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ABSTRACT How to arrange a periodic array consisting of precise unit-cells on a complex surface has
always been a difficulty affecting the application of frequency selective structures. Based on the elastic
deformation theory of thin-shell, a perfect mapping between a curved surface and a planar array by using
the weighted minimum distortion flat-unfolding solution of the surface is established and then extended to
the 3-Dimensional (3D) case along the thickness direction. With the help of this mapping, the information
of the unit-cell can be mapped to the thick surface structure while maintaining the topological properties of
the planar periodic array and the internal structure of the unit-cell. In the mapping process, the deformation
of the unit-cell on the thick surface structure relative to the original unit-cell can be evaluated, and this
deformation has local adjustability. This manuscript provides a class of local unit-cell deformation control
algorithms that do not affect the completeness of the mapping. The application effect and potential of
this method are demonstrated by an example of a spliced conical radome using a three-layer hybrid
unit-cell.

INDEX TERMS Frequency selective surface (FSS), radome, electromagnetic functional structure, flat
unfolding, thin-shell, elastic deformation, perfect mapping.

I. INTRODUCTION
Components that integrate the characteristics of stealth shape,
electromagnetic wave absorption or emission, frequency
selection or metamaterials, and undertake certain structural
functions, have been an important development direction in
the fields of low detectability, electromagnetic compatibility,
and high-performance communication technology. This type
of structure is an extension of the traditional concepts of
frequency selective surfaces (FSSs) and metasurfaces but
focuses more on applications and is commonly referred to
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as ‘‘electromagnetic functional structures’’ or ‘‘artificial elec-
tromagnetic structures’’ [1], [2]. At present, great progress
has been made in the field of absorbing/scattering frequency
selective surfaces (AFSS/SFSS), ultra-wideband frequency
selective surfaces (UWB-FSS), non-resonant frequency
selective surfaces (NR-FSS) and metamaterials. In terms of
function, the unit-cell of electromagnetic functional structure
has developed towardsmulti-frequency, integrated absorption
and scattering, broadband/ultra-wideband, negative refractive
index, adjustable performance, etc. In terms of scale, the
unit-cell has developed towards a thinner, smaller, and finer
structure. However, most of the existing research focuses
on the performance of the periodic unit-cell based on the
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assumptions of infinity and planarity. Practical electromag-
netic functional structural products are mostly curved sur-
faces, and their applications face many difficulties. Among
them, the difficulty of design and modeling is the primary
problem that restricts the application of advanced electro-
magnetic functional structures in components such as curved
radomes, non-planar antennas, and smart skins.Without solv-
ing the problem of modeling, it is difficult to describe the
design schemes and manufacture the prototype samples of
those curved electromagnetic functional structures, and it is
also difficult to evaluate their electromagnetic performance
by accurate computational electromagnetics method.

At the early stage of the development of frequency selec-
tion surfaces, many scholars have discussed the problem of
how to arrange periodic arrays on curved structures [3], [4],
[5]. Traditional research often focuses on relatively simple
situations. The applied object is a plane or a developable
surface. One can directly arrange unit-cells on the plane
first and then map them to the surface [6]. Later, some
surfaces with smaller Gaussian curvature were approximated
by the developable surface, and arrays were arranged on the
developable surface and projected onto the original surface,
while the size of the unit-cells was adjusted to correct errors
caused by the approximation and projection [7]. For complex
surfaces, people have developed a modeling method of local
planar approximation, which usually divides complex sur-
faces into pieces with small Gaussian curvature and arranges
arrays by projecting them from the tangent plane onto the
pieces [8], [9], [10], [11]. The equal density method and
the equal Geodesic method are also two commonly used
curved array modeling methods, which inherit the features
of periodic arrays on the plane of complex surfaces by main-
taining the density of unit-cell [12] and the surface spacing
between unit-cells consistent with the plane arrays [13],
respectively [14], [15], [16], [17], [18]. These methods, when
used alone, usually bring about problems such as drastic
changes in the relative position relationship of the unit-
cells. Therefore, several curved array modeling methods that
combine multiple methods have been developed [17], [18].
Because the algorithmic process is not rigorous, such meth-
ods usually come at the cost of some properties of unit-cells
or arrays, resulting in only handling some sparse arrays or
simple unit-cells. They are generally powerless to deal with
advanced FSS structures with features such as compact array,
3D/quasi 3D, or hyperfine unit-cell.

The principle of another kind of curved array structure
modeling method is similar to the approximate developable
surface method for processing surfaces with small Gaussian
curvature. It is based on the direct approximate flat-unfolding
plane of the surface, by arranging unit-cells on the approx-
imate flat-unfolding plane and then mapping back to the
surface [19], [20], [21]. However, perhaps due to various
reasons such as not all surfaces having small distortion flat-
unfolding planes, uncontrollable distortion rates at different
positions, and the high cost of solving the flat-unfolding

solutions of large surfaces, there are few studies on the
design of arbitrary curved array structures by these methods.
On the other hand, in the field of surface texture, clothing
design, stamping and other fields where the requirements for
flattening distortion are not strict, such methods are widely
used [22], [23], [24], [25], [26]. Surface texture and clothing
design are not sensitive to local shape scaling or distor-
tion, while clothing design allows splicing and assumes that
the material is plastic. Stamping pays more attention to the
accuracy of overall deformation and appearance, while the
importance of local deformation is very low. Map survey-
ing only focuses on very special surfaces such as spheres,
and its focus differs greatly from the structure of curved
radomes. Therefore, these methods cannot be directly used
for high-precision curved array structure design.

Overall, the method based on the minimum distortion
flat-unfolding solution of surfaces has natural advantages in
maintaining the topological characteristics and fine features
of the unit-cell and array. Considering these, the manuscript
aims to establish a high-precision modeling method for
curved arrays with complex fine unit-cell by constructing
a perfect mapping between an arbitrary thick surface struc-
ture and a thick flat plate. The main content is divided into
three parts. Section II introduces a method for solving the
minimum distortion flat-unfolding problem of an arbitrary
surface with adjustable local distortion. In Section III, the
surface and its minimum distortion flat-unfolding solution are
extended along the thickness direction to construct a perfect
mapping between the thick curved structure and the thick flat
plate; If this mapping relationship is viewed as a deformation
process, the deformation maintains the characteristic of mini-
mum distortion. Section IV demonstrates the effectiveness of
this method through a modeling example of an FSS radome
with a tight array of multi-layer aperture-patch hybrid unit-
cells; Then the electromagnetic performance simulation of
the modeling results by FEKO software shows the potential
of the method to provide a computational model for large
complex curved FSSs.

II. A METHOD OF PERIODIC ARRAY ARRANGEMENT ON
CURVED SURFACE BASED ON THE MINIMUM ELASTIC
DEFORMATION OF THIN-SHELL
If a surface can be unfolded to plane according to a certain
minimum deformation rule, a mapping relationship between
the points on the surface and points on the plane can be estab-
lished. The periodic array can be arranged on the plane first,
and then the geometric information of the planar periodic
array can be mapped back to the original surface to complete
the arrangement of the periodic array on the surface (Fig. 1).
This method attempts to maintain the topological relation-
ship between the unit-cells to the maximum extent through
a perfect mapping of global deformation and weakens the
deformation of the curved array relative to the planar periodic
array by minimizing the flat-unfolding distortion. Therefore,
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FIGURE 1. The concept of the array arrangement based on the minimum
distortion flat-unfolding plane of curved surface.

FIGURE 2. Deformation caused by the length change of one side of a
triangle.

the key to the method is to solve the minimum distortion
flat-unfolding solution of the surface.

A. DEFINITION OF THE MINIMUM DISTORTION
Firstly, a reasonable definition of ‘‘minimum distortion’’ is
needed. Fig. 2 shows a triangular sheet 1P0P1P2 with elastic
modulus E and Poisson’s ratio µ. We define a local plane
coordinate system with the origin at vertex P0 and the x-axis
along edge

−−→
P0P1. In this coordinate system, assume the coor-

dinates of P1 and P2 to be (x1, 0) and (x2, y2) respectively,
and assume the three sides of 1P0P1P2 to be:

−→
l0 =

−−→
P1P2

−→
l1 =

−−→
P2P0

−→
l2 =

−−→
P0P1

(1)

When the length of side
−→
l0 increases by w and the lengths

of other sides remain unchanged, the position of P2 will
change. If the position of P2 changes to P′

2(x
′, y′) = (x2 +

1x, y2+1y), the coordinate of P′

2 should meet the following
equations:{

x ′2
+ y′2 = x22 + y22

w =

√
(x ′ − x1)2 + y′2 −

√
(x2 − x1)2 + y22

(2)

The displacement and corresponding deformation in the x
and y directions of any point (x, y) in 1P0P1P2 caused by w
can be expressed as:[

u
v

]
=

[
1x
1y

]
−

1
y2

[
0 −1x
0 −1y

] ([
x
y

]
−

[
x2
y2

])
(3)

[
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

]
=

1
y2

[
0 1x
0 1y

]
(4)

Therefore, the strains at point (x, y) are obtained [27]:
εx = ∂u/∂y = 0
εy = ∂v/∂y = 1y/y2
γxy = ∂v/∂x + ∂u/∂y = 1x/y2

(5)

The expressions in (5) do not contain the coordinate com-
ponents x and y, which indicates that they describe a constant
strain field. Since the thickness is not considered, the rela-
tionship between stress and strain under the plane strain
conditions can be used [27]: εx

εy
γxy

 =
1
E

 1 − µ2
−(1 + µ)µ 0

−(1 + µ)µ 1 − µ2 0
0 0 2(1 + µ)


×

 σx
σy
τxy

 (6)

 σx
σy
τxy

 =
E

(2µ − 1)(µ + 1)

 µ − 1 −µ 0
−µ µ − 1 0
0 0 (2µ − 1)/2


×

 εx
εy
γxy

 (7)

If w has a tinny change δw, the stress work per unit volume
can be described as:

δW = σx
d
dw

(
∂u
∂x

)δw+ σy
d
dw

(
∂v
∂y

)δw

+ τxy
d
dw

(
∂v
∂x

+
∂u
∂y

)δw

=
1
y2

(
σy

d1y
dw

δw+ τxy
d1x
dw

δw
)

(8)

By solving (2), the expressions of the following variables are
obtained: x ′

=

[
l21 + l22 − (w+ l0)2

]/
(2l2)

y′ =

√
l21 − x ′2

(9)

 1x =

[
l21 + l22 − (w+ l0)2

]/
(2l2) − x2

1y =

√
l21 − x ′2 − y2

(10)


d1x
dw

= −
w+ l0
l2

d1y
dw

=
x ′√

l21 − x ′2

w+ l0
l2

(11)

where li is the length of
−→
li . Substitute (9)-(11) into (8) to

obtain:

δW =
E(w+ l0)

y22l2(1 + µ)

 µ − 1
2µ − 1

x ′1y√
l21 − x ′2

−
1x
2

 δw (12)
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If the length of side
−→
l0 changes significantly by 1l, the

volume density of internal stress work is the integral of δW :

W =

∫ 1l

0

E(w+ l0)

y22l2(1 + µ)

 µ − 1
2µ − 1

x ′1y√
l21 − x ′2

−
1x
2

 dw

(13)

If 1l ≪ l1 or using the small deformation approximation,
we can use

x21x + y21y = 0 (14)

to replace the first equation in (2), which means point P′

2 on
the circle with a radius of l2 is approximately replaced by the
point on the tangent line of the circle. In this way, the volume
density of internal stress work is simplified to an explicit
expression:

W =
E

(1 + µ)

(
l0
x1y2

)2

(
µ − 1
2µ − 1

x22
y22

+
1
2
)
1l2

2
(15)

The strain energy ES of 1P0P1P2 caused by 1l is the
volume integral of the stress work density:

ES(1P0P1P2, 1l) = SW (16)

where S is the area of 1P0P1P2.
Expression (16) is the strain energy caused by the length

change of side
−→
l0 only. If any side changes, the corresponding

strain energy expression can be obtained by changing the
subscripts of the parameters in (13) or (15). When the length
of side

−→
li increases by wi, take (15) as an example, the

resulting stress work density can be written as:

Wi =
E

(1 + µ)

(
li

xi,1yi,2

)2

(
µ − 1
2µ − 1

x2i,2
y2i,2

+
1
2
)
w2
i

2
(17)

where

xi,1 = li+2 (18)

xi,2 = −
−→
l i+1 · l̂i+2 (19)

yi,2 =
−→
li · (̂n×

−→
l i+2)/|̂n×

−→
l i+2| (20)

n̂ = (
−→
li ×

−→
l i+1)/|

−→
l i ×

−→
l i+1| (21)

For the convenience of expressing, the subscript ‘‘i+m’’ of
all parameters should be understood as mod (i+m, 3), which
means li+3 = li.
When the lengths of all three sides of1P0P1P2 change, the

strain energy can be approximately expressed as the sum of
the strain energy generated by the deformation of each side,
as follows:

ET = S
2∑
i=0

Wi (22)

The strain energy ET is a function ofWi(i = 0, 1, 2).
In the next discussion, we define the space coordinate of

vertex Pi of1P0P1P2 as (xi, yi, zi), and define planar triangle
1V0V1V2 as a deformed image of 1P0P1P2. Assuming the

coordinate of vertex Vi of 1V0V1V2 is Vi(ui, vi), then the
lengths of the three sides of 1V0V1V2 are given as:

di =

√
(ui+2 − ui+1)2 + (vi+2 − vi+1)2 (23)

The side lengths before flattening are

li =

√
(xi+2 − xi+1)2 + (yi+2 − yi+1)2 + (zi+2 − zi+1)2

(24)

Then the side-length change before and after deformation
wi = di − li is a function of (ui, vi)(i = 0, 1, 2).
Since ET is used to measure the distortion degree of

1P0P1P2 when it is deformed, ET = 0 if and only if wi =

0(i = 0, 1, 2).
Any complex surface can be approximated by triangular

facets. Suppose that surface S is discretized into a discrete
surface S’ composed of M triangular facets and N vertices,
and the vertex coordinate set of S’ is:

P = {Pi|i = 0, 1, 2, · · · ,N − 1} (25)

Suppose a flat-unfolding solution of the discrete surface S’ is
plane F’, and the vertex coordinate set corresponding to P on
F’ is

V = {Vi|i = 0, 1, 2, · · · ,N − 1} (26)

where, F’ is actually a continuous region composed of trian-

gles on a 2D plane. If ET,j = Sj
2∑
i=0

Wj,i is used to represent

the strain energy of the j-th triangular facet 1j on the discrete
surface S’ when S’ is unfolded to F’, the total strain energy
can be expressed as the sum of the strain energy caused by
the deformation of each triangular facet:

U =

M−1∑
j=0

tjET,j =

M−1∑
j=0

(tjSj
2∑
i=0

Wj,i) (27)

where the definition ofWj,i is like (17), which represents the
strain energy caused by the deformation of the i-th edge of
triangular facet 1j on the discrete surface S’, and Sj is the
area of 1j. tj is the weight coefficient of the proportion of
strain energy of 1j in the total strain energy, which also can
be understood as the thickness of 1j.

In this paper, the total strain energy U is selected to mea-
sure the distortion degree of S’ when flattened to F’, and the
‘‘minimum distortion’’ is the minimum value of U . If thick-
ness of all triangular facets is the same or not considered, then
tj = 1. Otherwise, a larger tj means that the distortion of facet
1j has a greater impact on U , and the distortion of facet 1j
will be weakened in the process of flattening solution.

B. SOLVING OF THE MINIMUM DISTORTION
FLAT-UNFOLDING PROBLEM
The standard form of the minimum value problem of can be
described as follows:{

V = {Vi(ui, vi)|i = 0, 1, 2, · · · ,N − 1}
minU (V)

(28)
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This is a multivariable unconstrained optimization prob-
lem. There are many algorithms to solve problem (28),
such as gradient method, Newton iterative method, simplex
method and so on. However, for arbitrary surface, no mat-
ter which optimization method is used, the solution search
process may converge to a local optimal solution, especially
the unfolding solution with overlapping of triangle facets,
rather than the global optimal solution. It is easy to understand
physically that the strain energy of an unfolding solution with
‘‘wrinkles’’ is probably smaller than that of a solution without
‘‘wrinkles’’. Therefore, when using these algorithms in prac-
tice, the flat-unfolding process can be guided by artificially
introducing some intermediate solutions to avoid ‘‘wrinkles’’.
Those intermediate unfolding solutions are similar to the
multi-stage ‘‘molds’’ in the metal sheet stamping process.
This is an interesting research direction.

C. ARRANGEMENT OF THE PERIODIC ARRAY
After obtaining the minimum distortion flat-unfolding solu-
tion of a surface, we can easily determine the geometric
features of the periodic array on the unfolding plane, and then
map them to the original surface. Since all geometric features
are based on points, determining the relationship between the
points on the surface and the points on its minimum distortion
unfolding plane establishes a mapping between the array on
the surface and the array on the minimum unfolding plane.

LetM is a point on 1ViVjVk of the flat-unfolding solution
F’, and the image of 1ViVjVk on the original surface is
1PiPjPk . Point M can be expressed as a linear form about
the vertices of 1ViVjVk , such as:

−→
M = α

−→
V i + β

−→
V j + (1 − α − β)

−→
V k (29)

where

α =
[̂n× (

−→
V j −

−→
V k )] · (

−→
M −

−→
V k )

[̂n× (
−→
V j −

−→
V k )] · (

−→
V i −

−→
V k )

β =
[̂n× (

−→
V i −

−→
V k )] · (

−→
M −

−→
V k )

[̂n× (
−→
V i −

−→
V k )] · (

−→
V j −

−→
V k )

(30)

and n̂ is the normal direction of 1ViVjVk . Then the image of
point M on the original surface can be expressed as

−→
T = α

−→
P i + β

−→
P j + (1 − α − β)

−→
P k (31)

The formulas (29)∼(31) actually establish a perfect map-
ping between the minimum distortion flat-unfolding solution
F’ and the discrete surface S’. If we arrange a periodic array
on F’, the geometric information can be completely mapped
to the discrete surface S’.

III. THE ARRANGEMENT PROBLEMS OF MULTILAYER
UNIT-CELLS AND 3D UNIT-CELLS
Since simple single-layer unit-cells have less practical value,
the current practical unit-cells are usually multi-layer or 3D
structures. When multi-layer unit-cells are arranged on a
curved surface, there are not only distortion problems caused

FIGURE 3. The inside and outside distances between the unit-cells are
different due to the curvature.

by curvature, but also distortion problems caused by layer
alignment and thickness. The distortion caused by layer align-
ment and thickness can be explained by Fig.3, they usually
appear at least one.

If the normal alignment between layers (one of the
alignment methods) is guaranteed, the tangential distances
between unit-cells on different layer will inevitably change
due to the curvature (Fig. 3): dO > dI. On the other hand,
if the tangential distances between the neighbor unit-cells
is kept constant, it is theoretically impossible to ensure that
elements on different layers are all aligned because the area
of each layer surface is different, which will lead to different
numbers of unit-cells that can be arranged on different layers.

Due to the design and manufacture difficulties of multi-
layer unit-cells or 3D unit-cells, there is few research con-
clusions on which alignment method is adopted, or whether
to keep the array alignment or keep the tangential size of
unit-cells on each layer as equal as possible. In this paper,
a multi-layer unit-cell placement method that maintains the
normal alignment between layers is present. In this method,
the geometric information of different layers of the unit-cells
is allowed to change with the curvature. The core of this
method is to extend the 2D perfect mapping between the
unfolding plane and the surface to a 3D perfect mapping
between the thick plate and the thick surface by the thickness
direction or normal direction extension. The first step is to
determine a reference surface of the thick surface structure
for flat unfolding.

A. DETERMINATION OF THE REFERENCE SURFACE FOR
FLAT-UNFOLDING
Because the bending will cause area difference between the
two sides of a thick board, it will inevitably lead to the
problem that the inner side of the unit-cell becomes narrower,
and the outer side becomes wider. In order to minimize the
effect of bending on all unit-cells, the problem of determin-
ing a flat-unfolding reference surface is introduced. From a
geometry perspective, there is usually a neutral surface with
no or little deform when bending a plate. To make the 3D
geometric feature distortion of a unit-cell as small as possible,
the neutral surface or approximate neutral surface is suitable
for the flat-unfolding reference surface. That is, the ‘‘mid-
surface’’ between the two sides of a thick structure (Fig.4(a)
and 4(b)) or the array layer near the ‘‘mid-surface’’ (Fig.4(c))
can be selected as the flat-unfolding reference surface. This
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FIGURE 4. Selection of the flat-unfolding reference surface. Choose the
‘‘mid-surface’’ of a multi-layer array (a) or a 3D unit-cell array (b), or the
array layer near the ‘‘mid-surface’’ of an asymmetric multi-layer array
(c) as the flat-unfolding reference surface.

selection can ensure that the distortion of the flat-unfolding
reference surface is close to the minimum, while the absolute
values of the distortion index of the inner and outer surfaces
are approximately equal, but the signs are opposite.

B. ARRANGEMENT OF MULTI-LAYER UNIT-CELLS ON
CURVED SURFACE
The arrangement of multi-layer array that maintains the
normal alignment between layers is essentially to establish
a mapping from planar multi-layer unit-cells to the thick
structure. This work can be conducted by extending the 2D
mapping in Section II to the 3D case along the normal direc-
tion of the reference surface. The basic steps are as follows:

(I) Discretize a planar period of the unit-cell into 2D trian-
gle facets.

(II) Any point T in the unit-cell can be expressed in the
sum of normal coordinate and tangential coordinates, similar
to (29). Assuming that the normal coordinate of pointM is t ,
and the normal projection Q of point M falls on 1ViVjVk of
the discrete model of the planar period, then point M can be
written as:

−→
M = t̂ z+ α

−→
V i + β

−→
V j + (1 − α − β)

−→
V k (32)

(III) Establish the normal information of the reference
surface. Define the normal direction of any vertex on the
discrete facet model of a surface as the area-weighted average
of the normal directions of all triangular facets sharing the
vertex. The normal direction of any point in a triangular facet
is a linear sum of the vertex normal directions of the triangle.
If point X can be represented by the three vertices of1PiPjPk
as (29), these definitions can be described as:

−→n (Pi) =

∑
j∈GFi

(sĵnj)

/ ∑
j∈GFi

sj (33)

n̂(Pi) =
−→n (Pi)/|

−→n (Pi)| (34)
−→n (X ) = αn̂(Pi) + βn̂(Pj) + (1 − α − β )̂n(Pk ) (35)

n̂(X ) =
−→n (X )/|−→n (X )| (36)

where GFi denotes the serial number set of all facets sharing
vertex Pi, sj and n̂j denote the area and the normal direction
of the j-th facet respectively, and n̂(X ) represents the normal
direction at point X .

(IV) After completing the array arrangement on the unfold-
ing plane, triangle facets of the planar period of every unit-cell
can be mapped to the reference surface according to the 2D
mapping in Section II. Let the image of 1ViVjVk on the

FIGURE 5. Geometry mapping that maintains the normal alignment
between layers.

original surface be 1PiPjPk , then the image T of point M
on the thick surface structure can be expressed as:

−→
T = t n̂(R) + α

−→
P i + β

−→
P j + (1 − α − β)

−→
P k (37)

where point R is the imagine of Q on 1PiPjPk .

−→
R = α

−→
P i + β

−→
P j + (1 − α − β)

−→
P k (38)

Fig. 5 shows an example of a unit-cell whose planar period
is a regular hexagon. The above steps can be understood as a
process of determining the coordinates of points in sequence:
M → Q → R → T . Since point M can be any point in
a 3D unit-cell of the planar array, the above steps establish
a perfect mapping between the planar array and the thick
surface structure. Theoretically, any fine topological structure
inside a planar array can be preserved under this mapping.

C. GEOMETRY ADJUSTMENT OF LOCAL UNIT-CELLS
In the actual modeling process, it is often necessary to adjust
the shape or position of unit-cells in a certain region due
to electrical performance adjustments or other performance
requirements. Therefore, it is necessary to construct a local
geometric structure reconstruction algorithm, which will not
destroy the integrity of the whole mapping, but also can be
limited to a certain region. In the following, the reconstruc-
tion algorithms of several typical geometric deformations in
the region with the center point

−→
C as the center and the

radius R are given. Other local geometric deformations can
be designed according to similar methods:

(I) Position adjustment. Assuming that there is a maximum
offset

−→
d max at point

−→
C , the farther the distance from point

−→
C is, the smaller the offset is. When the distance from point
−→
C is greater than the radius r , the point will not be affected.
When this deformation is used to adjust the center position of
a unit-cell, it causes the position of other unit-cells around it
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FIGURE 6. The adjustment of the unit-cells in a circular region.

FIGURE 7. A three-layer patch-aperture hybrid unit-cell.

to shift, accompanied by slight tension or compression. The
new coordinate

−→
M ′ of point

−→
M on the planar array is:

−→
M ′

=


−→
M + f(

∣∣∣−→M −
−→
C

∣∣∣/r)
−→
d max

∣∣∣−→M −
−→
C

∣∣∣ < r
−→
M

∣∣∣−→M −
−→
C

∣∣∣ ≥ r

(39)

where f(x) is a continuous function with domain [1, 0], f(0) =

1 and f(1) = 0. As long as r >

∣∣∣−→d ∣∣∣ is guaranteed, the
mapping is still perfect in the circular region.

(II) Size adjustment. It is assumed that the maximum
tensile rate of the unit-cell at the center point

−→
C is εmax,

and the tensile rate away from
−→
C gradually decreases to 0.

When this deformation is used to adjust the size of a unit-
cell, it will cause tension or compression of other unit-cells
around, accompanied by a slight change in position. The new
coordinate

−→
M ′ of point

−→
M on the planar array is:

−→
M ′

=


−→
M +(

−→
M −

−→
C )f(

∣∣∣−→M −
−→
C

∣∣∣/r)εmax

∣∣∣−→M −
−→
C

∣∣∣<r
−→
M

∣∣∣−→M −
−→
C

∣∣∣≥r

(40)

Here, the definition of f(x) is the same as before. In this
circular region, the mapping is still perfect.

The above only considers the adjustment of plane coor-
dinates. The thickness coordinate depends on the plane
coordinate, and its adjustment can be calculated according to
the method of Subsection B.

FIGURE 8. The transmission characteristics of the unit-cell at different
incident angles.

Fig. 6(a) is the distortion of the grid with a spacing of
0.01 caused by the adjustment of the unit-cell position when
r = 0.15 and the maximum position offset

−→
d max =

(0.03, 0.03) is taken. Fig.6(b) shows the distortion caused
by the element size adjustment to the grid with a spacing
of 0.01 when εmax = 0.3 is applied. In both cases, f(x) =

(cos x + 1)/2 is taken. It can be seen from the figures that
the position and shape adjustments of the elements in the
affected area are continuous and adjustable in both cases. This
local geometry adjustment method can be used as a tool of
fine-tuning for arrays and electrical performance optimiza-
tion for curved FSSs.

IV. ACTUAL EFFECT
An example of arranging multilayer hybrid unit-cells on a
typical shaped radome is selected to test the effect of this
method.

A. THE UNIT-CELL FOR ARRANGEMENT
Fig. 7 shows the unit-cell of a three-layer patch-aperture
hybrid array. The shape parameters L = 4.2 mm,
R0 =3.4 mm, R1 =4 mm, R2 =1.8 mm and h = 2.5 mm.
The first layer and the third layer are consisted of conduc-
tive wafers, which are used as micro-elements to load the
hexagonal-loop apertures in the middle layer. The interlayer
between two array layers is filled with low density medium
with dielectric constant of 1.04 and loss tangent of 0.001.
Fig.8 is the typical frequency response curve of transmission
of the unit-cell at different incident angles. The unit-cell has
a passband basically independent of polarization and incident
angle in the band of 10∼11 GHz.

B. THE RADOME MODEL FOR TEST
A simplified radome model is selected as an example
of electromagnetic functional structure. The shape of the
mid-surface of the radome is shown as the yellow surface in
Fig.9. The light green area at the tip is no need to arrange unit-
cell, and the green sheet at the bottom is an analog antenna
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FIGURE 9. The antenna-radome system for test.

panel. The mid-surface of the radome is composed of upper
and lower parts, and the cross profile is a helmet shape with
low scattering.

C. UNIT-CELL ARRANGEMENT ON THE RADOME
Since the radome is assembled by an upper part and a lower
part, there is a natural edge. Near the edge, both the integrity
of unit-cells and the continuity of the array are difficult to
maintain and unnecessary. Therefore, the upper part and the
lower surface can be treated independently.

Because the unit-cell is symmetrical in the thickness direc-
tion and has a mid-layer array, the mid-layer of the unit-cell
will fit with the unfolding reference surface. The reference
surfaces of the upper and lower parts are discretized into
triangular facets models with a maximum side length of
3mm near the boundaries and 10mm in other areas, and then
flat-unfolded by the minimum distortion method present in
Section II with all tj = 1. The unfolding results are shown in
Fig.10. It can be found that the maximum linear deformation
on the reference surface of the lower part is about 1.23%
which occurs at the bottom edge and center. The situation on
the upper part is similar, but the maximum linear deformation
is about 1.13%. If we want the linear distortion in the central
area of the reference surfaces of the upper and lower parts to
be as small as possible, we can set the weight tj of facets in
the central area to be greater than 1. As a result, the linear
distortion in the most central area decreases, but that at the
surface edge increases, with a maximum value of more than
3%. Since the resonant wavelength is usually proportional to
the aperture or patch size of the unit-cell, this level of defor-
mation or center wavelength shift is acceptable for broadband
FSSs.

As shown in Fig.11, the unit-cells are arranged on the
unfolding solution of the reference surface. The starting
points of the arrangement are on the symmetry axes of the
unfolding solutions. The central positions and local coor-
dinate systems of unit-cells are determined. In order to
ensure the integrity of unit-cells near the edges and ensure
that elements (especially micro-element patches) are not too
close to the boundary and cause adverse effects, a mini-
mum safe distance between unit-cells and the boundary is
set as 1.8mm. Fig.11 is a distribution map of unit-cells on

FIGURE 10. Deformation distribution of the mid-surface of the radome
after flat unfolding.

FIGURE 11. Distribution map of unit-cells on the radome. Blue denotes
the z-axis of the local coordinate system of each unit-cell (also the
normal direction at the center of unit-cell), while red denotes the x-axis.

FIGURE 12. Discrete facets of the unit-cell. triangular facet model of a
planar period (a), the mid-layer (b) and the micro-element layers (c).

the radome after modeling according to the above method.
Each unit-cell is marked with a z-axis vector and an x-axis
vector of the local coordinate system of the unit-cell. Among
them, 5064 unit-cells are arranged on the upper part and
6208 unit-cells are arranged on the lower part of the radome.
For most high-frequency approximate electromagnetic cal-
culation methods, the model shown in Fig.11 is sufficient to
meet the input requirements.

According to the method in Section III, first discretize a
planar period of the unit-cell into triangular facets as shown
in Fig. 12(a) (taking a regular hexagon instead of a parallel-
ogram as the period is to ensure the integrity of the regular
hexagon-annular aperture). Then discretize the conductive
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FIGURE 13. The three array layers of the model radome.

FIGURE 14. The complete model of the FSS radome-antenna system.

regions of the mid-layer and the two micro-element lay-
ers into triangular facet models, as shown in Fig. 12(b)
and 12(c) respectively. To make it convenient to complement
the micro-elements near the boundary into circles, each cir-
cular patch is equally divided into 12 triangles according to
the central angle.

According to (29) and (30), the representation coefficients
of vertices of the facet model of every layer with respect
to the vertices of the facet model of the planar period in
Fig.12(a) are determined. Then the triangular facet models
of the three array layers are obtained by conducting the
processes in Section III-B. For the mid-layer, there are still
residual regions after unit-cell arranged. Considering it is
an aperture array, the residual regions need to be filled into
conductive region. The residual regions of the original surface
(here is also the unfolding reference surface) can be obtained
by cutting the original surface with the residual region bound-
aries.

The dielectric interlayer between the three array layers
can be directly generated by the thickness offset of the mid-
surface.

Fig. 13 shows themeshmodel of the three array layers after
unit-cell arrangement. A conductive surface is set at the tip to
ensure the integrity of themid-layer. It is shown that, although
the width of conductive belt between hexagonal-annular aper-
tures is only about 0.34 mm, there is no connection between
the adjacent apertures, only a tiny size change. In fact, the
size change depends on the linear deformation of the flat-
unfolding solution, while the accuracy of topological features
depends on the computational accuracy. On the other hand,
the two micro-element layers and the mid-layer are also

FIGURE 15. Monostatic RCS of the FSS radome-antenna system variation
with frequency.

TABLE 1. Comparison to existing methods.

aligned in the normal direction, which demonstrates the
advantages of the perfect mapping from the flat-unfolding
plane to the original surface.

The complete FSS radomemodel is obtained by adding the
dielectric interlayer to the model shown in Fig.14. A total of
1.42×106 conductive triangular facets and 4.04×107 dielec-
tric tetrahedral meshes are finally obtained after meshing.
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D. THE ELECTROMAGNETIC PERFORMANCE OF THE FSS
RADOME-ANTENNA SYSTEM
Fig. 15 shows the calculated result of the monostatic radar
cross section (RCS) variation with frequency of the model
shown in Fig.13. For the convenience of comparison, the
monostatic RCS of individual antenna and a pure perfect
electric conductive (PEC) radome with the same shape as the
mid-layer of the FSS radome are given in the same figure.
The monostatic RCS of the model in Fig.15 is calculated
by a method of volume integral equation combined with
the method of moments (VIE-MOM) and accelerated by the
multi-level fast multipole algorithm (MLFMA), while the
results of the individual antenna and the pure PEC radome
are calculated by MOM-MLFMA. The radiation direction of
the electromagnetic wave is along the axis of the radome, and
the local incidence angle of the radome surface varies from
62.7◦ to 82.8◦. The results indicate that the RCS of the FSS
radome-antenna system is lower than that of the pure antenna
in the whole investigation frequency band. The RCS of the
FSS radome-antenna system near 10∼12GHz is close to the
RCS of the antenna, which may be due to that this frequency
band is approximately a passband of the unit-cell independent
of incident angle and polarization condition. Outside this fre-
quency band, the transmission of the unit-cell is always low
in at least one polarization state, resulting in partial blocking
of the incident wave and the antenna reflecting wave. In the
frequency band around 22.5∼24 GHz, the RCS of the FSS
radome-antenna system is even lower than that of the pure
PEC radome, which may be caused by the low transmission
of the FSS radome and the spatial lobes which radiate part of
the energy to other directions.

V. CONCLUSION
For the above example where a compact array composed of
regular hexagonal unit-cells is arranged on an undevelopable
surface, existing methods are usually powerless. Using the
method presented in this manuscript, a distortion controllable
modeling result is presented, and the potential of this model-
ing result for monostatic RCS calculation of antenna radome
systems is demonstrated. This demonstrates the superiority
and potential of modeling complex curved array structures
based on the minimum distortion flat-unfolding solution of
curved surfaces.

Compared with existing methods, the advantages and
disadvantages of this method are shown in Tab. 1. The advan-
tages of this method are good topological characteristics and
high accuracy of the modeling result, and the ability to handle
variable thickness structures, but the cost is relatively large
computational complexity.

This method actually provides an algorithm for estab-
lishing a perfect mapping between a finite planar periodic
structure and the target thick surface. Theoretically, if a 3D
unit-cell can be discretized into a mesh model, the geometric
information of a periodic array consisting of these unit-cells
can be fully mapped to the thick curved surface to form a

discrete mesh model of the curved FSS structure. In this
modeling method, the distortion degree of unit-cell and array
can be evaluated by the deformation distribution of the flat-
tening solution and the curvature of the reference surface. The
deformation of the unit-cell and array on the surface can be
controlled not only by the flattening process, but also by the
local adjustment of the planar array before mapping, which
lays a foundation for the electrical performance optimization
of the curved array structure. In addition, this method can
also be used as a design scheme representation tool for the
electromagnetic functional structure of thick curved surface,
providing calculation models for high-frequency and low-
frequency algorithms, and providing data sources for digital
production.

In fact, the accuracy of this method is directly dependent on
the accuracy of the discrete meshes of the reference surface
and the unit-cell. Excessively coarse discrete meshes may
cause the modeling results to be not smooth enough (unable
to approach the contour of the radome well). Improving the
smoothness of modeling results by increasing the accuracy
of mesh discretization will lead to a surge in computational
complexity. If the nodes of the modeling results are calibrated
using the original NURBS (Non-Uniform Rational B-Spline)
surface representation of the reference surface or the radome
contour surface, the accuracy of the modeling results can
be greatly improved, making it not limited by the discrete
meshes of the reference surface and the unit-cell. The authors’
future work will focus on how to carry out the integrated
optimization of electromagnetic performance, aerodynamic
and structural optimization of curved array structures based
on this modeling method.
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