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ABSTRACT In the context of rapid urbanization, the problem of long travel times has become a significant
problem for contemporary cities, both socially and economically. Although dynamic route guidance has
emerged as a promising solution to minimize travel times in large road networks, existing route planning
frameworks often lead to congestion on certain routes, as vehicles with the same travel itinerary tend to
follow the same route due to lack of central coordination. To address this challenge, this paper introduces
a novel framework for centrally coordinating all vehicles on a road network. The proposed framework
aims to optimize the average travel time of all vehicles while considering the fairness of all vehicles.
The effectiveness of this framework has been evaluated through simulations and compared with three
popular benchmark frameworks using a well-known traffic scenario and a real-world traffic scenario. The
experimental results have shown that this framework outperforms the benchmark frameworks.

INDEX TERMS Intelligent transportation system, centralized traffic assignment, dynamic route guidance,
coordinated multi-vehicle routing, constrained combinatorial optimization.

I. INTRODUCTION
Travel time is becoming longer and longer in the modern
world, driven primarily by the rapid increase in the number
of travelers. This undesirable trend of growing traffic causes
a huge waste of time, fuel, and productivity. Such losses can
have negative effects on the economy of a country and can
significantly impact the overall quality of life. According to
the TomTom traffic index [1], in 2022 the average travel time
per 10 km in the two largest cities, Sydney and Melbourne,
has increased to 21 minutes and 30 seconds and 20 minutes
and 30seconds, respectively.

Vehicle route can become challenging during special
events, such as sporting or musical events, when a large
number of vehicles exit a venue at the same time. In such
a situation, it is common for vehicles to look for the shortest
or quickest route between a common starting point (the venue
of the event) and their destinations. As a result, all vehicles
that have the same destination will use the same route,
which can cause traffic congestion on the route, while some
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alternative routes are not used. This is because all vehicles
are routed independently since there is no coordination
between them. Addressing this problem requires a centrally
coordinated approach that can take into account real-time
traffic information. Therefore, the motivation behind this
research work lies in introducing a new framework to provide
a well-coordinated and guided route suggestion mechanism
considering real-time traffic information.

Coordinating the route of multiple vehicles can be
classified into centralized coordination and distributed coor-
dination. In centralized coordination, the central server is
responsible for acquiring information from the road network
and generating route suggestions for all vehicles in the road
network. For many years, prominent criticism of centralized
systems has been about their limited scalability considering
the high computational load, the high information exchange
load, and the high delay with respect to large road
networks. However, these limitations are being overcome
by the tremendous growth shown in the area of cloud
computing [2]. Recent surveys conducted by Kirimtat et al.
[3] and Talebkhah et al. [4], further demonstrate how different
data management technologies, such as IoT and cloud

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 24243

https://orcid.org/0000-0002-4796-1955
https://orcid.org/0000-0002-2416-4101
https://orcid.org/0000-0002-0440-5772


M. D. R. L. Silva, M. Tang: New Framework for Centralized Coordinated Multi-Vehicle Dynamic Routing

computing, can be used to process a large amount of data
more efficiently. Furthermore, with the enhanced capabilities
of the 5G network, it is expected to overcome the long delays
experienced in getting a response from the central system [5].
In contrast, decentralized coordination requires that the

individual user makes all route guidance decisions based on
the information acquired from traffic management systems.
However, the traffic management system has no control over
route selection and the user is responsible for selection.
Compared to centralized coordination, distributed coordi-
nation requires less computational power. However, since
in distributed coordination, a vehicle communicates only
with nearby vehicles, the knowledge of current traffic in the
road network is incomplete, and this incompleteness may
be reflected in the routing suggestions [6]. On the contrary,
centralized coordination is capable of providingmore reliable
routing suggestions, as it can see the near future traffic
congestion due to global knowledge of the traffic network.
As a result, by properly analyzing traffic demand, it is
possible to predict future traffic conditions that can then be
used to optimize the vehicles’ routes in the road network.

Motivated by the promising strengths of centralized com-
putational feasibility and communication advancements, this
paper introduces a new centralized coordinated multi-vehicle
dynamic routing framework. This framework proactively
optimizes traffic from the system’s perspective byminimizing
the average travel time of all vehicles while considering
fairness in individual travel times for vehicles with similar
itineraries. Differentiating from approaches such as [7], [8],
[9], and [11], which propose route guidance systems to
balance the travel time of the system and individual travel
times, the proposed method adopts real-time traffic data and
uses traffic-dependent travel times to limit the difference
in individual experienced travel times, considering fairness
among vehicles with similar itineraries.

The work presented in this paper makes multiple contribu-
tions to solving the assignment of routes inmodern cities. The
main contribution of this work is a novel centralized coor-
dinated multi-vehicle dynamic routing framework. Another
contribution of this this work is the way to consider the
fairness of all vehicles in a road network.

The remainder of the paper is structured as follows.
Section II discusses related work. Section III introduces
the proposed centralized coordinated multi-vehicle dynamic
routing framework. Section IV gives the details of the
experimental design followed by the experimental results in
Section V. The article ends with conclusions and potential
future work in Section VI.

II. RELATED WORK
For many years, the Vehicle Route Guidance System (RGS)
has been investigated by numerous researchers in terms of
optimal route assignment. Almost a great deal of previous
research in vehicle RGS has focused on static RGS, or SRGS.
These SRGS are based on algorithms such as Dijkstra [12],
Bellman-Ford [13], and A* search [14], which are the

optimal algorithms to find the shortest path in a graph.
These algorithms are successfully used in SRGS, but they are
suitable for use in dynamic RGS, or DRGS.

More recent attention has been paid to dynamic RGS,
or DRGS, due to their ability to react to changes in traffic
in road networks [15], [16], [17]. However, most commercial
DRGS, such as Google, Microsoft, and TomTom DRGS,
are reactive systems that cannot actively prevent traffic
congestion [11], [20], [24]. This is because a reactive
DRGS generates the optimal path independently for each
of the vehicles in the road network based on current
traffic information. Therefore, a reactive DRGS can cause
congestion to switch between roads back and forth when
a significant number of vehicles select the same route
known as the ‘‘route flapping’’ [18]. Alternatively, many
proactive DRGS [18], [19], [20], [21] are proposed in which
optimal routes are suggested considering both historical
traffic information and real-time traffic information.

In the literature, much research on DRGS has focused
on user perspective guidance [17], [22], [23]. However,
user-perspective DRGS still suffer from developing traffic
congestion due to the selfish nature of route selection. On the
contrary, the system perspective route guide focuses on
reducing the total travel time for all vehicles in a road network
using [24], [25], [26], [27], and [28]. The system-optimal
DRGS reduce the average travel time of those vehicles in
a road network by overlooking the traffic distribution in the
road network.

To satisfy the user and system performance, coordination
among vehicles in a road network is necessary. In 2019,
Zhu et al. [29] proposed an edge-assisted distributed routing
framework, which enables virtual agents on behalf of vehicles
to interact with others to make real-time routing decisions.
A similar distributed approach was adopted in [24] where
traffic distribution optimization was carried out locally by
each car based on local knowledge collected from nearby
vehicles. A decentralized approach to anticipatory vehicle
routing that was particularly useful in a large-scale dynamic
environment was presented in [30]. Another look at the
decentralized system can be found in [31]. In this work,
the cooperative vehicle routing problem is considered at
intersections of the road network. Few more studies on
distributed systems can be found in [32] and [33].

On the other hand, centralized DRGS uses a central system
to provide route suggestions. This method provides more
robust and reliable solutions at the overall network level.
In 2014, a centralized proactive DRGS was introduced to
provide driver route guidance when traffic congestion was
predicted [19]. Furthermore, the simulation results showed
that proactive route guidance leads to lower reroutes for each
rerouted vehicle. However, their work could not optimize
traffic from the point of view of the system.

In the work presented in [34], a cooperative centralized
approach is discussed to determine the routes of all vehicles,
thus improving the efficiency of the entire traffic system.
However, during simulations, the proposed method could not
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find good solutions in the case of a large number of vehicles
due to its limitation in scalability. Research carried out in [18]
presents five reroute strategies to compute alternative routes
for vehicles. The introduced rerouting strategies proactively
push individually tailored routes to vehicles when there are
signs of congestion. Similar work can also be found in [35],
which presents a participatory navigation system. Data,
such as location samples and route choice decisions, were
collected from road vehicles to estimate traffic speed and
future traffic flow at the level of the road segment. However,
both of these approaches do not concern themselves with a
globally optimal solution, but instead try to optimize the local
user’s route choice based on the information collected at the
given time.

In recent literature, there is a trend towards integrating
system optimal approaches with user optimal approaches
to achieve system optimal routes while considering fairness
among users. In 2016, Angelelli et al. [7] introduced a
linear programming-based approach to balance the trade-off
between the system and user perspectives in proactive route
guidance. This approach assigns paths to users, ensuring
a certain level of fairness among vehicles with similar
starting and ending locations. The method initially sets a
limit on user travel inconvenience, referred to as maximum
travel inconvenience, in terms of the maximum increase
allowed relative to the shortest path. Subsequently, the
method generates a set of eligible paths for each OD pair,
which comprises Origin-Destination paths with a travel
inconvenience that does not exceed the specified maximum
travel inconvenience. However, drawbacks include the initial
generation of eligible paths and the limitation of maximum
user travel inconvenience relative to the shortest path,
without incorporating real-time traffic information. This
approach lacks dynamic generation of eligible paths, which
is crucial for suggesting paths to vehicles based on real-time
traffic conditions. Another limitation is the omission of
traffic-dependent arc travel times, which prevents accurate
modeling of travel times along paths containing one or
more congested arcs. The authors expanded on their research
in 2018 by introducing a heuristic algorithm approach
to decrease the computational time required to generate
eligible paths [8]. Subsequently, in 2020, they proposed a
linear programming model incorporating a traffic-dependent
latency function [10]. However, in each of these approaches,
the observed unfairness in terms of travel times on the
restricted path setmay exceed the specified level of unfairness
due to the prior generation of eligible paths. This inherent
drawback was overcome by the authors in their research
carried out in 2020 [9]. The proposed approach embedded
path selection in the optimal formulation of the system
to control the unfairness experienced by travelers. The
most recent research by Ho et al. in 2023 [11] proposed
adopting a road segment capacity-aware routing approach
that can effectively facilitate collaboration among vehicles
to optimize both system and individual performances. The
proposed approach updates the remaining capacity of relevant

road segments each time a vehicle updates its path to allow
collaboration among vehicles. However, only a selected
number of vehicles are dynamically rerouted by evaluating
the distance between the current position of the vehicle
and the congested road. Moreover, while the adaptation
of the kSP algorithm appears useful in finding multiple
alternative paths, including the best path, there might be
scenarios where the algorithm does not guarantee the absolute
best path in terms of travel time or other metrics. This is
particularly crucial in dynamic routing, where conditions
can change rapidly. Furthermore, the performance of kSP
algorithms can be sensitive to the choice of parameters,
such as the value of ‘k’ (the number of shortest paths to
be computed), and selecting an inappropriate value for ‘k’
may lead to suboptimal results. Therefore, in contrast to the
aforementioned approaches in the literature, the proposed
approach in this paper computes a route plan for all vehicles
in the traffic network. The method generates two sets of
routes to choose the best set of paths based on current
traffic conditions. Furthermore, it incorporates the remaining
capacity of the road segments each time a new routing plan is
generated, ensuring collaboration between vehicles traveling
on the network.

In the literature, out of many extensions proposed
to improve the efficiency of coordinated centralized
multi-vehicle dynamic routing problem, dynamic generation
of candidate routes for each vehicle by incorporating
real-time traffic data to calculate the road segment travel
times, incorporating explicit measurements to ensure
individual travel time fairness among vehicles with same
travel needs, and consideration of capacity of the each
road segment when generating routes to ensure that the
road segments are not overutilized can be highlighted
as essential extensions to be considered in proposing an
efficient coordinated centralized multi-vehicle dynamic
routing algorithm. Furthermore, it is evident that most of the
research carried out on multi-vehicle route guidance focused
on decentralized approaches considering scalability and
computational limitations. However, with recent advances
in high-performance computing facilities, such as cloud
computing, andmore advanced communication technologies,
such as 5G /6G, centrally coordinated route guidance is
feasible. Therefore, to bridge the aforementioned gaps, in this
paper, we will propose a centrally coordinated multi-vehicle
dynamic route guidance framework that adopts the traffic
assignment to the dynamic nature of traffic considering all
individual drivers’ experience while optimizing the traffic
from system perspective.

III. THE CENTRALIZED COORDINATED MULTI-VEHICLE
DYNAMIC ROUTING FRAMEWORK
This section presents a new centralized coordinated
multi-vehicle dynamic routing framework. In this section,
we will introduce the architecture of the framework and
the components of the framework and then discuss how
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all vehicles in a road network are dynamically routed in a
centralized and coordinated way.

A. ARCHITECTURE OF THE FRAMEWORK
As depicted in Fig. 1, our framework comprises two
components: candidate routes generator and coordinated
multi-vehicle dynamic route generator. The candidate routes
generator is a one-time process that is tasked with generating
a list of feasible potential routes between each pair of
predefined locations in the road network. The coordinated
multi-vehicle route generator operates periodically to pro-
duce a new optimized route plan for all vehicles in the
road network. This periodic operation is essential due to the
dynamic nature of traffic conditions that change over time in
the road network.

1) CANDIDATE ROUTES GENERATOR
In a road network, a road can be divided into several
segments, known as road segments. Each end of a road
segment is termed a predefined location or simply a location
within this framework. The candidate route generator is used
to create a set of candidate routes between every pair of these
locations.

In a vast road network, there may be numerous routes
between a pair of locations. However, not all routes are
considered candidate routes due to their excessive travel time.
Consequently, these unsuitable routes are excluded during
the route generation process. This candidate route generator
has multiple advantages. First, it ensures that the framework
avoids generating an all-vehicle route plan where some
vehicles endure long travel times, an undesirable scenario
aiming to minimize the average travel time of all vehicles,
a concern in some traffic assignment frameworks. Second,
this strategy significantly reduces the search space for the
traffic assignment problem. Third, it prevents redundant
computations, since finding a route between a pair of
locations is a fundamental operation repeated numerous
times during dynamic traffic assignment in this framework.
Algorithm 1 outlines the process of generating a set of
candidate routes for each pair of locations in a road network.

To compute a set of such candidate routes, first of all,
we use Floyd-Warshall’s algorithm [13] to find the shortest
travel time between each pair of locations in the road network
when there is no traffic in the road network. To do this, we use
a weighted directed graph to represent the road network,
where the weight of the edges is the shortest travel time of
the corresponding road segment. The shortest travel time is
calculated using the speed limit to divide the distance of the
road segment. Then, we use a branch and bound breadth-first
search algorithm to find a list of routes from each location
to all other locations in the road network such that the travel
time is bounded by λ × Ti,j, where Ti,j is the shortest travel
time from location i to location j, i ̸= j, and λ is a control
parameter that is typically greater than 1 and less than 3.

Starting from a location, the branch and bound breadth-first
search algorithm explores all routes that can be reached

Algorithm 1 Candidate routes generation
Input: A road network, including a set of locations in
the road network; and λ, which is a multiplication
factor
Output: A list of candidate routes for each pair of
locations in the road network

1: Use Floyd-Warshall algorithm to find the shortest
travel time between each pair of the locations

2: for each of the locations, i do
3: Use a branch and bound breadth-first search

algorithm to find all the routes from this location to
all the other locations in the road network such that
the travel time from this location i to another
location j is less than or equals to λ × Ti,j, where
Ti,j is the shortest travel time from location i to
location j, and i ̸= j

4: end for

within a given time. Initially, we put the starting location into
the queue. Then, we repeat the following step until the queue
becomes empty. First, we remove the head element, which
is a location, from the queue and check all locations that are
associated with this location with a road segment one by one.
If the travel time from the starting location i to this location j
is less than or equal to λ × Ti,j, then we add this location j to
the queue.

2) COORDINATED MULTI-VEHICLE DYNAMIC ROUTE
GENERATOR
Another component in our framework is the coordinated
multi-vehicle dynamic route generator. Given the current
location of each of the vehicles in the road network and
the current traffic in the road network, the coordinated
multi-vehicle dynamic route generator is used to generate
a new route plan for all the vehicles currently in the road
network such that the average travel time of the vehicles is
minimal based on the current traffic in the road network.

The traffic in a road network is dynamic by its nature,
as there might be new vehicles joining the traffic and there
might be some vehicles reaching their destination. As a result,
a route plan that was optimal previously might not be optimal
anymore. Thus, the coordinated multi-vehicle dynamic route
generator is used periodically to calibrate the route plan of all
the vehicles.

When generating a coordinated route plan for all the
vehicles, first of all, we need to get the location of all the
vehicles currently in the road network, and then use this
information to get the number of vehicles currently traveling
on each road segment. Once we get the current number of
vehicles on each road segment, we can calculate the travel
time for each road segment based on the current number of
vehicles on each road segment.
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FIGURE 1. A new centralized coordinated multi-vehicle dynamic routing framework.

The travel time of a road segment depends on the current
traffic flow of the road segment, and therefore, it is crucial
to compute the actual travel time experienced on each road
segment. Furthermore, as Sheffi states in [36], it is realistic to
assume steady-state traffic flow behavior during rush hours.
Therefore, to calculate the travel time experienced on a
segment of roads at time t , the Bureau of Public Roads (BPR)
formulation [37] is used.

Tl(t) = Tfree [1 + µ

(
n(t)
C

)β

] (1)

In the equation, Tfree is the free flow travel time, n is the
total number of vehicles on the road segment at time t , C is
the maximum feasible flow of the respective road segment,
µ and β are constant parameters, and Tl(t) is the travel time
of the road segment l at time t . The two constant parameters
µ and β are usually set to 0.15 and 4 as advanced by the US
Bureau of Public Roads [38]. Moreover, the values selected
on two constant parameters implies that the practical capacity
is the flow at which the travel time is 15% higher than the
free-flow travel time. Further, the current number of vehicles
is obtained from the traffic data collected by the service,
and (2) is the equation used to calculate themaximum feasible
flow of a road segment.

C =
d

(Vlen + gmin)
(2)

In the equation, d is the distance from the road segment,
Vlen is the average vehicle length, and gmin is the minimum
gap between two vehicles.

Based on updated travel times for all road segments, we can
calculate the travel time of all precomputed candidate routes
and exclude routes whose travel time is greater than α ×

Ti,j, where α is the ratio of the current travel time of all
vehicles and the average travel time of all vehicles without
traffic, and Ti,j is the travel time from location i to location j
without traffic. This algorithm is called ‘‘acceptable route list
generation’’. Algorithm 2 is the description of this algorithm.

Algorithm 2 Acceptable Routes Selection
Input: A list of candidate routes between a pair of
locations (i, j) and a control parameter α

Output: A list of acceptable routes between location i
and location j

1: for each candidate route from i to j do
2: calculate its travel time based on current traffic
3: if the travel time is less than or equals to

α × T ∗
i,j then

4: add the route to the acceptable route list
5: end if
6: end for

It is crucial to be proactive in excluding routes affected
by traffic congestion. For example, during traffic congestion
in one of the road segments along a route, the travel
time for that route would increase significantly. Therefore,
it is necessary to actively exclude such routes from the
candidate set and generate a set of acceptable routes that are
tailored to the current traffic conditions of the road network.
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The utilization of an acceptable set of routes, reflective
of real-time traffic conditions, is crucial before applying a
coordinated multi-vehicle routing algorithm to find a route
plan for each of the vehicles in the road network.

In this framework, the coordinated multi-vehicle routing
dynamic problem is transformed into the following compu-
tational problem: Given a number of vehicles and a list of
acceptable routes for each of the vehicles, select one route
for each vehicle from its acceptable route list such that the
average travel time of all the vehicles is minimal. The average
travel time of all vehicles is calculated by summing up the
total travel time of all the vehicles on the road network and
then divide the sub by the number of vehicles on the road
network. Algorithm 3 is a hill-climbing algorithm for solving
this computational problem.

Algorithm 3 Heuristic Algorithm for Coordinated
Multi-Vehicle Dynamic Routing
Input: A list of candidate routes for each pair of
locations; the information about all the vehicles
currently in the road network
Output: An optimized route plan for all vehicles
currently in the road network

1: calculate the ratio of current average travel time
between location and average travel time without
traffic, α

2: for each pair of locations do
3: Use Algorithm 2 to extract a list of acceptable

routes
4: end for
5: improved = true
6: while improved do
7: improved = false
8: for each vehicle do
9: Calculate the travel time of the vehicle from its

current position to the end of the road segment i
10: Randomly select an acceptable route from the

list of acceptable routes from location i to its
destination location j

11: Recalculate the travel time of this vehicle and all
other vehicles that share a road segment withthis
vehicle

12: if the new total travel time of these vehicles is
less than the old total travel time of these
vehicles then

13: Use the new route to replace the old route of
this vehicle

14: improved = true
15: end if
16: end for
17: end while

Before calculating the average travel time of all vehicles,
the total travel time of each vehicle to reach its destination
location at time t was calculated. However, the current

position of a vehicle at time t is not necessarily a location
of the road network, but an intermediate position of a road
segment. Therefore, the starting location of a vehicle is
considered as the location at the end of the current road
segment. We used (3) to calculate the total travel time of a
vehicle at time t .

VT (t) =

∑
∀ l∈Vi,j

Tl(t) + δk,i(t) (3)

where Tl(t) is the travel time of the road segment l at time
t , Vi,j is the route of the vehicle from the location i to the
location j, and δk,i(t) is the travel time of the vehicle from its
current position k to location i at the end of the current road
segment at time t . We used (4) to calculate the travel time
from the current position of the vehicle to the end of the road
segment.

δk,i(t) =
Tl(t)
dl

∗ dk,i (4)

where Tl(t) is the travel time of the road segment in which
the vehicle is on at time t , dl is the distance of the road
segment and dk,i is the distance from the current position to
the location i at the end of the road segment.
Finally, we used (5) to calculate the average travel time of

all vehicles at time t .

Tave(t) =

∑n
i=1 VTi (t)
n(t)

(5)

where VT [i] is the total travel time of vehicle i to reach its
destination at time t , n is the total number of vehicles in the
road network at time t , and Tave(t) is the average travel time
of all the vehicles at time t .

IV. DESIGN OF EXPERIMENTS
The performance of the proposed framework is evaluated by
experiments. The main goal of the experiments is to answer
the question of: How is the performance of the proposed
framework compared to other methods? In this section,
we elaborate how the experiments are designed. We first
introduce the road traffic networks used for the experiments
and the baseline methods used to compare the performance
of the proposed framework.

A. METHODOLOGY
The proposed framework is evaluated by experiments, which
are carried out on SUMO 1.16.0 [39]. SUMO is an open-
source, portable, microscopic, and continuous multimodal
traffic simulation package that is used for modeling, ana-
lyzing, and evaluating performance and managing urban
road traffic networks. The proposed framework is evaluated
by comparing its performance with that of three dynamic
vehicle routing benchmark methods for two traffic scenarios
in SUMO through simulation experiments. One traffic
scenario is a popular benchmark traffic assignment problem
(Section IV-C); another is a real-world traffic scenario
(SectionIV-B).
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For each of the two traffic scenarios, we start by getting
each vehicle started traveling from its predefined departure
position towards its predefined destination along the fastest
route that can be taken at the time of departure. SUMO
records the route in a file. Since the traffic in the road
network is dynamically changing, at a regular time interval
t, we use the proposed coordinated multi-vehicle dynamic
routing algorithm to regenerate a new route for each of the
vehicles in the traffic road network such that the average
travel time of the vehicle is minimal, and we update the route
for each of the vehicles and update the route stored in the
file. We continue to do this until the experiment is completed.
After the experiment finishes, we convert the recorded
routes stored in the file into a simulation configuration of
SUMO, and run SUMO to work out the average travel time.
We repeat the process for the same traffic scenario with
the three benchmark methods and calculate their average
travel time.

We evaluated the proposed centralized coordinated
multi-vehicle dynamic routing framework in average travel
time of all vehicles in the road network. In the experiments,
the proposed method is compared with three other baseline
methods; iterative, incremental, and fastest route method and
further described in Section IV-D in the same environment
for the same traffic scenarios. The travel time of a vehicle n
is calculated using the SUMO travel time function, which is
TTn =

Ln
Vn

, the ratio between the route length (Ln) and
the average speed (Vn) of the vehicle n. Furthermore, we used

TT ∗
n =

∑
∀n TTn
N to calculate the average system travel time

of all vehicles currently traveling in the road network, where
N denotes the total number of vehicles in the road network.
TTn denotes the travel time of the vehicle n. The average
travel time of all vehicles is used as themeasurement standard
for evaluation methods. Our method is implemented in C #
and all the experiments are carried out on a laptop with four
cores (1.80 GHz Intel Core(TM) i7-8550U CPU) and 8 GB
RAM.

B. ROAD NETWORKS
Two road networks with different road geometry are used
in the simulation experiments. One is the road network
depicted in Fig. 2, which is taken from [40]. This road
network contains 13 intersections and 23 links. To simplify
the experiment, all the roads in this road network are defined
as bidirectional of two lanes. The cost of the link in the
road network is the travel time in minutes between two
ends of the link. Table 1 presents the link attributes of the
network.

Another road network is a road network in the city of
Bologna, Italy, which is frequently used as a test problem
in the research on DTA. The road network includes the area
between the two main streets Andrea Costa and Pasubio
(Fig. 3). This road network was originally prepared by
iTetris (‘‘An Integrated Wireless and Traffic Platform for
Real-Time Road Traffic Management Solutions’’), but later

FIGURE 2. A road network adopted from [40].

TABLE 1. Link attributes.

TABLE 2. Characteristics of the Bologna road network.

was made public in [41]. The Bologna traffic network
includes 159 junctions and 268 road segments. The data set
includes details of the network topology and information
about each road segment, including the number of lanes,
length, and free-flow travel speed. Furthermore, the same
types of road have the same attribute values except for
the length. The characteristics of the road network are
summarized in Table 2.
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FIGURE 3. A road network from Bologna, Italy.

TABLE 3. Traffic Demand (per hour).

C. TRAFFIC SCENARIOS
During our experiments, we have used two different traffic
scenarios to accommodate the two traffic networks used.
The following section summarizes the details of the traffic
scenarios used.

1) TRAFFIC SCENARIO 1
This traffic scenario is based on the first road network
depicted in Fig. 2, in which the authors defined four pairs
of origin-destination and distributed the total traffic demand
of 1700 vehicles as in Table 3. However, not all the demand
of traffic is loaded onto the network at once. Total demand
is loaded to the network incrementally by a fraction of the
demand in four stages for each link. The fractions that we use
in the experiments are 0.4, 0.3, 0.2, and 0.1 for the links 1-12,
1-13, 2-12 and 2-13, respectively. Traffic is loaded into the
road network in a time interval of 300s.

2) TRAFFIC SCENARIO 2
The traffic scenario 2 used in this paper was adopted by [42].
The scenario was obtained by joining two areas around a
football stadium and a hospital. In addition to the traffic
demand for the morning traffic demand, the joined scenario
also includes the traffic demand for a football game. During
this period, 11000 vehicles enter the road network at a steady
rate of all origin-destination pairs with given departure times.
The demand profile comes from the study of [41]. Fig. 4
shows the traffic demand profile of the road network over
time. In this traffic scenario, we perform traffic assignment
at a time interval of 600s.

FIGURE 4. Traffic demand profile of the Bologna road network.

TABLE 4. Parameters used to create traffic scenario 1.

D. BENCHMARK METHODS
To demonstrate the effectiveness of the proposed framework,
we compare it with three baseline methods; iterative assign-
ment method, incremental assignment method, and fastest
route method. The baseline methods are briefly summarized
below:

• Iterative method: the algorithm starts with some initial
set of routes and gradually proceeds to improve the travel
times of vehicles. The goal of the iterative method is
to find a route for each vehicle such that each vehicle
cannot reduce its travel cost (usually the travel time) by
using a different route. It does so iteratively by applying
the last known edge costs to derive the travel costs of the
next routing step [43].

• Incremental method: In incremental assignment, each
vehicle will compute the fastest route at the time of
departure and then recalculate the route based on the
instantaneous travel time of each respective road link.
It does not attempt to generate an optimal route solution,
rather it prevents all vehicles blindly selecting the same
route to travel.

• Fastest route method: This algorithm generates the
routes with the fastest travel time without considering
re-routing.

V. EXPERIMENT RESULTS
In this section, we compare the experimental results obtained
from the proposed framework with those of the three
benchmark methods described in Section IV-D. The three
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TABLE 5. Statistics of the experimental results - Scenario 1.

TABLE 6. Statistics of the experimental results - Scenario 2.

FIGURE 5. Road network of scenario 1 modeled by SUMO.

benchmark methods were implemented using tools provided
by the SUMO generator. The fastest route was calculated
using the duarouter tool which is based on Dijkstra’s shortest
path algorithm using the free-flow edge traversal time as
the edge weights. The iterative method was performed using
the duaiterate tool which iteratively calls duarouter which
finds routes for vehicles in a network with the last known
edge costs (starting with empty-network travel times) and
then calls SUMO to simulate ‘‘real’’ travel times result from
the calculated routes. The result edge costs are used in the
next routing step. This process is called iteratively to a fixed
number of determined dynamically depending on the used
options. Finally, oneshot-assignemnt tool in SUMO is used to
implement the incremental assignment method with periodic
re-routing.

For traffic scenario 1, we use the NetEdit tool in SUMO
to create the traffic network depicted in Fig. 2 into a SUMO
usable format (Fig. 5) and OD2trip.py script in SUMO to
generate the demand file (trip file). We load the traffic
demand at a steady rate by deploying all vehicles within the
first minute of every time interval as shown in Table 4. The
generated trip file includes the starting position, destination,
and departure time of each vehicle. All four assignment

FIGURE 6. Road network of Bologna city modeled by SUMO.

methods use the same network topology and the same traffic
flows for consistency.

Table 5 shows the comparison of the mean and standard
deviation of our proposed framework with the other three
assignment methods. The fastest route assignment is carried
out with the default parameters of the duarouter tool in
SUMO. In duarouter, the default parameters include theDijk-
stra algorithm to calculate the shortest route with free-flow
travel time. Furthermore, in the iterative DTA, we set the
number of iterations to 20, and in the incremental assignment,
the link time update interval is set to 300s. Similarly, both
our proposed framework and iterative DTA update route
assignment to optimize traffic at every 300 seconds time
interval.

As can be seen from the statistics of the experimental
results for Traffic Scenario 1 in Table 5 that among the four
methods, our method has the shortest average travel time.
In fact, the maximum travel time of the 30 runs of our method
is still shorter than the minimum average travel time of the
30 runs of any of the other three methods.
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In traffic scenario 2, we use the network file made available
by [41] (Fig. 6) to perform the simulations. The trip file
is created by extracting the OD pairs and departure times
from the route file provided by the same study. For Traffic
Scenario 2, the iterative DTA uses 30 iterations and the
link time update interval for the increment assignment is
set to 600 seconds. In addition, for Traffic Scenario 2, the
proposed framework and iterative DTA update the route
assignment every 600 seconds. Table 6 shows the statistics
of the experiments for scenario 2.

It can be seen from the statistics in Table 6 that among the
fourmethods, ourmethod has the shortest average travel time.
Compared to the iterative method, our method reduces the
average travel time by 2.31%; compared to the incremental
method, our method reduces the average travel time by
5.55%; and compared to the fastest method, our method
reduces the average travel time by 22.07%.

To confirm this claim, we have also performed a
two-sample paired t-test with the average travel time of our
proposed method and the average travel time of each of the
other three methods. The null hypothesis is that the average
travel times of the two are equal. The P-values of these t-
tests for our proposed method with the iterative method,
the incremental method and the fastest method for Traffic
Scenario 1 are 8.40776E-17, 1.34279E-29, and 3.84097E-
35, respectively; and the P-values of these t tests for our
proposed method with the iterative method, the incremental
method, and the fastest method for Traffic Scenario 2 are
0.00739, 2.72914E-06, and 5.36163E-22, respectively. Since
all P-values are less than 0.05, the null hypothesis is rejected.
This indicates that the average travel time of our method
is significantly shorter than that of any of the benchmark
methods.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a coordinated multi-vehicle
dynamic routing framework that considers the dynamics
of the road network and fairness of all vehicles. This
proposed framework uses a route generator to periodically
and dynamically generate a new route plan for each of the
vehicles on the road network, with the aim of minimizing
the average travel time of all vehicles. Fairness is considered
by assigning to all vehicles that are currently in the same or
similar location and have the same destination location a route
with the same or similar travel time.

This proposed coordinated multi-vehicle dynamic rout-
ing framework has been implemented and evaluated by
comparing with three popular noncoordinated multi-vehicle
routing frameworks by simulation. The simulation results
have shown that the proposed framework significantly
outperforms the three noncoordinated multi-vehicle routing
frameworks.

The objective of this research is to prove that a coordinated
multi-vehicle dynamic routing framework is better than
noncoordinated multi-vehicle dynamic routing frameworks.
The work presented in this paper is our preliminary

research result. One of our future work is to parallelize
the hill-climbing algorithm to reduce its computation time,
as this multi-vehicle dynamic routing problem is a real-time
optimization problem. Thus, it is necessary to make the
implementation of the algorithm very efficient.
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