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ABSTRACT In response to the issue of insufficient nighttime illumination in mechanical weeding of
maize crops, this study proposes an improved YOLOv7-tiny network model infrared image object detection.
The model incorporates the ShuffleNet v1 network to reduce computational complexity, enhance image
feature extraction, and obtain more comprehensive semantic information. Additionally, the Coordinate
Attention(CA) mechanism module is integrated into the neck network to improve sample detection per-
formance. The EIOU loss function is employed to replace the original loss function, which results in faster
model convergence and improved positioning accuracy. The improved YOLOv7-tiny network model is used
to detect maize seedlings, with the center point of the detection box serving as the navigation reference point.
Subsequently, the least squares method is used to fit the maize rows on both sides, thereby obtaining the
inter-row navigation line in the middle of the two rows. Experimental results demonstrate that the improved
YOLOv7-tiny network model achieves a detection accuracy of 94.21 % and a detection speed of 32.4 frames
per second, enabling accurate identification of maize seedlings at night. The average error between the
extracted positioning reference points and the manually labeled midpoint of the maize seedlings is 4.85 cm,
meeting navigation requirements of maize crop rows and providing feasibility for deployment on mobile
terminal devices.

INDEX TERMS YOLOv7-tiny, object detection, inter-row navigation line, ShuffleNet v1, attention mech-
anism, loss function.

I. INTRODUCTION
The mechanization of maize cultivation has experienced a
paradigm shift with the emergence of intelligent weed control
machinery, drastically reducing the dependence on chemi-
cal pesticides and fostering the sustainable development of
maize crops [1], [2]. At the core of these systems’ suc-
cess is the precise detection and navigation along maize
row lines, which facilitates accurate weeding operations and
substantially reduces the necessity for manual labor [3],
[4], [5]. The ability to perform mechanical weeding noc-
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turnally not only enhances productivity but also serves to
safeguard early-stage maize seedlings from harm and to
counteract the environmental stressors experienced during
daylight hours [6], [7]. Despite the impressive advancements
in agricultural automation, intelligent weed control systems
continue to face challenges when operating in the less than
ideal nocturnal lighting conditions [8], [9]. The diminished
intensity of night lighting can lead to a loss of clarity in
target edges and details, resulting in decreased accuracy of
detection. Insufficient illumination can introduce noise and
blur into images, causing targets to merge indistinguishably
with the background and thereby adversely affecting the
recognition and localization of the targets.
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Infrared imaging technology has emerged as a promis-
ing solution to the low-light challenge, with its ability to
render clear images in the absence of sufficient visible
light by capturing infrared radiation [10]. Traditional target
detection models, however, often underperform in the com-
plex and variable conditions of nighttime agriculture due to
their reliance on manual feature extraction and prior knowl-
edge [11]. In contrast, machine learning, and in particular
deep learning techniques, have shown superior performance
in feature learning for target detection and recognition, with
convolutional neural networks leading the charge [12].The
literature reveals various efforts to harness these advanced
technologies for agricultural applications. Xue et al. [13] and
Qing et al [14] have explored the use of infrared imaging in
night scenes, with Qing et al. developing lightweight CNN
models suitable formobile and embedded systems. Li [15] the
author has advanced this approach by utilizing the YOLOv3
network model to overcome the limitations of conventional
cameras, especially in detecting overlapping pedestrians in
low-light conditions.

Specifically focusing on agricultural settings, Sa et al. [16],
the authors have experimented with pixel-based fusion tech-
niques such as Laplacian Pyramid Transform (LPT) and
fuzzy logic to enhance fruit detection using RGB and near-
infrared (NIR) images. Tian et al. [17] have proposed a
dual-input network to sense human shapes in agricultural
fields, combining RGB and far-infrared (FIR) images for
improved safety. In the realm of crop row fitting, which
is vital for automated weed control, Zhang et al [18] have
utilized YOLOv3 network modelfor target extraction of
rice seedlings, while Peng et al. [19] have developed an
enhanced YOLOv7 networkmodel tailored for detecting nav-
igation lines across diverse orchard and crop row settings,
these approaches have yet to comprehensively address the
intricacies associated with varying growth stages and envi-
ronmental conditions. To address issues related to lighting
and weed interference, Liu et al. [20] proposed an improved
Multi-Scale Efficient Residual Factorized ConvNet (MS-
ERFNet) model for the recognition of seedling maize crop
rows. The approach also involved utilizing the Least Squares
Method to fit the centerlines. Yang et al. [21] combined
the YOLOv5 network model with the ExG (excess green)
method and Otsu method for navigation line recognition in
maize crop rows, achieving line fitting with the least squares
method, but still facing limitations related to crop growth and
environmental factors.

Within the framework of the aforementioned research
context, this study is dedicated to mitigating the impact
of inadequate nocturnal illumination on crop identification,
with an extended investigation into the recognition of maize
crop rows via night-time infrared imaging. By integrating
an augmented YOLOv7-tiny network model, we endeavor
to employ bounding boxes anchored by the bottom cen-
ter coordinates coupled with the least squares method for
enhanced precision in localization, thereby accommodating
the alignment of navigation lines with maize crop rows

during nocturnal operations. Our model is meticulously
tailored for deployment on resource-constrained mobile ter-
minals, thus fostering efficient night-time weedmanagement,
inaugurating novel operational paradigms, and contribut-
ing fresh perspectives for the nocturnal weeding machinery
workflow.

II. YOLOV7-TINY NETWORK MODEL
Wang et al. [22], the authors proposed the YOLOv7 net-
work model, which is an optimized version of the YOLOv5
network model and represents the latest network model in
the YOLO series. YOLOv7 network model exhibits signif-
icant improvements in both detection accuracy and speed
compared to YOLOv5 network model [23]. However, the
complexity of the network architecture and the large num-
ber of parameters in YOLOv7 network model make it
demanding on device performance, rendering it unsuitable
for edge terminal devices [24], [25]. To address this issue,
the researchers designed the YOLOv7-tiny network model
based on YOLOv7 network model [26], [27], which features
a simplified structure specifically tailored for edge GPU
devices [28]. YOLOv7-tiny network model consists of three
components: the backbone network, the neck network, and
the prediction head, as illustrated in Fig. 1.

In the Backbone section, a more concise ELAN is
employed instead of E-ELAN, and the convolution operation
in MPConv is removed, using only pooling for down-
sampling. Simultaneously, the optimized SPP structure is
retained to provide richer feature maps for utilization in
the Neck layer. In the Neck section, the PANet structure is
still employed for feature aggregation. In the Head section,
standard convolution is used for channel adjustment, replac-
ing REPConv [29]. Compared to YOLOv7 network model,
YOLOv7-tiny network model sacrifices some accuracy but
gains advantages in terms of speed and lightweight design.
Nonetheless, YOLOv7-tiny model still has some limita-
tions [30].

Firstly, in the Backbone section, a significant utilization of
ELAN networks is observed, with each ELAN network com-
prising multiple densely connected standard convolutions.
This results in a complex network structure with an excessive
number of computations and parameters [31]. Moreover, the
network has a relatively limited number of layers, which
hampers effective feature extraction.

Secondly, the model employs the Leaky ReLU activa-
tion function throughout, which proves to be suboptimal
when propagating features downwards. As the model depth
increases, the gradient updates at each point become progres-
sively less smooth, thereby adversely affecting classification
accuracy.

Lastly, in the Neck section, the continued use of ELAN net-
works for feature aggregation can lead to redundant features.
Therefore, this study proposes a more lightweight approach
for feature aggregation, aiming to reduce both parameter
count and computational overhead while ensuring the preser-
vation of rich feature representations.

VOLUME 12, 2024 27445



H. Gong, W. Zhuang: Improved Method for Extracting Inter-Row Navigation Lines

FIGURE 1. YOLOv7-tiny networks model structure.

III. IMPROVED THE YOLOV7-TINY NETWORK MODEL
A. IMPROVEMENT OF THE BACKBONE NETWORK
To address the aforementioned shortcomings of YOLOv7-
tiny network model, improvements were made. This study
draws inspiration from ShuffleNet v1, a lightweight network
for image classification, to improve the Backbone struc-
ture by reducing dense connections and increasing network
depth. Reducing dense connections helps decrease compu-
tational load, while increasing network depth allows for
more comprehensive feature extraction [32]. The concept of
channel shuffling is introduced, which uniformly shuffles
the information from different channels in the input feature
map, addressing the issue of limited interaction between
groups in group convolution [33]. Furthermore, the net-
work combines group convolution with depth-wise separable
convolution to further reduce model parameters, effectively
decreasing the computational load of traditional convolu-
tional neural networks. The overall architecture is inspired
by residual networks, and the network depth is moderately
increased to enhance its learning capacity [34]. However,
due to the lightweight design, the main network sacrifices
some parameters and may not capture complete semantic
information, resulting in room for improvement in terms
of accuracy. To further enhance network performance, the
proposed approach involves improving the network structure
to address this issue.

The calculation of the number of parameters introduced by
each type of convolution operation is as follows:

Suppose the width and height of the input feature map are
Wi and Hi, respectively, with Ci channels, and the output has
Co channels. The size of the convolution kernel is K × K .

Therefore, the number of parameters under a standard
convolution (sconv) is as shown in Equation (1).

Psc = Ci × Co × K × K (1)

Group convolution (GConv) builds upon the standard
convolution by dividing the convolution kernels and input
channels into g groups. Each group of kernels convolves
with the feature map independently, resulting in the following
parameter count as shown in Equation (2).

PGC = Ci/g× Co × K × K (2)

Depth-wise separable convolution (DWConv) involves
channel-wise convolution operations on the input feature
map, with the number of convolution kernels equal to
the number of input channels. The parameter count for
depth-wise separable convolution is as follows, represented
by Equation (3).

PDW = Ci × K × K (3)

Among these convolution operations, standard convolution
has the highest number of parameters. Group convolution
has 1/g of that, and depth-wise separable convolution has
the least, only 1/Co of the standard convolution’s parameters.
Therefore, combining group convolution with depth-wise
separable convolution can significantly reduce the network’s
parameter count and computational requirements. However,
this combination may also lead to a substantial loss of
semantic information. Fig. 2 illustrates the basic modules of
ShuffleNet v1 network model, consisting of Unit (a) with a
stride of 1 and Unit (b) with a stride of 2.
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FIGURE 2. ShuffleNet v1 network basic model.

In this study, the network structure includes two basic mod-
ules: Unit (a) and Unit (b). In Unit (a), the network is divided
into two branches. The left branch remains unchanged, while
the right branch undergoes group convolution and depth-wise
separable convolution operations, along with batch normal-
ization and channel shuffling. Finally, the feature maps from
both branches are fused through an element-wise addition
operation.

In Unit (b), similarly, there are two branches, with down-
sampling operations applied to both the left and right sides.
The left branch reduces the feature map size by half using
average pooling, while the right branch performs a con-
volution operation with a stride of 2. Finally, the feature
maps from both branches are concatenated to double the
dimensionality. By interleaving the usage of these two basic
modules, the ShuffleNet v1 network is constructed, achieving
lightweight feature extraction.

Investigative scrutiny of ShuffleNet v1 network’s pri-
mary modules reveals that the input features, upon entering
the right pathway, are first subject to a group convolution
(GConv), succeeded by channel shuffling. This is followed
by a 3 × 3 depth-wise separable convolution (DWConv),
culminating in a subsequent group convolution. This progres-
sion leads to a substantial reduction in parameters within the
network, albeit with a commensurate diminution in seman-
tic detail and a slight compromise in accuracy. Depth-wise
separable convolution, characterized by per-channel convo-
lutional operations, substantially lowers parameter numbers
but lacks inter-channel communication, resulting in an out-
put deficient in feature richness. Channel shuffling aims to
ameliorate this by randomly reordering channel positions, yet
it does not substantially enhance the semantic interchange
among channels.

To address these shortcomings, modifications to the right
branch of Fig. 2’ s modules have been proposed. Initially,
replacing depth-wise separable convolutions with group con-
volution modules marginally increases parameters while fos-
tering inter-channel information flow. Subsequently, channel
shuffling is supplanted by a 1×1 standard convolution placed
at the branch’s terminus. This standard convolution not only

FIGURE 3. Basic moudle of improved ShuffleNet v1.

fulfills a comparable role but also amplifies the semantic rich-
ness of the feature map without accruing additional parame-
ters. Fig. 3 delineates the revised ShuffleNet v1 module.

B. COORDINATE ATTENTION MECHANISM
The attention mechanism is a data processingmethod that can
be applied to the task of maize crop recognition. By dynam-
ically weighting the inputs, the attention mechanism can
emphasize the relevant regions while suppressing the irrel-
evant background regions. In the context of maize crop
recognition, the spatial attentionmechanism can be employed
to focus on the regions related to maize seedlings. The atten-
tion mechanism enables accurate attention calculation for
complex target regions, such as occlusions between leaves
and residues covering the stems. By leveraging the spatial
attention mechanism, the features of maize seedlings can be
effectively extracted, leading to accurate recognition.

Contemporary attention frameworks often resort to global
max or average pooling, which risks forfeiting the spa-
tial delineation of objects. The Squeeze-and-Excitation
Network (SE) attention mechanism module, for instance,
is preoccupied with fostering inter-channel dependencies,
thus sidelining spatial attributes. The Efficient Channel
Attention(ECA) module evolves from SE by advocating a
one-dimensional convolution technique to somewhat coun-
teract the data distortion caused by fully connected layers’
dimensionality reduction, yet it encounters limitations in
managing global dependencies and the interplay of chan-
nel and spatial realms. The Convolutional Block Attention
Module (CBAM) introduces expansive convolutional ker-
nels for spatial feature extraction, yet it neglects long-range
dependencies and is marred by considerable computational
demands and augmented complexity. Conversely, the Chan-
nel Attention (CA) module contemplates both channel and
spatial dimensions, assimilating adaptive channel weights to
accentuate pertinent channel information, thereby refining
the model’s focal precision.

This study proposes the incorporation of the CA mod-
ule scheme into the YOLOv7-tiny framework, orchestrating
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feature maps along both vertical and horizontal axes via
global average pooling to forge discrete directional fea-
ture maps. These are transmuted into dual attention maps,
each ensnaring the extensive spatial correlations along a
singular spatial trajectory of the input feature map. The
application of these attention maps to the input feature map
through multiplication serves to underscore salient represen-
tations. This module is proficient in capturing inter-channel
data while remaining attuned to positional and directional
nuances, which bolsters the model’s discernment and pin-
pointing faculties [35]. Deploying the CA module to the triad
of potent feature strata procured from the mainstay network,
as well as post-upsampling, amplifies the model’s repre-
sentational acumen, curtails distractions from non-essential
targets, and intensifies the recognition and positioning of
pertinent targets, thus elevating the network’s aggregate
detection accuracy. The CA module is adeptly applied to
a maize seedling target detection model [36], with the net-
work architecture depicted in Fig. 4. By embedding spatial
locational intelligence into channel attention, the CA mech-
anism module not only curtails computational expenditure
but also magnifies the feature extraction potency of targets.
The induction of the CA module has been demonstrated to
concurrently enhance the precision and expedition of maize
seedling recognition.

In the embedding of coordinate information, the input fea-
ture map with dimensions C ×H ×W undergoes directional
pooling along the X and Y axes to generate attention feature
maps Zh and Zw with dimensions C×1×W and C×H ×1,
respectively.

To encapsulate remote spatial interactions with precise
locational data, global average pooling is deconstructed as
illustrated in Equation (4):

Zhc (h) =
1
W

∑
0≤i<W

xc(h, i)

Zwc (w) =
1
H

∑
0≤i<W

xc(j,w)
(4)

where xc signifies the c-th channel of the input feature X, with
h and w denoting the feature map’s height and width during
model training.

The feature maps Zh and Zw are then concatenated, sub-
jected to the F1 operation (utilizing a 1 × 1 convolution for
reduction in dimensionality) followed by an activation func-
tion, yielding the feature map f , where (f ∈ R C/r×(H+W )×1),
with r representing the downsampling stride to regulate the
CA module’s dimensionality, as presented in Equation (5):

f = δ(F1([Zh,Zw])) (5)

In this context, δ denotes the nonlinear activation function.
The feature map f is then divided along the spatial axis

into two distinct feature maps f h ∈ RC/r×H×1 and f w ∈

RC/r×1×W . These are subsequently upscaled through two
1×1 convolutions in conjunction with an activation function,
culminating in the generation of the attention weight maps

FIGURE 4. Coordinate attention module. Note: C, H, and W for channel
number, height, and width, respectively. r is the reduction factor.

(gw) and (gh), as indicated in Equation (6):{
gw = σ (Fw(f w))
gh = σ (Fh(f h))

(6)

In the final step, (gw)) and (gh) are expanded, and through
matrix multiplication, the output is derived as described in
the ensuing formula.

C. EIOU LOSS FUNCTION
Crop recognition during nighttime constitutes a formidable
task due to the dimly lit conditions which obscure the edges
and details of target objects. Hence, accurate target local-
ization is crucial in nocturnal crop recognition [37], [38].
The YOLOv7-tiny network model incorporates a loss func-
tion that consists of classification loss, localization loss,
and confidence loss. By applying distinct weighting coeffi-
cients to these three losses, outcomes of varying emphasis
can be achieved. Within YOLOv7-tiny network model, the
coordinate loss is computed using the complete intersection
over union (CIOU) metric, as shown in Equation (7) and
Equation (8).

CIOU = IOU −
ρ(b, bgt )

c2
− αv (7)

LCIOU = 1 − IOU +
ρ(b, bgt )

c2
+ αv (8)

In the equation, ρ(b,bgt )
c2

represents the penalty term, while b
and bgt respectively denote the center points of the predicted
box and target box. The variable ρ represents the Euclidean
distance between the two points, and c represents the distance
between the diagonal of the minimum enclosing rectangle
formed by the predicted box and the target box. The param-
eter a represents α positive weight balancing factor, and v
represents the measurement of consistency in the aspect ratio
between the predicted box and the target box.
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Regarding parameters α and v, as shown in Equation (9)
and Equation (10).

α =
v

1 − IOU + v
(9)

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2 (10)

However, equation (10) solely reflects the disparity in
aspect ratios. While CIOU loss function considers the shape
similarity between the predicted and true bounding boxes,
it disregards the differences in width and height. Conse-
quently, CIOU loss function may optimize similarity in
an unreasonable manner. The Enhanced Intersection over
Union(EIOU) loss function addresses this by introducing
additional terms for distance loss and aspect ratio loss. Dis-
tance loss quantifies the Euclidean distance between the
centers of the predicted and true boxes, optimizing the
coordinates of the predicted box center. Aspect ratio loss
computes the L1 distance between the widths and heights
of the predicted and true boxes. Minimizing these discrep-
ancies enables the model to achieve more precise boundary
localization of the target. Compared to the inclusion of solely
IOU loss function, the EIOU loss function provides a more
comprehensive and robust supervisory signal by incorporat-
ing distance and aspect ratio losses. This benefits the model’s
concurrent learning across classification, confidence, and
localization. Thus, the EIOU loss function supersedes CIOU
loss function as the localization loss function in the YOLOv7-
tiny network model, as defined in Equation (11).

LEIOU =1−IOU+
ρ2(b, bgt )

(wc)2+(hc)2
+

ρ2(w,wgt )
(wc)2

+
ρ2(h, hgt )
(hc)2

(11)

The EIOU loss function comprises three components, with
the first two inherited from the geometric considerations
of CIOU loss function. In the computation of aspect ratio
loss, EIOU loss function separately calculates the impact of
length and width for the predicted and true boxes, minimiz-
ing the differences between their widths and lengths, which
accelerates convergence. Given the presence of numerous
targets of varying scales in infrared scenes, the EIOU loss
function facilitates faster model convergence during train-
ing. As it accounts for multiple types of errors, providing a
more comprehensive error metric, the model can learn from
various perspectives simultaneously. During the inference
phase, the EIOU loss function enhances localization accu-
racy. With more precise predictions of box centers and sizes,
the extracted reference points for localization align more
closely with manually annotated points, thereby improv-
ing the effectiveness of subsequent crop navigation line
fitting.

D. INTEGRATION OF IMPROVED MODULES
In summary, the YOLOv7-tiny network model has undergone
improvements by integrating a revised network structure,
as illustrated in Fig. 5. The original CSPDarknet53 module

has been replaced with the lightweight ShuffleNet v1 back-
bone network. The CA attention mechanism is employed to
enhance feature maps of various sizes extracted prior to fea-
ture fusion. The EIOU loss function is utilized, and the Leaky
ReLU activation function is substituted with SiLU. Following
parameter adaptation and adjustment, the integration of the
enhanced module with the YOLOv7-tiny object detection
network is successfully accomplished.

IV. RESULTS
A. DATA COLLECTION AND PREPROCESSING
The collected dataset consists of infrared images of maize
plants captured at the Precision Agriculture Laboratory of
the College of Engineering, Heilongjiang Bayi Agricultural
University. The HD-SDI6006 infrared onboard camera was
used for data acquisition. The dataset covers the entire growth
period of maize crops and includes simulated scenarios such
as leaf occlusion and missing seedlings. Additionally, images
were captured in themaize inter-row spaces at Plot 2-10 of the
Second Division of the Friendship

Farm in Heilongjiang Province. The maize was planted in
a double-row pattern with large ridges, and the rowwidth was
1.1 m. The camera was mounted on a tractor and positioned
in the middle of the maize rows, approximately 1.5 m above
the ground. By slowlymoving forward, images were captured
to obtain information about the inter-row spaces. The dataset
was further processed by frame sampling, resulting in a total
of 2000 images. The dataset was divided into a training set
(1600 images), a validation set (200 images), and a test set
(200 images). The images were manually annotated using the
LabelImg tool, with the label set as ‘‘maize’’.

B. EXPERIMENTAL ENVIRONMENT AND EVALUATION
METRICS
The experiments were conducted on a computer system
consisting of an Asus machine equipped with an Intel(R)
Core(TM) i7-10700H 2.50 GHz processor, 32 GB of RAM,
and an Nvidia GeForce RTX 4070 GPU. The operating
system used was Windows 11 (64-bit). The deep learning
environment was set up with Python 3.9 and Torch 2.0.1. Data
augmentation techniques, including random scaling, random
cropping, and color enhancement, were employed during
the training process to improve the model’s generalization
capability. The network model was trained and updated using
the stochastic gradient descent (SGD) algorithm to optimize
the network parameters. A cosine annealing learning rate
decay strategy was implemented. The specific hyperparam-
eters used in the experiments are presented in Table 1.

The performance of the improved model was evaluated
using precision (P), recall (R), average precision (AP), num-
ber of parameters (Params), and frames per second (FPS).
Precision measures the ratio of correctly predicted positive
instances to all instances predicted as positive, while recall
measures the ratio of correctly predicted positive instances
to all actual positive instances. The number of parameters
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FIGURE 5. Improved the YOLOv7-tiny networks model structure.

TABLE 1. Network training hyperparameters.

indicates the spatial complexity of the model, and frames
per second evaluates the recognition speed of the model.
The calculation formulas for these metrics as shown in
Equation (12)-(14):

P =
TP

TP + FP
× 100% (12)

R =
TP

TP + FN
× 100% (13)

AP =

∫ 1

0
P(R)dR (14)

In the equation: TP represents the number of correctly
detected maize by the model, FP represents the number of
background mistakenly detected as maize by the model, FN
represents the number of maize not detected by the model, AP
represents the integral area enclosed by the precision-recall
curve for a single class detection target.

C. ANALYSIS OF EXPERIMENTAL RESULTS
To demonstrate the improved YOLOv7-tiny model’s supe-
rior capability in detecting nocturnal maize crops using
infrared imagery, we conducted comparative experiments
against established models including SSD, YOLOv4-tiny,
YOLOv5s, and the unmodified YOLOv7-tiny. Each model
underwent training and evaluation on the same hardware

TABLE 2. Comparison of different models test results.

setup, with a dataset of 2,000 nocturnal infrared maize crop
images. The outcomes, as summarized in Table 2, highlight
the performance variances across different metrics.

In our analysis, the SSD model recorded an average preci-
sion of 74.85 %, the lowest among the contenders, primarily
due to its large parameter count of 33.2 M, which reduces
its effectiveness under low-light conditions. Conversely, the
improved YOLOv7-tiny model, incorporating an attention
mechanism for enhanced feature extraction, achieved the
highest average precision of 94.21%. This represents a signif-
icant advancement over the SSD model, with a frame rate of
32.4 fps and a slight parameter increase to 6.4 M, illustrating
its efficiency and effectiveness. The YOLOv4-tiny model,
while faster at 23.4 fps, offered a lower average precision
of 89.05 % due to its reduced capability in handling the
intricacies of nocturnal imagery, despite its smaller parameter
size of 7.2 M. The improved YOLOv7-tiny model not only
surpassed this with a higher precision but also maintained
a competitive processing speed, underscoring its superior
feature extraction and recognition capabilities.

Although the YOLOv5s model achieved a commendable
average precision of 93.58 %, its larger parameter size of
14.1M hampers its applicability in real-time edge device sce-
narios. The enhancedYOLOv7-tinymodel, on the other hand,
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FIGURE 6. Comparison of maize detection model performance. Note: The
boxed lines in the figure represent the rectangular bounding boxes
detected by the model, and the yellow circles indicate areas of false
positives and false negatives.

utilizes ShuffleNet to compress its parameters to 6.4 M while
still achieving a high recognition accuracy of 94.21 % and
the highest frame rate among the models tested. This makes it
exceptionally suited for edge computing applications, where
both speed and accuracy are critical.Compared to the original
YOLOv7 networkmodel, it improves accuracy by 0.49% and
frame rate by 4.6 fps.

D. COMPARISON OF DETECTION RESULTS
In order to validate the efficacy and universality of the
proposed algorithmic enhancements for maize crop row fit-
ting, we compared the detection outcomes of the original
YOLOv7-tiny network model with those of the improved
YOLOv7-tiny network model. Specifically, we selected three
types of scenes from nocturnal infrared imagery of maize
crop: images under normal operating conditions, images with
maize seedling leaves occluding the view, and images with
straw stubble coverage, as depicted in Figure 6.

We analyzed the model’s recognition accuracy across
these three scenarios. The results indicated that under leaf
occlusion conditions, both the original YOLOv7-tiny net-
work model and YOLOv5s network model failed to detect
distant crops, and the target bounding boxes for maize
crops were inaccurately marked due to insufficient clarity
of nighttime crops. Conversely, the improved YOLOv7-
tiny network model circumvented these issues, successfully
detecting maize crops with less prominent features at a
distance. Under normal operating conditions, the original

YOLOv7-tiny network model misidentified adjacent leaves
as crops, whereas the improved YOLOv7-tiny networkmodel
achieved successful detection with greater precision. In areas
covered with straw stubble, the dense maize straw stubble
led the original YOLOv7-tiny network model to misclassify
the stubble and maize crops as the same category, thereby
affecting the positioning accuracy.

In contrast, the improved YOLOv7-tiny network model
was capable of identifying a greater number of maize
crops. The experimental findings demonstrate that the refined
model can detect targets within a maize field environment
more effectively and accurately. Additionally, the confidence
scores output by the improved YOLOv7-tiny network model
were generally higher, indicating that the refined network
possesses a more robust detection capability and can better
focus on the characteristic information of the targets.

V. NAVIGATION LINE DETECTION
A. ACQUISITION OF LOCALIZATION REFERENCE POINTS
The accurate extraction of reference points is crucial for
obtaining maize crop inter-row navigation lines. The specific
procedure is as follows: Firstly, the improved YOLOv7-tiny
object detection network model is used to identify maize
seedlings in the field, resulting in the rectangular bounding
coordinates for each maize seedling. Then, the rectangular
bounding coordinates of each maize seedlings are processed
to calculate the centroid coordinates for eachmaize seedlings.
The centroid coordinates (x,y) of a maize seedling can be
calculated from the top-left corner coordinates (x1,y1) and
bottom-right corner coordinates (x2,y2) of the rectangular
bounding box, as shown in Equation (15):

x =
x1 + x2

2

y =
y1 + y2

2

(15)

Subsequently, we undertake a linear regression analysis to
fit a line to the centroid of the maize seedlings. By leveraging
techniques such as linear regression, we can effectivelymodel
the central line equation that encapsulates the centroid data
points of the maize seedlings. Consequently, this equation
serves as a reliable reference for extracting key positioning
landmarks. These landmarks, such as the starting or ending
point of the central line, play a pivotal role in accurately
determining the spatial orientation of the maize crop rows.
The outcome of this process is illustrated in Fig. 7, where
the extracted positioning landmarks are denoted by yellow
markers, while the manually annotated centroid points of the
maize seedlings are represented by red markers.

B. ANALYSIS OF LOCALIZATION REFERENCE POINT
ERRORS
In order to assess the efficacy of the chosen reference points
for localization, an error analysis was performed on a ran-
domly selected subset of 100 maize seedling images from
the test dataset. Subsequently, a heat map was generated
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FIGURE 7. Results of localization reference point extraction for manually
labeled maize seedling midpoints. Note: The yellow marked points in the
figure represent the extracted localization reference points, and the red
marked points represent the manually labeled midpoint of the maize
seedlings.

FIGURE 8. Heatmap scatter plot of errors.

to visualize the discrepancies between manually annotated
and algorithmically recognized reference points, as depicted
in Fig. 8. The analysis revealed that the majority of both
horizontal and vertical errors were concentrated within a
10-pixel range. Specifically, approximately 97.5% of the hor-
izontal errors fell within this threshold, while approximately
98.5 % of the vertical errors exhibited the same characteris-
tic. Furthermore, the average linear error was quantified as
3.43 pixels.

In order to calibrate the camera, the intrinsic matrix
of the camera was obtained using Matlab software. This
intrinsic matrix allowed us to convert pixel coordinates into
camera coordinates, facilitating precise measurements of
object positions within the captured images. The resulting
average error between the positioning reference points and
the manually determined center of the maize crops was
calculated to be 4.85 cm. This finding substantiates the
effectiveness of utilizing the bottom midpoint of the rectan-
gular frame as a reliable reference point for navigation line
positioning.

C. NAVIGATION LINE FITTING
In this study, we utilize the least squares method to fit the
rows of maize crops for several compelling reasons:

1. The least squares method is a widely employed regres-
sion analysis technique that adeptly characterizes the rela-

FIGURE 9. Fitting results of maize seedlings on both sides.

tionship between a set of data points and a linear model.
It operates by directly minimizing the sum of the squares of
the residuals-the differences between observed and predicted
values. This approach effectively prevents the cancellation of
positive and negative errors.

2. Considering that the crop rows in the vast agricultural
production regions of Heilongjiang reclamation area tend to
exhibit an approximately linear distribution, the least squares
method is particularly well-suited for this purpose. Compared
to alternative approaches such as the Hough transform, the
least squares method requires fewer points to fit in our sce-
nario, thereby offering a lower computational complexity.
This is advantageous for real-time processing applications.

3. The least squares method yields the equation of the fitted
line, which facilitates subsequent extraction of navigational
reference points along the line, such as starting and ending
points.

Moreover, we integrate the RANSAC algorithm tomitigate
the influence of outliers on the fitting results, thereby further
enhancing the precision of the fit. The fundamental steps of
the RANSAC algorithm are as follows:

1. Randomly select a subset, denoted as n points, from the
localization reference points of the maize row on the left side
as the candidate inlier set.

2. Employ the least squares method to fit these n points
and derive a line (or curve) model. The least squares method
operates on the principle that, given a series of (xi, yi) points
(i= 1, 2, 3, . . . , N ), assuming a linear relationship between x
and y, fitting can be performed using the equation y=Kx+B.
The resulting green lines on both sides, as depicted in Fig. 9.

The fitted maize crop rows, as stated in Equation (16).{
yleft = Kleft × x + Bleft
yright = Kright × x + Bright

(16)

3. Calculate the distance between all other points and the
model, and set a threshold to classify points as inliers or
outliers. The optimization function aims to minimize the sum
of squared differences between the observed values and the
fitted values, preventing positive and negative errors from
canceling each other out, as stated in Equation (17).

f =

N∑
i=0

(yi − Kxi − B)2 (17)

The optimal parameters K and B are obtained when the
function f is minimized, indicating the best fit.

4. If the number of inliers exceeds a predefined threshold
and the fitting error of the model is smaller than the previous
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FIGURE 10. Inter-row navigation line fitting results.

best model, update the best model and re-estimate the inlier
set.

Repeat steps 1 to 4 until the predefined iteration count
is reached. By employing the RANSAC algorithm, a more
accurate fitting line for the maize crop rows can be obtained,
effectively removing the influence of outliers.

Assuming that 10 coordinates (xi,yi) are generated as posi-
tioning reference points on one side of the maize crop, i = 1,
2, 3, . . . , 10, the coordinates (xl,yc) and (xr ,yc) are selected
on the left and right sides of the crop row, respectively, with
c= 1, 2, 3, . . . , 10. By calculating the average x-coordinate of
these 10 points on each side, 10 positioning points (xa,yc) are
obtained for the navigation fitting line located in themiddle of
the two maize crop rows, where a= 1, 2, 3, . . . , 10. The least
squares method is then applied to these positioning points to
calculate the fitted inter-row navigation line, depicted as the
red line segment in Fig. 10.

However, the least squares method is not without its
limitations: it presumes that the data points adhere to a nor-
mal distribution, and deviations from this assumption may
compromise the efficacy of the fit. The method tends to
underperform when applied to crop rows with significant
curvature. Furthermore, a paucity of data points can also
diminish the accuracy of the fit. Overall, given the char-
acteristics of our scenario, the least squares method offers
a commendable balance between precision and efficiency,
rendering it a favorable choice. Nonetheless, it has its con-
straints, and alternative fitting algorithms that are more apt
for future applications may be considered.

The number of frames for three video segments, ran-
domly selected and captured exclusively during nighttime,
was recorded. Additionally, the program’s start and end times
were documented using a timer. The processing duration of
the program was determined by subtracting the start time
from the end time and then dividing by the number of video
frames to obtain the average processing time per frame.
The average processing times for these video segments were
found to be 0.057, 0.050, and 0.054 seconds per frame,
respectively. Consequently, the overall average processing
time was calculated to be 0.054 seconds per frame, which
satisfies the real-time processing requirements essential for
navigation in intelligent weed control machinery.

D. MOBILE PLATFORM DEPLOYMENT
The improved YOLOv7-tiny network model developed in
this study has been deployed on a 10-inch industrial tablet
computer manufactured by Apache in Chengdu, China. The
computer is equippedwith an Intel(R) Celeron(R) CPU J1800

FIGURE 11. Vehicle smart terminal.

TABLE 3. Performance comparison between different terminal devices.

processor, 2GB of installed memory, and runs on a 32-bit
Windows 7 operating system, as shown in Figure 11. It fea-
tures a CAN communication interface and supports plug-
and-play functionality, greatly simplifying the complexity of
traditional RS-232 interface wiring. This computer demon-
strates stable operational performance in harsh environments
such as agricultural fields, exhibiting high reliability and
good stability.

Following the deployment on the mobile platform, a series
of cyclic inference tests were conducted, achieving a detec-
tion speed of approximately 15 fps, which meets the
requirements of practical engineering applications. To further
evaluate the model’s real-world performance, inference tests
were carried out on a subset of nocturnal maize images
from the test set. The results indicated that for close-up
image samples, the model maintained effective inference
capabilities; for distant image samples with clear and distinct
maize crop information, the model also demonstrated high
recognition accuracy.

Not only was the algorithm effectively ported and deployed
on the mobile platform, but it also retained high precision.
Table 3 compares the performance differences in terms of
inference speed, model accuracy, and hardware cost between
the enhanced YOLOv7-tiny algorithm running on a tradi-
tional computer and on a mobile platform. Although there
was a slight decrease in model accuracy and a reduction in
inference speed due to the limitations of themobile processor,
the inference speed of 15 fps still largely meets the engi-
neering application requirements. Furthermore, the mobile
processor’s low cost, high integration, and compact structure
offer significant economic advantages for engineering appli-
cations.

VI. DISCUSSION
The improved YOLOv7-tiny network model proposed in
this paper demonstrates significant advantages in the task
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of nighttime maize seed detection and inter-row naviga-
tion line positioning. Unlike traditional methods reliant on
RGB imagery [6], this study employs infrared imaging
to bolster the model’s target detection capabilities in noc-
turnal settings. By integrating the ShuffleNet v1 network,
our approach not only achieves parameter compression but
also enhances feature extraction capabilities compared to
the original YOLOv7-tiny network model [22]. The intro-
duced Coordinate Attention mechanism, which considers
both channel and spatial dimensions, surpasses conventional
channel attention methods in enhancing model recognition
precision. Moreover, the adoption of the EIOU loss func-
tion [24] over the original loss function accelerates model
convergence and improves positioning accuracy. Compared
to methods dependent on centerline extraction models [18],
our proposed reference point positioning technique identifies
the location of inter-row navigation lines more accurately.
Experimental results indicate that, among other YOLOv7
network model variants [26], our model exhibits the best
balance between recognition accuracy and real-time process-
ing capabilities. Sa et al. [16] explored the fusion of RGB
and NIR multimodal images for fruit detection, employ-
ing pixel-level fusion techniques. However, the acquisition
of multimodal images incurs high costs. Yang et al. [21]
introduced a combination of YOLOv5 with the ExG method
and Otsu’s method for navigation line recognition, success-
fully segmenting crop rows and background within regions
of interest. Yet, their method’s performance in nocturnal
environments requires enhancement. Peng et al. [19] pro-
posed an improved YOLOv7-based method for navigation
line detection within orchards, achieving certain successes
in orchard navigation demands. However, this method has
not yet fully addressed nighttime maize crop row navigation
line recognition. In contrast to the aforementioned studies,
our research achieves high-precision detection and extrac-
tion of maize crop rows for navigation by comprehensively
optimizing the backbone network, attention mechanisms,
and loss functions. This approach not only circumvents
the high costs associated with multimodal image acquisi-
tion but also enhances the robustness and accuracy of crop
row detection in various environmental conditions, including
at night.

However, potential false positives and false negatives in
the target detection model may still lead to inaccuracies
in reference point positioning. Future work could consider
employing more advanced target detection networks to min-
imize this source of error [33]. Additionally, human factors
in the manual annotation process could introduce errors;
future research may reduce this by increasing the number
of annotated samples and implementing multiple annota-
tors. Also, the conversion of pixel coordinates to real-world
coordinates relies on the camera’s intrinsic matrix, where
estimation errors could affect the final positioning outcome.
As suggested in the literature [37], repeated optimization of
the intrinsic matrix through calibration methods can enhance
the accuracy of coordinate conversion.

In summary, despite the presence of potential error sources,
the improved model presented in this study exhibits outstand-
ing performance in the task of nighttime maize seed detection
and navigation line positioning. Future work needs to address
these error sources for optimization and further validate and
refine the model in actual production environments.

VII. CONCLUSION
This study has successfully developed a maize inter-row
navigation line extraction technique based on an improved
YOLOv7-tiny network model. By integrating the Shuf-
fleNetv1 backbone network, the CA module, and the EIOU
loss function, the model has significantly enhanced detection
efficiency and accuracy under nocturnal conditions. Exper-
imental validation reveals that the model achieves a high
detection accuracy of 94.21 % on the test dataset and pro-
cesses at a speed of 32.4 fps, which represents an increase of
0.49 percentage points in accuracy and a speed improvement
of 4.6 frames compared to the original YOLOv7-tiny network
model. Furthermore, this research adopts the lower midpoint
of the detection bounding box as the reference for naviga-
tion positioning, achieving a positioning accuracy within an
error margin of 4.85 centimeters, thus fulfilling the practical
requirements of agricultural machinery navigation.

This technology has also been implemented on mobile
devices, providing technical support for automated weeding
operations at night. Future research will be dedicated to fur-
ther enhancing the model’s robustness under varying lighting
conditions and complex backgrounds, expanding its capabil-
ity to recognize multiple crop types and discriminate against
extraneous matter. This will be achieved by constructing
larger datasets to train more powerful deep learning models,
thereby improving detection accuracy. In conclusion, this
study not only offers an effective technology for intelligent
agricultural navigation during nighttime but also lays the
groundwork for future applications and research directions
in smart mechanized weeding.
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