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ABSTRACT The prediction of frictional air resistance using the inherent properties of roadways is of great
significance for ventilation network computation and flow regulation in underground mines. This study
proposes an improved stacked learning and error correction-based prediction model for the frictional air
resistance of mine airways, called friction factor. A prediction set is established by selecting ten factors,
including tunnel spatial features and support forms, with the ventilation resistance coefficient as the label.
The improved stacked model consists of two layers. The first layer is the base learning module, which
is composed of four components: Principal Components Analysis and Back Propagation (PCA-BP), GA-
Projection Pursuit Regression (GA-PPR), Random Forest (RF), LightGBM (LGBM). The second layer
is the meta-learning module, which is composed of the Ridge Regression (RR). Compared to traditional
stackedmodels, the improvedmodel first uses the Extreme Gradient Boosting (XGBoost) learner to evaluate
the significance of input feature variables to eliminate redundancy and improve accuracy, thus enhancing
prediction precision and computational efficiency. Then, the first-layer prediction results are weighted based
on the errors of different prediction models in the training set using K-fold cross-validation. Box-Cox
transformation is applied to the training set data from the first layer to the second layer to improve prediction
normality and homogeneity. The error correction prediction model extracts the historical prediction errors
from the meta-learning module and constructs an error prediction model using support vector machines
(SVR), which are then combined with the meta-learning results to obtain the final prediction. The improved
stacked model is compared with traditional ensemble learning models and single prediction models, and
quantified using three metrics: root mean square error (RMSE), mean absolute error (MAE), and R-squared
(R2). The results demonstrate that the proposed improvedmodel effectively enhances the prediction accuracy
of the ensemble learning models, providing a new prediction method for the accurate acquisition of the
friction factor of mine airways.

INDEX TERMS Mine airways, frictional air resistance coefficient, improved stacking model, cross-
validation, prediction accuracy.

I. INTRODUCTION
With the rapid expansion of the undergroundmining roadway
structure, the design requirements for ventilation systems
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in complex networks have undergone significant changes.
During the construction process of roadways, various types
of waste gases and dust are inevitably generated, pos-
ing serious safety risks to construction personnel [1], [2],
[3], [4], [5], [6], [7]. Therefore, the design of ventila-
tion systems plays a crucial role in roadway development.
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In mine ventilation terminology, individual roadways are
called airways and form a mine ventilation network through
interconnections. Airway resistance plays the principal role
in air distribution in the network. It is a critical parame-
ter in ventilation network design, as it directly influences
the assessment of air demand in mining areas of the mine.
The prediction of airflow splitting in a new mine ventila-
tion network is made by various software using numerical
methods in which the resistances of airways play a crucial
role [8].

Air resistance of the mine airway defines the pressure drop
along a section of the airway during the air flow rate. Airway
resistance is a proportional constant that considers both the
frictional air resistance coefficient of straight sections of the
airway and shock losses at bends, variations in cross-sectional
area, or junctions of mine airways when splitting or merging
airflows or other obstacles. Considering the equivalent airway
resistance, the shock losses can be related to the equivalent
length of a straight section of the airway. Therefore, airway
resistance R (Ns2/m8) can be related proportionally to fun-
damental coefficient of friction λ , or if standard air density
ρ is taken into account to frictional air resistance coefficient
α, known as the Atkinson friction factor or simply friction
factor.
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where λ is a dimensionless coefficient of friction (known
as the Darcy friction factor); α is a frictional air resistance
coefficient (known as the friction factor), kg/m3; ρ is air
density, kg/m3; L is a length of airway section, m; Leq is
an equivalent length of shock loses in section of airway,
m; P is perimeter of airway, m; A is a cross-sectional area
of airway, m2; 1p is a pressure drop, Pa; Q is an airflow
rate, m3/s.
At present, there are three methods to obtain the frictional

air resistance coefficient. The first is to use the existing
theoretical formula to calculate this coefficient. In the 18th
century, Antoine de Chézy and next Henry Darcy carried
out research on canal resistance and put forward Darcy
equation or the Darcy-Weisbach equation, which opened the
precedent for the study of frictional air resistance coefficient
and gradually applied to other field [9]. In 1994, Moody
conducted experimental verification to investigate the rela-
tionship between roughness, Reynolds number, and flow
resistance [10]. Based on Nikuradse’s experimental curve,
Prandtl has established a resistance coefficient formula appli-
cable to smooth pipes [11]. On the other hand, Theodore von
Karman has established a frictional air resistance coefficient
formula applicable to the rough region of turbulent flow.
In this region, the resistance coefficient is independent of the
Reynolds number and only depends on the relative roughness
of the pipe wall. In 1939, Colebrook and White combined
the aforementioned formulas and proposed a new equation
known as the Colebrook-White (CW) equation [12]. The
most well-known formula for estimating the coefficient of

friction is as follows [13]:
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where e is the height of the roughening or asperity, m;
Dh is the hydraulic mean diameter of the airway, m, Re is
a Reynolds number.

Due to the complexity and relatively large computational
errors involved in using the CW equation for large-scale
mine tunnels or roadways, there are two main directions in
the research on coefficient of friction λ . The first direction
involves developing explicit approximation formulas for cal-
culating the coefficient of friction based on the CW equation
using various mathematical methods. The second direction
focuses on exploring new equations that offer improved accu-
racy for specific application scenarios [14]. However, the
latter approach often requires significant human and mate-
rial resources and faces challenges in modifying empirical
formulas. Currently, researchers commonly adopt the first
approach, which involves establishing explicit calculation
formulas based on the CW equation [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25]. Based on the current
research status of the friction factor, it can be observed that
although there are numerous theoretical formulas for the fric-
tional air resistance, their practical application in engineering
is challenging due to the difficulty in accurately measuring
the absolute roughness. Therefore, these formulas are diffi-
cult to be applied in practical engineering scenarios.

The second method consists of in situ measurement of
pressure drop and airflow in rectilinear sections of existing
airways and determination of friction factors with air density
correction taken into account [26], [27]. The results are subse-
quently employed to predict the resistances of similar planned
airways. Often, due to the lack of similarities between mine
airways resulting from the differences in shape and roughness
of the roads, but also the type of equipment, unrepresentative
obstructions or blockages, and the lack of longer straight
sections, this is not always possible and brings the expected
benefits.

The third method for obtaining friction factor α is by con-
sulting empirical handbooks [28], [29], [30], [31]. However,
with the rapid development of mining technology, changes
have occurred in roadway cross-section dimensions, support
types, and roadway infrastructure. The limited number of air-
way types provided in the handbooks is insufficient to cover
various real-world applications. It is difficult to find exact val-
ues corresponding to a specific mine airway in the handbook,
making the tabulation method rarely used in actual mine
ventilation. Therefore, other methods of determining friction
factors or dimensionless friction coefficients are sought.With
the development of artificial intelligence, researchers are to
use machine learning to predict the friction factor according
to the inherent properties of tunnels such as support and
shape.

In recent decades, evolutionary computing (EC) in the
form of artificial intelligence (AI) based methods has been
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profusely applied to solve technical problems in different
fields of pipeline airflow and underground mine ventila-
tion networks. Among others, Decision Trees (DT), Gene-
Expression Programming (GEP), Support Vector Machine
(SVM), Naive Bayes (NB), and Logistic Regression (LR)
techniques were frequently used to characterize a broad
genre of different problems in airway resistances [32], [33],
[34], [35], [36], [37], [38], [39]. Under the aegis of the
recent investigations, those who are connoisseurs of artificial
intelligence countenance the idea that the stacking model
approach has been prosperously applied to different fields
of engineering sciences. For mine ventilation applications,
the stacking model is called a new soft computing model,
which can extract an explicit mathematical form along with
input and output variables to gain better physical insight
into the processes involved. For example, the stacking model
can be used in algorithms for electronic devices for tunnel
ventilation [40], [41], predicting energy consumption [42],
lake surface water temperature [43], compressive strength of
rice husk ash concrete [44], emergency cases of patients with
heart disease [45] or during the detection of leakages in water
distribution systems [46].
To the best of the authors’ knowledge, this is the first

time applying the staking model to present formulations for
evaluating friction factor α. Moreover, the staking model
is capable of presenting the simplest nonlinear equations
between input and output parameters, releasing an acceptable
physical insight into problems. Having many data sets pro-
vided from field measurements of mine tunnels or roadways
in China’s mining sector, the stacking model can be evaluated
and then used for the prediction of friction factor α. Thor-
oughly, the most crucial aim of this study is an attempt to
achieve the accuracy performances of the improved staking
model for predicting friction factor α. The improved staking
model result of performances will be compared with those
obtained using the Principal Components Analysis and Back
Propagation (PCA-BP), Random Forest (RF), GA-Projection
Pursuit Regression (GA-PPR) and light gradient-boosting
machine (LGBM) models because they can also create a
reliable relationship employed as an input-output system.
Eventually, traditional methods will be validated for used data
series in further comparisons.

The framework developed integrates feature importance
analysis, an enhanced stacked learning model, cross-
validation, performance evaluation, model ablation study, and
prediction integration to create a powerful model for deter-
mining mine airway resistance. Practical application includes
feature simplification, the utilization of diverse algorithms,
performance validation through cross-validation, and ongo-
ing model improvement for effective deployment in mining
engineering.

The purpose of this study is to address the challenges asso-
ciated with the measurement of ventilation friction resistance
in mines, such as the need for a significant number of per-
sonnel, prolonged measurement times, and the complexity of

the tasks involved. The goal is to research and develop novel
methods for predicting the friction factor, providing valuable
insights for mine personnel. The research contribution of this
paper lies in the analysis and prediction of the friction factor
based on factors influencing it. Leveraging the advantages of
stacking predictive models, the study aims to learn from the
strengths and weaknesses of individual models to make more
accurate predictions. Furthermore, it seeks to enhance the
algorithm and methodology of stacking predictive models.
Using real measured data from an actual mine in China
as the model’s sample, the research aims to compare and
select optimized models for predicting the friction factor.
This, in turn, offers a novel approach for obtaining accurate
predictions of the friction factor. The practical application
value lies in addressing the significant demand for the infor-
mationization and intelligent upgrading of mine ventilation.
Mine ventilation network calculation provides rational and
effective design and optimization solutions for mine ventila-
tion systems. The accuracy of the calculation results directly
impacts the safety and working environment of miners. The
mine ventilation friction factor of a mine airway, as a key
parameter in network calculations, is crucial. Research on
machine learningmodels for the rapid and accurate prediction
of frictional airflow resistance forms the basis for real-time
calculation of the ventilation network and precise adjustment
of air flow rates. This effectively overcomes the challenges of
mine ventilation being in a manual or semi-manual stage and
the difficulty in meeting the requirements of intelligent mine
construction.

This investigation focuses on creating improvement tradi-
tional stacking predictive models. Utilizing measured data,
a new predictive model for the friction factor of a mine
airway is established. The paper analyzes the advantages
of the new model in terms of predictive accuracy. The rest
of this paper is organized as follows. Section II introduces
the current research on predicting the friction factor through
machine learning. Section III, improved the prediction model
of the traditional stacking algorithm using XGBoost, BOX-
COS, and SVR to enhance prediction accuracy. In Section IV,
discuss the factors influencing the friction factor of mine
airways. Analyze the relationships between these factors to
provide learning data for constructing the new predictive
model in the second section. In Section V, to showcase
the enhanced accuracy of the improved stacking model,
comparisons were made against individual base models, the
application of boosting methods on individual base models,
and other conventional predictive models. In Section VI, the
corresponding conclusions are given.

II. RELATED WORKS
The ventilation friction factor prediction has always been
a significant issue in mine ventilation safety manage-
ment. One method to obtain the ventilation friction factor
through machine learning is by solving the Colebrook–White
equation. In traditional calculation methods, due to the
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implicit nature of the Colebrook–White equation, calculating
the friction factor requires iterative solutions. This process
becomes more time-consuming, especially when evaluat-
ing large mine networks multiple times. To address this
issue, many scholars have employed explicit approximation
methods for the Colebrook–White correlation, improving the
prediction accuracy of the friction factor through various
machine learning techniques. Past studies have utilized mul-
tiple machine learning models for predicting mine ventilation
friction factor, such as Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS), Evolutionary Polynomial Regression (EPR),
and Model Tree (MT) [47], [48], [49], [50], [51]. Salmasi
applied Artificial Neural Network (ANN) and Gene Expres-
sion Programming (GEP) to predict the friction factor, finding
that the ANN model had lower accuracy than the GP
model [50]. Similarly, Giustolisi and Savic developed the
EPRmodel for the Chezy resistance coefficient and compared
it with the rule-based genetic programming, finding the EPR
model to be more accurate [48]. Recent studies have focused
on developing explicit procedures for predicting friction fac-
tors in mine ventilation using AI techniques to overcome
the time-consuming iterative solutions. Models based on
ANN and Support Vector Regression (SVR) have been devel-
oped and validated against experimental data from various
sources, including Nikuradse [52], [53], Princeton [54], [55],
[56], and Oregon [57]. SVR, with its unique, optimal, and
global solution for the quadratic programming problem, has
advantages over traditional techniques like Multiple Linear
Regression (MLR) and ANN [58], [59]. The Structural Risk
Minimization (SRM) principle in SVR provides good gener-
alization performance [60]. Fifteen well-established explicit
correlations from the literature have been chosen to evalu-
ate friction factors in turbulent flows in smooth and rough
pipes. Predictions from these correlations were compared
with experimental results and statistically with developed
AI-based friction factor models [61]. Another approach to
predicting the ventilation friction factor is using the sup-
port type of the roadway for prediction. A study employed
an improved genetic algorithm (GA) to solve the inverse
problem of ventilation resistance coefficients, enhancing the
algorithm’s global and local search capabilities [62]. In a
different line of research, a hybrid prediction model for
the local resistance coefficient of water transmission tun-
nel maintenance ventilation has been proposed based on
machine learning [63]. The hybrid model introduced the
hybrid kernel into a relevance vector machine to build the
Hybrid Kernel Relevance Vector Machine model (HKRVM).
An improved Artificial Jellyfish Search algorithm (IAJS) was
applied for the kernel parameter optimization of the HKRVM
model.

However, despite significant progress in predicting venti-
lation friction factors using the mentioned machine learning
techniques, there are still some limitations. One major
challenge is the potential limitation of these single mod-
els in handling complex nonlinear relationships, unable to
fully capture the complex characteristics of friction factors.

Additionally, models that perform well on specific datasets
may have poor generalization abilities on different datasets,
struggling to adapt to new data. To overcome these lim-
itations, recent research has increasingly focused on the
application of stacking algorithms in predicting ventilation
friction factors. Stacking algorithms, as ensemble learning
methods, combine predictions from multiple base models
to improve overall performance. In predicting ventilation
friction factors, stacking algorithms construct a meta-model
that integrates outputs from variousmachine learningmodels,
learning and predicting friction factors at a higher abstract
level. Some studies have explored using stacking algorithms
such as Stacked Autoencoder (SAE) or Stacked Long Short-
Term Memory networks (Stacked LSTM) to address the
prediction problem [64], [65], [66]. These methods, by intro-
ducing more layers and complexity, allow the model to better
capture the nonlinear relationships and dynamic changes in
ventilation systems. Empirical studies indicate that, com-
pared to single models, these stacking algorithms exhibit
higher prediction accuracy and robustness in predicting ven-
tilation friction factors. Therefore, while traditional machine
learning techniques havemade some achievements in predict-
ing ventilation friction factors, the introduction of stacking
algorithms emphasizes improving the overall performance
of models to better address the complexity and diversity of
ventilation systems. This is expected to provide new per-
spectives and methods for research in predicting ventilation
friction factors and contribute to developing intelligent mine
ventilation networks.

III. EVOLUTION OF STACKING METHOD
Creating upon the traditional stacking algorithm, we have
introduced enhancements. This section outlines the sub-
prediction models within the stacking algorithm and the
improvements made. The initial data is pre-processed using
the XGBoost algorithm, and the intermediate predicted data
is transformed using the Cox-Box method to achieve a bias
towards a normal distribution. Prediction errors are forecasted
through SVR, and the results of the error prediction are
combined with the outcomes of the meta model to enhance
the accuracy of predictions.

A. CHARACTERISTIC OF THE METHOD
Stacking is an ensemble learning technique that involves
training multiple models and combining their outputs to
improve prediction performance. It works by using the pre-
dictions of lower-level models as input to a higher-level
model, enabling the ensemble to learn from the diverse range
of models and improve its overall accuracy [67]. Stacking
involves a two-layer learning structure, where the first layer
consists of base models and the second layer consists of a
meta-model that uses the outputs of the base models as input
tomake the final predictions. The core concept of the stacking
model is to use a set of base learners to train on the original
data and then generate a new data set from the output of
each base learner. Subsequently, the new data set is used
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to train the second layer of meta-learners, which generates
the final predictions. Figure 1 depicts the framework of the
stacking ensemble strategy. Figure 2 illustrates the process
flow of the stacking ensemble strategy algorithm [68]. In the
stacking learning algorithm, the meta-learner’s training set
is generated by utilizing the outputs of the base learner.
Using the output of base learners as the new training set for
meta-learning can result in overfitting. To address this issue,
the stacking framework employs k-fold cross-validation to
generate new training samples for the meta-learner from the
unused training samples of the base learner, thus preventing
overfitting. Assume that the original training set is denoted as
A= {(x1, y1),( x2, y2), . . . ,( xm, ym)}. A is initially partitioned
into k equal-sized subsets, denoted as A1, A2, . . . , Ak . Ai
represents the training set for the i-th fold, and Ai′ represents
the test set for the i-th fold. The partitioning is done randomly
to ensure that each subset has a similar distribution of data.
Assuming there are G base learners, the base learners are
obtained by training on subset Aj. The base learner’s output
for each sample xi in Ai′ can be represented as zig. The new
training set generated by the G base learners is A′

= {(zi,
yi)}, where zi = (zi1; zi2;. . . ; ziG) represents the combination
of the predictions made by each of the G base learners for a
particular input sample xi.

FIGURE 1. Stacking model framework.

B. LEARNERS
To build the stacking model, it is important to carefully
select the base learners based on their accuracy and vari-
ability. The study exclusively used ensemble learning models
as base learners. As a result, the top-performing ensemble
learning models (PCA-BP; GA-PPR; RF; LGBM; RR; XG
Boost algorithm; Box-Cox; SVR) were chosen for the study.
To select the best base learner, one model with the highest
performance was chosen among series algorithms, consid-
ering their differentiation. The reason for this is that using
base learners with diverse characteristics can explore the
relationship between input and output features from multiple
perspectives. Below are brief descriptions of the four selected
base learner models. The meta-learner typically selects a
model that has fitting capabilities. Therefore, the stacking
model including two layers was chosen as the meta-learner
for this study.

1) BASCI MODEL
a: PCA-BP ALGORITHM
The PCA-BP algorithm is a hybrid machine learning
algorithm that combines Principal Component Analysis

FIGURE 2. Calculation steps of improved stacking model [48].

(PCA) with Backpropagation (BP) neural networks.
It involves using PCA to reduce the dimensionality of the
input data and then feeding the reduced data into a BP
neural network for training and prediction. This algorithm is
capable of extracting the most relevant features from the data,
thereby improving performance and accelerating training
convergence speed.

PCA-BP prediction can be decomposed into two steps of
sub-models. First, the basic principle of PCA involves the
analysis of existing variable data to extract multiple sets of
new data with significant information, making it an effective
mathematical method for dimensionality reduction in multi-
variate statistics. PCA transforms an n-dimensional random
vector composed of n initial variables into d new com-
prehensive variables through linear transformation, forming
d (where d < n) final principal component factors. This
achieves the dimensionality reduction of the initial features.
In addition, a well-performing BP neural network requires
input sample data, and the input of sampled data can some-
times affect the accuracy of the model. Combining the first
step of principal component analysis can effectively address
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FIGURE 3. PCA-BP neural network modeling flowchat.

these issues, with the core content being feature extraction.
Feature extraction involves finding themost relevant informa-
tion to the problem from numerous data. What is truly needed
at this point is amodel that contains only the relevant inputs or
features that lead to the fewest problemswith free parameters.
These features can generate the best model with sufficient
generalization ability for a given dataset. The implementation
method of feature extraction is data dimensionality reduction.
Dimensionality reduction is a preprocessing method for high-
dimensional feature data. It involves preserving some of the
most important features of high-dimensional data, eliminat-
ing noise and unimportant features, and achieving the goal of
improving data processing speed. In practical production and
application, dimensionality reduction, within a certain range
of information loss, can save time and cost. Dimensional-
ity reduction can be applied in a very broad range of data
preprocessing fields. The workflow diagram of the PCA-BP
network is shown in Figure 3. More information on the PCA-
BP model can be found in related articles [69], [70], [71].

b: GA-PPR ALGORITHM
GA-PPR is a novel artificial intelligence algorithm that com-
bines genetic algorithms and projection pursuit techniques.
PGT is designed to identify the most important features of
complex data sets and trace their interactions by optimizing a
projection index. The optimization process involves selecting
a subset of features and projecting them onto a subspace using
a projection index that maximizes the separability of the data
points in the subspace. More information on the GA-PPR
model can be found in related articles [72], [73], [74].

c: RF ALGORITHM
Random Forest (RF) is a widely used ensemble predic-
tion algorithm. It is based on the ensemble method of
DT to improve the overall predictive ability of the model.
RF constructs multiple DT and combines them. It adopts the
bootstrap sampling method to randomly sample the training
data with replacement. Each DT is trained independently, and
the final prediction result is obtained by voting or averag-
ing. RF algorithm has good generalization ability, resistance
to overfitting, and feature selection capability. It is widely

applied in tasks such as classification, regression, and feature
importance evaluation. More information on the RF model
can be found in related articles [75], [76], [77].

d: LIGHT GRADIENT-BOOSTING MACHINE ALGORITHM
LGBM is an efficient gradient boosting tree algorithm known
for its speed and accuracy. It uses histogram-based DT
algorithms and discretization techniques to improve training
speed and memory efficiency. LGBM performs exceptionally
well in handling large-scale data sets and high-dimensional
sparse data, demonstrating high accuracy and scalability. It is
widely applied in various machine learning tasks such as clas-
sification, regression, ranking, and recommendation. More
information on the LGBM model can be found in related
article [78], [79], [80].

2) META MODEL
Ridge Regression (RR) was used to obtain the meta model.
RR is a commonly used linear regression algorithm that
solves the multicollinearity problem by introducing a param-
eter regularization term. In RR, we define the objective
function as the sum of the original loss function and the reg-
ularization term, and we seek the optimal model parameters
by minimizing the objective function. Compared to ordinary
linear regression, RR can improve the model’s generalization
ability to some extent and is suitable for regression problems
with high-dimensional data. More information on the RR
model can be found in related articles [81], [82], [83].

3) IMPLEMENTATION USING THREE OPTIMIZATION
MODELS
a: XG BOOST ALGORITHM
XGBoost is a machine learning algorithm based on Deci-
sion Trees (DT) ensembles, which uses gradient boosting
technique to improve the performance and accuracy of the
DT model. It is characterized by its efficiency, scalability,
portability and accuracy, and has been widely used in areas
such as data mining, machine learning and statistical model-
ing. XGBoost accelerates the training process of DT through
parallel processing and pre-sorting techniques, and performs
well on large-scale data sets. At the same time, it can handle
various types of data, including numerical, categorical and
textual data, and supports multiple loss functions and evalu-
ation metrics. More information on the XG Boost model can
be found in related articles [84], [85], [86].

b: BOX-COS ALGORITHM
Ridge Regression (RR) is a linear model, and the assumption
for linear modeling is the presence of a linear relationship
in the data. The Box-Cox transformation aids in making the
data conform more closely to this linear assumption. More-
over, when there is heteroscedasticity in the original data,
the Box-Cox transformation helps reduce heteroscedasticity,
consequently improving themodel’s performance. Therefore,
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FIGURE 4. Improved stacking model for prediction the friction factor.

the results after Box-Cox processing contribute to better inte-
gration with Ridge Regression.

In stacking model, the base learning layer of the model,
different learners were selected for stacking with the aim
of comprehensively capturing the complex relationships of
the ventilation friction factor by leveraging the strengths
of multiple models. However, due to the different assump-
tions each model makes about the distribution of the data,
it resulted in the data exhibiting skewed distributions. In the
regression prediction problem of the meta-learner, assum-
ing normality is crucial, and Box-Cox transformation is
employed to make the data more conformant to a nor-
mal distribution, thereby enhancing the overall performance
of the model. In other words, the transformation to a
normal distribution is carried out to ensure that the assump-
tions of the meta-learner, especially the Ridge Regression
model’s assumption of normality, are met. More informa-
tion on the Box-Cox model can be found in related articles
[87], [88], [89].

c: SVR ALGORITHM
Support Vector Regression (SVR) is a powerful regression
algorithm. Unlike traditional regression methods, SVR for-
mulates the regression problem as an optimization problem to
find the optimal hyperplane that best fits the data. It achieves
this by using kernel functions to handle non-linear problems
and map the data into a high-dimensional space, allowing for
better capture of complex relationships among the data. More
information on the XG Boost model can be found in related
articles [90], [91], [92].

C. IMPROVED STACKING MODEL
Based on the XG Boost algorithm, weighted base models,
and Box-Cox transformation, as well as SVR error correction,
this study constructed a prediction model for friction factor α.
Figure 4 shows the algorithm of using the improved stacking
model.

The process is described as follows:
(1) Use the XGboost algorithm to perform feature selection

on the original data of the friction factor, removing redundant
features with low correlation. The remaining data is then
input into an improved stacking model.

(2) In the stacking model, use PCA-BP, GA-PPR, RF,
LGBM as the base learners, with RR serving as the meta-
learner. For each base learner, train it with different samples
and based on the prediction errors (ε1, ε2, ε3, ε4) on the val-
idation set, determine the weights (P11, P12, P13, P14) by
calculating their proportional contribution to the total error.
Then, weigh the output results of the first layer as the input
for the second layer.

(3) Apply the Box-Cox transformation to the training set
of the first layer to enhance its normality and predictability.

(4) Train the meta-learner using the transformed training
set from the Box-Cox transformation. After training is com-
plete, use this meta-learner to predict the weighted test set and
obtain the final prediction results.

(5) After the initial predictions using the above models,
train an SVR model using the error data from the initial
predictions. This will provide an error distribution model.
Combine the initial prediction results with the error predic-
tions to obtain the final prediction results. The SVR error
correctionmodel effectively compensates for the errors inher-
ent in the initial prediction model, further improving the
accuracy of the predictions.

IV. PREDICTIVE MODELING OF FRICTION FACTORα

In this section, the influential factors of the friction factor
of mine airways will be discussed. The interrelations among
these factors will be analyzed, and three evaluation indica-
tors will be established to prepare for subsequent prediction
assessment.

A. DATASET
The data set used in this study comes from the measured data
of mining areas in China, including 141 sets of data on factors
affecting friction factor α. This dataset has been used in pre-
vious research study [93]. The data includes the proportion of
different underground tunnel support types: wooden column
support constitutes 24%, anchor spray support constitutes
27%, metal beam support constitutes 24%, shotcrete support
constitutes 25%. Due to the distinct material requirements
for different support forms, the wooden column support type
data does not include information on metal beam thickness
and column thickness. The anchor spray support type does
not include information on diameter of wooden column and
metal beam thickness. The metal beam support type does not
include information on diameter of wooden column, longitu-
dinal diameter, metal beam thickness and column thickness.
The shotcrete support type does not include information on
diameter of wooden column, longitudinal diameter, shotcrete
part of the perimeter, metal beam thickness, column thickness
and shed spacing. The adopted data has been used in previous
studies for predicting the friction factor of a mine airway
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TABLE 1. Statistical analysis using factors affecting friction factor.

FIGURE 5. Factors affecting the friction factor of an airway.

using random forest prediction models, enhancing its authen-
ticity in this research. In the new model development, these
data are no longer classified by support type. Collectively,
they constitute the training and testing sets for machine learn-
ing. Statistical analysis was conducted on the measured data
of factors affecting the friction factor of a mine airway with
different support types. The descriptive statistics, including
mean, maximum, minimum, maximum, and variance, are
presented in Table 1.

B. DATA PREPROCESSING
As described in Section I, the main factors affecting the value
of coefficient α are the size and shape of the cross-section
of mine airway. The collected data for this study concern
variable roadway parameters with a rectangular shape and
secured with mainly support frames consisting of props and
metal beams, but also with additional prop-type support in
the center of the frame. The input characteristic variables
are diameter of wooden column, longitudinal diameter, road-
way cross-section area, roadway perimeter, shotcrete part of
the perimeter, metal beam thickness, column thickness, shed
spacing, roadway height, roadway width. The output variable
is the friction factor.

Figure 5 presents the visualization of these feature vari-
ables. As shown in Figure 5, the tested mine airway has four

different supporting methods, represented by A for wooden
column support, B for anchor spray support, C for metal beam
support, and D for shotcrete support.

The Figure 5 indicates the influencing factors X1-X10,
where X1 is the diameter of the wooden columns, X2 is
the longitudinal diameter (the ratio of the distance between
adjacent support centrelines to the diameter or thickness of
the supports), X3 is the cross-section area, X4 is the roadway
perimeter, X5 is the shotcrete part of the perimeter, X6 is
the metal beam thickness, X7 is the column thickness, X8 is
the shed spacing, X9 is the roadway height, and X10 is the
roadway width.

Table 1 shows a brief statistical analysis of each character-
istic variable. Correlations between variables were analyzed
to assess the suitability of each characteristic variable.
The Pearson correlation coefficient was used to examine the
characteristic variables’ association. Figure 6 displays the
correlation matrix based on Pearson’s coefficient. A coef-
ficient closer to 1 indicates a stronger positive correlation
between two variables. A coefficient closer to -1 indicates
a stronger negative correlation. Figure 6 shows that there
are correlations between the output variable and each input
variable. All the features in the data set are numeric, and they
vary in magnitude and scale. The numerical features were
transformed into standardized values to eliminate differences
in scales and magnitudes.
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C. THE OPTIMAL HYPERPARAMETER
Grid search is an automated method for finding optimal
hyperparameters. It systematically explores all possible com-
binations of hyperparameter values, training and evaluating
models for each combination, and ultimately selecting the
best-performing set. By eliminating the need for manual trial
and error, grid search streamlines the process of hyperparam-
eter tuning. The user defines the ranges and steps for each
hyperparameter beforehand, and grid search automatically
conducts a comprehensive search and evaluation.

In the context of ensemble algorithms, grid search is a
powerful tool for systematically exploring multiple hyperpa-
rameter combinations to optimize model performance. This
process involves creating a predefined grid of hyperparam-
eter values, attempting each combination through training
and cross-validation, and assessing the model’s performance.
For our stacked algorithm, consisting of PCA-BP, GA-PPR,
RF and LGBM, grid search allowed us to finely tune the
hyperparameters for each base learner.

The specific hyperparameter values optimized through grid
search for PCA-BP include a principal component percentage
of 90%, learning rate of 0.15, 17 hidden layer neurons, and a
Sigmoid activation function.

Similarly, GA-PPR’s optimized hyperparameters involve
a population size of 35, a crossover probability of 0.65,
a mutation probability of 0.03, 23 principal components, and
a truncation value of 0.15.

For RF, grid search focused on parameters such as the num-
ber of trees 154, maximum depth 7, quality measure function
gini, minimum samples per tree 3, minimum samples per
leaf 2, feature consideration per split lg2, and bootstrap sam-
ple usage True.

LGBM’s optimized hyperparameters include maximum
leaf nodes per tree 31, learning rate 0.16, maximum tree
depth 5, minimum samples per leaf 5, sample proportion for
tree training 0.6, random feature sampling proportion 0.6, L1
regularization weight 0.2, L2 regularization weight 0.3, and
defining the learning task and corresponding loss function as
regression.

In summary, grid search efficiently optimized our model,
ensuring it excelled in various tasks. This systematic tuning
process guaranteed that our stacked algorithm leveraged the
strengths of each base learner, resulting in a robust and pow-
erful ensemble model.

D. MODELING BUILDING AND EVALUATION
The data set was divided into a training set and a test set prior
to the development of themodel. Themodel was trained using
the training set, and the performance of the trained model was
evaluated using the test set. This study used 75% of the data
in the data set as the training set and the remaining 25% as
the test set.

The hyperparameters have a critical impact on the model’s
performance. Optimization can be used to obtain the best-
performing hyperparameters of a machine learning model on

FIGURE 6. Pearson coefficient for the characteristic variables.

a given data set, leading to improved model performance.
This study used a combination of grid search and 4-fold cross-
validation to optimize the hyperparameters of the machine
learning model. The grid search method involves trying out
different combinations of hyperparameters and training the
model for each combination, making it a thorough approach.
The combination of hyperparameters that achieves the best
performance among n training sessions is considered the opti-
mal one. The 4-fold cross-validation method initially splits
the data into 4mutually exclusive subsets. Themethod selects
three subsets of data to form the training set without overlap,
and uses the remaining subset as the test set. This selection
process was repeated 4 times to obtain 4 different combi-
nations. The average of the 4 combinations is taken as the
final result. In this research, the combination of grid search
and 4-fold cross-validation methods was used to evaluate
all possible hyperparameter combinations, which can signif-
icantly improve the model’s generalization ability [74]. This
research used the root mean square error (RMSE), correlation
coefficient (R2), andmean absolute error (MAE) as the evalu-
ation metrics to assess the performance of the models. RMSE
is highly responsive to the largest or smallest discrepancies
between the predicted and observed values. The higher MAE
implies greater predictive accuracy. R2 coefficient quantifies
the strength and direction of the linear relationship between
variables. A higher R2 indicates a stronger linear correlation
between variables and a closer fit between the predicted and
observed values. MAE is a commonly used metric to evaluate
the goodness of fit of hydrological model simulations, with
a range of values greater than or equal to 0. A lower MAE
indicates better model performance. A value of MAE closer
to 0 indicates that the model prediction is similar to the actual
value of the observed data. If the MAE is significantly less
than 0, it indicates that the model’s performance is unreliable.
The formulas used to calculate each performance indicator
are given below:

RMSE =

√
1
n

∑n

i=1

(
yi − y′i

)2 (3)
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FIGURE 7. Box plot of basic learners’ results.

R2
= 1 −

∑n
i=1

(
yi − y′i

)2∑n
i=1 (yi − ȳi)2

(4)

MAE =

∑n
i=1

(
yi − y′i

)
n

(5)

where n is the number of samples in the data set, yi and y′i are
the actual and predicted values of each sample.

V. RESULTS AND DISCUSSION
In the Results and Discussion Section, the improved stacking
model is compared to individual base models, the application
of the enhancement method to individual base models, and
other traditional prediction models.

A. BASE-LEARNER INDEPENDENT PREDICTION RESULTS
Given that the characteristics of the base learners impact
the predictive performance of the final stacking model, this
study initially assessed the performance of the base learners
to ascertain their suitability. Employing the base learners
to make individual predictions on the test data set. The
machine learning model underwent hyperparameter opti-
mization using a combined approach of grid search and
4-fold cross-validation. R2 was chosen as the primary evalu-
ation metric for optimization to identify the best-performing
hyperparameter combination. The average of the 4-fold
cross-validation results serves as the final assessment metric.
Below are the optimized hyperparameter combinations for
the four base learners.

Four models as the base learners for the stacking model
were selected, considering the diverse base of learners.
Figure 7 displays the box plots representing the 4-fold
cross-validation results of the four base learners, PCA-
BP, GA-PPR, RF, and LGBM, on the training data set.
Subsequently, the forecast accuracy of the hyperparameter-
optimized base learners was assessed on the test data set.
Table 2 presents the prediction outcomes of the four base
learners on the test set. Based on the results presented in

TABLE 2. Base learner prediction results on the test set.

TABLE 3. Prediction results of improved stackingmodels with different
combination of base learners.

Table 2, the Randon Forest model demonstrates superior
performance on the test set, while the LGBM model exhibits
the lowest performance. Figure 8 visualizes the relationship
between the predicted values and the actual values on the
test data set. Considering that PCA-BP and GA-PPR are
combination optimization algorithms, while LGBM and RF
are ensemble-based algorithms.

B. PREDICTION RESULTS OF THE IMPROVED SRACKING
MODEL
As outlined in Section II, the base learners selected for
the improved stacking model were XGBoost and SVR,
while the meta-learner was LR. Figure 9 presents the 4-
fold cross-validation results of the stacking model on the
training data set. The stacking model achieved the follow-
ing prediction results of the friction factor on the test set:
RMSE=1.923, MAE=0.109, and R2

= 0.996. Figure 10
illustrates the relationship between the predicted and actual
results of the stacking model on the tested data set. When
comparing the assessment metrics of the stacking model with
those of the four individual learner models (PCA-BP, GA-
PPR, RF and LGBM), it can be observed that the stacking
model outstands each of the base learners. This suggests
that the meta-learner in the stacking model has the ability
to rectify the predictions of the base learner for samples
that were initially predicted incorrectly, resulting in enhanced
overall prediction accuracy of the model.

C. THE IMPACT OF BASE LEARNERS ON THE
PERFORMANCE OF IMPROVED STACKING MODELS
This Section investigates the impact of different base learners
on the overall performance of the improved stacking model,
specifically focusing on the suitability of the XGBoost and
SVRmodels. To assess this, the base learners in the improved
stacking model were modified, and the effect on model
performance was evaluated. The LR model was retained
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FIGURE 8. Box plot of basic learners’ results.

as the meta-learner, and the improved stacking model was
retrained accordingly. In accordance with the base learners
mentioned in Section II, the XGBoost model was substi-
tuted with other prediction models, such as GA-PPR and
LGBM. Subsequently, the improved stacking model was
trained using these different combinations of base learners.
The prediction results obtained from the improved stacking
model with various base learner combinations are presented
in Table 3. The improved stacking model with XGBoost and
SVR models as base learners demonstrates superior charac-
teristics. This can be attributed to the superior performance
of the XGBoost model and SVR model compared to the
none of them in individual assessment. Utilizing theXGBoost
algorithm, the original data of influencing factors on the
friction factor in mine ventilation were subjected to feature

selection to eliminate features with low correlation. Further-
more, employing the enhanced model for prediction, the
predicted error data was input into an SVRmodel for training,
thereby obtaining an error distribution model. Combining the
preliminary prediction results with the predicted error values
yields the final prediction outcome. The SVR error correc-
tion model effectively compensates for errors inherent in the
initial prediction model, further enhancing the accuracy of
the predictions. The superior performance of the base learner
model contributes to the enhanced predictive capability of the
final improved stacking model.

D. COMPARSION WITH OTHER ENSEMBLE STRATEGIES
This Section aims to compare improved stacking with other
ensemble strategies, as different strategies can significantly
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FIGURE 9. Improved stacking model on the training data.

FIGURE 10. Improved stacking model on the test data.

impact the model’s performance. The two most commonly
used ensemble strategies in regression problems are simple
averaging and weighted averaging. These methods involve
averaging the predictions of the base learners to obtain the
final projected outcomes. In the simple averaging method,
equal weights are assigned to the predictions of all base
learners. On the other hand, the weighted averaging method
assigns different weights to each base learner based on their
prediction performance. The RR and PCA-BP models as the
base learners selected for both averaging methods. Table 4
presents the prediction results obtained from different ensem-
ble strategies. It is evident that the stacking model exhibits
superior properties compared to the averaging methods. This
can be attributed to the introduction of a meta-learner in the
stacking model. The meta-learner has the ability to correct
mistakes made by the base learners, thereby improving the
overall prediction accuracy of the model.

E. COMPARSION BETWEEN STATE-OF-THE-ART MODELS
AND PREVIOUS WORKS
To establish the superiority of the stacking model, a compari-
son was conducted with other popular models. The evaluation

TABLE 4. Prediction results of friction factor according to different
ensemble strategies.

TABLE 5. Comparsion with mainstream machine learning models.

was based on three metrics: RMSE, MAE, and R2. Inspired
by [94], [95], [96], and [97], the data was normalized, and
an 80% or 20% split was used for training and testing,
respectively. Grid search combined with cross-validation was
employed to optimize the hyperparameters for each model.
The prediction results of each model on the test set are pre-
sented in Table 5. The stacking model exhibited impressive
performance. A comparison with the other model revealed
the most substantial decrease in RMSE andMAE by 76% and
81% respectively, along with the most 1.94% increase in R2.
Ensemble learning is a machine learning approach that com-
bines the outputs of multiple learners to achieve stronger and
more robust performance than individual learners. Bagging
models, Boosting models, Extra Trees models, and Voting
models are considered advanced ensemble learning models.
They have demonstrated outstanding performance in various
scenarios and achieved significant success in practical appli-
cations. The Bagging model constructs multiple base learners
through random sampling and aggregates their predictions
or averages them to obtain a robust and high-performance
model. Boosting models, on the other hand, sequentially train
a series of weak learners, with each focusing on correcting the
errors of the previous learner, gradually enhancing the over-
all model performance. The Extra Trees model introduces
additional randomness when constructing decision trees. As a
method for integrating the opinions of different learners,
the Voting model combines their predictions through voting
or averaging to form the final prediction. In comparison
with advanced Bagging models, our ensemble model demon-
strated a reduction of 65% and 73% in RMSE and MAE,
respectively, while increasing the R2 score by 1.21%. Com-
pared to advanced Boosting models, our ensemble model
showed reductions of 39% and 68% in RMSE and MAE,
respectively, along with an improvement in R2 by 1.94%.
In comparison with advanced Extra Trees models, the RMSE
andMAE decreased by 76% and 81%, respectively, while the
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TABLE 6. Comparsion with previous related works.

R2 score increased by 2.35%. Furthermore, when compared
to advanced Voting models, our ensemble model exhibited
reductions of 23% and 82% in RMSE andMAE, respectively,
and an improvement in R2 by 1.67%. The enhanced perfor-
mance of the ensemble model can be attributed to training
multiple base learners and leveraging their collective output.

Additionally, the established improved stacking model
is compared with relevant studies in the field. In [62],
an improved genetic algorithm (GA) is proposed to solve
the ventilation resistance coefficient inversion problem.
By developing the model, the inversion problem is trans-
formed into a nonlinear optimization problem based on the
least squares principle. When defining the objective function,
measured pressure, calculated pressure deviation, measured
flow, and calculated flow deviation are considered, alongwith
constraints on node pressure, air flow, and ventilation resis-
tance coefficient range. Reference [98] introduces a model
tree (MT) to provide an evaluation formula for pipeline
friction factors. Effective parameters influencing ventilation
friction factors include pipe diameter, average flow velocity,
kinematic viscosity, and height of internal surface roughness.
The model is enhanced using two non-dimensional param-
eters, Reynolds number and relative roughness. Machine
translation methods are trained and tested using data sets
obtained from approximate solutions. In Table 6, compared
to GEP models, our ensemble model showed reductions
of 37% and 48% in RMSE and MAE, respectively, along
with an improvement in R2 by 8.98%. In comparison with
advanced Extra Treesmodels, the RMSE andMAE decreased
by 46% and 55%, respectively, while the R2 score increased
by 6.53%. The results indicate that the improved stacking
model outperforms the previous model.

F. INPUT FEATURE IMPORTANCE ANALYSIS
In this Section, the XGBoost model is considered as the
base learner to analyze the importance of variables. The
XGBoost model demonstrated the best importance among
the base learners. The importance of each feature in the data
set within the XGBoost model was computed to determine
feature importance. The feature importance was evaluated
based on the improvement in performance measure for each
feature’s split point within an individual boosted tree. The
weight assigned to a feature depended on the magnitude
of improvement observed in the split point performance
measure.

Additionally, the more frequently a feature was selected
by the boosting tree, the higher its importance. The results

FIGURE 11. Importance of input feature.

from all boosting trees were aggregated and averaged, con-
sidering each feature’s contribution to obtain the overall
importance score. The XGBoost feature importance results
are presented in Figure 11. Notably, the most crucial input
feature variables were found to be the diameter of wooden
columns, the longitudinal diameter, and the roadway cross-
section area. In contrast, the roadway width and the roadway
height of the tunnels were relatively less important. Among
the top three important input features had the greatest influ-
ence on the friction factor. This is because the number of
wooden columns is large, and rows of supporting obsta-
cles generate additional air resistance in the airway, which
has a huge obstacle effect on the airflow in the restricted
space.

Using the XGBoost algorithm to rank the importance
of input features is significant because it allows for the
identification of the most crucial features for predicting
the target variable. In this case, the features of wood
column diameter, longitudinal diameter, and tunnel cross-
sectional area are deemed more important. By selecting
these three features, which exhibit higher correlation with
the friction factor, through XGBoost, the model can be
simplified and its interpretability improved. Furthermore,
when dealing with large-scale data in subsequent predic-
tions of new models, using fewer features can enhance
computational efficiency. This is advantageous for both the
training and inference stages of individual base learners in
ensemble methods like stacking. Additionally, an excess of
features may lead to overfitting of the model to the train-
ing data, and choosing features strongly correlated with the
target can mitigate the risk of overfitting. In the context
of practical data measurement, selecting these three fea-
tures closely related to the actual application is beneficial.
Notably, these features are easily measurable and obtainable
in real-world scenarios. This facilitates the better application
of the model’s predictive results to practical engineering
problems.
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G. ANALYSIS OF ROBUSTNESS AND REPRODUCIBILITY
When selecting 4-fold cross-validation as the model evalua-
tion method, various factors were thoroughly considered to
ensure the chosen approach is both rational and effective.
Firstly, 4-fold cross-validation is deemed an economically
efficient choice in the context of our research background.
Given the moderate size of our dataset, leave-one-out cross-
validation might lead to prohibitively high computational
costs, while k-fold cross-validation with a smaller k could
overly influence performance evaluation due to the impact
of a single split. Therefore, 4-fold cross-validation strikes
a balance between computational efficiency and accurate
assessment of model performance. Secondly, this study took
into account that 4-fold cross-validation possesses charac-
teristics that provide sufficiently reliable estimates of model
performance. By dividing the dataset into four mutually
exclusive subsets, we could evaluate themodel’s performance
across multiple training/testing set combinations, thereby
reducing the variance in evaluation results caused by spe-
cific splits. This contributes to enhancing our confidence in
the model’s generalization performance and ensures that the
evaluations are relatively robust.

Although alternative methods exist, such as leave-one-
out cross-validation, stratified k-fold cross-validation, and
ShuffleSplit, our choice is based on a comprehensive consid-
eration of data scale, computational resources, and evaluation
precision. This study believes that 4-fold cross-validation can
efficiently manage computational expenses while providing
a reliable assessment of model performance, making it a
suitable and feasible approach for our research.

4-fold cross-validation is a commonly used model eval-
uation method that divides the dataset into four equally
sized, mutually exclusive subsets, with each subset aiming
to maintain the distribution characteristics of the original
dataset as closely as possible. Three subsets are then utilized
as the training set to train the model, while the remaining
one subset serves as the test set to evaluate the model’s
performance. This process is repeated four times, with each
iteration selecting a different subset as the test set, and the
final evaluation results are computed. 4-fold cross-validation
is employed to assess the stability and reproducibility of the
model. Through multiple repetitions of the training and test-
ing process, the model’s performance can be observed under
different combinations of training and test sets, providing
a better understanding of the model’s generalization ability.
The 4-fold cross-validation typically involves the following
steps:

Step 1: Divide the dataset into four mutually exclusive
subsets. The original dataset is partitioned into four equally
sized, mutually exclusive subsets. Random partitioning is
commonly used to ensure that each subset can represent the
overall data distribution.

Step 2: Repeat the training and testing process. In each
iteration, one of the four subsets is chosen as the test set,
and the other three subsets are used as the training set. The

TABLE 7. 4-Fold cross validation method.

model is trained with the training set and evaluated on the test
set.

Step 3: Calculate performance metrics. In each iteration,
the model’s performance metrics on the test set need to
be computed. The evaluation metrics in this model include
RMSE, MAE, and R2, which assess the predictive effective-
ness of the model.

Step 4: Compute average performance metrics. After com-
pleting the four iterations, four performance metrics are
obtained. Subsequently, the average of these metrics is calcu-
lated as the final evaluation result, offering a more accurate
assessment of the model’s performance on the entire dataset.

The 4-fold cross-validation of the stacked model on the
training dataset is presented in Table 7. It depicts the RMSE,
MAE, R2, and other metrics under different folds in the
4-fold method. The mean values for RMSE, MAE, and R2

are 1.989, 0.118, and 0.985, respectively. These evaluation
metrics, when compared to those of a single base learner,
demonstrate the superior performance of the results. For
each fold, calculate the RMSE, MAE, and R2 performance
metrics of the model on that fold. These performance met-
rics show relatively consistent performance across all folds,
indicating that the model is stable across different subsets
of the data. Compute the average values of RMSE, MAE,
and R2 for the four-fold cross-validation. The model exhibits
good performance on various data subsets, demonstrating its
robustness across the entire dataset. This not only indicates
the advantages brought about by ensemble learning relying
on the complementarity of multiple models but also ensures
the robustness and repeatability of the proposed improved
ensemble model’s prediction results.

H. THE ANALYSIS OF DIFFERENT COMBINATIONS OF
BASE LEARNERS ON THE IMPROVED STACKING MODEL
Ablation study is a highly useful tool that aids in better under-
standing the internal mechanisms of integrated predictive
models and provides valuable guidance for algorithms. In the
field of machine learning, ablation study is commonly used to
assess the impact of different features on model performance,
determining which factors are essential for achieving good
performance. During the ablation study, this paper system-
atically ‘‘removes’’ one or more predictive models from the
ensemble of base learners and compares the performance of
each altered configuration. This helps identify which predic-
tive models contribute the most to improving the performance
of the stacked prediction algorithm and which ones can be
removed or improved to enhance overall performance.
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TABLE 8. Ablating basic learner(s) from the improved stacking model.

As shown in Table 8, the first column represents the
remaining predictivemodels after removing one ormore from
the ensemble of base learners. The impact of the ablation
results is characterized by RMSE, MAE, and R2. It can
be observed that after removing one predictive model, the
combination of PCA-BP + RF + LGBM exhibits the best
performance, and after removing two predictive models, the
combination of PCA-BP + RF + LGBM achieves the min-
imum root mean square error (RMSE), indicating superior
performance. Analyzing the data reveals that the ablation of
one learner’s predictive indicators overall outperforms the
ablation of two indicators’ predictions. This suggests that
retaining more learners in the model positively contributes to
overall performance.

This situation indicates that different learners provide
diverse information, and each learner has a unique con-
tribution to the overall performance of the model. The
effectiveness of the model lies in the complementarity
between different learners; they can capture different patterns
or features, thereby synergistically enhancing the model’s
generalization performance. It is evident that, for stacking
algorithms, preserving more learners leads to better overall
performance. This underscores the advantage of stacking
algorithms in effectively combining multiple learners to
achieve stronger generalization capabilities on complex prob-
lems.

VI. CONCLUSION
The predictive model of the friction factor (frictional air
resistance coefficient α) in a mine airway was established
based on the improved learning process. Important indica-
tors with minimal impact were selected based on XGBoost
scores. Weight allocation and BOX-COX transformation
were employed to re-quantize the data of input meta-learners.
Four heterogeneous algorithms were used as learners for
predicting the friction factor in the improved stacked model.
Experimental comparisons with traditional predictive models
validate the superiority of the improved stacked model. The
main results of the study are as follows:

(1) The XGBoost model assesses the significance of input
feature variables and conducts a feature importance analysis
based on the scores. By filtering out less important features,
namely column thickness, shed spacing, roadway height and

width, a prediction model for the friction factor is constructed
with improved efficiency, accuracy, and reduced complexity.

(2) Through comparative research, it has been demon-
strated that the improved stacked model proposed in this
study outperforms traditional stacking models and other pop-
ular prediction models. The results indicate that the improved
stacking model exhibits superior stability and higher predic-
tion accuracy than individual base learners.

(3) By incorporating an error correction algorithm, the
dynamic error of the prediction results from the fitted stacked
model is calculated, leading to residual predictions. The final
prediction value for the friction factor is obtained by combin-
ing the predicted values and residuals using an additive model
fusion. The results indicate that incorporating residuals into
the prediction results helps decrease prediction errors.

(4) The future research direction will focus on enhancing
the performance of stacking algorithms in predicting the
friction factor in mine ventilation network. There will be a
particular emphasis on optimizing stacking model combina-
tions, collecting datasets from different mines and ventilation
periods and improving model interpretability. Specifically,
we will focus on enhancing the predictive performance by
incorporating the improved stacking model as a base learn-
ing model. Additionally, conducting on-site validation and
comparing case studies will further propel the application
of stacking algorithms in mining engineering. This will
contribute to better adaptability to diverse mine conditions,
ultimately enhancing the accuracy and operability of ventila-
tion system design.

The achieved framework in this study can be used to
determine mine airway resistances. It may also encourage
researchers to use the improved stacked learning method
to determine design factors that are difficult to verify
experimentally.
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