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ABSTRACT Scanning electronmicroscope, atomic forcemicroscope and other equipment play an important
role in the fields of topography restoration and detection. However, these devices are generally used in
nanometer-scale measurement scenarios. For wafer topography quality control scenarios ranging from
microns to hundreds of microns, these technologies have problems such as high cost and slow detection
speed. Therefore, developing new, low-cost, and high-precision methods is necessary. To address this
problem, a wafer surface reconstruction framework is proposed based on the shape-from-focus principle.
In view of the characteristics of the large area and micro-small height of the wafer, to solve the limitations of
the existing shape from focus framework, which is generally based on a single field, we created a multi-field
image sequence rapid acquisition system and proposed the use of pulse control methods to achieve rapid
acquisition of large area images. On the other hand, this paper proposes a dual filtering framework combining
the Levy flight filtering principle with the SOR algorithm in point cloud filtering to achieve a balance
between smoothing the depth map and maintaining the detailed structure, reducing the impact of noise,
and improving the morphology restoration accuracy. To avoid splicing seams between fields, the progressive
detectionmultifield stitching technique is used to complete large-area depth data stitching. Experiments were
conducted on both synthetic and real objects to verify the effectiveness of the proposed method. In terms of
synthesized images, the accuracy of the three methods significantly improved after applying the proposed
method framework. After applying the Tenenbaum method framework, its correlation and peak signal-
to-noise ratio improved by 7.5% and 38.2%, respectively, and its root mean square error was reduced by
40.7%. The excellent accuracy reconstruction results of the proposed method was verified through accuracy
evaluation experiments. The height errors of the three methods used were all higher than 1 µm. However,
after using the proposed method framework, the maximum error was only 0.24µm. The experimental results
indicated that this method overcomes the area limitation of traditional SFF and is suitable for applying wafer
surface morphology measurements.

INDEX TERMS Wafer, shape from focus, Levy filtering, defect detection.

I. INTRODUCTION
Dies are the core of a chip, which is cut from a wafer.
Wafers are made by semiconductor technology, with numer-
ous microsized dies arranged on the surface. After the wafer
is made, there are inherent yield issues, and there may be
various types of defects on its surface. Different detection
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techniques need to be used to identify defects on the wafer
surface, classify and label them, and assist in sorting the
wafers to prevent defective wafers from entering the sub-
sequent packaging process. Detecting the three-dimensional
geometric dimensions and shapes for surface processing con-
trol is necessary.

In existing wafer surface topography detection tech-
nologies, commonly employed methods include scanning
electron microscopy, atomic force microscopy, laser confocal
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microscopy, probe techniques, and various optical interfer-
ence measurement technologies [1], [2]. However, these
techniques are more commonly applied in environments
requiring nanoscale surface quality control, such as rough-
ness detection after wafer surface polishing, bow (BOW)
detection, global flatness back ideal range (GBIR) detection,
site flatness back ideal range (SBIR) detection, and per-
centage of local thickness variation [3]. These technologies
achieve good detection accuracy, but their cost is too high.
When used in wafer surface morphology detection environ-
ments with heights ranging from micrometres to hundreds
of micrometres, their cost-effectiveness will be significantly
reduced. Therefore, it is crucial to explore new, cost-effective,
and high-precision methods for wafer topography quality
control with heights ranging from micrometers to hundreds
of micrometers. Shape from focus (SFF) is a noncontact opti-
cal measurement method with great development potential,
requiring the use of only a single ordinary optical microscope
and motion control system to achieve shape reconstruction.
By controlling the microscope to move along the direction
of the optical axis, the focusing surface scans the object
surface along the optical axis direction, and optical slices
are generated at different positions. The images of the slices
are obtained by the camera to construct a focused image
sequence. Then, the focus value of the image sequence is
analyzed, and the maximum focus value is obtained in the
optical axis direction to obtain the depth [4]. This method
balances the convenience and accuracy of measurement.

The focus measure (FM) and depth estimation are impor-
tant topics in the study of SFF. The former uses a certain
mathematical standard to measure the focus value of pixels
in the image space and generates a three-dimensional focus
volume (FV), in which the discrete shapes of the object
surface are hidden. The latter obtains discrete shapes through
depth estimation algorithms. Currently, various types of FM
operators have been reported. Pertuz et al. published an arti-
cle analyzing FM operators and summarized the previously
reported FM operators. They conducted experiments using
simulations and real objects to analyze the sensitivity of
existing operators to noise, image contrast, image saturation,
and neighborhood window size [5]. According to different
mathematical principles, Pertuz divided early focus opera-
tors into six types: gradient-based operators, Laplacian-based
operators, statistics-based operators, DCT-based operators,
wavelet-based or curved wave-based operators, and miscel-
laneous operators.

In recent years, researchers have proposed various dis-
tinctive and innovative approaches, placing greater emphasis
on the application of new mathematical principles. There is
also increased attention to the adaptability, robustness and
accuracy of algorithms. Examples include the method of
combining the spatial domain and frequency domain [6] and
the idea of a tensor matrix [7]. Along the optical axis, the
distribution of focus data is similar to a parabola, where the
pixel points corresponding to the maximum value on the

parabola have the best clarity. Curve fitting techniques such
as Gaussian fitting [8] and polynomial fitting [9] are often
used to estimate the peak value. By using these methods to
identify all clear pixel positions, discrete 3D shapes can be
reconstructed. In addition, many other types of shape-from-
focus algorithms have emerged, such as focus surface fitting
algorithms [10], [11] and optimization-based algorithms [12],
[13].

In recent years, deep learning has gained increasing atten-
tion and application in intelligent recognition, detection, and
other areas, leading to the emergence of a growing num-
ber of deep learning algorithms [14]. For example, Tan et
al. investigated the problem of reachable set estimation for
delayed Markov jump neural networks with finite distur-
bances [15] andH∞ state estimation for neural networkswith
time-varying delays [16]. They proposed improved inverse
convex inequalities and the Lyapunov-Krasovskii functional
(LKF), obtaining an accurate ellipsoidal description of the
reachable set for delayedMarkov jump neural networks. This
has made significant contributions to the study of reachable
set estimation in the field of control. Wu et al. addressed the
issue of tomographic image reconstruction and proposed two
networks: the deep embedding-attention-refinement (DEAR)
network [17] and the dual-domain residual optimization net-
work (DRONE) [18]. Both networks demonstrated unique
advantages in tomographic image reconstruction, including
edge preservation, feature recovery, and reconstruction accu-
racy.

The existing shape-from-focus framework generally
focuses on a single field, which reconstructs only the area
covered by the image sensor and restores only discrete shapes
hidden in a single image sequence. Therefore, the area that
these methods can detect is limited. In addition, a single
image sequence contains fewer images, so existing shapes
from focus frameworks pay less attention to time efficiency
issues. However, the wafer area is large, and a single field
cannot cover the measured area. The reconstruction mode
relying solely on a single image sequence cannot meet the
requirements. Therefore, it is necessary to divide the horizon-
tal plane into multiple fields of view and use the same step
size to capture image sequences in each field. All positions
where the images are collected form a three-dimensional
spatial grid. At this point, the number of images may be
excessively large, which poses new requirements for the time
efficiency of the shape from the focus framework.

We propose a wafer surface reconstruction framework
based on the shape-from-focus principle to address the issues
of wafer surface defect detection and size measurement. This
framework includes large-area rapid image acquisition, 3D
surface shape restoration, and postdata processing. This sur-
face reconstruction framework is versatile, and the obtained
3D shape can be used for defect detection and 3D geometric
size measurement in the latter stage. The main contributions
of this method are reflected in the following three aspects:
(1) By reconstructing the three-dimensional surface to obtain
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depth data and utilizing these three-dimensional depth data
for defect detection, the method captures a greater amount
of information. This is superior to commonly used defect
detection methods based on two-dimensional images. (2)
This paper presents a low-cost, high-performance framework
that can be built using only a conventional optical micro-
scope and motion control. It is accessible to a wide range
of users, in contrast to expensive options such as scanning
electron microscopes, atomic force microscopes, confocal
microscopes, and contour measurement devices, making it
more affordable for a broader user base. (3) The traditional
shape-from-focus methods are mostly based on a single field
for reconstruction, and the reconstruction range is limited.
The method proposed in this paper can realize the fast
reconstruction of large-format wafer surfaces, which is very
practical.

The rest of this paper is organized as follows. The next
section provides a brief overview of the related work.
Section III introduces the motivation behind the work. The
proposed method of shape reconstruction for wafers is
described in detail in Section IV. In Section V, the experi-
mental results are analyzed to verify the effectiveness of the
proposed method in this paper. The conclusions are given in
Section VI.

II. RELATED WORK
Shape-from-focus technology is used to restore the 3D shape
of objects from multiple 2D image slices. These image slices
are obtained bymoving objects along the optical axis in a con-
stant step size. The image slices at different focal positions
contain all the object details. The purpose of the SFF method
is to obtain the depth map of an object by calculating the
optimal focusing position of each point on the object, thereby
restoring the 3D shape of the object. For a given point P, its
optimal focusing position satisfies the thin lens imaging law,
and its principle is as follows:

1
f

=
1
u

+
1
v

(1)

where f represents the focal length of the lens, u represents
the distance from the object point P to the lens, and v repre-
sents the distance between the lens tube and the image plane.

The measurement of pixel focus is a very important
step in the entire SFF, which is related to the quality and
accuracy of SFF. Previous studies have shown that for
different applications, such as SFF, autofocus, and depth
of field stacking, various focus operators have been pro-
posed in the literature. Pertuz et al. [5] summarized and
analyzed these FM operators and classified them into six
different types based on their different mathematical prin-
ciples. They are gradient-based operators, Laplacian-based
operators, statistics-based operators, DCT-based operators,
wavelet-based or curved wave-based operators, and miscel-
laneous operators. Our goal is to achieve rapid detection of
large-area wafer image sequences using shape-from-focus
methods. Therefore, we chose several commonly used FM

operators, such as summarized modified Laplacian (SML),
Tenenbaum (TEN), and gray-level-variance (GLV). SML is
a modified Laplace operator that performs better with less
time cost compared to other FM operators. Therefore, it is
widely used for image clarity calculation. SML involves
convolving the image sequence Ink (x, y) with the Laplacian
operator. However, the result obtained from the Laplacian
operator is signed, and under certain conditions, there is a
possibility of opposite signs, leading to a phenomenon of
mutual cancellation between them. To address the impact
of this issue, Nayar and Nakagawa [8] proposed calculating
the focus value for each pixel by calculating the sum of the
squared absolute values of the second-order derivatives in the
x and y-directions. Therefore, for a pixel point p (x0, y0) in
the k-th frame image, the expression for calculating the focus
value is:

FM (k)
SML =

∑
(x,y)∈U (x0,y0)

∣∣∣∣∣∂2Ink (x, y)∂x2

∣∣∣∣∣
2

+

∣∣∣∣∣∂2Ink (x, y)∂y2

∣∣∣∣∣
2

(2)

where I (x,y) is the input image frame, U (x0,y0) is the neigh-
borhood centered around the pixel point (x0,y0), and (x,y) is a
pixel point in the neighborhood U . The TEN technique [19]
is based on the Sobel operator, which is defined as the sum
of squares of the gradients of the pixel points. The gradient
values in the horizontal and vertical directions are extracted
using the Sobel operator, and for a pixel point p (x0, y0) in the
k-th frame image, its focus value can be expressed as:

FM (k)
TEN =

∑
x

∑
y
G2
x(x, y) + G2

y(x, y) (3)

where x and y belong to the neighborhood U(x0,y0), respec-
tively, and Gx and Gy are gradient values computed using
the Sobel operator. The GLV operator is a statistically based
evaluation operator, which is one of the more accurate FM
operators in sharpness detection methods, by calculating the
variance in the gray values, with a higher variance represent-
ing higher image sharpness [20], and has been widely used in
the application of FMs for SFF. For a pixel point p(x0, y0) in
the k-th frame image, its focus value can be calculated using
the following formula:

FM (k)
GLV =

∑
(x,y)∈U (x0,y0)

1
N 2 [I

n
k (x, y) − µ]2 (4)

where µ is the average of all pixels in the neighborhood,
U (x0, y0) is the neighborhood in which the point (x0, y0) is
located, and N is the number of pixels in the neighborhood
U .

III. MOTIVATION
In recent years, many methods have been proposed for defect
detection and size measurement on wafer surfaces with a
height range of microsmall heights. For example, Zheng et
al. proposed a wafer surface defect detectionmethod based on
background subtraction and faster R-CNN for wafer surface
defect detection [21]. These methods have shown excellent
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effects in defect detection and two-dimensional dimension
measurement. However, with the advancement of semicon-
ductor technology, there is a new demand for defect detection
on wafer surfaces and the measurement of three-dimensional
geometric dimensions. In existing wafer surface shape detec-
tion technologies, commonly used devices include scanning
electron microscopes, atomic force microscopes, laser confo-
cal microscopes, contact probe technology, and various opti-
cal interference measurement technologies. These devices
offer high precision and are often employed in nanoscale
detection environments. However, their high cost poses a
challenge. Given the need for surface morphology detection
and three-dimensional dimension measurement in the height
range of micrometres to a few hundred micrometres, explor-
ing novel, low-cost, high-precision methods is crucial.

For the problem of three-dimensional geometric dimension
measurement, Chen et al. proposed a surface contour mea-
surement technique [22]. This technique utilizes the Mohr
projection scanning technology based on the principles of tri-
angulation, combined with a dual optical microscopy system,
to achieve a three-dimensional reconstruction of the wafer
surface. It effectively addresses the reconstruction challenges
of wafers with both diffuse and specular reflections. How-
ever, the overall system is complex and requires intricate
calibration work. In contrast, SFF methods do not necessi-
tate a complex system structure, offering a balance between
measurement convenience and accuracy.

IV. PROPOSED METHOD
A. SYSTEM AND RECONSTRUCTION PROCESS
The principle of the conventional single-field SFF is given in
Fig. 1. The core of the hardware system is the vision system
and the Z-axis motion system; the vision system is used for
image acquisition, and the Z-axis motion system is used to
control the vision system to move along the Z-direction. The
focusing surface of the objective lens of the vision system
scans the surface of the object while moving. The single-field
image acquisition process follows the following flow:

FIGURE 1. Traditional shape from focus in a single field field.

Step 1: The parameters such as step δ and sampling dis-
tance are set, and the focusing surface of the objective lens is
moved to some reference position (dashed box) below by the
Z-axis motion system in preparation for image acquisition;

Step 2: Through the Z-axis motion system, the vision
system is made to move a distance δ along the direction of the
optical axis, and the image is captured after stopping to obtain
the first frame of the focus image. Then, the vision system is
made to continue to move upward, and the Step 2 process is
repeated until the distance of the vision system is out of the
position of the sampling distance, and it enters Step 3.

Step 3: The image acquisition process ends.
Through the above image acquisition process, an image

sequence containing K image frames will be output. If the
resolution of a single image is M×N pixels, the number of
pixels contained in the image sequence isM ×N ×K pixels.
In an image sequence, the pixels in different images have
spatial positional relationships, and a three-dimensional pixel
space coordinate system o-uvw is created, where the u-axis
and v-axis are also the coordinate axes in a single image,
and the w-axis is parallel to the optical axis of the visual
system so that the pixels in the different image frames form
a three-dimensional pixel space. If given a pixel’s lateral
coordinate position (m,n), K pixels exist along the w-axis
direction, and the k-th pixel’s coordinate is (m, n,k), these K
pixels describe the out-of-focus process of a certain position
in the lateral plane in the object space, the degree of focus
is usually used to describe the focusing level of these K
pixels, the pixel space is transformed into the FV, pixels
corresponding to themaximal degree of focusing are regarded
as the pixels that focus the most sharply, and the process of
using their depth coordinate to restore the discrete shapes
hidden in the FV is the shape recovery process.

In Fig. 2, the surface structure of a wafer can be seen, with
a large number of microsized wafers lined up on it, blocks for
cutting left between wafers. The transverse and longitudinal
sizes of the wafers may be on the order of microns, tens of
microns, and so on, depending on the requirements. Addi-
tionally, the microvision system constituted by microscopes
is needed to take images properly when inspecting the surface
attributes. The diameter of thewafer is large and can be 4, 6, 8,
or 12 inches, and so on. The field of the microscopic vision
system is limited, so it is not possible to capture images of
the entire area with only a single field of view; it is necessary
for the object to move or for the vision system to be able to
capture images in more than one field. Based on the above
requirements, a framework for SFF based on multiple fields
is proposed, as shown in Fig. 2. The area to be photographed
is divided according to the field range of the vision system
and the area of the wafer surface. Partial overlap is needed
between neighboring areas, the image sequences are acquired
in each individual field, a collection of the image sequences
is output, and the shape recovery is carried out based on the
collection of the image sequences.

Based on the wafer surface characteristics and the mea-
surement range demand, we designed a hardware system
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FIGURE 2. Rules of shape from focus in multiple fields for wafer surface
profile.

and a general algorithm framework for wafer surface shape
recovery, as shown in Fig. 3. The hardware system consists of
a microscopic vision system (camera, microscope and light
source), a multi degree-of-freedom motion system (Z-axis
translational stage, X&Y-axis translational stage, rotational
stages A and B), and vibration damping equipment. The
vision system is used to acquire the image sequence, the
motion system is used to adjust the position and attitude of
the vision system and the object, and the vibration damp-
ing equipment is used to eliminate the external vibration
factors in the image acquisition process to ensure a smooth
image acquisition environment. The multidegree-of-freedom
motion system is controlled by a specialized motion control
system. In addition, a pulse control system was designed to
ensure fast image acquisition under multiple fields, which
allows image sequences to be captured during camera move-
ment.

Using the hardware system in Fig. 3, the area where the
wafer is located can be divided into multiple fields, image
sequences can be acquired in each field, and then these image
sequences can be processed. The whole shape recovery pro-
cess can be summarized into four steps (Step 1-Step 4): image
stack acquisition, shape recovery and data optimization, mul-
tifield stitching, measurement and application. The above
steps are analyzed and described in detail in Sections IV-B,
IV-C and IV-D, respectively.

B. METHOD FOR RAPID ACQUISITION OF WAFER IMAGE
SEQUENCES
In SFF, the image sequence is fundamental to the implemen-
tation of the shape-from-focus method. It has been shown
that there are three main methods for acquiring the image
sequence: changing the focal length [23], the image dis-
tance [24] and the object distance [25]. Mutahira et al. [26]
compared and analyzed three image sequence acquisition
methods and showed that changing the focal length method

has significant parallax and scaling problems that affect
reconstruction accuracy. This method is very challenging.
Changing the image distance is difficult; the image plane
requires precise alignment with the optical axis during move-
ment, which can easily cause serious parallax problems.
Changing the object distance is more commonly used and
is easier to implement in terms of motion control. In this
paper, image sequences are acquired by changing the object
distance.

The image sequence quality has a very important impact on
depth estimation accuracy and usefulness. The main factors
affecting image sequence quality are the total number of
images, the range of acquired samples, step δ, magnification,
the depth of field and the acquisition speed.

The step size and acquisition speed are particularly impor-
tant, as too small a step size will result in errors when
positioning clear pixels with maximum focus; too large a step
size will result in partial loss of depth information. Muham-
mad and Choi [27] addressed this problem by proposing a
sampling criterion for image sequences, which suggests that
the sampling step should be proportional to the depth of field
of the system, and proposed a formula for the sampling step.

Most of the research on the existing shape-from-focus
methods focuses on the sequence recovery of a single field,
and the acquisition method is mostly a step-by-step acquisi-
tion by setting up the step distance δ, relying on the motion
device to make the focusing surface of the objective lens
move along the direction of the optical axis by one step, per-
forming image acquisition after themotion device completely
stops, continuing tomove to the next position by the same step
distance, and repeating the above steps for a cyclic operation.
This method requires a pause after capturing each frame, and
precise positioning is needed after each capture. This col-
lection approach consumes considerable time, contradicting
the proposed low-cost, high-performance characteristics. For
wafers, the inspection size range is so large that a single field
at 20X can no longer cover the range of a single wafer in a
wafer. Therefore, it is necessary to divide multiple fields in
the transverse plane of the area to be measured and acquire
image sequences with equal steps for each field. However,
the image sequences increase exponentially under multiple
field conditions, and the time cost increases exponentially
upon accumulation, which seriously affect the application of
focused shape recovery in real scenes.

To address this problem, we propose a scheme for the fast
acquisition and localization of large-area image sequences.
First, the X, Y and Z axes of the hardware system shown
in Fig. 3 are equipped with high-precision scales, which
can output pulse signals and achieve micron-level position-
ing accuracy. The high-precision 3D motion control system
provides precise panning motion and positional positioning,
in which the Z-axis translational stage controls the camera’s
longitudinal movement along the direction of the optical
axis. Additionally, the X- and Y-axis translational stages can
realize the object’s panning operation. Since a single field
cannot cover the entire measured area, it is necessary to
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FIGURE 3. System setup and shape from the focus frame for wafer surface reconstruction.

calibrate the single-field range and divide the entire mea-
sured area into an array of image sequences with multiple
rows and columns along the lateral direction. By number-
ing the multiple fields in advance, field switching can be
realized quickly. The pulse counting device can read the
number of pulses output from the scale in real time during
the motion process, and the corresponding length of each
pulse is calibrated in advance. The pulse counting device
further processes the number of pulses read according to
preset parameters to generate a signal for triggering the image
sequence acquisition and sends it to the camera for real-
time triggering. Triggering the camera through the grating
ruler and pulse counting method to achieve image acquisition
and position localization is very accurate. In addition, the
acquisition strategy is not the traditional method to acquire
image sequences only in the direction of the optical axis.
We designed a three-axis pulsed image sequence acquisition
scheme, which allows us to acquire image sequences not only
along the X-axis direction but also along the Y-axis direc-
tion under multifield conditions. However, under multifield
conditions, the time cost is inconsistent under different acqui-
sition strategies due to factors such as the field-of-view range,
step size, and number of frames to be acquired. To rapidly
acquire sequences in multiple fields, we add the automatic
discrimination and calculation of different parameters in the
scheme to select the optimal acquisition strategy. Finally,
we perform image sequence acquisition in equal steps accord-
ing to the proposed scheme to obtain multiple multifield
image sequences Ink (x, y) with dimensionsM×N×K. where x
∈ {1,2. . . ,M} and y ∈ {1,2. . . ,N} denote the number of rows
and columns of each image frame, k∈{1,2. . . ,K} represents

the frame position where the image is located in the image
sequence, and n denotes the position number of the multifield
image sequence.

We propose a framework for rapidly acquiring image
sequences of wafer samples in the surface shape detec-
tion environment of wafer samples ranging in height from
micrometers to hundreds of micrometers. To achieve low cost
and high precision, we use a system that meets the accuracy
requirements of wafer samples ranging from micrometers to
hundreds of micrometers. However, for the detection envi-
ronment of the surface shape of nanoscale wafer samples, the
displacement table used with a piezoelectric ceramic-driven
translational stage is replaced to meet acquisition accuracy
requirements. Therefore, this method framework has good
compatibility and can meet the surface morphology detec-
tion function of wafer samples with heights ranging from
micrometers to hundreds of micrometers and at the nanoscale
according to actual needs.

C. APPEARANCE RESTORATION METHODS
Image sequence acquisition is the shape basis of the focus
technique, and focusing measurement and depth estima-
tion are the two core elements of SFF. In Section IV-B,
a multifield image sequence Ink (x, y) is acquired, and there
are focused and out-of-focus pixel points in each frame of
the image sequence. A well-focused image will have more
high-frequency content. Thus, for each pixel point on the
image sequence, a criterion is applied that allows for the
efficient calculation of the focus quality, which is referred to
as the FM. The calculated focus quality result is referred to as
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the FV. This criterion is applied to amplify the focus value of
well-focused high-frequency content and suppress the focus
value of out-of-focus parts.

For an image sequence Ink (x, y), we need to perform a
focusing degree computation for each pixel point using the
FM operator to transform it from pixel space to focusing
degree space to obtain the FV and maintain the dimension
consistent. It can be expressed as:

Fnk (x, y) = FM ⊗ Ink (x, y) (5)

After calculating the FV of the image sequence, all the
focusing values are counted for each pixel point in the focus-
ing degree space along the direction of the optical axis, and
the curve formed by all the focusing values is called the
focusing degree curve; ideally, the focusing degree curve has
a Gaussian distribution with a single peak, so the seeking
peaks algorithm is generally utilized to obtain the maximum
focusing value; its position is recorded as the depth data. Its
formula can be expressed as:

Dn(x, y) = argmax
∣∣Fnk (x, y)∣∣ (6)

The initial depth map can be obtained from the image
sequence by the above formula to recover the discrete 3D
shape. After interpolation, filtering and other operations to
obtain the 3D surface shape of the object, splicing operations
on the depth data using splicing techniques to obtain a com-
plete 3D shape recovery, filtering techniques and depth data
splicing are specifically introduced in the next section.

D. DEPTH DATA SPLICING AND FILTERING
As described in Section IV-C, the FM operator is utilized
to calculate the focusing value. Then, the depth estimation
is accomplished by finding the location of the maximum
focusing value. This metric is based on the edge informa-
tion; however, with the introduction of different noises in
each section, the edge information is disturbed, and with
the introduction of different types of noise, the depth maps
obtained by a single noise reduction algorithm will be exces-
sively smoothed or have a poor effect in removing the noise.
To filter out this noise and address this problem, we first
use the concept of Levy flight for noise filtering and then
utilize statistical filtering for secondary noise reduction in the
point cloud. The concept of Levy flight was first proposed
by French mathematician Paul Levy. Levy flight mimics
nature-based and physics-based phenomena [28], such as
animals in nature, such as fruit flies that search for food
randomly. These behaviors exhibit characteristics typical of
Levy flight. Two features that must be specified to realize
Levy flight are the step size and the wizard that guides the
function realization. Mantegna proposed a simple method for
determining step size Z [29], which can be expressed as:

Z =
U

|V |
1
β

(7)

where β is the distribution index (0 < β ≤ 2), U and V are
normally distributed variables with expectation 0 and stan-
dard deviation σu and 1, respectively, and σu can be expressed
by the following equation:

σu =

0 (1 + β) · sin
(

πβ
2

)
0

(
1+β
2

)
· β·2(

β−1
2 )

1/β

(8)

0 (a) =

∫
∞

0
ta−1e−tdt (9)

Here, to achieve filter denoising optimization of a 3D point
cloud, we define the step size as a matrix function as follows:

Ld = α · sign (R) · |z| (10)

R =


r1,1 r1,2
r2,1 r2,2

· · · r1,n
· · · r2,n

...
...

rm,1 rm,2

. . .
...

· · · rm,n

 (11)

where R is a matrix of random variables and α is a scale
parameter to control the Levy step size. For the initial depth
map Dn, the depth map D̂

n
1 after the first iteration of filtering

and noise reduction using Levy flight can be expressed as:

D̂
n
1 = Dn + Ld (12)

However, due to the stochastic nature of the Levy flight
method, to determine whether the current results meet the
accuracy requirements, the mean square deviation function is
used as its fitness function as a criterion for whether to update
the current data. The fitness function can be expressed as:

χini =
1
N

∑ [∥∥∥Dn − D̂
n
t

∥∥∥2]
χnew =

1
N

∑ [∥∥∥Dn − D̂
n
t+1

∥∥∥2] (13)

whereχini is themean square error value after the tth iteration,
χnew represents the mean square error value after the t+1st
iteration, N is the size of the input initial depth map Dn,
and D̂

n
t and D̂

n
t+1 are the output depth maps after the tth

and t+1st iterations. Throughout the iteration process, if the
mean square deviation χnew of the data after t+1 iterations
is less than the mean square deviation χini after t iterations,
we accept the current data; otherwise, we proceed to the next
iteration. It can be expressed as:

D̂
n
t+1 =

{
D̂
n
t+1 χnew < χini

D̂
n
t χnew ≥ χini

(14)

Then, the point cloud data are iteratively completed using
the spatial distribution-based SOR denoising algorithm for
each point’s neighborhood statistics, eliminating the outliers
that do not meet the conditions to complete the secondary
noise reduction.We conduct aK -nearest neighborhood statis-
tical analysis for each point, calculating the average distance
from the point to its K -nearest neighbors, as well as the
standard deviation of the distances. Subsequently, a threshold
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T is set, and points beyond this given threshold are filtered out
and set to null.

In existing methods, it is common to set the nullified data
to zero or a slightly larger value than zero. However, in a
microscopic environment, even objects at small heights typ-
ically exhibit complex surface structures. Therefore, setting
missing data to a fixed value appears to be unreasonable.
To address this issue, we adopted a spline curve interpolation
fitting method to interpolate missing data. Initially, the depth
data are interpolated in the row direction using cubic spline
curve fitting, supplementing missing data values. Then, the
processed depth data are interpolated in the column direction
using cubic spline curve fitting, which allows for a column
wise interpolation to smooth the depth data after the previous
supplementation, reducing the noise impact brought about by
the interpolation fitting and enhancing the accuracy of the
depth data. Finally, the ultimate depth map Ď is obtained.
Finally, since the depth data acquired in multiple fields of

view are distributed in chunks, we need to perform depth
data stitching on the obtained depth maps to obtain the 3D
surface topography of the complete magnitude. However, the
depth data in multiple fields come from different reference
systems that are related in terms of position and attitude,
which requires us to calibrate them uniformly and establish
the transformation relationship between them. Two coordi-
nate systems have been established in Section IV-A: the
object-space coordinate system O-XYZ and the image-space
coordinate system o-uvw. The correspondence between the
two needs to be calibrated in advance to obtain the corre-
sponding parameter pixel ratio ε. To eliminate the splicing
traces between blocks, we use the progressive splicing strat-
egy, where data from two neighboring fields of view need to
be partially data fused during the splicing process. In general,
the fusion area is set to 10% or 20%, with the maximum
percentage not exceeding 50%. We first perform depth data
splicing along the X-direction, and for the data in the fused
region, we use a weighting method to determine the actual
data for each pixel. The weighting coefficients are calculated
by a linear method with the following expression:

w1(x) =
xR − x
xR − xL

w2(x) =
x − xL
xR − xL

(15)

where xR and xL represent the horizontal coordinates where
the right boundary of image A and the left boundary of image
B are located, respectively, and x represents the horizontal
coordinate where the current pixel is located. Let the depth
data of image A and image B in the overlapping region
be DA(x) and DB(x); then, the spliced data D(x) are:

D (x) = w1 (x)DA (x) + w2 (x)DB (x) (16)

We perform an aggregation operation on the depth data of
all the fields along the X-direction and then follow the same
principle to perform a stitching operation in the Y-direction.
The complete depth data are finally obtained.

Our algorithm outlines the key steps taken to reconstruct
shape.

Algorithm Process Framework for Proposing Meth-
ods

1: Input:image stacks in multifields.
2: for N = 1: n do
3: Calculate the focusing volume FM (i, j, k) using

FM
4: Calculate initial depth map according to Eq. (6)
5: Filtering of depth data according to Eq. (12)-Eq.

(14)
6: Iterative operation for step 4 using the fitness

function
7: depth map D(x, y) & All-In-Focus image I (x, y)
8:

end
9: Multifield depth data and all-in-focus image stitching
10: Output: Final depth map Dfin(x, y) & All-In-Focus

image IAiF (x, y)

V. EXPERIMENTS AND DISCUSSIONS
In this section, the experimental results are analyzed and
discussed in detail in three parts. First, the detailed experi-
mental setup and evaluation criteria are given. Second, the
qualitative analysis of the proposed method is completed by
the reconstruction effect of the samples and the cross-section
curves of the wafer samples. Finally, the quantitative evalu-
ation of the proposed method is completed by analyzing the
reconstruction accuracy and noise robustness.

A. EXPERIMENTAL SETUP
Experiments were conducted on a synthetic image sequence
and two real image sequences to analyze the performance of
the proposed method. The image sequence of the simulated
ladder was synthesized using the simulation program, and
both real object image sequences were taken under the micro-
scopic vision systemmentioned in Fig. 3. The system consists
of an automatic zoom lens (Mvotem Optics MAZ7.0X), met-
allographic objective, CMOS industrial camera (Hikvision
industrial camera) and a high-precision panning stage. The
automatic zoom lens has a zoom ratio of 0.7X-4.5X; we chose
a 10X metallurgical objective lens. The full-resolution image
size collected by the industrial camera is 1080×1440 pixels,
the size of each pixel unit is 3.75 µm × 3.75 µm, and the
frame rate can be up to 60 frames at full resolution. The
real image sequences used in this paper were all acquired
at 20X, the system field at 20X was only 504.67289706
µm× 672.89719608 µm, and all real image sequences were
acquired using the fast image sequence acquisition method
mentioned in Section IV-B.

Fig. 4 shows two sample images used at different frames.
Among them, Fig. 4(a) and Fig. 4(d) are two frames of the
simulated step image sequence, and Fig. 4(b) and Fig. 4(e)
are two frames of the image sequence used for the height
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FIGURE 4. Two sample images of synthesized and two real image sequences. (a) and (d) represent the two-frame images of the simulated step
sequence. (b) and (e) represent the two-frame images of the volume block sample sequence. (c) and (f) represent the two-frame images of the wafer
image sequence.

measurement image sequence, which consists of a combi-
nation of two blocks with a small difference in heights. The
combination of two different height blocks can be thought of
as two different height planar surfaces. Due to the chamfer of
the gauge block at the boundary, there is a black gap area
where the two gauge blocks are pieced together; however,
it does not affect our subsequent height measurement and
other operations. The image sequence has a lateral acquisition
range of 3000 µm×3200 µm, a height range of 500 µm, and
a step size of 4 µm, so that the number of fields divided
by the lateral range is 9 rows and 7 columns, respectively;
126 frames are captured for each field. Since the range of a
single field is much smaller than the acquisition range, the
stitched large-area image sequence is shown here.

Fig. 4(c) and 4(f) are two frames of the wafer image
sequence, which are also displayed in full view using the
concatenated image sequence. The collection range of the
wafer image sequence is 6000 µm×6000 µm. The collection
range is much larger than the field and cannot cover the
overall object shape. Therefore, the image collection and
processing functions of large field and microsmall-height
objects are achieved through the multifield stitching function.
The height range is 400 µm, the step size is set to 4 µm, and
the number of fields divided in theX- andY-directions for this
image sequence is 16 and 13, respectively, with 101 image
frames captured for each field. In the sample, we perform
a gel sticking coating on one of the wafer particles for the
differentiated display of the defect location.

The proposed method was applied to the SML, GLV, and
TEN methods in experiments and compared with them to
investigate the improvement performance. The effectiveness
of the proposed method was evaluated through qualitative
and quantitative analysis. In terms of quantitative evaluation,
the accuracy and robustness of the proposed method were
verified. The accuracy experiment quantitatively analyzed
the comparison results by comparing the height difference
between the known gauge blocks and the reconstructed mea-
sured gauge blocks. For synthetic objects, we used root mean
square error (RMSE) and correlation (Corr) to quantitatively
evaluate the results. Its definition is:

RMSE =

√√√√√ 1
XY

X∑
x=1

Y∑
y=1

|d (x, y) − ď (x, y) |2 (17)

Corr =

∑X
x=1

∑Y
y=1

(
d (x, y) − d̄

) (
ď (x, y) −

¯̌d
)

√√√√√
(∑X

x=1
∑Y

y=1(d(x, y) − d̄)2
)

∗(∑X
x=1

∑Y
y=1(ď(x, y) −

¯̌d)2
)

(18)

where X and Y denote the depth map dimensions, d(x, y)
denotes the estimated depth map, and ď(x, y) denotes the true
depth map. The mean values of the estimated depth map and
the true depth map are denoted using d̄ and ¯̌d , respectively.
The smaller the RMSE value is, the better the reconstruction
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FIGURE 5. Depth maps computed using various methods for the step samples. (a)-(c) Depth maps obtained using the GLV, SML, and TEN methods.
(d)-(f) Depth maps obtained by applying the method proposed in this paper on top of the GLV, SML, and TEN methods.

result; the closer the Corr value is to 1, the higher the depth
estimation accuracy.

Due to the absence of true depth maps (GTs) in real
object reconstruction, commonly used evaluation indicators
such as RMSE, correlation (Coor), and peak signal-to-noise
ratio (PSNR) cannot be used for the reconstruction of real
objects. Although the above metrics cannot be used for image
sequences of real objects, other metrics, such as smoothness
(SSM), can be used [30]. Smoothness defines how smooth the
reconstructed surface is and compares the smoothness of sur-
faces using the number of reconstructed surface paradigms,
with a lower SSM value indicating a smoother reconstructed
surface.

SSM

= E


∑

x

∑
y



(
d (x + 1, y) − 2d (x, y) +

d (x − 1, y)

)2

+

2
(
d (x + 1, y+ 1) − d (x, y+ 1)
−d (x + 1, y) + d (x, y)

)2

+(
d (x, y+ 1) − 2d (x, y)
+d (x, y− 1)

)2




(19)

B. QUALITATIVE INORGANIC ANALYSIS
In this section, we visually compare the performance of our
method with the SML, GLV and TEN methods by analyzing
their reconstruction results using a set of simulated syn-
thetic image sequences and two real image sequences. Fig. 5
shows the 3D reconstruction results of the simulated step
image, where Fig. 5(a)-(c) shows the reconstruction results
of the three methods, and Fig. 5(d)-(f) shows the reconstruc-
tion results obtained by using the proposed method based
on the three methods. The reconstruction results obtained by
the three methods have large surface noise and the surface
shape is seriously affected. However, good reconstruction
results can be obtained by utilizing the proposed method.
The reconstruction results obtained by applying the proposed
method using the GLV method have a smoother surface, and
the shape reconstruction has a better effect.
In Figs. 6 and 7, the proposed method was compared

and analyzed with the GLV, SML, and TEN methods on
gauge blocks and wafer objects, respectively. The gauge
block sample is formed by docking two standard gauge
blocks of different heights. Due to the presence of chamfers
on the edges of each gauge block, the chamfers cannot be
clearly reconstructed. By observing the reconstruction results
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FIGURE 6. Depth maps computed using various methods for the volume block samples. (a)-(c) Depth maps obtained using the GLV, SML,
and TEN methods. (d)-(f) Depth maps obtained by applying the method proposed in this paper on top of the GLV, SML, and TEN methods.

TABLE 1. Selected images in the partial field of the wafer sample image sequence.

of the three methods, a large amount of noise was found
on both sides of the surface at the junction of the gauge

block, especially in the chamfered part. None of the three
methods achieved good reconstruction results, and the noise
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FIGURE 7. Depth maps computed using various methods on wafer samples. (a)(c)(e) Depth maps obtained using the GLV, SML, and TEN methods,
respectively. (b)(d)(f) Depth maps obtained by applying the method proposed in this paper on top of the GLV, SML, and TEN methods, respectively.
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FIGURE 8. Cross-section profile analysis of wafer samples reconstructed by different methods at different locations.
(a) Schematic of the sample cross-section locations. (b) Cross-section curve analysis at Row 1,000. (c) Cross-section curve
analysis at line 3,500. (d) Cross-section curve analysis at Row 6,000.

completely covered the original shape. However, the pro-
posed method was applied to three methods, achieving good
reconstruction results on both sides of the gauge block
boundary and having a good filtering effect on noise in the
edge area, reconstructing the overall shape and structure of
the object.

A grain of dies exists on the wafer and is regularly dis-
tributed; there are grooves between the dies, and the internal
surface reflection coefficients of the recessed grooves are
high; however, the surface of the die weakly reflects the light.
The proposed method applies wafer sample defect detection,
and some defects are artificially added to the wafer samples,
as shown in Fig. 7, where a gelatinous substance is attached
to one of the wafers.

Table 1 shows partial images from two fields in the wafer
sample image sequence (see Supplement 1 for all images).
Field A shows the wafer edges and concave grooves in the
wafer sample. Analysis shows that the wafer surface has weak
reflection, while the inner reflection ability of the concave
grooves is strong. Additionally, there are no textured black
edges on the wafer edges. Field B displays a partial image of
the simulated defect location, indicating that clear images are
generally distributed in a few frames.

The reconstruction results show that although the location
of the colloid can also be seen in the reconstruction results
of the three methods, there is a large amount of noise at the
location of the trench between the dies, and the periphery
of the die is caused by black edges, resulting in the no-
texture phenomenon. The three methods produce dense noise
at these locations. The GLVmethod exhibits significant depth
errors in the region around the wafer, and the TEN and SML
methods have the same problem but with less noise. The pro-
posed method has a good filtering effect on this noise, better
reconstruction results are obtained under all three methods,
the edges of the structure are preserved, the defect regions are
well reconstructed and the defect locations are clearly visible
using the proposed method.

Fig. 8 shows the profile analysis of the wafer sample recon-
struction results at different locations by different methods,
taking the 1,000th, 3,500th, and 6,000th rows. Fig. 8(a) shows
the specific locations of the sample profiles, and Fig. 8(b),
(c) and (d) show the depth profile analysis results at the
three locations. GLV, SML, and TEN used in the figure are
the three classical methods, and GLV_LW, SML_LW, and
TEN_LW are the applications of the method proposed in this
paper on the basis of the three methods. The results show
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TABLE 2. Quantitative analysis of simulated step reconstruction results by different methods.

TABLE 3. Results of SSM analysis of real object reconstruction by different methods.

TABLE 4. Evaluation of the accuracy of volume block sequences by different methods.

TABLE 5. Summary of the time used by different methods for volume block sequences.

TABLE 6. Summary of time spent on wafer sequencing by different methods.

that all three methods have large noise fluctuations; however,
after applying the proposed method, smooth cross-section
depth curves are obtained. The cross-section depth curves
at the 3,500 row position show that all three methods pro-
duce obvious noise fluctuations at the defect position; the
proposed method can accurately reconstruct the morphology
at the defect position, reflecting the accuracy of the proposed
method (see Supplement 3 for detailed data).

C. QUANTITATIVE ANALYSIS
In this section, the proposed algorithm is quantitatively ana-
lyzed and compared with three classical methods. Table 2
shows the quantitative analysis of the simulated step image
reconstruction results applying RMSE, correlation (Coor),
and PSNR by different methods. The proposed method has
the smallest RMSE and the largest Coor and PSNR compared

to the three methods: GLV, SML, and TEN. After applying
the proposed method to the TEN method, the correlation and
the PSNR improved by 7.5% and 38.2%, respectively, and the
RMSE was reduced by 40.7%, indicating that the method is
very robust to noise.

Since real object reconstruction does not have a true depth
map, we use the smoothness (SSM) metric for evaluation.
Table 3 summarizes the SSM results of volume block sample
and wafer sample reconstruction; the SSM values computed
by the proposed method are the smallest among all the meth-
ods and are much smaller than those computed by the three
methods: GLV, SML, and TEN.

For reconstruction accuracy assessment of the proposed
method, we adopt the method proposed by Wang et al. to cal-
culate the height difference of the block samples [31]. First,
we select an 800 × 800 area in each left and right region of
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the block and then compare the calculated results with the
standard results. The standard results were calculated from
the test report issued by a professional testing organization;
the height difference of the selected standardmeasuring block
was 399.88 µm. The height difference calculated by each
method is shown in Table 4. The SML method has the largest
deviation in the height calculation, which reaches 2.25 µm;
the TEN and GLV methods are also above 1 µm, while the
proposed method applied to the three methods calculates the
results close to the true height of the volume block. The
maximum error relative to the true height is only 0.24 µm.
We calculate the flatness index of each method, in which the
proposed method is smaller than the three classical methods,
indicating that the proposed method is significantly better
than the comparison methods and performs reconstruction
performance well. This indicates that the reconstruction accu-
racy of the proposed method is significantly better than that
of the comparison methods and performs reconstruction well.

Tables 5 and 6 summarize the time used for the vol-
ume block samples and wafer samples applying different
methods, including the image sequence acquisition time, the
single-frame image processing time, and the time used for the
stitching operation. The analysis in the table shows that all
the methods were tested using the same computer in the same
environment to ensure calculation accuracy. The same sample
sequenceswere processed by differentmethods. To ensure the
computational speed, we use chunk processing and parallel
computing for GLV, SML, TEN and the proposed method.
Table 6 shows that the largest single-frame image process-
ing time of the proposed methods is the GLV_LW method,
which has a processing time of 53 ms; the processing time
of the GLV method is only 40 ms. Although we introduced
computational volume and increased the computational cost,
our method optimizes well in the reconstruction results and
obtains good reconstruction quality with a small computa-
tional cost. In addition, the proposed method uses a shorter
time to complete the depth data splicing operation with the
all-in-focus image to obtain a larger morphological recon-
struction amplitude and complete sample defect detection.

VI. CONCLUSION
In this paper, a wafer surface topography recovery framework
based on the principle of shape from focus is proposed,
including large-area fast image acquisition, 3D surface shape
recovery, and postdata processing. This surface reconstruc-
tion framework is versatile, and the acquired 3D shape can be
used for various types of defect detection in the latter stage.
The main contributions of the proposed method in this paper
are summarized as follows:

• Traditional shape-from-focus methods are mostly based
on single-field reconstruction, and the reconstruction range is
limited. In this paper, we propose an early method to realize
fast reconstruction of large-format wafer surfaces, which is
very practical.

• This paper provides a low-cost and high-performance
frame structure that can build a system using only an ordi-

nary optical microscope and motion control and can realize
high-precision motion control utilizing the scale output pulse
to control the acquisition of image sequences.

•Adepthmap denoisingmodel is proposed that utilizes the
principle of Levy flight to achieve noise filtering to improve
the depth map and increase reconstruction accuracy.

• Tests were conducted on synthetic and real object images
to compare and analyze the reconstruction results with SML,
GLV, and TEN methods quantitatively and qualitatively and
to compare and analyze the acquisition time, single-frame
image processing time, and splicing time of real object image
sequences.

• The experimental results show that the reconstruction
results of the proposed method are better than those of the
comparison methods; for example, for synthetic images, the
proposed method has the smallest RMSE and the largest
correlation and PSNRs. For real objects, its SSM is much
smaller than that of the comparison method.

Although our proposed method performs well in pro-
cessing wafer samples, the proposed method still has some
limitations, as described below.

• Our proposed method involves iterative operations in
the computational process with a higher computational cost
compared tomethods such as GLV, SML, and TEN. Although
we used techniques such as CPU-based parallel comput-
ing to reduce its time cost, further computational efficiency
enhancement is needed.

• For different samples, it is necessary to adjust and opti-
mize some internal parameters, such as the step size of Levy
flight noise reduction and the number of iterations, to obtain
the best reconstruction effect. Therefore, adaptively adjusting
the parameters of the noise reduction method will further
improve the reconstruction accuracy and achieve a better
noise reduction effect.
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