 + β̄1N2 +
β2

b
(A1N2 + B1P2)

+
β̄2

b
(A1R2 + B1N2) + rδN2 = 0,N2 (T ) = 0,

dS2
dt

+
B2C2

b
+
B1
b

(
β2Q2 + β̄2S2

)
+
C1

b

(
β2N2 + β̄2R2

)
+ p̄2ā2 + β̄1S2 + rδS2 = 0, S2 (T ) = 0,
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dM2

dt
+
C2
2

2b
+
C1

b

(
Q2β2 + S2β̄2

)
−w = 0,M2 (T ) = 0.

(29)

The optimal value function are

J1
(
I1(t)∗, I2(t)∗

)
=

1
2
P1 (0) k20 + Q1 (0) k0 +

1
2
R1(0)k̄20

+ S1(0)k̄0 +M1(0),

J2
(
I1(t)∗, I2(t)∗

)
=

1
2
P2 (0) k20 + Q2 (0) k0 +

1
2
R2(0)k̄20

+ N2(0)k0k̄0 + S2(0)k̄0 +M2(0). (30)

C. NUMERICAL ANALYSIS
In this section, due to the difficulty of solving analytically,
we present numerical examples to illustrate our results.
Moreover, the basic parameters are given by S1T = S2T =
1
2 , β1 = −0.3, β2 = δ = 0.4, β3 = 0.6, r = 0.5, b = T =

p1 = p2 = w = k0 = k̄0 = 1, α = 0.8, γ1 = 0.1, γ2 =

0.2, r1 = 0.3, r2 = 0.4, α1 = α3 = ξ1 = ξ2 = ξ̄1 =

ξ̄2 = 0, α2 = ᾱ2 = −
1
2 , α4 = a1, ξ3 = ā1, ᾱ4 = a2, ξ̄3 =

ā2, α5 = ᾱ5 = −1, α6 = −1, ᾱ6 = −1, ᾱ1 = ᾱ3 = 0, a1 =

a2 = ā1 = ā2 = 1.
Then, the optimal investment strategies and value function

are respectively
I∗1 (t) = 0.4 (P1 + N1)K (t) + 0.4 (R1 + N1) K̄ (t)
+0.4 (Q1 + S1) − 1,
I∗2 (t) = 0.6 (P2 + N2)K (t) + 0.6 (R2 + N2) K̄ (t)
+0.6 (Q2 + S2) − 1,

where

0.5
dP1
dt

+ [0.36 (P2 − N2) + 0.35]P1 + 0.08(P1 + N1)
2

+ 0.36N1 (−P2 + N2) = 0,P1(T ) = 1,
dN1

dt
+ 0.16 (P1 + N1) (R1 + N1) + 0.36 (R1 − N1) ×

(N2− P2) + 0.36 (N1 + P1) (R2 + N2) − 0.8N1 = 0,N1(T )=0,

0.5
dR1
dt

+ 0.08(R1 + N1)
2
+ 0.36 (R1 + N1) (R2 + N2)

− 0.1R1 = 0,R1(T ) = 1,
dQ1

dt
+ 0.4 (P1 + N1) [0.4 (Q1 + S1) − 1] + 0.36 (Q1 + S1)

× (P2 + N2) + 0.6 (N1 − P1) [0.6 (S2 − Q2) − 1]

+ 0.3Q1 + 1 = 0,Q1(T ) = 0,
dS1
dt

+ 0.4 (R1 + N1) [0.4 (Q1 + S1) − 1] + 0.36 (Q1 − S1)

× (N2 − R2) + 0.6 (R1 − N1) [0.6 (−Q2 + S2) − 1]

− 0.5S1 + 1 = 0, S1(T ) = 0,
dM1

dt
+ 0.5[0.4 (Q1 + S1) − 1]2 + 0.6 (S1 − Q1)

× [0.6 (S2 − Q2) − 1] − 1 = 0,M1(T ) = 0.

0.5
dP2
dt

+ [0.16 (P1 + N1) + 0.305]P2 + 0.18(P1 + N1)
2

+ 0.16 (P1 + N1)N2 = 0,P2(T ) = 1,

Q̇2 + 0.6 (N2 − P2) [0.6 (S2 − Q2) − 1]

+ 0.16 (P1 + N1) (Q2 + S2) + 0.4 [0.4 (Q1 + S1) − 1]

× (P2 + N2) − 0.3Q2 + 1 = 0,Q2 (T ) = 0,

0.5
dR2
dt

+ 0.18(R2 + N2)
2
+ 0.16 (R1 + N1) (N2 + R2)

+ 0.5R2 = 0,R2(T ) = 1,
dN2

dt
+0.16 (P1 + N1) (R1 + N1)+0.16 (P1 + N1) (N2 + R2)

+ 0.6N2 + 0.16 (R1 + N1) (P2 + N2) = 0,N2 (T ) = 0,
dS2
dt

+ 0.6 (R2 + N2) [0.6 (Q2 + S2) − 1]

+ 0.16 (R1 + N1) (Q2 + S2) + 0.4 (N2 + R2)

× [0.4 (Q1 + S1) − 1] + 1 + 0.5S2 = 0, S2 (T ) = 0,
dM2

dt
+ 0.5[0.6 (S2 − Q2) − 1]2 + 0.4 [0.4 (Q1 + S1) − 1]

× (Q2 + S2) − 1 = 0,M2 (T ) = 0.

The capital of traditional products and emerging products
follows

dK (t) = [0.3K (t) + 0.4I1 (t) − 0.6I2 (t)] dt

+ 0.2K (t) dW (t) ,K (0) = 100,

dK̄ (t) =
[
0.3K̄ (t) − 0.4 (t) I1 (t) + 0.6I2 (t)

]
dt

+ 0.1K̄ (t) dC (t) + 0.4K̄ (t) dV (t) , K̄ (0) = 100,

the optimal value function are

J1
(
I1(t)∗, I2(t)∗

)
=

1
2
P1 (0) + Q1 (0) +

1
2
R1(0)

+ N1(0) + S1(0) +M1(0),

J2
(
I1(t)∗, I2(t)∗

)
=

1
2
P2 (0) + Q2 (0) +

1
2
R2(0)

+ N2(0) + S2(0) +M2(0).

The equilibrium strategies and capital accumulation of
traditional products and emerging products over time are
shown in Figures 1-2.

Figure 1 shows the process of changes in the optimal
investment strategy for enterprises of traditional products and
emerging products. Enterprises are gradually decreasing their
investment in traditional products, and they are more cautious
about emerging products at the beginning, showing a trend of
first decreasing and then increasing.

Figure 2 illustrates the process of capital accumulation.
Through the interaction of both parties’ optimal strategies
and the calculation of the above-mentioned performance
indicators for both players, it can be concluded that both
parties can achieve their respective optimal performance
indicators. Under the joint action of optimal control strategies
from both players in the game, there is an overall upward
trend. The capital accumulation of traditional products
increased relatively slowly, while the capital accumulation
of emerging products increased more. Therefore, it can
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FIGURE 1. Equilibrium investment strategy I1 and I2.

FIGURE 2. The capital accumulation K and K̄ .

be inferred that the uncertain stochastic differential system
model with jumps is effective under the joint control of both
players in the game.

V. CONCLUSION
In order to better describe the dynamic characteristics
of enterprise investment decision-making in this paper,
assuming the capital accumulation process of the enterprises
are subject to the uncertain stochastic process with jumps.
We investigate the dynamic portfolio of two enterprises
based on a jump uncertain stochastic differential game
model. We derive the equilibrium investment strategy and
equilibrium value function through dynamic programming
principle.
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