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ABSTRACT A wide-field surveillance system with a long exposure time has a stronger detectability for
dim space targets. However, with the increase in exposure time and working temperature, complex non-
uniform background noise containing hot pixels of the detector cannot be ignored, seriously affecting the
background and imaging quality. This article studies and proposes a high-performance denoising method,
which does not use any prior knowledge of the target and can automatically remove noise from the image.
This method is based on an improved total variation model to remove hot pixels and other background mixed
noise in wide-field system images. Firstly, using the idea of the traditional local contrast method (LCM),
we utilize the significant difference in grayscale values between contaminated pixels and neighboring pixels
to detect impulse noise, such as the hot pixels in the image. And then, we designed an improved adaptive
maximum filtering algorithm to remove unwanted contamination, which protected target information from
being lost and optimized pixels that were attacked by impulse noise. Finally, the total variation algorithm
is used to eliminate residual background noise, the detector’s readout noise, and non-uniform response.
The method proposed in this article can effectively filter out hot pixels and non-uniform background noise
while preserving the details of target edges. We conducted experiments on a large number of simulated and
original images. For star maps captured in long exposure mode, the method proposed in this article has
obvious advantages over several competing algorithms. The experimental results show that, compared to
competitive algorithms, the algorithm proposed in this article improves PSNR by at least 13.1%, SSIM by
at least 0.4%, IEF by at least 5 times, and IQI by at least 9.2%. At the same time, the algorithm in this article
achieved a moderate level of computation time.

INDEX TERMS Wide-field surveillance system, long exposure time, non-uniform correction, local contrast
method, maximum filter, total variation.

I. INTRODUCTION
In the past decade, the number of space debris has sharply
increased [1], [2]. The continuous entry of small launch
vehicles and large constellations into orbit has led to
a high density of space orbiters, exacerbating the space
situation, such as anti-satellite weapon testing, in-orbit
collisions, and satellite explosions [3]. The main purpose
of space surveillance is to accurately identify and locate
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space targets, which is an important component of space
situational awareness and an important technical guarantee
for ensuring the safety of manned spaceflight [4], [5]. Due
to the long distance, weak energy, and often accompanied by
a large amount of background noise of the observed target
signals [6], higher requirements are placed on the detection
ability of existing surveillance systems. The far imaging
distance makes the target appear weaker on the image plane,
occupying only a few pixels and without features such
as contours, textures, and shapes. Meanwhile, due to the
influence of spatial clutter, targets are often submerged in
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the background, and the interference of system noise makes
the detection of weak targets very difficult. In addition, both
CCD and CMOS detectors contain inherent non-uniform
noise. Therefore, to improve the detection ability of dim
targets in space, wide-field surveillance systems often adopt
a long exposure time mode to obtain more energy from the
target. Wide-field surveillance systems will obtain a large
number of such images for scientific research. However,
as the exposure time of the detector increases, it can cause a
large amount of hot pixels [7]. which will seriously affect the
quality of the star map and be detrimental to space science
applications. At the same time, in the long exposure mode,
the Photo Response Non-Uniformity (PRNU) of the detectors
also has a destructive effect on the image. Furthermore,
if the background is moving, the energy concentration is
low and target extraction becomes more difficult [8], [9].
Therefore, it is necessary to denoise the images of the wide-
field imaging system to improve the system’s ability to detect
spatial targets, and at the same time, it plays a crucial role
in obtaining high-quality spatial remote sensing images. So,
Noise removal or denoising is a post-processing task for
image-related applications.

Background non-uniformity is the main interference
factor that suppresses detection ability. Background non-
uniformity is mainly caused by two aspects: one is the
non-uniformity of the detector’s focal plane caused by
the detector’s performance, and the other is caused by
complex background noise. Therefore, in recent years, many
methods for suppressing background non-uniformity have
been proposed. These methods can be summarized into
two main categories: calibration-based methods and scene-
based methods [10]. The calibration-based methods have
the characteristics of simple calculation and high correction
accuracy and are widely used in engineering. Traditional
non-uniform correction experiments are related experiments
conducted on the ground before spacecraft launch, which
have the characteristics of high correction accuracy and easy
operation. To some extent, this category of methods can
overcome the non-uniformity of the response between pixels
of the detector itself [11], [12], [13]. However, after the
aircraft is launched and put into orbit for some time, the
performance of the detector will decay, and the parameters
obtained from previous ground calibration tests may no
longer be applicable. However, as the working time of
the detector increases, the temperature drift and time drift
of the detector will make the correction parameters no
longer applicable in the complex spatial target background.
Therefore, the non-uniform correction coefficients, obtained
from radiation calibration experiments conducted before the
practical application of wide-field monitoring systems, may
not be applicable as the working time increases on orbit. The
scene-based method estimates noise based on the difference
between the target and the background, without considering
temporal correlation. It is mainly divided into two main
categories, one is based on filtering methods, and another
is based on model-driven and learning methods. Although

the latter has made some progress [14], [15], the time
complexity of this category needs to be reduced. The spatial
targets of the wide-field imaging system are all point targets
without texture, motion, and other features, making it difficult
to obtain target characteristics through learning methods.
Meanwhile, the image needs to undergo denoising in orbit,
which requires a simple algorithm and implementation on
embedded hardware such as FPGA. Therefore, this type of
method is not applicable. There are two main processing
methods, frequency domain filtering and spatial domain
filtering. The typical methods of frequency domain filtering
include Fourier transform denoising and wavelet transform
denoising. The idea is to transform the spatial image into
the frequency domain, use the characteristics of noise
in the frequency domain for threshold segmentation, and
convert the processed frequency domain information into
the spatial domain image, which can achieve the purpose
of removing noise [16], [17], [18]. However, although
frequency domain filtering can eliminate noise, it can also
cause certain distortion of the target. For images with a
star background, the edge of the target after the frequency
domain is filtered is prone to oscillation. Spatial filtering is
a neighborhood processing method that directly processes
pixels within the neighborhood in the image space to achieve
the effect of smoothing or sharpening the image [19].
Typical spatial filtering algorithms include median filtering
algorithm (MF) [20], [21], [22], bilateral filtering algorithm
(BF) [23], [24], non-local mean filtering algorithm (NL-
means) [25], and image denoising algorithm based on partial
differential equations [26], etc. The abovemethods have good
background noise suppression capabilities in different fields,
but these algorithms are sensitive to complex background
noise and the denoising effect is not ideal.

The noise studied in this article includes two types: the
hot pixels that cannot be ignored under long exposure, and
non-uniform background noise in spatial images. Due to
thermal excitation, the photoelectricity detector still has a
current output under the dark field condition, which is called
dark current, it is the main reason for generating hot pixels.
The non-uniform background noise in this article refers
to the sum of reset noise and amplifier noise generated
by electrons during the readout processing [27]. However,
impulse noise such as the hot pixels is discrete and has a
large amplitude in the image, with only a single pixel in
the spatial domain. To overcome the shortcomings of the
above methods in suppressing complex background noise in
spatial environments, this paper proposes a high-precision
and robust background noise removal method based on
the total variation denoising model, which is an enhanced
total variation algorithm based on local contrast maximum
filtering (LCMF-TV). Traditional total variation algorithms
have certain limitations in effectively removing hot pixels
from complex background noise. Therefore, based on the
traditional total variation denoising model and inspired by the
local contrast algorithm, this algorithm can detect and remove
hot pixels in the image. Specifically, the first step is the image
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TABLE 1. Parameters of the wide-field surveillance system.

preprocessing stage, during which an improved adaptive
maximum filtering algorithm is designed to accurately
estimate and replace pixels attacked by pulse noise. At this
step, this algorithm is based on the traditional local contrast
algorithm (LCM), targeting the characteristics of pulse noise
in long exposure images, namely the significant difference
between pulse noise and neighboring pixel grayscale values.
A contrast image is established, and an adaptive threshold
is used to search and detect pulse noise. Finally, to preserve
spatial target information to the greatest extent possible, the
maximum value filtering algorithm is used to filter out the
pulse noise. The second step is the stage of suppressing
non-uniform background noise in the image. In this stage,
the image is finally processed based on a total variation
model. The total variation model is an anisotropic model that
relies on gradient descent to smooth the image, which can
preserve the edge information of the target while smoothing
the image background. Therefore, the preprocessed image
can be further processed to eliminate residual background
noise, detector readout noise, etc., and the background can
be smoothed.

The content of this article is arranged as follows: Section I
introduces the research background of this article, Section II
conducts imaging modeling based on the optical image
characteristics of wide-field surveillance systems, Section III
provides a detailed description of the entire background
noise suppression algorithm, Section IV presents experi-
mental results obtained by applying the algorithm through
both simulated and real images, and Section V provides
conclusions.

II. IMAGING CHARACTERISTICS
The astronomical image data used in the paper was collected
by the CMOS wide-field Surveillance System. The specific
parameters of the wide-field Surveillance System are listed in
Table 1. The wide-field surveillance system adopts an optical
system with spherical concentric lenses, uses a fiber optic
panel to transmit the imaging plane to the detector’s focal
plane at the end face, and is spliced with 8 CMOS detectors.

It should be noted that the spatial targets discussed in
this article include spatial stars and spatial moving targets.
Therefore, based on the characteristics of spatial images, the
following model is established [28]:

F (i, j) = Fs (i, j) + Ft (i, j) + B (i, j) + N (i, j) (1)

where (i, j) is the position of pixels in an image, F
represents the captured spatial image, Fs represents spatial

star points, Ft represents spatial moving targets, B represents
spatial background noise, N represents image noise. Image
noise generally includes the non-uniform background of the
detector, as well as the readout noise, shot noise, hot pixels,
etc.

FIGURE 1. (a) Image of a real star; (b) 3D plot of a real star.

Due to sensor hardware limitations, atmospheric interfer-
ence, and the influence of optical systems, as the Figure 1(b),
the grayscale of spatial point targets gradually decreases from
the center to the surrounding areas. The imaging of point
targets can be approximated by point spread function (PSF)
[29]:

p (x, y) = Aexp

{
−
1
2

[
(x − x0)2

σ 2
x

+
(y− y0)2

σ 2
y

]}
(2)

where A is the fixed coefficient, p (x, y) is the grayscale
intensity of the image at point (x, y), (x0, y0) is the center
point of point target imaging, and σx and σy refer to
the horizontal and vertical spread radius of the object,
respectively. Ideally, a distant star appears as a symmetrical
point source object, i.e. the horizontal spread radius is equal
to the vertical spread radius σx = σy.
In the laboratory, the image and the 3D plot of a real star

are shown in Figure 1.
In astronomical observation, there are two ways to improve

the detection ability of telescopes or detection systems for
dim and small targets. One is to increase the gain of the
surveillance system, and the other is to increase the exposure
time of the detector. The former method not only enhances
dim targets but also amplifies background clutter and noise,
including detector readout noise and shot noise. The actual
signal-to-noise ratio of the image has not been effectively
improved. The lattermethod can increase the number of target
conversion charges, which in turn increases the brightness
of the target in the image, thereby improving the signal-to-
noise ratio. Therefore, when applied to weak and small target
detection in low illumination backgrounds, a long exposure
time method is often used. However, a longer exposure
time can also increase the hot pixels in the image, seriously
interfering with the detection of spatial targets. As shown in
Figure 2, it is a spatial real image with the 3s long exposure
mode.
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FIGURE 2. (a) Image captured by wide-field Surveillance System; (b) Local area of the stellar-target image; (c) Local area of
the moving-target image; (d) Local area of the hot pixels image with long exposure mode.

FIGURE 3. Flowchart of the proposed LCMF-TV method.

III. ENHANCED TOTAL VARIATIONAL DENOISING
ALGORITHM
Based on the above analysis of wide-field surveillance system
imaging, the schematic diagram of the complex background
noise suppression algorithm proposed in this article is shown
in Figure 3.

A. IMAGE PREPROCESSING
The noise of the original image includes inherent non-
uniform noise of the detector, readout noise, hot pixels, etc.
Wherein, the inherent non-uniformity problem of detectors
can generally be corrected by measuring the correction
parameters through non-uniformity correction experiments
in the laboratory. And nowadays, the readout noise of
the detector is well controlled with the improvement of
the detector technology. For the hot pixels, an effective
suppression method is to reduce the exposure time of the
detector. However, to improve the detection ability and
facilitate the observation of weak energy stars or moving
targets, the detector needs to adopt a long exposure mode.
Therefore, how to effectively suppress the hot pixels of
the detector in long exposure mode will be beneficial for
improving image quality.

Under ideal conditions, when there is no light irradiation,
the photodetector should have no photocurrent output.
However, in reality, due to thermal excitation, impurities,
and defects inside the material, in the absence of light, the
photodetector still has a current output, which is called dark
current [30]. This is the main reason for hot pixels. Due to the
random nature of the various excitation conditions mentioned
above, the hot pixels also fluctuate randomly.

FIGURE 4. Pixel attacked by hot pixel compared with 8-Neighborhood.

According to the characteristics of the human visual sys-
tem, the hot pixels in the long exposuremode are significantly
different from other pixels in the 8-neighborhood, as shown
in Figure 4.
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According to the above analysis, we propose an algorithm
called adaptive maximum filtering algorithm based on local
contrast.

Calculate the local contrast of each pixel in an image using
the following formula (Single-pixel LCM) [31].

c (x, y) =
I (x, y)
M (x, y)

(3)

M (x, y) =

∑8
i=1mi
8

(4)

where c (x, y) represents the local contrast of a single pixel
at point (x, y) in the image, I (x, y) represents the grayscale
value, M (x, y) represents the grayscale mean of the 8-
neighborhood, mi represents the grayscale value of the
8 neighborhoods.

To effectively identify contaminated pixels, an adaptive
threshold segmentation method is adopted for the calculated
single-pixel local contrast graph c (x, y). Due to the influence
of the hot pixels with long exposure times, the grayscale
values of contaminated pixels are significantly higher than
their 8-neighborhood mean. If the threshold calculated by
the mean and standard deviation of the entire image is used
for image segmentation, the spatial target will affect the size
of the threshold and affect the correct detection of the hot
pixels. Therefore, an improved adaptive method based on 8-
neighborhood is proposed, the threshold calculation formula
is as follows:

ThC = µC + ασC (5)

whereµC is the mean of local contrast of 8-neighborhood, σC
is the standard deviation of local contrast in 8 neighborhoods,
α is a coefficient, according to the experimental test results,
it is generally taken as 1.5.

The mean and standard deviation of the 8-neighborhood
local contrast of (x, y) pixel can be expressed as:

µC =
1
N

N∑
i=1

ci (x, y) (6)

σC =

√∑N
i=1 [ci (x, y) − µC (x, y)]2

N − 1
(7)

where ci represents the local contrast of 8-neighboring pixels.
Because it is an 8 neighborhood, N here is 8.

After the above analysis, when c (x, y) is greater than the
threshold ThC (x, y), it can be determined that (x, y) is a pixel
contaminated by impulse noise such as a hot pixel, and then,
this pixel adopts the template of 3× 3 for maximum filtering,
replacing contaminated pixels with the maximum value of
the neighborhood. The purpose of using maximum filtering
is to prevent a decrease in structural similarity after image
processing. The formula is as follows:

SLCM (x, y)

=

{
max {I (x − k, y− l)} , (k, l ∈ W ) c (x, y)> Th (x, y)
I (x, y) c (x, y)≤ Th (x, y)

(8)

where W is the maximum filtering template of 3 × 3, SLCM
represents the processed result at where W is the maximum
filtering template of 3 × 3, SLCM represents the processed
result at (x, y).

After the above method of processing, pixels that are
not contaminated by hot pixels remain unchanged, and the
contaminated pixels are processed by improved maximum
filtering to obtain the final processing result. Due to only
operating on the neighborhood of the detected hot pixel
and not involving other pixel points in the calculation, the
possibility of artifacts in the image is greatly reduced Using
an adaptive maximum algorithm based on local contrast
(LCMF), the image and its grayscale 3D image before and
after filtering are shown in Figure 5.

FIGURE 5. (a1) and (b1) represent the original image and the image after
improved maximum filtering, respectively. (a2) and (b2) represent the
grayscale three-dimensional images of the corresponding image data.

Algorithm 1 is the pseudocode of the LCMF algorithm.

Algorithm 1 Adaptive Maximum Filtering Algorithm Based
on Local Contrast (LCMF)
Input: The original image I of wide-field surveillance
1. Calculate matrix M using formula (4).
2. Calculate matrix C using formula (3).
3. Calculate variable ‘MeanC’ using the formula (6).
4. Calculate variable ‘SdC’ using the formula (7).
5. Calculate variable ‘Th’ using formula (5).
6. if C(i,j)>Th,

O(i,j) = max(8-neighborhood pixels of I(i,j)).
else
O(i,j) = I(i,j)
end

Output: Image O processed by algorithm.

B. TOTAL VARIATION
After applying the algorithm proposed in the previous
section to the original image, most of the hot pixels
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caused by long exposure were filtered out, but a portion
of the background clutter noise was still retained, and
its probability density function approximately follows a
standard normal distribution. To eliminate this part of the
noise, a total variation method (TV) was used. TV is a
constrained optimization numerical algorithm used to remove
image noise, which minimizes the total variation of the
image for denoising. Using Lagrange multipliers to impose
constraints and using gradient projection algorithm to solve.
The difference between adjacent pixels in the low-frequency
part of the image is small, and the total variation method can
smooth the image in that part; The high-frequency part of the
image is the contour edge, and the total variation method does
not perform smoothing in this part, preserving the image edge
information [32]. The numerical algorithm is simple, fast, and
suitable for background noise removal.

After image preprocessing, the grayscale values of the
image can be represented as follows:

f̄ (x, y) = f (x, y) + n (x, y) (9)

where f̄ (x, y) represents the preprocessed image of the
original image, f (x, y) represents the clean image that has
not been contaminated, and n (x, y) represents the residual
noise in the image. As described previously, this noise
approximately follows a standard normal distribution.

To obtain the restored image f (x, y), we use the total vari-
ation method to establish the following constraint equation
[33]:

min E [f0 (x, y)]

=

∫∫
|∇f (x, y)| dxdy+

λ

2

∫∫ [
f̄ (x, y) − f (x, y)

]2 dxdy
=

∫∫ {
|∇f (x, y)| +

λ

2

[
f̄ (x, y) − f (x, y)

]2} dxdy (10)

where 1
2

∫∫ [
f̄ (x, y) − f (x, y)

]2 dxdy is a loss function,
it mainly plays a role in preserving the original image char-
acteristics and reducing image distortion.

∫∫
|∇f (x, y)| dxdy

is total variational term, λ is the regularization coefficient,
it plays an important role in balancing denoising and
smoothing, as it depends on the level of noise. t. In the
equation, |∇f (x, y)| represents gradient, and calculates
according to the following equation:

|∇f (x, y)| =

√(
∂f (x, y)

∂x

)2

+

(
∂f (x, y)

∂y

)2

(11)

here, let the function:

F
[
x, y, f (x, y) ,

∂f (x, y)
∂x

,
∂f (x, y)

∂y

]
=

λ

2

[
f̄ (x, y) − f (x, y)

]2
+ |∇f (x, y)| (12)

The necessary condition for obtaining the minimum value
of this function is to satisfy the Euler-Lagrange equation.

Then, the Euler-Lagrange equation can be established to find
the minimum value [34],

∂F
∂f

=
d
dx

(
∂F
∂fx

)
+

d
dy

(
∂F
∂fy

)
(13)

so, by introducing equation (12) into equation (13), it can be
concluded that:

λ
(
f − f̄

)
= ∇ ·

(
∇f
|∇f |

)
=
fxx f 2y − 2fx fyfxy + fyyf 2x(
f 2x + f 2y

) √
f 2x + f 2y

(14)

where,

fx =
∂f (x, y)

∂x

fy =
∂f (x, y)

∂y

fxx =
d
dx

(
∂f (x, y)

∂x

)
fyy =

d
dy

(
∂f (x, y)

∂y

)
fxy =

d
dy

(
∂f (x, y)

∂x

)
(15)

we record the calculation result of equation (14) as the
parameter div,

div = ∇ ·

(
∇f
|∇f |

)
(16)

according to equation (14), the smooth model of TV can be
obtained by using the gradient descent method [35],

∂f
∂t

= ∇·

(
∇f
|∇f|

)
+λ

(
f−f̄

)
(17)

where, t is an introduced time auxiliary parameter, therefore,
the following iterative formula can be obtained,

∂f
∂t

= ∇ ·

(
∇f
|∇f |

)
+ λ

(
f − f̄

)
(18)

where, n represents the number of iterations, f n represents
the image after n iterations, f n+1 represents the image after
n+1 iterations, t is an introduced time auxiliary parameter.
It is used to transform the solving problem of static nonlinear
partial differential equations into an iterative process of
dynamic partial differential equations. In the final two-
dimensional discretization solution, 1t = 1.

Algorithm 2 is the pseudocode of the TV algorithm.

IV. EXPERIMENTS AND DISCUSSION
To demonstrate the effectiveness of the algorithm proposed in
this article, experimental descriptions were conducted using
simulated and real images, respectively. Using algorithms
to process noisy images constructed from simulated images,
and then comparing the processed images with the original
images without noise, to verify the effectiveness of the
algorithm. Firstly, perform ablation experiments on the
algorithm itself to understand its structure. Secondly, multiple
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Algorithm 2 Total Variation Method (TV)
Input: The output image f̄ of LCMF
1. Initialization parameters:

n = 0, 1t = 1, f 0 = f̄ , div= ∇·

(
∇f
|∇f |

)
= 0

2. for n = 1:100,
n = n +1,
calculate f^(n+1) according to equation (18),
calculate the parameter div according to equations (16)
and (17)
end

3. let f = f 100,
Output: Image f processed by the algorithm.

competitive algorithms are used to process the simulated
noisy images and compare the processing effects of the
algorithms. Finally, the superiority of our algorithm in
scientific-level spatial applications is verified using real
spatial target images.

A. SIMULATION IMAGES
The data used for the simulation image is 128 × 128 size
and 14-bit wide grayscale image. Add Gaussian white noise
with a variance of 5% to the simulation image to simulate the
detector’s background noise. In addition, based on the actual
background mean of the captured image and the approximate
range of the hot pixels, random noise is added with grayscale
values ranging from 1000 to 5000 and a probability density
of 0.5%.

The simulation experiment is divided into two parts. The
first part is to conduct ablation experiments on the algorithm,
with the aim of better understanding the functional effects of
each part of the algorithm. To better describe the effectiveness
of our algorithm, in the second part, we compare it with
other traditional background noise suppression algorithms,
including median filtering algorithm (MF), bilateral filtering
algorithm (BF), non-local mean filtering algorithm (NL
means), and our algorithm (LCMF-TV). For the quality
evaluation after removing noise using various methods,
we adopt two methods: subjective evaluation and objective
evaluation. In subjective evaluation, we use to compare the
results of various algorithms after removing noise by the
human visual system, as well as grayscale distribution maps
to intuitively experience. In objective evaluation, we use two
indicators: PSNR and SSIM.

1) ABLATION EXPERIMENTS
We conducted ablation research using multiple sets of
simulated images to validate the performance of the proposed
algorithm for background noise suppression in spatial target
images.

The visual effect of one set of images processed by the
algorithm is shown in Figure 6. In the ablation experiments,
Figure 6(c) is the image obtained through the adaptive max-
imum filtering algorithm based on local contrast (LCMF).
This algorithm effectively removes impulse noise in the
image and preserves the edge contour of the target image, but
the noise in the image background has not been improved.

From Figure 6(d), it can be seen that the background
uniformity of the noisy image is improved by using the total
variation method, effectively removing background noise
in the image. However, pixels contaminated by impulse
noise cannot be restored by using the full variation method.
Figure 6(e) is an output image processed by the LCMF-TV
algorithm (proposed in this article). The algorithm not only
effectively eliminates the hot pixels, but also preserves the
target well with clear edge contours.

Figure 7 shows the grayscale distribution map processed
by the algorithm in the ablation experiment. From the figure,
it can be seen that although the image has been restored
to a certain extent after only processing with the LCMF
algorithm, there are still some fluctuations in the baseline
(DN value around 1000). After only being processed by the
total variational algorithm (TV), although the fluctuation of
the image baseline is small, most of the hot pixels still have a
serious impact on the image. However, after the processing of
the algorithm in this article (LCMF-TV), the image has been
effectively restored. Not only are the hot pixels in the original
noisy image effectively removed, but also the fluctuation of
the base DN value is consistent with the original noise-less
image.

Then, we use RSNR and SSIM separately as objective
evaluation indicators for ablation experiments.

PSNR calculates the signal-to-noise ratio in decibels. It is
commonly used to evaluate the quality of a refined image
relative to the original image. The PSNR value determines
the quality of the refined image. The higher the value, the
higher the quality, and vice versa. The mathematical formula
for PSNR is:

PSNR = 20log10

(
max (I )
√
MSE

)
(19)

MSE =
1
mn

∑m

i=1

∑n

j=1
[I (i, j) − K (i, j)]2 (20)

in the equation, I (i, j) represents the processed image,K (i, j)
represents the noisy image, max (I ) represents the maximum
possible pixel value in the processed image, and m and n
represent the number of row and column pixels in the image.

Structural Similarity (SSIM) is a metric inspired by the
Human Visual System (HVS). SSIM evaluates the quality of
images based on information such as brightness, contrast, and
structure of the compared images. Unlike the above metrics,
it believes that the pixel clusters of an image can intuitively
reflect the quality of the image. The SSIM ranges from −1 to
+1, where −1 means poor and +1 means perfect match. The
calculation formula is as follows:

SSIM (x, y) =
[
l (x, y)α · c (x, y)β · s (x, y)γ

]
(21)

l (x, y) =
2µxµy + c1

µ2
x + µ2

y + c1

c (x, y) =
2σxσy + c2

σ 2
x + σ 2

y + c2

s (x, y) =
σxy + c3
σxσy + c3

(22)
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FIGURE 6. Ablation comparative experiment. (a) image without noise. (b) noise image. (c) image processed only by
single-pixel LCM. (d) image processed only by TV. (e) image processed by LCMF-TV.

FIGURE 7. Distribution map of grayscale image. (a) distribution map of the image without noise. (b) distribution map of
the noise image. (c) distribution map of the image processed only by Single-pixel LCM. (d) distribution map of the image
processed only by TV. (e) distribution map of the image processed by LCMF-TV.

in the formula, l (x, y) represents brightness, c (x, y) repre-
sents contrast, and s (x, y) represents structure.µx is themean
of x, µy is the mean of y, σ 2

x is the variance of x, σ 2
y is the

variance of y, σxy is the covariance of x and y.
To avoid division by zero, set c1 = (k1L)2 and

c2 = (k2L)2, c3 = c2/2, take k1 = 0.01, k2 = 0.03. L is

the maximum pixel value of the image. The selected detector
is GSENSE6060 of Gpixel Company, it’s each pixel data
consists of 14 bits, so L is taken as 214−1. When calculating,
we take an N × N window, then continuously sliding the
window for calculation, and finally taking the average value
as the global SSIM.
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TABLE 2. Comparison of test results between PSNR and SSIM in ablation experiments.

FIGURE 8. The processing effects of various algorithms for simulated images. (a) Simulate star target images. (b) Simulate moving target
images(512 × 512). (c) Simulate local detail images of moving targets(128 × 128). (1) image without noise. (2) noise image. (3) MF (4) BF (5) NL-means (6)
PDBTMF (7) LCMF-TV.

We calculated PSNR and SSIM according to the above
method and recorded the data in Table 2. Five simulated
images were selected for analysis in this experiment. From
the data in the table, it can be seen that after image processing
by using the LCMF algorithm or the TV method, the
improvement in PSNR and SSIM is limited. However, after
using the LCMF-TV algorithm, taking Imag1 as an example,
compared to noisy images, the improvement in PSNR and
SSIM is 28.0% and 41.1% respectively. The algorithm
proposed in this paper has been fully validated in ablation
experiments of simulated images, effectively improving the
quality of the images.

2) PERFORMANCE COMPARISON WITH
COMPETED METHOD
This section will compare the denoising effects of several
classic background noise suppression algorithms in the case
of long exposure time of spatial targets, to demonstrate the
superiority of our algorithm. These competitive algorithms

include amedian filtering algorithm (MF), a bilateral filtering
algorithm (BF), and non-local mean filtering algorithm
(NL-means), and an improved median filtering algorithm
(PDBTMF) [36].

a: SUBJECTIVE EVALUATION
Figure 8 shows a visual comparison of the processing results
between the four competitive algorithms and the algorithm
in this article. Figure (a) shows the image of the star target,
Figure (b) shows the image of the moving target, and
Figure (c) shows the local detail image of the image of the
moving target. Figures (3) to (7) show the processing results
of various algorithms on noisy images. It can be seen that
Figure (3) effectively removes the impulsive noise in the
noisy image, however, there is still a large amount of Gaussian
noise in the target background, and the target edge is severely
passivated. The Gaussian noise in the target background
in Figures (4) and (5) is well suppressed, but the impulse
noise in the image cannot be removed. It can be seen that
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Figures (6) and (3) exhibit consistent performance, although
the PDBTMF is an improved algorithm based on MF, and It
has a strong suppression ability for noisy images containing
pixels with gray-scale values of 0 or saturation (16383 in this
article). However, although the hot pixels in long exposure
images cause polluted pixels to be higher than 8 neighboring
pixels, it has not reached saturation. Therefore, the PDBTMF
algorithm is consistent with the MF algorithm in image
processing in this article. Figure (7) clearly shows that after
the noise image is processed by the LCMF-TV algorithm, the
target details are well preserved, and the background noise is
also effectively removed.

b: OBJECTIVE EVALUATION
In objective evaluation, we use four indicators: MSE, PSNR,
SSIM, IEF, and IQI to evaluate image quality. Here, IEF refers
to the image enhancement factor. IQI refers to the image
quality index which is used to evaluate the reconstructed
image, it’s a quantitative value that indicates the extent of
improvement of a reconstructed image [37]
IEF is used to determine the quality of the recovered

images and it is termed as the proportion of the distinction
between degraded image and input image to the difference
between recovered image and original image. The higher
the IEF value, the higher the image quality. The calculation
formula is as follows.

IEF =

∑m
i=1

∑n
j=1 [X (i, j) − O (i, j)]2∑m

i=1
∑n

j=1 [F (i, j) − O (i, j)]2
(23)

here, X represents the noise image, F represents the filtered
image, and O represents the original image.

The dynamic range of IQI is [−1, 1]. The best value 1 is
achieved if and only if the reconstructed image is equal to the
noise-free image. Whereas, The lowest value of −1 occurs
when the reconstructed image is twice the mean of the noise-
free image subtracted by that of the noise-free image. This
quality index models any distortion as a combination of three
factors: loss of correlation, mean distortion, and contrast
distortion. The calculation formula is as follows.

IQI =
4δxyx̄ȳ(

δ2x + δ2y

) [
(x̄)2 + (ȳ)2

] (24)

where x is the noise-free image, y is the reconstructed image,
x̄ and ȳ are the mean value of the noise-free image and the
reconstructed image, δ2x and δ2y are the variances of the noise-
free image and the reconstructed image, δxy is the covariance
of x and y.

As in the previous ablation experiment, PSNR and SSIM
are still used to describe the objective evaluation of various
competitive algorithms. As shown in Table 3, from the test
results, it can be seen that the LCMF-TV algorithm proposed
in this paper obtains the best results on the values of MSE,
PSNR, SSIM, IEF, and IQI among the listed competitive
algorithms for spatial target images in long exposure mode.
The proposed algorithm has superior performance in linear

correlation, average similarity, and contrast similarity, which
is beneficial for subsequent image processing.

Tomake the experiment more convincing, we increased the
number of test images. We conducted algorithm comparison
experiments with 20 simulated images and plotted PSNR and
SSIM curves. As shown in Figure 9.

FIGURE 9. (a) PSNR curve of simulated images. (b) SSIM curve of
simulated images.

From the curve graph, it can be seen that the method pro-
posed in this article outperforms the competitive algorithm
in various indicators when processing long-exposure images
of the wide-field imaging system. Meanwhile, multiple sets
of experimental results have also demonstrated the stability
of the algorithm proposed in this article.

B. REAL IMAGES
In this section, we will use real spatial target images to visu-
ally compare the processing results of various competitive
algorithms and our algorithm.

The real image data used in this article is all collected by
a certain type of wide-field surveillance system. The system
needs to complete relevant verification tests on the ground
before being launched into space. The real image data was
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TABLE 3. Objective evaluation results of five sets of simulated image processing.

obtained from ground validation tests. This camera’s optical
system utilizes imaging technology with a fiber optic panel to
achieve a large-scale field of view. The camera is assembled
with 8 CMOS detectors, the number of pixels in a single
CMOS chip is 6144 (V) × 6144 (H), and each pixel data
consists of 14 bits. This camera has a large field of view
and a long detection distance, and the astronomical images
captured are relatively complex. The experimental images
were captured in star tracking mode, using an equatorial
instrument to counteract the impact of Earth’s rotation, setting
the integration time to 3 seconds.

The experimental schematic diagram is shown in
Figure 10.

The real images captured based on the above experi-
mental environment are shown in Figure 11(a). To facil-
itate the display of the algorithm’s processing effect, the
local area is enlarged, as the Figure 11(b). Figures (c)
to (f) show the comparison results between three classic
image background denoising algorithms and the algorithm
proposed in this paper, including median filters (MF),
bilateral filters (BF), and non-local mean filtering algorithms
(NL Means).

From Figure 10(c), it can be seen that the median filtering
algorithm effectively removes the hot pixels in the image

FIGURE 10. Schematic diagram of star tracking mode experiment.

and smooths the background. However, it also smooths the
spatial targets, resulting in blurred edges of the targets.

VOLUME 12, 2024 28151



P. Zhou et al.: Non-Uniform Background Noise Suppression Method

FIGURE 11. Comparison of processing effects of various competitive algorithms for real images. (a) Original image
(6144 × 6144). (b) Local detail of the original image. (c) MF. (d) BF. (e) NL-means. (f) LCMF-TV.

TABLE 4. Running time of various methods. Units are seconds.

After algorithm processing, the non-uniformity of the image
background in Figures 10(d) and (e) has been improved, and
the edge information of spatial targets has been retained, but
it cannot eliminate the hot pixels. Figure 10(f) shows the
processing effect of the algorithm proposed in this paper.
From the figure, spatial targets can be clearly identified,
the image background is uniform, and the hot pixels are
effectively removed.

C. RUNNING TIME
All test procedures are implemented in MATLAB on
a desktop personal computer with an i7 2.8-GHz CPU
and 16 GB RAM. By looking at the execution time of
each method in Table 4, the LCMF-TV in this article
does not have any advantages in running time, because the
algorithm is a constrained optimized numerical calculation
method that requires multiple iterations to achieve significant
results.

D. DISCUSSION
In response to the imaging characteristics of long exposure
in wide-field surveillance images, this article proposed
an image denoising method based on local contrast and
total variation model, which can be used for correcting

non-uniform backgrounds. For such long-exposure images,
the method proposed in this article outperforms other
comparative methods in image denoising performance.
Although the algorithm in this article has obvious advan-
tages over other algorithms, it also requires a certain
cost. Since the total variation model is a constrained
optimization-type numerical algorithm, multiple iterations
are required to obtain the optimal solution. Therefore, the
execution time of this algorithm is slightly longer and is
not suitable for scenarios with particularly high real-time
requirements.

According to the above results and discussions, the amount
of image data processed in this article is much smaller than
that of real wide-field surveillance images. Therefore, future
research should focus on solving non-uniform correction
techniques for large fields of view and large data images.
At the same time, it is crucial to improve the real-time
performance of the algorithm and find a universal scene
correction method suitable for various scenarios.

V. CONCLUSION
The main purpose of a space-wide-field surveillance system
is to detect and locate space targets, to measure the speed
and orbit of interested targets, and to protect the safety
of the space environment. To improve the ability to detect
weak targets, long exposure times are often used to obtain
more energy from the target. In this case, the hot pixels
of the detector cannot be ignored, seriously affecting the
imaging quality. At the same time, due to the prolonged
operation of the detector, its temperature will rise, which
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also makes the hot pixels unstable and the background
noise obvious, the detector calibration parameters obtained
from ground radiation calibration experiments are no longer
applicable. Therefore, this article is based on this application
environment and proposes a noise suppression algorithm for
complex backgrounds for the long exposure mode of space
cameras. This algorithm does not use any prior knowledge of
the target and can automatically remove noise from images
in long exposure mode. To suppress impulse noise such as
the hot pixels in images, an improved adaptive maxi-mum
filtering algorithm was designed based on the traditional
local contrast algorithm, which protected target information
from being lost and optimized pixels that were only attacked
by impulse noise. The total variation algorithm is used to
eliminate residual background noise, detector readout noise,
and non-uniform response. The above steps greatly eliminate
the impact of the hot pixels, background noise, detector
readout noise, and uneven response on spatial targets.
We conducted experiments on a large number of simulated
images and original star maps. In the experiment, we used
two indicators, PSNR and SSIM, to evaluate the effectiveness
of the algorithm. Among them, PSNR reflects the algorithm’s
ability to suppress noise and non-uniform backgrounds, while
SSIM reflects the degree of correlation before and after
image processing. We analyzed both subjective and objective
evaluations and found that the algorithm proposed in this
paper has significant advantages over several competing
algorithms for star maps captured in long exposuremode. The
experimental results show that compared to noisy images,
after processing with the algorithm in this paper, PSNR is
improved by 28% and SSIM is improved by 41.1%.

Our next step is to optimize the algorithm for subsequent
hardware implementation, while also attempting more noise
suppression strategies to further improve the flexibility of the
algorithm. In addition, we will further expand the application
scenarios of the algorithm and improve its robustness.

REFERENCES
[1] K. F. Hussain, K. Thangavel, A. Gardi, and R. Sabatini, ‘‘Autonomous

optical sensing for space-based space surveillance,’’ in Proc.
IEEE Aerosp. Conf., Big Sky, MT, USA, Mar. 2023, pp. 1–9, doi:
10.1109/AERO55745.2023.10115786.

[2] T. Schildknecht, ‘‘Optical surveys for space debris,’’ Astron. Astrophys.
Rev., vol. 14, no. 1, pp. 41–111, Jan. 2007, doi: 10.1007/s00159-006-0003-
9.

[3] M. J. Holzinger and M. K. Jah, ‘‘Challenges and potential in space domain
awareness,’’ J. Guid., Control, Dyn., vol. 41, no. 1, pp. 15–18, Jan. 2018,
doi: 10.2514/1.G003483.

[4] R.-Y. Sun, J.-W. Zhan, C.-Y. Zhao, and X.-X. Zhang, ‘‘Algorithms and
applications for detecting faint space debris in GEO,’’ Acta Astronautica,
vol. 110, pp. 9–17, May 2015, doi: 10.1016/j.actaastro.2015.01.001.

[5] E. M. Gaposchkin, C. von Braun, and J. Sharma, ‘‘Space-based space
surveillance with the space-based visible,’’ J. Guid., Control, Dyn., vol. 23,
no. 1, pp. 148–152, Jan. 2000, doi: 10.2514/2.4502.

[6] Y. Wang and E. Ientilucci, ‘‘A practical approach to Landsat 8 TIRS stray
light correction using multi-sensor measurements,’’ Remote Sens., vol. 10,
no. 4, p. 589, Apr. 2018, doi: 10.3390/rs10040589.

[7] G. H. Chapman, R. Thomas, Z. Koren, and I. Koren, ‘‘Empirical
formula for rates of hot pixel defects based on pixel size, sensor
area, and ISO,’’ Proc. SPIE, vol. 8659, Feb. 2013, Art. no. 86590, doi:
10.1117/12.2005850.

[8] D. Liu, X. Wang, Y. Li, Z. Xu, J. Wang, and Z. Mao, ‘‘Space target
detection in optical image sequences for wide-field surveillance,’’ Int.
J. Remote Sens., vol. 41, no. 20, pp. 7846–7867, Oct. 2020, doi:
10.1080/01431161.2020.1782508.

[9] Z. Xu, D. Liu, C. Yan, and C. Hu, ‘‘Stray light nonuniform background
correction for a wide-field surveillance system,’’Appl. Opt., vol. 59, no. 34,
p. 10719, Dec. 2020, doi: 10.1364/ao.404685.

[10] T. Zhang, X. Li, J. Li, and Z. Xu, ‘‘CMOS fixed pattern noise elimination
based on sparse unidirectional hybrid total variation,’’ Sensors, vol. 20,
no. 19, p. 5567, Sep. 2020, doi: 10.3390/s20195567.

[11] W. Huawei, M. Caiwen, C. Jianzhong, and Z. Haifeng, ‘‘An adap-
tive two-point non-uniformity correction algorithm based on shutter
and its implementation,’’ in Proc. 5th Int. Conf. Measuring Tech-
nol. Mechatronics Autom., Hong Kong, Jan. 2013, pp. 174–177, doi:
10.1109/ICMTMA.2013.51.

[12] S.-X. Xing, J. Zhang, L. Sun, B.-K. Chang, and Y.-S. Qian, ‘‘Two-point
nonuniformity correction based on LMS,’’ Proc. SPIE, vol. 5640, p. 130,
Jan. 2005, doi: 10.1117/12.566145.

[13] M. E. Feinholz, S. J. Flora, S. W. Brown, Y. Zong, K. R. Lykke,
M. A. Yarbrough, B. C. Johnson, and D. K. Clark, ‘‘Stray light correction
algorithm for multichannel hyperspectral spectrographs,’’ Appl. Opt.,
vol. 51, no. 16, p. 3631, Jun. 2012, doi: 10.1364/ao.51.003631.

[14] A. Khmag, ‘‘Natural digital image mixed noise removal using regu-
larization Perona–Malik model and pulse coupled neural networks,’’
Soft Comput., vol. 27, no. 21, pp. 15523–15532, Nov. 2023, doi:
10.1007/s00500-023-09148-y.

[15] A. Khmag, ‘‘Additive Gaussian noise removal based on generative adver-
sarial network model and semi-soft thresholding approach,’’ Multimedia
Tools Appl., vol. 82, no. 5, pp. 7757–7777, Feb. 2023, doi: 10.1007/s11042-
022-13569-6.

[16] G. Strang, ‘‘Wavelet transforms versus Fourier transforms,’’ Bull. Amer.
Math. Soc., vol. 28, no. 2, pp. 288–305, 1993, doi: 10.1090/s0273-0979-
1993-00390-2.

[17] A. Mustafi and S. K. Ghorai, ‘‘A novel blind source separation technique
using fractional Fourier transform for denoising medical images,’’ Optik,
vol. 124, no. 3, pp. 265–271, Feb. 2013, doi: 10.1016/j.ijleo.2011.11.052.

[18] S. Veerasingam, M. Ranjani, R. Venkatachalapathy, A. Bagaev,
V. Mukhanov, D. Litvinyuk, M. Mugilarasan, K. Gurumoorthi,
L. Guganathan, V. M. Aboobacker, and P. Vethamony, ‘‘Contributions
of Fourier transform infrared spectroscopy in microplastic pollution
research: A review,’’ Crit. Rev. Environ. Sci. Technol., vol. 51, no. 22,
pp. 2681–2743, Nov. 2021, doi: 10.1080/10643389.2020.1807450.

[19] Z. Lin, C. Tian, Y. Hou, and W. X. Zhao, ‘‘Improving graph collaborative
filtering with neighborhood-enriched contrastive learning,’’ in Proc. ACM
Web Conf., Apr. 2022, pp. 2320–2329, doi: 10.1145/3485447.3512104.

[20] A. Shah, J. I. Bangash, A. W. Khan, I. Ahmed, A. Khan, A. Khan,
and A. Khan, ‘‘Comparative analysis of median filter and its variants
for removal of impulse noise from gray scale images,’’ J. King Saud
Univ. Comput. Inf. Sci., vol. 34, no. 3, pp. 505–519, Mar. 2022, doi:
10.1016/j.jksuci.2020.03.007.

[21] E. J. Leavline and D. A. A. G. Singh, ‘‘Salt and pepper noise detection and
removal in gray scale images: An experimental analysis,’’ Int. J. Signal
Process., Image Process. Pattern Recognit., vol. 6, no. 5, pp. 343–352,
Oct. 2013, doi: 10.14257/ijsip.2013.6.5.30.

[22] S. H. Teoh and H. Ibrahim, ‘‘Median filtering frameworks for reducing
impulse noise from grayscale digital images: A literature survey,’’ Int.
J. Future Comput. Commun., vol. 1, no. 4, pp. 323–326, 2012, doi:
10.7763/ijfcc.2012.v1.87.

[23] M. Elad, ‘‘On the origin of the bilateral filter and ways to improve it,’’
IEEE Trans. Image Process., vol. 11, no. 10, pp. 1141–1151, Oct. 2002,
doi: 10.1109/TIP.2002.801126.

[24] C. Tomasi and R. Manduchi, ‘‘Bilateral filtering for gray and color
images,’’ in Proc. 6th Int. Conf. Comput. Vis., Bombay, India, Jan. 1998,
pp. 839–846, doi: 10.1109/ICCV.1998.710815.

[25] C. Sutour, C.-A. Deledalle, and J.-F. Aujol, ‘‘Adaptive regularization
of the NL-Means: Application to image and video denoising,’’ IEEE
Trans. Image Process., vol. 23, no. 8, pp. 3506–3521, Aug. 2014, doi:
10.1109/TIP.2014.2329448.

[26] Y. Chen, W. Cao, L. Pang, and X. Cao, ‘‘Hyperspectral image denoising
with weighted nonlocal low-rank model and adaptive total variation
regularization,’’ IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–15,
2022, Art. no. 5544115, doi: 10.1109/TGRS.2022.3214542.

VOLUME 12, 2024 28153

http://dx.doi.org/10.1109/AERO55745.2023.10115786
http://dx.doi.org/10.1007/s00159-006-0003-9
http://dx.doi.org/10.1007/s00159-006-0003-9
http://dx.doi.org/10.2514/1.G003483
http://dx.doi.org/10.1016/j.actaastro.2015.01.001
http://dx.doi.org/10.2514/2.4502
http://dx.doi.org/10.3390/rs10040589
http://dx.doi.org/10.1117/12.2005850
http://dx.doi.org/10.1080/01431161.2020.1782508
http://dx.doi.org/10.1364/ao.404685
http://dx.doi.org/10.3390/s20195567
http://dx.doi.org/10.1109/ICMTMA.2013.51
http://dx.doi.org/10.1117/12.566145
http://dx.doi.org/10.1364/ao.51.003631
http://dx.doi.org/10.1007/s00500-023-09148-y
http://dx.doi.org/10.1007/s11042-022-13569-6
http://dx.doi.org/10.1007/s11042-022-13569-6
http://dx.doi.org/10.1090/s0273-0979-1993-00390-2
http://dx.doi.org/10.1090/s0273-0979-1993-00390-2
http://dx.doi.org/10.1016/j.ijleo.2011.11.052
http://dx.doi.org/10.1080/10643389.2020.1807450
http://dx.doi.org/10.1145/3485447.3512104
http://dx.doi.org/10.1016/j.jksuci.2020.03.007
http://dx.doi.org/10.14257/ijsip.2013.6.5.30
http://dx.doi.org/10.7763/ijfcc.2012.v1.87
http://dx.doi.org/10.1109/TIP.2002.801126
http://dx.doi.org/10.1109/ICCV.1998.710815
http://dx.doi.org/10.1109/TIP.2014.2329448
http://dx.doi.org/10.1109/TGRS.2022.3214542


P. Zhou et al.: Non-Uniform Background Noise Suppression Method

[27] G. E. Healey and R. Kondepudy, ‘‘Radiometric CCD camera calibration
and noise estimation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 16,
no. 3, pp. 267–276, Mar. 1994, doi: 10.1109/34.276126.

[28] P. Jiang, C. Liu, W. Yang, Z. Kang, and Z. Li, ‘‘Automatic space debris
extraction channel based on large field of view photoelectric detection
system,’’ Publications Astronomical Soc. Pacific, vol. 134, no. 1032,
Feb. 2022, Art. no. 024503, doi: 10.1088/1538-3873/ac4c9d.

[29] R. Liu, D. Wang, D. Zhou, and P. Jia, ‘‘Point target detection based on
multiscale morphological filtering and an energy concentration criterion,’’
Appl. Opt., vol. 56, no. 24, p. 6796, Aug. 2017, doi: 10.1364/ao.56.006796.

[30] N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt,
A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, ‘‘Leakage
current modeling of test structures for characterization of dark current
in CMOS image sensors,’’ IEEE Trans. Electron Devices, vol. 50, no. 1,
pp. 77–83, Jan. 2003, doi: 10.1109/TED.2002.807249.

[31] C. L. P. Chen, H. Li, Y. Wei, T. Xia, and Y. Y. Tang, ‘‘A local
contrast method for small infrared target detection,’’ IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 1, pp. 574–581, Jan. 2014, doi:
10.1109/TGRS.2013.2242477.

[32] Y. Chang, H. Fang, L. Yan, and H. Liu, ‘‘Robust destriping method
with unidirectional total variation and framelet regularization,’’ Opt. Exp.,
vol. 21, no. 20, p. 23307, Sep. 2013, doi: 10.1364/OE.21.023307.

[33] L. I. Rudin, S. Osher, and E. Fatemi, ‘‘Nonlinear total variation based noise
removal algorithms,’’ Phys. D, Nonlinear Phenomena, vol. 60, nos. 1–4,
pp. 259–268, Nov. 1992, doi: 10.1016/0167-2789(92)90242-F.

[34] T. F. Chan, H. M. Zhou, and R. H. Chan, ‘‘Continuation method for
total variation denoising problems,’’ Proc. SPIE, vol. 2563, pp. 314–325,
Jun. 1995, doi: 10.1117/12.211408.

[35] H. Masood, A. Zafar, M. U. Ali, T. Hussain, M. A. Khan, U. Tariq, and
R. Damaševič ius, ‘‘Tracking of a fixed-shape moving object based on the
gradient descent method,’’ Sensors, vol. 22, no. 3, p. 1098, Jan. 2022, doi:
10.3390/s22031098.

[36] B. R. Jana, H. Thotakura, A. Baliyan, M. Sankararao, R. G. Deshmukh,
and S. R. Karanam, ‘‘Pixel density based trimmed median filter for
removal of noise from surface image,’’ Appl. Nanoscience, vol. 13, no. 2,
pp. 1017–1028, Feb. 2023, doi: 10.1007/s13204-021-01950-0.

[37] A. Khmag, A. R. Ramli, S. A. R. Al-haddad, and N. Kamarudin, ‘‘Natural
image noise level estimation based on local statistics for blind noise
reduction,’’ Vis. Comput., vol. 34, no. 4, pp. 575–587, Apr. 2018, doi:
10.1007/s00371-017-1362-0.

PENGJI ZHOU was born in Yichun, Heilongjiang,
China, in 1985. He received the B.S. degree in
measurement and control technology and instru-
mentation and the M.S. degree in measuring and
testing technologies and instruments from the
University of Electronic Science and Technology
of China, Chengdu, China, in 2008 and 2013,
respectively. He is currently pursuing the Ph.D.
degree with the Changchun Institute of Optics,
Fine Mechanics and Physics, Chinese Academy of

Sciences, Changchun, China.
He is currently an Assistant Researcher with the Changchun Institute

of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
His research interests include image processing, weak target detection, and
computer vision.

DI WU was born in Changchun, Jilin, China,
in 1988. She received the B.S. degree in electronic
and information engineering and the M.S. degree
in circuits and systems from Jilin University,
Changchun, in 2011 and 2014, respectively, and
the Ph.D. degree in mechanical electronics engi-
neering from the Changchun Institute of Optics,
Fine Mechanics and Physics, Chinese Academy of
Sciences, Changchun, in 2023.

She is currently an Assistant Researcher with
the Chinese Academy of Sciences. Her research interests include image
processing, target radiation characteristics, weak target detection, and
computer vision.

XIAODONG WANG was born in Jilin, China,
in 1970. He received the Ph.D. degree in
optical engineering from the Changchun Institute
of Optics, Fine Mechanics and Physics, Chi-
nese Academy of Sciences, Changchun, China,
in 2003.

He is currently a Researcher with the
Changchun Institute of Optics, Fine Mechanics
and Physics, Chinese Academy of Sciences. His
research interests include space optical remote

sensing imaging and information processing technology.

CHANGXIANG YAN was born in Honghu, Hubei,
China, in 1973. He received the M.S. degree in
engineering from Zhejiang University, Zhejiang,
China, in 1998, and the Ph.D. degree from the
Changchun Institute of Optics, Fine Mechanics
and Physics, Chinese Academy of Sciences,
Changchun, China, in 2001.

Since 2010, he has been the Director of the
Space Optics Laboratory, Changchun Institute of
Optics, Fine Mechanics and Physics, Chinese

Academy of Sciences. His research interests include opto-mechatronics
technology for space optical remote sensing instruments, multispectral and
hyperspectral spatial remote sensing imaging, polarization detection, and
space surveillance.

DALI ZHOU was born in Changchun, Jilin, China,
in 1989. He received the B.S. degree in electronic
information science and technology and the M.S.
degree in circuits and systems from Northeast
Normal University, Changchun, in 2013 and 2016,
respectively.

He is currently an Assistant Researcher with
the Changchun Institute of Optics, FineMechanics
and Physics, Chinese Academy of Sciences. His
research interests include image processing, faint

target detection, and computer vision.

28154 VOLUME 12, 2024

http://dx.doi.org/10.1109/34.276126
http://dx.doi.org/10.1088/1538-3873/ac4c9d
http://dx.doi.org/10.1364/ao.56.006796
http://dx.doi.org/10.1109/TED.2002.807249
http://dx.doi.org/10.1109/TGRS.2013.2242477
http://dx.doi.org/10.1364/OE.21.023307
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1117/12.211408
http://dx.doi.org/10.3390/s22031098
http://dx.doi.org/10.1007/s13204-021-01950-0
http://dx.doi.org/10.1007/s00371-017-1362-0

