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ABSTRACT Aggressive behavior is an important indicator of chicken welfare assessment. At present, the
aggressive behavior of chickens typically requires human observation for welfare assessment, and the assess-
ment results are influenced by the subjective judgment of humans. This paper proposes an aggressive chicken
behavior identification method based on a hybrid strategy improved Sparrow Search Algorithm combined
with Support Vector Machine (ISSA-SVM). Nine-axis inertial sensors were used to collect the behavioral
data of chickens. A total of 231-dimensional feature data in the time and frequency domains of the behavioral
data were extracted through a 1 s sliding window. To reduce feature redundancy, the initial population is
initialized using circle chaotic mapping instead of random initialization of the original sparrow algorithm
to increase the uniformity of the initial population distribution in the feature space; adaptive weights are
introduced to increase the search range of the early iteration, and the global optimal solution of the previous
generation is introduced to improve the global search capability of the algorithm; the optimal solution is
perturbed using the dimension-by-dimension mutation strategy of adaptive t-distribution to increase the
diversity of the feature distribution. ISSA-SVM reduced the feature dimensionality from 231 to 17, indicating
a reduction of 92.6%. The recognition overall accuracy of ISSA-SVM for aggressive chicken behavior was
94.27%, which improved by 1.33% compared to SVM. The results of the experiment show that of all the
aggressive chicken behaviors during the 5-day experiment, fighting behavior occurred most frequently from
11:00 to 13:00 and from 17:00 to 18:00. This study provides a method for the automatic identification of
aggressive chicken behavior and can serve as an informational tool for poultry welfare assessment.

INDEX TERMS Aggressive behavior, chicken, ISSA-SVM, feature selection, inertial sensors.

I. INTRODUCTION
Animal behavior directly reflects the physiological health

and reduces chicken suffering [4]. The evaluation of social
behavior in the welfare assessment of chickens included

of animals and is an important assessment indicator for
assessing animal welfare [1], [2]. Animal welfarist Fraser
emphasized the need for animals to behave naturally [3].
Using behavior to assess chicken welfare avoids destruc-
tive damage caused by studies such as biological sampling
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aggressive behavior, plumage damage, and crown pecking
wounds [5]. Traditional manual observation of aggressive
behavior in chickens has high labor costs and is easily
affected by subjective human judgment, making accurate
observation difficult to achieve. In contrast, modern tech-
nology can record the movement details [6]. The aggressive
behavior of chickens is complex [7], [8], [9], [10], [11].
Automatic monitoring of aggression chicken behavior and
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objective analysis are conducive to the assessment of chicken
welfare [12], [13].

Inertial sensors are widely used in the field of behavior
recognition of livestock and poultry [14], [15], [16], [17],
[18]. The feasibility of using wearable sensors to identify
chicken behavior has been demonstrated by wearing the sen-
sors on the back and neck of chickens [19], [20]. Machine
learning is an effective method for analyzing the animal
behavior information [21], [22]. Many machine learning
algorithms have been used to analyze the behavior data from
wearable sensors [23]. For example, Banerjee et al. [24] used
neural networks to detect the daily behaviors of laying hens,
Yang et al. [25] used SVM and KNN to classify the behaviors
of broiler chickens such as feeding, drinking, and walking,
and Li et al. [26], [27] used machine learning algorithms such
as K-means and XG-Boost to implement multi-behavioral
recognition and analysis of caged breeding roosters. Machine
learning and accelerometers have also been used to analyze
the activity level of chickens, such as the Random Forest has
been used to identify the low, medium and high intensity
activity of laying hens at different weeks of age [28], and
the Bagged Tree has been used to classify the static, semi-
dynamic and highly dynamic behavior of laying hens [29].
In monitoring chicken health and welfare, Mei et al. [30]
used sensors to monitor broilers and used machine learn-
ing algorithms such as KNN and Decision Tree to identify
aflatoxin-poisoned broilers based on behavioral differences,
and He et al. [31] wore sensors on the broilers’ legs to detect
the lameness using the Logistic Regression. These studies
suggest that the use of inertial sensors to monitor chicken
behavior can help to automate the quantification of specific
behaviors.

In summary, it is feasible to use wearable sensors and
machine learning to analyze chicken behavior. However,
while using wearable sensors to obtain chicken behavior
information, there is no consistent way to deal with the fea-
ture redundancy problem of the data. Especially for complex
chicken aggressive behavior, redundant features will directly
affect the recognition results. Therefore, the objective of
this study is to analyze aggressive chicken behavior using
nine-axis inertial sensors combined with machine learning
methods, and to construct an aggressive chicken behavior
recognition model based on a hybrid strategy improved spar-
row search algorithm combined with support vector machine
(ISSA-SVM) to identify three aggressive chicken behaviors:
threatening, fighting, and evading. This research provides an
informative means for poultry production management and
welfare assessment.

Il. MATERIALS AND METHODS

A. DATA ACQUISITION

The experiment was conducted at the experimental base of
Hebei Agricultural University in Baoding, Hebei Province.
This research on live animals met the guidelines approved by
the Institutional Animal Care and Use Committee (IACUC).
The test chickens were five 40-week-old Taihang chickens.
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The chickens were numbered 1-5 and marked with five differ-
ent colors of special spray paint for animal marking. During
the data collection period, five chickens were housed in a cage
with a size of 1 m x 0.6 m x 0.7 m. Behavioral data were
collected for a total of 5 days, from November 11 to 15, 2022,
during the time period 09:00—-18:00. The daily feeding times
were 9:00 a.m., 12:00 noon, and 6:00 p.m. Nipple drinkers
were used to provide fresh water, and chickens were not
limited in feeding and drinking during the experiment.

In this study, the Wit-motion Bluetooth 5.0 nine-
axis inertial sensors model BWT901BLECL5.0 (51 mmx
36 mmx 15 mm, 20 g, Wit Intelligent Technology Co., China)
were used to monitor the behaviors of chickens. Each sensor
has a unique number, which corresponds to the number of
test chickens. The sampling frequency is 20 Hz. Each sensor
was mounted on the chicken’s neck by a self-adhesive Velcro
strap. The sensor is worn with a lcm space between the
chicken’s neck and the strap to enable freely movement and
ensure that the strap does not rotate. The sensor was located
directly in front of the chicken’s neck after mounted, and
its X, Y, and Z axes pointed to the front and rear, up and
down, and left and right directions of the chicken (Fig.1). The
sensors were worn for three days before the beginning of the
experiment to allow the chickens to adapt to them.

b5

Nipple drinker +~

Trough «— ==

FIGURE 1. The experimental device and the chicken wearing the sensor.

Three types of data can be acquired simultaneously: triax-
ial acceleration (Ay, Ay, A;), triaxial angular velocity (Gy, Gy,
G), and triaxial Angle (M, My, M;). The collected behavior
data were transmitted wirelessly to the multilink adapter
through Bluetooth, and then sent to the host computer through
the serial port and exported as an excel file with timestamps.
A Hikvision network HD camera was installed above the side
of the cage to monitor the chicken’s activities throughout the
day. The recorded video data were time-synchronized with
the sensors and used to manually mark the chickens’ behavior
classification labels.

B. BEHAVIOR DESCRIPTION

Based on the observation of chicken behavior and with ref-
erence to the description of aggressive chicken behavior by
Estevez et al. [32], the description of chicken behavior in this
paper is shown in Table 1. The collected behavioral data were
checked and marked against the video, and the threatening,
fighting, and evading behaviors of chickens were labeled

24763



IEEE Access

L. Li et al.: Recognition Method for Aggressive Chicken Behavior based on Machine Learning

according to Table 1. In addition, considering the diversity
of chicken behaviors in practice, the three daily behaviors of
chickens—feeding, drinking, and walking—were labeled as
“others” in our study. The definition of ““others” behavior is
referenced from Yang et al. [27].

C. DATASET CONSTRUCTION

Based on the triaxial acceleration (Ay, Ay, A;), triaxial angular
velocity (Gx, Gy, G;) and triaxial Angle (M,, My, M) of
chicken behavior data, the composite acceleration (A.) and
composite angular velocity (G.) were added, which together
constitute the chicken behavior sample dataset. Where the
formulas for composite acceleration (A.) and composite
angular velocity (G,) are as follows:

A= \JAZ+ A2 + A2 (1)
Gc=1/G§+G§+G§ 2)

Sensor data for aggressive behaviors (threatening, fighting,
evading) and other daily behaviors (feeding, drinking, walk-
ing) were manually labeled by a trained person by observing
chicken behaviors in recorded videos. A total of 30,802
samples were labeled. Among them, there were 15,986
aggressive behavior samples, including 5,720 threatening
samples, 6,250 fighting samples, and 4,016 evading samples;
and 14,816 others behavior samples, including 5,068 feeding
samples, 5,172 drinking samples, and 4,576 walking samples.
In the process of data labeling, the erroneous data collected
in that state were rejected if the sensors were observed to be
dislodged from the video.

TABLE 1. Description of chicken behavior.

Behavior Description

One chicken stood in front of
another individual with its neck
feathers up and a rigid stance.
One chicken flies, jumps or runs
toward another chicken and quickly
pecks the body or feathers, or two
chickens peck each other's body or
feathers violently.

A chicken ducking away from
another chicken when threatened or
attacked by it.

A chicken pecking at a trough and
swallowing is considered foraging; a
chicken pecking at a nipple drinker
was considered drinking; and a
chicken moving forward four or
more steps was considered walking.

Threatening

Aggressive

behavior Fighting

Evading

Others

1) MEDIAN FILTERING

Taking the triaxial acceleration as an example, the waveforms
of each behavior are shown in Fig.2. We took 4 seconds
of acceleration data for each behavior to ensure that it con-
tained 1-2 complete movements of the chicken. Threatening
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FIGURE 2. Examples of triaxial acceleration curves for threatening (a),
fighting (c), evading (e), feeding (b), drinking (d), and walking (f).

behavior (Fig.2(a)) fluctuated more gently, fighting behavior
(Fig.2(c)) and evading behavior (Fig.2(e)) fluctuated more,
but evading behavior shows a greater change in acceleration
on the x-axis compared to fighting behavior.

The raw data must be filtered to remove noise from the
original signal. In this study, the data are processed using
a median filter with a window size of three to avoid signal
distortion caused by using a window that is too large. The
mathematical model is as follows:

x; = Med(x;—1, xi, Xi11) 3)

where x; (i = 1,2, ..., n) is the sensor data sample and Med
is the median taking function.

The filtered waveform is shown in Fig.3. The filtered data
is relatively smooth and reduces the interference of high-
frequency noise.

2) FEATURE EXTRACTION

In this paper, feature extraction was performed with
Python 3.8. The time and frequency domain features were
extracted from the filtered data using a sliding window of
length 1 s with 50% overlap. In this paper, 21 features in
the time and frequency domains were extracted from the
triaxial acceleration, triaxial angular velocity, triaxial angle,
and composite acceleration and composite angular veloc-
ity data to obtain 231 (21 x 11) dimensional feature data.
Among them, the time domain features included the average,
variance, standard deviation, mode, maximum, minimum,
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FIGURE 3. Examples of filtered triaxial acceleration profiles for
threatening (a), fighting (c), evading (e), feeding (b), drinking (d) and
walking (f).

range, number of crossing zero points, IQR, and energy (sum
of absolute values of data). The frequency domain features
included the DC component, the mean, variance, standard
deviation, skewness, and kurtosis of the shape, and the mean,
variance, standard deviation, skewness, and kurtosis of the
amplitude. The total number of feature set samples was
3081, including 344 threatening behavior feature samples,
625 fighting behavior feature samples, 402 evading behavior
feature samples, and 1482 others behavior feature samples.
The feature set data were normalized according to (4) to
reduce the effect of data size differences.

x/ — X — U ( 4)

o

where x’ is the standardized data value, x is the original
data value, u is the mean of the data, and o is the standard
deviation of the data.

In this paper, the training set and test set were divided
according to 6:4. The dataset categories were imbalanced due
to the fact that more daily behaviors and fewer aggressive
behaviors were observed in chickens. Therefore, SMOTE
(Synthetic Minority Oversampling Technique) sampling [33]
was used to balance the number of the training set samples
by increasing the number of samples in minority classes to
balance training set data. To ensure model accuracy, model
performance was still evaluated using the imbalanced original
test set [34].
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TABLE 2. Number of samples of threatening (t), fighting (f), evading (e),
and others (o) behaviors in the training set and test set.

Behavior

T F E (0] Total

Training set
before SMOTE 344 376 241 889 1848

after SMOTE 620 620 620 889 2749
Test set 228 249 161 593 1231

Table 2 shows the size of the training and test sets before
and after SMOTE sampling. To prevent model overfitting,
we expanded the sample size of threatening, fighting and
evading behavior to about 70% of others behavior. A total of
2749 samples were included in the training set after SMOTE
sampling, with 620 samples for each of the threatening, fight-
ing, and evading, and 889 samples for the others behavior.

D. CLASSIFICATION MODEL SELECTION

In order to select the classifier with the best recognition
performance, four popular classification algorithms, Support
Vector Machine (SVM), Logistic Regression (LR), K Nearest
Neighbors (KNN), and Decision Tree (DT), were analyzed in
this study. All models were trained in python 3.8 on Windows
11 system. SVM performs multi-classification of input data
by mapping the data to a high dimensional space through
kernel function. In this paper, we used the one-vs-rest method
to achieve the classification of four behaviors by construct-
ing four binary SVM classifiers. LR is a probability-based
classification algorithm that performs multi-classification by
training multiple binary classifiers. The probability that a
sample is or is not each classifier is calculated and the one
with the highest probability is selected as the final class. KNN
classifies the input sample based on the distance between
the input sample and the K nearest training samples to it.
In this paper, the value of K was taken as 5. DT is a classical
tree classifier that generates subtrees recursively until all leaf
nodes belong to the same category.

The recognition results of the four algorithms for threat-
ening, fighting, evading and other behaviors of chickens are
shown in Fig.4. The overall recognition accuracies of SVM,
LR, KNN, and DT are 92.94%, 89.6%, 88.45%, and 87.31%,
respectively. SVM has the highest overall recognition accu-
racy. Therefore, the SVM classifier is used in this study to
achieve better recognition results.

E. CONSTRUCTION OF ISSA-SVM MODEL

The recognition process of the aggressive behavior of chick-
ens in this paper is illustrated in Fig.5. The redundant feature
data are reduced using the ISSA-SVM feature selection
method proposed in this paper. The optimal feature subset
is selected and input to the classifier for training to obtain
the final ISSA-SVM aggressive chicken behavior recognition
model.
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FIGURE 4. Comparison of overall recognition accuracy of four
classification algorithms.
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1) ISSA ALGORITHM

We need to perform feature selection on the extracted 231-
dimensional feature data to select the most representative and
optimal combination of features to reduce redundant features
and improve the performance of the model [35]. The Sparrow
Search Algorithm (SSA) has been well recognized by many
researchers because of its fast convergence and stability [36],
[37]. However, it also has the disadvantages of uneven initial
population distribution, insufficient late search capability,
and it easily falls into a local optimum [38]. To address these
problems, this paper proposes a hybrid policy-improved SSA
(ISSA), and the algorithm flow is shown in Fig.6. The param-
eters of ISSA in this paper are shown in Table 3. The basic
parameters of the sparrow algorithm were set with reference

TABLE 3. Parameter settings of issa.

Parameters Value
Max iterations (M) 100
Sparrow populations (n) 50
Producers (PD) 0.7n
Scroungers (SD) 02n
Safety threshold (ST) 0.6
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to the literature [36]. In addition, considering the high feature
dimensions in this paper, the population size of the algorithm
was set to 50 and the number of iterations was set to 100.

a: CIRCLE CHAOTIC MAPPING INITIALIZES THE
POPULATION

Using chaotic mapping instead of random initialization of
populations can result in a more uniform distribution of the
initial populations [39], [40], [41]. Circle chaotic mapping
has characteristics such as ergodicity and uniformity, and its
formula is (5):

0.5
Xi+1 = mod(x; + 0.2 — (2—) sin(2w X x;), 1) (@)
54

where x is the position of individuals in the population, i is the
dimension of the search space, and mod is the residual func-
tion. As shown in Fig.7, the use of circle mapping instead of
random initialization of populations enables a more uniform
distribution of populations in the search space.

For the 231-dimensional feature data obtained above,
we set the sparrow population size to 50, and each sparrow
then represents a different set of feature subsets. Each feature
in the 231 dimensions has a certain probability of being
selected. Thus, the distribution of the initial population is a
50 x 231 matrix. Fig.8 shows the number of times each of
the 231-dimensional features were selected, and the variance
and range were calculated to reflect the uniformity of the
distribution of the selected features. As shown in Table 4,
the variance and polar deviation of the initialized population
of the circle mapping are smaller than those of the random
initialized population, which indicates that circle mapping
makes the distribution of feature data more uniform.

TABLE 4. Variance and range of the feature frequency distribution with
different initialization methods.

Initialization mode Var(variance) Range(Xmax-Xmin)
Random initialization 13.316 19
Circle map initialization 9.319 8

b: ISSA UPDATE STRATEGY

After initialization, the fitness values of the individuals in
the initial population are calculated and ranked. Some of the
sparrows with high fitness values are selected as producers,
and the producer update formula in the SSA algorithm is
shown in (6):

‘ —i
L. - Ry, < ST
xit;r] _ NP (a . itermax) 2 (6)
X +0-L Ry > ST

where 7 is the current number of iterations, x; ; is the position
of the ith sparrow in the jth (j = 1, 2...., d, d is the dimension
of the search space) dimension, « € (0, 1), iteryqy is the
maximum number of iterations, Q is a random number from a
normal distribution, L is a 1 x d all-1 matrix, R, is the alarm
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FIGURE 7. Distribution of (a) random initialized populations and (b)circle
mapped initialized populations for 1000 iterations.

value, and ST is the safety threshold. As shown in Fig.9(a),
the rapid convergence of individuals in the early iterations
leads to an insufficient search range and weak global search
capability.

In this paper, we introduce a dynamic weight factor w ((7))
in the producer’s location update to increase the search range
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FIGURE 8. Frequency distribution of features under different initialization
methods. Where the horizontal coordinate represents 213 features. The
vertical represents the number of times the feature occurred.

in the early iteration (Fig.9(b)). The previous generation of
global optimal solutions is also introduced to improve the
global search capability of the algorithm [42]. The improved
location update strategy of the producer is shown in (8).

i) _ ()

_ @)
w ez(l_m) N e—z(l—m)

xf,j“‘w(ifj_xit,j) -rand Ry < ST

X +0 Ry > 8T

t+1
Xij

®

where ftt ; is the global optimal solution of the jth dimension
in the previous generation.

As shown in Fig.10, the improved producer has a larger
distribution and search range over the feature space, and each
dimensional feature is selected more frequently.
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and after improvement.

The remaining sparrows, as scroungers, have a location
update strategy as in (9):

t t
ex Xworst — Xij -
W i
t+1 _ p i2
Lo

€))

NI NS

1+1 t 11 4+ . -<
X, +|xi’j+xp |-AT-L i<

where x!, ., is the current global worst position, x‘,’,+1 is the
position of the best adapted individual after updating, n is the
number of sparrows, and A is a 1 x d matrix of 1 or —1.

Some individuals in the population were randomly selected
as sparrows who are aware of danger, and the position was
updated according to (10):

t t t
Xbest +B- |xi,' - xbest| ﬁ >f8
t t
l-t’}-H = ; Lci,j — Xworst (10)
Xbest +K- ﬁ :fg

(fi —fw) +e¢

where x] . is the best position of the current global and B
is a normal distribution with a mean of 0 and a variance
of 1, which is used to control the step size. f, and f,, are
the current global best and worst fitness values, respectively,
and ¢ is the minimum constant. It can be observed that if
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the current sparrow is not in the optimal position, it will
escape to the vicinity of the current optimal position. If the
sparrow is in an optimal position, it will escape to a position
near itself, but that position is determined by the ratio of the
difference between its own position and the worst position
to the difference between the food at its own position and
at the worst position. This update approach tends to lead the
algorithm into a local optimum.

In this paper, we improve the position updating strategy of
sparrows who are aware of danger. If the sparrow is not in the
optimal position, it will escape to the position between the
current position and the optimal position; otherwise, it will
escape to the position between the optimal position and the
worst position to prevent the algorithm from falling into a
local optimum. The improved position update strategy of
sparrows who are aware of danger is shown in (11):

t t t
Xt = Xpest + B (xi,j _xbest) Ji # ¢
LJ t t t
Xpest T B (xworst - xbest) Ji ng

c: ADAPTIVE T-DISTRIBUTION DIMENSION-BY-DIMENSION
MUTATION

Regarding the problem that it is difficult to break out of a
local optimum in population search, the method of mutation
interference on individuals is usually used to increase the
population diversity so that it can break out of the local
optimum. The problem of interdimensional interference in
high dimensions can be effectively avoided by using the
dimension-by-dimension mutation method [43], [44], [45].
Due to the uncertainty of the mutation interference results,
only the optimal individual is mutated dimension by dimen-
sion, which is conducive to reducing the computational effort
and improving the search efficiency [46].

In this paper, the adaptive t-distribution operator is used
for dimension-by-dimension mutation of optimal individuals.
The t-distribution mutation operator ¢ (ifer) with degree of
freedom parameter t is introduced on the basis of the original
position information. The mathematical expression is given
in (12):

Y

x{zew = xéest + x/

best

-t (iter) (12)

where X, is the position of the optimal individual after
the dimension-by-dimension mutation, and iter is the num-
ber of the current iteration. Since the two boundaries of
the t-distribution are the Cauchy distribution (t (n = 1) —
C (0,1)) and the Gaussian distribution (f (n —> o0) —
N (0, 1)) [47], respectively, the degree of freedom parameter
t increases with continuous iterations, and the t-distribution
gradually tends to the Gaussian distribution from the Cauchy
distribution, which is conducive to improving the global
search capability of the algorithm and breaking out of the
local optimum. As shown in Fig.11, the optimal individual
in the iterative process is selected, and its distribution on
the feature space before and after the mutation is visualized.
It can be seen that the diversity of the feature distribution
increases after the mutation.
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FIGURE 10. Frequency of the 231-dimensional feature distribution in the first 30 iterations.
Where the horizontal coordinate represents 213 features. The vertical represents the number of
times the feature occurred in the first 30 iterations.
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before mutation interference.

(b) Features distribution after
t-distribution mutation interference.

FIGURE 11. The distribution of optimal individuals in the feature space
before and after mutation in the iterative process.

F. MODEL EVALUATION

For the evaluation of feature subsets in the feature selection
process, the fitness function in this paper is shown in (13).
In this paper, the SVM classification error rate was set as a
penalty term and given a certain weight in the fitness function,
which can improve the recognition accuracy while reducing
the feature dimension.

fun =« -error + (1 — @) - —num_sclectfeat (13)
num_feat
where « is the weight, which equals 0.9 in this paper; error
is the classification error rate of SVM for the selected feature
subset; num_sclectfeat is the number of selected features; and
num_feat is the number of all features.
The model performance was evaluated by confusion
matrix. The accuracy, precision, recall and Fl-score of the
model were calculated according to (14)-(17):

TP 4+ TN
Accuracy = (14)
TP+ FP+ TN + FN
. TP
Precision = —— (15)
TP + FP
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TP
Recall = ——— (16)
TP + FN
Recall x Precision
F1 —score =2 x a7

Recall + Precision

where TF is the number of positive samples predicted to
be positive, TN is the number of positive samples predicted to
be negative, FP is the number of negative samples predicted
to be negative, and FN is the number of negative samples
predicted to be negative.

IIl. RESULTS

A. COMPARATIVE ANALYSIS OF FIVE FEATURE SELECTION
METHODS

The use of swarm intelligence algorithms is often required
to maximize the performance of the classifier while mini-
mizing the feature subset in classification. In this study, the
feature selection ability and model recognition accuracy of
five swarm intelligence algorithms, ISSA, SSA, PSO (Par-
ticle Swarm Algorithm), GA (Genetic Algorithm), and FPA

100

I Overall accuracy B Feature dimension | 140
98 4 F 120
g 100 §
g %
3 75 F80 £
] k=]
= 94.27 63 °
5 949 52 Foo 2
= 93.13 098 K
33 92.27 40
91.98
92 4
17 F20
90 - -0
ISSA-SVM  SSA-SVM PSO-SVM GA-SVM FPA-SVM

FIGURE 12. Performance comparison of five feature selection methods.
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(Flower Pollination Algorithm), were compared based on
SVM classifier. The populations were set to 50 and the num-
ber of iterations was set to 100 for each of the five algorithms.
The results are shown in Fig.12. The feature subsets selected
by PSO, GA and FPA are all above 50 dimensions, and the
recognition accuracies are all below 93%. This may be due
to the insufficient global search capability of the algorithms
resulting in them falling into local optimization. SSA reduces
the feature dimension to 33 with an accuracy of 93.13%, but
its ability to search in feature space could be improved. The
ISSA proposed in this paper has the highest accuracy while
having the least number of features. The ISSA reduces the
original features from 231 to 17 dimensions, which reduces
92.6% of redundant features, while the recognition accuracy
is 94.27%.

B. ANALYSIS OF FEATURE SELECTION RESULTS BASED ON
ISSA-SVM

The optimal combination of features selected by ISSA-SVM
is shown in Table 5.

TABLE 5. Optimal subset of features selected using ISSA-SVM.

Optimal feature combination

Feature
dimension Time Domain Frequency Domain
time_ave_A," time_min_G.,
time_ave_G, time_range_A,
time_ave M. time_range G, fit de G,
17 time_std_A, time_energy A.  [ft_shape_skew G,
time_std_M, time_energy A, fft_mean_M.

time_mode_M,
time_max_G,

time_energy M,
time_energy M.

*a_b_c: aindicates whether a feature belongs to the time domain (time)
or frequency domain (ff7), b indicates the feature type, and ¢ indicates the
sensor data component.

The most frequent feature in the selected subset of fea-
tures is the energy from the time domain, which is due
to the fact that energy provides a comprehensive assess-
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FIGURE 13. Importance ranking of the selected features on the
recognition results of ISSA-SVM.
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FIGURE 14. Data distribution of the top three features. All feature data
were log-transformed for easy observation. The energy data are
represented as Log(100+x), and the frequency domain DC component
data are represented as Log(10+x).

ment of the overall performance of behavior data within a
time window. The selected features are ranked by impor-
tance, as shown in Fig.13. The top three features in
terms of importance were selected as time_energy_M,,
Jft_dc_G,, and time_energy_M,. The frequency distributions
of the above three features for threatening, fighting, evad-
ing and others behaviors are shown in Fig.14. For feature
time_energy_M,, the data points corresponding to evad-
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ing behavior can be well distinguished, whereas there are
overlapping parts of the frequency distribution of threat-
ening and fighting behaviors (Fig.14(a)). The frequency
distribution of feature fft_dc_G, shows that the data points
for fighting and evading behaviors overlap considerably,
but the data points for threatening behavior are separable
(Fig.14(b)). The combination of feature time_energy_M, and
the feature fft_dc_G, can distinguish the fighting behavior
from the other three. The frequency distribution of feature
time_energy_M, shows that others behavior can be well
distinguished, but there are still some overlaps with the
other three behaviors (Fig.14(c)). In summary, from the
frequency distributions, the selected features have strong
separability for different behaviors. However, a single fea-
ture cannot classify the four behaviors, and it needs to be
combined with other features to achieve accurate behavior
recognition.

C. ISSA-SVM MODEL PERFORMANCE

The performance of the ISSA-SVM and SVM models is
shown in Table 6. ANOVA test is used to record the dif-
ferences between ISSA-SVM and SVM, and the p-value is
0.025 (p <0.05), which indicates that ISSA-SVM is signif-
icantly different from SVM. The recognition accuracy of
the SVM model without feature selection is 92.94%. The
ISSA-SVM model reduces the feature dimensions by 92.6%
while the overall recognition accuracy is 94.27%, which is
an improvement of 1.33% compared to SVM. As shown
in Fig.15, the recognition precision of threatening, fighting,
and others behaviors is improved by 1.28%, 1.85%, and
1.42%, respectively, whereas the recognition precision of
evading behavior is improved by only 0.64%. The recall
of evading behavior is increased by 5.59%, which indicates
an increase in the number of times evading behavior is
correctly identified. The Fl-score of threatening, fighting,
and evading behaviors is increased by 1.08%, 1.34%, and
3.31%, respectively, whereas there is no significant increase
in the F1-scores of others behavior. The results demonstrate
that ISSA-SVM reduces a large number of indistinguishable
features in the original feature set, and the selected features

TABLE 6. Performance and results comparison of ISSA-SVM and SVYM
models.

Precision Recall Fl-score Accuracy Feature
(%) (%) (%) (%)  dimension

Threatening 94.35 95.18  94.48
ISSA-  Fighting  90.87  91.97  92.15
SVM  Evading 89.61 8571 87.62
Others 98.06 98.54  98.30
Threatening 93.07 9430  93.68
Fighting  89.02 91.16  90.08

SVM 92.94 231
Evading  88.97 80.12 84.31

Others 96.64 9829 9746

Model  Behavior p-value

94.27 17

0.025
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FIGURE 15. Changes in classification performance using ISSA-SVM
compared to SVM.

can distinguish easily confused aggressive behaviors more
efficiently.

D. CONFUSION MATRIX

The confusion matrix of ISSA-SVM recognition results is
shown in Fig.16. From the confusion matrix, the sensitivity
of ISSA-SVM for chicken aggressive behavior recognition is
calculated to be 93.14%. Aggressive behaviors of chickens
can be well distinguished from the other daily behaviors.
However, the identification of aggressive behaviors is prone
to confusion.

Threatening 0.0044

Fighting 0.004

True label

Evading 0.037

Others 1 0.0049 0.0024 0.0073 0.99

Threatening  Fighting Evading Others
Predicted label

FIGURE 16. The confusion matrix of ISSA-SVM recognition results.

3.1% of fighting behavior and 1.3% of evading behavior
were mistaken for threatening behavior. 3.6% of threaten-
ing behavior and 4% of evading behavior were mistaken
for fighting behavior. And 1.2% of threatening behavior
and 9.3% of fighting behavior were mistaken for evading
behavior. The confusion is due to the fact that when chick-
ens threaten each other by reaching their heads forward or
upward, a significant movement of the neck will cause large
fluctuations in the sensor signal, which may be mistaken for
fighting behavior. When a chicken is attacked by another and
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TABLE 7. The proportions of threatening, fighting, and evading behaviors to the total aggressive behaviors in each hour.

Behavior 9:00-  10:01-  110I-  1201-  1301-  1401-  I501-  1601-  17:01-
10:00  11:00  12:00  13:00  14:00 1500  16:00  17:00  18:00

) @1y (26) (62) (23) (85) (16) (20) (13) 22) (286)

Threatening g/ 9.1%  215%  7.9%  29.6%  5.4% 7% 4.4% 7.7% 35.7%

Fighting 7) (23) (59) (54) (38) (23) (43) 22) (46) (313)

2.2% 72%  187%  17.3% 12% 73%  13.6% 7% 14.7%  39.2%

Evading (25) 27 (17) (10) (56) (32) ©) (12) (15) (201)

122%  13.5%  82% 5% 27.9%  157%  4.5% 5.7% 7.2% 25.1%

Total (53)¢ (76) (137) (87) (178) (70) (72) (46) (83) (799)

6.6%  94%  17.1%  10.8%  223%  8.8% 8.9% 58%  103%  100%

* Number of occurrences of threatening behavior occurred in that hour.

© Ratio of the number of threatening behavior occurrences in that hour to the total number of threatening behavior occurrences.

¢ Number of occurrences of threatening, fighting, and evading behaviors occurred in that hour.

4 Ratio of the number of threatening, fighting, and evading behaviors occurrences in that hour to the total number of behaviors.

doesn’t initiate a counterattack, it will choose to lower its
head and run (or walk) away quickly to evade the attack.
These movements are fast and variable, and have a strong
resemblance to fighting behavior, which leads to misclas-
sification. In addition, the aggressive behaviors of chickens
are affected by various factors, such as individual differences
and the environment, and sometimes occurs consecutively
within a short period of time, resulting in more difficult
identification.

E. ANALYSIS OF AGGRESSIVE CHICKEN BEHAVIOR

Our experiment collected behavior data for 5 days from
November 11 to 15. A total of 799 aggressive behaviors of
chickens were monitored during the 5-day period, includ-
ing 285 threatening behaviors, 313 fighting behaviors, and
201 avoidance behaviors. The proportions of threatening,
fighting, and evading behaviors to the total threatening, fight-
ing, and evading behaviors during each of the nine hours
of data collection are shown in Table 7. From the results,
the percentage of fighting behaviors were 39.2% of all
799 aggressive behaviors. Among 313 fighting behaviors,
18.7% happened from 11:00 to 12:00, 17.3% from 12:00 to
13:00, and 14.6% from 17:00 to 18:00. These periods are
around feeding time, when more fighting behavior occurs
may indicate that feeding problems are an important factor
for chicken fighting behavior. Too much fighting behav-
ior may cause physical injuries or even death of chickens.
Therefore, the results can provide data support for the devel-
opment of chicken welfare assessment methods and provide
a reference for managers to scientifically manage poultry
houses.

IV. DISCUSSION

Although aggressive behavior is a relatively small part of a
chicken’s daily behavior, it’s of great value in chicken welfare
assessment [48]. Although previous studies have devel-
oped methods for chicken welfare assessment [49], some
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indicators still rely on subjective human judgment, and no
clear quantitative criteria are given [5]. Using sensors to col-
lect samples of chicken behavior can provide data to support
the development of efficient welfare assessment methods.
The results of the experiments in this paper showed that the
highest occurrence of fighting behavior in chickens occurred
around midday feeding time, this result validates the previous
findings of Anderson et al. [50] that 67% of the occurrence
of aggressive behavior in chickens was related to feeding
problems.

However, there are still some limitations in this study.
The sensor used in this study weighed 20 g, although it had
less mass than the 36 g sensor used in the previous study
by Stadig et al. [51], the chicken still needed some time to
get used to wearing the sensor. Battery life of the sensor
used in this study was around 20 hours, which needed to
be replaced with a new sensor daily. Therefore, it is nec-
essary to develop wearable sensors that are more portable
and have better endurance in future research. In addition,
the screening and labeling process of the sensor behav-
ioral data was done manually in the early stages, and this
method has not been well addressed in the actual com-
mercial environment. Therefore, there is a need to develop
more technological tools to be employed in practical farm
applications.

For data processing of wearable sensors, deep learning
as a branch of machine learning is able to avoid manually
calculating features [52]. However, the aggressive behavior
of chickens is small-targeted and multi-scale. The feature
data extracted by deep learning is poorly interpretable, which
is not conducive to practical production deployment. And
it is difficult to optimize the model at a later stage with
poor generalization performance. Traditional machine learn-
ing models are simple and efficient, and its generalization
ability is stronger. The method proposed in this paper avoids
the problem of fewer features computed in the traditional
behavior recognition process while having high recognition

VOLUME 12, 2024



L. Li et al.: Recognition Method for Aggressive Chicken Behavior based on Machine Learning

IEEE Access

accuracy. Feature selection can better express the intrinsic
characteristics and patterns of the data. In addition, tradi-
tional machine learning models are more interpretable [53],
which facilitates subsequent model optimization. Therefore,
it is more favorable for the application of chicken welfare
assessment.

Compared with existing feature reduction methods such
as PCA [54] and RPCA [55], we use swarm intelligence
algorithm for feature selection to reduce the feature dimen-
sion, and the proposed ISSA-SVM takes into account feature
dimension and recognition accuracy. Swarm intelligence
algorithms are data-driven based. The adaptation function can
be designed based on specific performance metrics such as
accuracy, and by evaluating the feature subset performance
to select the best subset. Swarm intelligence algorithms have
global search capability which can find the optimal solution
in the entire search space. In comparison, methods such as
PCA and RPCA may not be guaranteed to find the global
optimal solution.

V. CONCLUSION

In this study, we used nine-axis inertial sensors and machine
learning methods to build the ISSA-SVM chicken aggres-
sive behavior recognition model, which can accurately
identify the three aggressive behaviors of chickens: threat-
ening, fighting, and evading. The main conclusions are as
follows:

(1) Chicken behavior data were collected using nine-axis
inertial sensors and processed by median filtering for noise
reduction. A total of 231-dimensional feature data in the
time and frequency domains were extracted by 1 s sliding
window to establish a chicken aggressive behavior feature
dataset.

(2) In this paper, we propose a feature selection method
for the hybrid strategy-improved sparrow search algorithm
(ISSA), which increases the uniformity of the feature dis-
tribution in the search space and the search capability at the
later stages of iterations. The ISSA-SVM aggressive chicken
behavior recognition model constructed in this paper reduces
the number of feature dimensions by 92.6%, improves the
accuracy by 1.33% to 94.27%, and improves the recall and
F1-score of the indistinguishable evading behavior by 5.59%
and 3.31%, respectively.

(3) For the feature time_energy_My, threatening behavior
shows strong separability; for the feature fft_dc_G,, evading
behavior shows strong separability; and for the combination
of the feature time_energy_M, and the feature fft dc_Gg,
fighting behavior shows strong separability. According to
the distribution of fighting behavior of chickens during
the experiment, fighting behavior occurred mostly between
11:00-13:00 and 17:00-18:00.

The method proposed in this paper provides an informative
tool for the study of aggressive chicken behavior and provides
a reference for the chicken welfare assessment. In addition,
this study lays the foundation for further refining studies on
chicken aggressive behavior.

VOLUME 12, 2024

APPENDIX
ABBREVIATIONS
See Table 8.

TABLE 8. Abbreviation cross-reference in text.

Abbreviations Description
SVM Support Vector Machine
KNN K-Nearest Neighbor
XGBoost eXtreme Gradient Boosting
DT Decision Tree
LR Logistic Regression
SMOTE Synthetic Minority Oversampling
Technique
SSA Sparrow Search Algorithm
ISSA Improved Sparrow Search Algorithm
PSO Particle Swarm Algorithm
GA Genetic Algorithm
FPA Flower Pollination Algorithm
ave average
std standard deviation
max/min maximum/ minimum
de DC component in frequency domine
skew skewness
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