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ABSTRACT Medical image datasets, particularly those comprising Magnetic Resonance (MR) images,
are essential for accurate diagnosis and treatment planning. However, these datasets often suffer from
class imbalance, where certain classes of abnormalities have unequal representation. Models trained on
imbalanced datasets can be biased towards the prominent class, leading tomisclassification. Addressing class
imbalance problems is crucial to developing robust deep-learning MR image analysis models. This research
focuses on the class imbalance problem in MR image datasets and proposes a novel approach to enhance
deep learningmodels.We have introduced a unified approach equippedwith a selective attentionmechanism,
unified loss function, and progressive resizing. The selective attention strategy identifies prominent regions
within the underlying image to find the feature maps, retaining only the relevant activations of the minority
class. Fine-tuning of the multiple hyperparameters was achieved using a novel unified loss function that
plays a vital role in enhancing the overwhelming error performance for minority classes and accuracy for
common classes. To address the class imbalances phenomenon, we incorporate progressive resizing that
can dynamically adjust the input image size as the model trains. This dynamic nature helps handle class
imbalances and improve overall performance. The research evaluates the effectiveness of the proposed
approach by embedding it into five state-of-the-art CNNmodels: UNet, FCN, RCNN, SegNet, and Deeplab-
V3. For experimental purposes, we have selected five diverse MR image datasets, BUS2017, MICCAI
2015 head and neck, ATLAS, BRATS 2015, and Digital Database Thyroid Image (DDTI), to evaluate the
performance of the proposed approach against state-of-the-art techniques. The assessment of the proposed
approach reveals improved performance across all metrics for five different MR imaging datasets. DeepLab-
V3 demonstrated the best performance, achieving IoU, DSC, Precision, and Recall scores of 0.893, 0.953,
0.943, and 0.944, respectively, on the BUS dataset. These scores indicate an improvement of 5% in DSC,
6% in IoU, 4% in precision, and approximately 4% in recall compared to the baseline. The most significant
increases were observed in the ATLAS and LiTS MICCAI 2017 datasets, with a 5% and 7% increase in IoU
and DSC over the baseline (DSC = 0.628, DSC = 0.695) for the ATLAS dataset and a 5% and 9% increase
in IoU and DSC for the LiTS MICCAI 2017 dataset.
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I. INTRODUCTION
Medical image analysis is a rapidly growing field with
the potential for diagnostic process automation for various
diseases [1]. In recent years, deep learning models have
shown remarkable achievement in analyzing medical images,
includingMagnetic Resonance (MR) images [2], [3], [4], [5],
[6]. Deep learning-based CNN models have emerged as a
powerful tool for analyzing medical images at the pixel-level.
These models can potentially assist healthcare professionals
in accurately diagnosing, planning treatment, and monitoring
patients. However, one major challenge in developing effec-
tive deep-learning models for medical image analysis is the
presence of a class imbalance in the datasets [1], [7], [8],
[9], [10], [11]. Class imbalance in a medical image dataset
refers to a situation where the number of images belonging to
different classes or categories is significantly unequal [8].
Class imbalance occurs when specific categories of abnor-

malities in medical image datasets are prominent compared
to the other classes. The class imbalance ratio for an image
is determined by comparing the number of pixels in the
background class (typically the most prevalent class) to the
number of pixels in various object classes. The class imbal-
ance ratio is presented as the average ratio across all its
images for an entire dataset.

In the current era of big data, the abrupt progression in
medical imaging data has led to the emergence of imbal-
anced datasets. The raw and imbalanced data is a significant
challenge in developing effective models, especially deep
learning models, for accurate classification and segmentation
tasks. Ideally, these models should improve accuracy when
dealing with positive and negative examples [12], [13]. How-
ever, previous research has demonstrated that class imbalance
adversely affects the performance of commonly used models,
including decision trees, support vector machines, artificial
neural networks, and others [11], [14], [15], [16], [17]. As a
result, deep learning models trained on imbalanced datasets
tend to be biased towards the majority class and ignore the
minority class, which leads to poor classification, detection
and segmentation accuracy. Class imbalance issues in med-
ical image analysis carry several challenges and problems.
These challenges include:

Bias towards majority classes: Deep learning models
trained on imbalanced datasets tend to prioritize accurately
predicting the majority class while neglecting the minority
classes. This bias may decrease sensitivity and accuracy
during the diagnosis of medical abnormalities or conditions,
which are crucial for accurate diagnosis.

Limited representation of minority classes: Imbalanced
datasets have fewer examples of minority classes, making
it difficult for models to learn their distinguishing features
effectively. As a result, the models struggle to generalize and
correctly classify instances belonging to the underrepresented
classes.

Decreased predictive performance: Imbalanced datasets
negatively impact deep learning models’ overall prediction
and segmentation performance. The lack of sufficient sam-
ples from minority classes hampers the models’ ability to
learn their characteristics accurately, leading to lower preci-
sion, recall, and F1 scores, which are essential for reliable
diagnostic results.

Difficulty setting decision thresholds: Class imbalance
affects the optimal decision thresholds for model predictions.
Determining a threshold that balances sensitivity and speci-
ficity becomes challenging with a bias towards the majority
class. Depending on the chosen threshold, this can increase
false positives or negatives.

Limited generalizability: Deep learning models trained
on imbalanced datasets tries to generalize well to unseen
data, particularly for underrepresented classes. This limita-
tion hampers the deployment of such models in real-world
clinical settings where accurate detection and segmentation
of various abnormalities are crucial.

Addressing the challenges related to class imbalance is
essential for developing reliable and effective deep-learning
models in medical image analysis. By mitigating class imbal-
ance issues, one can improve diagnostic accuracy, enhance
the identification of rare abnormalities, and achieve better
performance in clinical applications.

Advancements in deep convolutional neural networks have
led to various architectures for image segmentation, including
GoogLeNet [18], ResNet [19], and SegNet [20], While these
models excel with natural images across diverse applications,
they often underperform in medical image analysis due to
their design for larger datasets.

Recently, researchers have proposed several techniques to
address the class imbalance in medical image datasets [21],
[22], [23], [24], [25], [26], [27], [28], [29]. These techniques
try to enhance the representation of the minority class and
reduce the representation of the majority class. Dice and cross
entropy-based losses have been generalized by [17] to tackle
the class imbalance in the segmentation of medical images.
Adaptive Blended Consistency Loss (ABCL) has been intro-
duced by [30] using a Semi-supervised learning approach
to address the imbalanced data during the segmentation of
retinal fundus glaucoma.

The consequences of class imbalance for deep learning
models in medical image datasets are particularly critical,
as misclassifying a rare but severe condition can have severe
implications for patient outcomes. In scenarios where the
focus is primarily on the majority class, the model may strug-
gle to recognize and accurately predict instances of less com-
mon diseases, leading to delayed or missed diagnoses [31].
Imbalanced data can negatively affect the performance of
models significantly. Many models that perform well on
balanced datasets cannot achieve good performances when
it comes to their imbalanced counterparts [32]. Addressing
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class imbalance in medical image datasets is crucial for build-
ing reliable and clinically applicable deep learning models.

Previous research has shown satisfactory performance on
certain datasets but has struggled to generalize effectively
when applied to other medical image datasets. For instance,
[1] designed DC-CNN, a two-stage deep learning frame-
work that addresses class imbalance. It efficiently detects
small lesions but struggles with larger lesions like retinal
hemorrhage and mammography. Several research works are
available for tackling class imbalance in medical images, but
limited work is dedicated to MR images [7].
In this research, we have focused on the class imbal-

ance in MR image datasets to enhance the performance and
reliability of deep learning models. We propose a novel
unified approach that combines selective attention strategy,
unified loss function, and progressive resizing. The selective
attention strategy uses the coefficient to identify the sub-
stantial regions in the underlying image to prune the feature
responses, keeping only the activations relevant to the minor-
ity class. The unified loss function is used for fine-tuning of
multiple hyperparameters and helps to enhance the suppress-
ing error performance for minority classes and accuracy for
common classes. Additionally, progressive resizing is used
during the model’s training to handle class imbalances. This
unified approach is embedded into five state-of-the-art CNN
models, i.e., UNet, FCN, RCNN, SegNet, and Deeplab-V3,
to enhance their performance and analyze the impact of the
proposed technique. We have conducted extensive experi-
ments on diverse MR image datasets like BUS2017 [33],
MICCAI 2015 head and neck [34], ATLAS [35], BRATS
2015 [36], and Digital Database Thyroid Image (DDTI) [37]
to evaluate the performance of the proposed approach against
state-of-the-art techniques.

The key contributions of this research work are as follows:

• We have designed a unified loss function that com-
bines cross entropy loss and dice loss functions
to address class imbalanced in MRI datasets. This
innovation contributes to more robust and accurate
deep-learning models for MRI segmentation tasks,
which can positively impact clinical diagnoses and
treatment planning.

• We have introduced a novel selective attention mech-
anism capable of learning salient features while effec-
tively suppressing the background. This innovation is
especially advantageous in medical imaging, where
precise identification of relevant structures is critical.
By integrating this mechanism, we aim to improve the
interpretability of deep learning models, making them
more reliable in highlighting diagnostically relevant
features in medical images.

• We have employed progressive resizing and transfer
learning strategy to enhance feature diversity, gener-
alizability and training efficiency. The impact of this
contribution extends to improved model performance
across different datasets, promoting the development

of more versatile and widely applicable deep learning
models for medical image analysis.

• We have evaluated the impact of each contribution on
the performance of deep learningmodels and compared
it with existing methods.

II. RELATED WORK
Recently, several studies have focused on the class and data
imbalance problem for segmentation and classification using
various deep-learning models. This section summarizes the
most relevant works in the field, highlighting their contribu-
tions, strengths, and limitations.

In [25], the authors target the class imbalance issue by
rebalancing medical data using three methods. They combine
the resampling methods, i.e., 1) synthetic minority over-
sampling technique and undersampling, 2) particle swarm
optimization (PSO), and 3) MetaCost, and perform two
experiments on nine different medical datasets. The out-
come of these experiments reveals that the dataset with
an Imbalance ratio of >9 must follow the undersampling
for better decisions. While in the case of a ratio<9, the
model must consider the synthetic minority oversampling and
undersampling techniques simultaneously for better classi-
fication. In [38] and [39], deep learning models have been
applied to compare the evaluation metrics of osteoarthri-
tis images and imbalances in medical image classification,
respectively. Balanced Active Learning (BAL) was proposed
by [39] to find the probability of majority and minority
class samples in the dataset. They performed experiments on
imbalanced CIFAR-10, ISIC2020, and Caltech256 datasets.
Another study was done by [40], [41], and [42] to investigate
the imbalance problem in nuclei data of histopathological
images and COVID-19 images, respectively. In [40], the
authors proposed an imbalance-aware nuclei segmentation
model using enhanced lightweight U-Net architecture. The
proposed model was evaluated using the Aggregated Jac-
card Index (AJI) and Intersection of Union (IoU) metrics.
While [41] work on the loss- and class imbalance-aware
aggregation using federated learning. The proposed con-
text Aggregator federated learning model was tested on the
COVID-19 imaging dataset and gave better results than the
standard federating average learning algorithms. To handle
the imbalanced data in Raman spectroscopy, [22] proposed
a hybrid sampling method of Raman-Gaussian distributed
oversampling attached with random undersampling. The pro-
posed method was applied to the dataset of malignant tumors,
class B infectious diseases, and autoimmune diseases.

Analysis of Oversampling and under-sampling data dis-
tribution was performed by [43] using a semi-supervised
hierarchical clustering algorithm (SSHC). SSHC model
trained on labeled data that guide the clustering procedure
on the whole dataset. The linear-exponential loss combined
with the deep learning models to develop an asymmet-
ric geometry interpretation model known as DLINEX [44].
This model was designed to pay more attention to the
minority and hard-to-classify classes by uniquely adjusting
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one parameter. DLINEX model was tested on CIFAR-10,
STARE, CHASEDB1 and HAM10000 datasets for imbal-
ance data issues. Anxiety detection is a major problem
for classification using EEG in the presence of imbalanced
data. Safe-level Synthetic Minority Oversampling Tech-
nique and CNN with Long Short-Term Memory Network
(CNN-LSTM) were developed by [45], [46], and [47]. They
embedded the KNN and SVM with their model and achieved
89.5% accuracy and the highest precision of 89.7% with
enhanced class modalities. Transfer learning and active sam-
pling techniques were used by [48] for handling imbalanced
data problems in classification. The proposed transfer learn-
ingmodel includes threemodules: 1) active samplingmodule,
2) real-time data augmentation module, and 3) DenseNet
module. Imbalanced chest X-ray data was handled by [49]
and [50]. In [49], Initially, the authors generated a heatmap of
those areas of the images that are more relevant for classifica-
tion. After that, they used EfficientNetB0 [51],DenseNet-201
[52], InceptionV3 [53], InceptionResNetV2 and Xception to
classify enhanced data. Meanwhile, [50] used the CheXpert
dataset to diagnose heart failure using multi-level clas-
sification and targeting data. Imbalancing situations with
84.44% accuracy. Previous studies reveal that classifier per-
formance on imbalanced data mainly relies on the object’s
borderline within an image. In [54], the authors proposed
a 0-order Takagi-Sugeno-Kang Fuzzy System (0-TSK-FS)
system to accurately detect borderline. The 0-TSK-FS sys-
tem outperforms classification performance and reasonable
interpretability on imbalanced datasets. Another valuable
work was carried out by [55] for the multi-classification
of imbalanced data using a hierarchical belief rule-based
model. The authors used the model’s multiple belief rule
base (BRB) systems, categorized asmain-BRB and sub-BRB.
During classification, the out of the main-BRB represents
the approximated classification between confusable classes,
while the XGBoost technique was used for feature selec-
tion. Class imbalance in graph data was handled by [56]
and [57] using graph neural network node classification.
They used the GNN-based Imbalanced Node Classification
(GNN-INCM) Model to overcome class imbalance distri-
bution. The GNN-INCM is equipped with two supportive
modules, i.e., 1) Embedding Clustering-based Optimization
(ECO) and 2) Graph Reconstruction-based Optimization
(GRO). In [58], the authors try to overcome the imbalance
of data distribution for glaucoma diagnosis using an adaptive
rebalancing strategy in the feature space and Self-Ensemble
Dual-Curriculum learning (SEDC). The proposedmodel pays
attention to the minority samples and generates its augmen-
tation to generate extra features that help to increase the
minority class as equivalent to the majority class. The uni-
fied focal loss was introduced by [17] to handle the class
imbalance in the segmentation of medical images by gener-
alizing dice and cross-entropy losses. The authors in [59] and
[60] produce generative adversarial networks (GAN) with
classification enhancement and multibranch discriminator

respectively, to handle the imbalance data during classifi-
cation. Imbalanced ultrasound image modalities was used
by [61] to diagnose the breast cancer usingDoubly supervised
parameter transfer classifier.

Addressing class imbalance primarily involves adjusting
either the training or input data sampling processes, with
infrequent consideration given to adapting the loss func-
tion. However, commonly used methods like upsampling the
underrepresented class inherently lead to an increase in false
positive predictions. Moreover, intricate, often multi-stage
training processes demand greater computational resources.
Presently, two widely employed attention mechanisms are
the weighted and self-attention mechanisms [62], [63], [64],
[65], [66], [67]. The weighted attention technique entails
globally squeezing the channel or spatial dimension to
precisely enhance effective features while suppressing unnec-
essary ones. However, thesemethods lack selective induction,
causing the network to prioritize the most globally salient
effective features, neglecting secondary features with slightly
lower weight values but equal importance. Similarly, the
self-attention mechanism comes with the drawback of exces-
sive computational overhead. In the context of medical
images, achieving a fine-grained segmentation of regions
of interest is crucial to prevent missed diagnoses. Conse-
quently, both secondary salient features and the globally
most salient features hold equal significance in the medical
image segmentation process. Beyond architectural solutions,
improvements in objective functions are crucial due to their
direct impact on the model’s learning process. The goal is
to enhance model performance by enabling the loss function
to penalize training parameters more for false classification
compared to true classification, thereby promoting efficient
learning of desired features. To address these challenges,
we are actively developing a comprehensive strategy encom-
passing selective attention, an enhanced objective function
named the Unified Loss Function, progressive resizing, and
transfer learning. This approach aims to overcome the limi-
tations of existing techniques, ensuring a more nuanced and
effective approach to feature enhancement and suppression in
the context of medical image analysis.

III. RESEARCH METHODOLOGY
Overview

Deep learning models have consistently delivered
remarkable outcomes; however, they often grapple with the
challenge of class imbalance. This issue is particularly pro-
nounced when these models depend on large datasets, which
are frequently limited in specialized fields such as medical
imaging. In addition, the data that is available in this area is
usually skewed, leading to suboptimal performance of deep
learning algorithms.

To overcome this, we have devised a hybrid approach that
integrates smoothly with state-of-the-art deep learning archi-
tectures. This solution effectively reduces the impact of class
imbalance on the performance of these models, with a special
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focus on MRI datasets. Our innovative strategy introduces
a selective attention mechanism that hones in on essential
features, while a focal parameter reduces the emphasis on
less significant background regions. We have crafted a novel
loss function, which we refer to as the unified loss function.
This function combines the principles of cross-entropy loss
and dice loss, and, by capitalizing on asymmetry, it allocates
varying weights to different classes.

The proposed approach handles class imbalance in three
main steps: 1) Progressive resizing as a preprocessing step,
2) a selective attention mechanism to prioritize regions
of interest (ROIs), and 3) Application of a robust Uni-
fied loss function to handle the disparity between dominant
and minority classes. To Present the effectiveness of this
scheme, we have integrated it into various state-of-the-art
deep-learning models for image segmentation, such as UNet,
SegNet, RCNN, FCN, and DeepLab-V3. The detail descrip-
tion of each step is in the following.

A. PROGRESSIVE RESIZING
Wehave employed progressive resizing in the training of deep
learning networks to tackle the problem of class imbalancing,
specifically in the context of medical image segmentation as
shown in Figure 1. During the training process, it involves
sequentially resizing input images from smaller to larger
sizes. We utilized this resizing technique in our approach by
initially training the model on images of size 225 × 225 x 3.
Subsequently, in the second iteration, we trained the model
on images of size 256 × 256 x 3, followed by training on
images of size 512 × 512 x 3 in the third iteration. In each
iteration, we incorporated the layers and weights from the
previous small-scalemodel into the architecture of the current
iteration. This strategy enables the model to address class
imbalance, a common challenge in deep neural networks
applied to medical image segmentation tasks.

B. SELECTIVE ATTENTION STRATEGY
The Selective Attention Suppression (SAS) progressively
diminishes feature responses in irrelevant background regions
without the need to crop an ROI between networks. This
offers a promising avenue for improving CNNs’ robustness,
reducing model bias towards majority classes, and enhancing
generalizability in medical image analysis. We have incor-
porated a selective attention strategy into networks. Let’s
consider A as the activation map of a selected layer l, denoted
as A = {F li }

J
i=1. Each F

l
i represents a feature vector at the

pixel level, having a length of vL (which corresponds to the
number of channels). An Attention Gate (AG) is employed to
calculate coefficients al = {ali}

n
1, for each X

l
i , where a

l
i ranges

from 0 to 1. These coefficients aim to identify significant
regions within the image and prune the feature responses,
keeping only the activations relevant to the specific task. The
resulting output of the Attention Gate is F̂ = {ali f

l
i }
n
1 for

i = 1 to n, where each feature vector ali is scaled by its
corresponding attention coefficient.

FIGURE 1. Presents overview of transfer learning and progressive resizing.

FIGURE 2. Shows pictorial overview of the SAS.

The attention coefficient, denoted as aLi , is calculated using
the equation 1.

αl = ∂1(θ li (z
l, p; θ ))

θ li = ψT
(
∂2

(
LT
z z

l
i + LT

pp+bzg
))

+ bψ (1)

Here, activation non-linearity is denoted by ∂1(z) and normal-
ization function is represented by ∂2(z). The attention Gate
is symbolized by parameters θ , Lz and Lp indicates weights
matrices for linear transformation on input p and zli . bzg and
bψ shows biased terms related to a linear transformation.
Figure 2 presents a synoptic overview of the SAS. The

inputs, denoted as Fi, undergo scaling with attention coef-
ficient c within the SAS. Spatial areas are chosen through
the analysis of both activations and contextual information
by the selector S, which is derived from a coarser scale.
Trilinear interpolation is then employed for grid resampling
of attention coefficients.

C. UNIFIED LOSS FUNCTION
The Focal loss is a modification of the Cross Entropy loss
(CE) designed to tackle the problem of data imbalancing
by focusing more on the complex example during training,
thereby facilitating the learning of more challenging exam-
ples. The simplified mathematical formulation for the Focal
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loss function is shown in equation 2 below.

Floss(Ct ) = α(1 − Ct )γ .BCE loss(c,t),

where Ct =

{
c if t = 1

1 − c if t = 0

}
(2)

where Ct is the probability assigned to the ground truth class,
α is the hyperparameter that controls the weight assigned
to each class. γ determines the degree of down-weighting,
BCE loss(c,t), represents the binary cross-entropy loss between
the predicted probabilities c and the true labels t . This loss
function is characterized by parameters i.e. α and γ , which
govern the weights of the class and the extent of reducing the
influence of easily classifiable pixels. If parameter γ is set
to 0, the Focal loss is reduced to the binary CE loss.

The Focal Tversky loss is mathematically describe in
equation 3 below.

FT loss =

∑K

k=1
(1 − Ti)

1
γ (3)

where K represents class, Ti indicates Tversky index used to
assess the similarity between two sets. Mathematically Ti is
formulized as given in equation 4 below.

Ti =

∑p
i=1 F0iB0i∑p

i=1 F0iB0i + δ
∑p

i=1 F0iB1i + β
∑p

i=1 F1iB0i
(4)

F0i represents the likelihood of pixel being part of the fore-
ground category, while F1i denotes the likelihood of pixel
belonging to the background category. The variable B1i is
assigned 1 if the pixel belongs to the foreground and 0 other-
wise. Conversely, G1i takes on value of 1 for the background
and 0 value for the foreground.

The Dice Focal loss [68] and Combo loss [69] represent
two composite loss functions that take advantages from CE
loss and Dice loss functions. Nevertheless, unable to max-
imizes the complete advantages when dealing with skewed
distribution of data or classes. Both the Dice Focal, and
combo loss with adjustable parameters (δ and β) in the CE
component losses, exhibit partial resilience to imbalanced
output. However, neither approach adequately incorporates
the balancing aspect of the Dice component, which equally
weights positive and negative examples. Both losses share
the weakness of their Dice component not handling input
imbalance, but the Dice Focal loss provides a degree of
counterbalance through the focal parameters. To address
these issues, [70] developed the Hybrid loss, equipped with
adjustable parameters for handling output imbalance within
CE loss and Dice loss components. The Hybrid loss is math-
ematically articulated as shown in equation 5.

HFL = λFloss + (1 − λ)FT loss (5)

λ belongs to the range [0 1] and estimates the proportional
weight assigned to each component of loss functions.

The hybrid loss adjusts both the CE based loss and Dice
functions to address class imbalance. However, using the
hybrid loss in practical applications presents two challenges.
First, there are 06 parameters to optimize: three (γ , α and β)

from focal Tversky loss function, two (α and β) from focal
loss function and λ to govern the relative weight of two
component losses. This provides greater flexibility and leads
to a significantly expanded search space for hyperparameters.
The second problem with focal loss functions is that the
enhancement or suppression controlled by the focal param-
eter is employed universally to all classes equally, which is
potentially be problematic at the later stages of training.

The hybrid loss function combines both cross-entropy loss
and Dice loss to address the class imbalance. However, there
are two key problems related to this loss function. Firstly,
it has multiple hyperparameters (six parameters) that sig-
nificantly increase the search space, making it challenging
to fine-tune them effectively. Secondly, the suppressing and
enhancingmechanismwithin this loss functionmakes achiev-
ing convergence during training quite difficult.

The Unified loss effectively tackles both issues. Firstly,
it groups functionally equal hyperparameters, which makes
it easier to tune the loss function. Secondly, it leverages
asymmetry to effectively focus the effects of the focal param-
eters. As a result, the loss function improves performance in
suppressing errors for rare classes and enhancing accuracy for
majority classes.

We have replaced ϑ and µ in the Focal loss, Tversky loss,
with a shared parameter called δ. This parameter helps control
the class imbalance. Additionally, we have reformulated τ to
allow both suppression in the Focal loss and enhancement
in the Tversky loss simultaneously. Mathematically, these
adjusted losses are shown in equations 6 and 7.

We use the terms ‘‘revised Focal loss’’ Fr and ‘‘revised
Focal Tversky loss’’ Tr to refer to these revised versions
respectively.

Fr = δ (1 − Gt)
1−τ .LBCE (X,Y) (6)

Tr =

c∑
c=1

(1 − aTi)τ (7)

where Gt is the ground truth, X represents the predicted
value, Y denotes ground-truth and τ is parameter to control
focus strength and aT i symbolizes adjusted Tversky index is
mathematically shown in equation 8,

aTi =

∑P
i=1 FoiBoi∑P

i=1 PoiBoi+δ
∑P

i=1 FoiB1i + (1 − δ)
∑P

i=1 FoiBoi

(8)

where Foi represents foreground pixels of input image and
F1i represents background pixels. Boi is an indicator function
that takes 1 for pixels in the foreground and 0 for pixels
in the background. On the other hand, B1i assign 1 for the
background pixels, while it is set to 0 for foreground pixels.

Hence, a symmetric version of Unified loss can be written
as following equation 9.

Csl = δFa + (1 − δTa) (9)

The parameter δ, ranging from 0 to 1, plays a crucial role
in determining the relative significance assigned to the two
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types of losses. δ governs the weighting assigned to negative
and positive instances, while τ controls both the amplifica-
tion of the minority class and the reduction of the majority
class. Lastly, δ determines the weights allocated to the two
individual losses comprising the overall loss function.

The Focal loss effectively suppresses the background class
but unintentionally suppresses the rare class because the focal
parameters are utilized for all classes. Asymmetry provides a
solution by allowing selective suppression or enhancement of
specific classes using the focal parameter. By allocating vari-
able losses to each class, the revised asymmetric Focal loss
(Fra) overcomes the issue of harmful suppression of the rare
class while still maintaining suppression of the background.
In this revised version, the focal parameter is discarded for
the loss component associated with the rare class Cr while
still preserving its effect on the background class. This phe-
nomenon is shown in Equation 10.

Fra =
δ

P
Yi:Cr log

(
Gt,Cr

)
−

1 − δ

G

∑
c̸=Cr

(
1 − pt,c

)τ log (
Gt,Cr

)
(10)

Conversely, the revised Tversky loss takes a different
approach. In this case, the focal parameter is discarded for
the part of the loss that pertains to the background. However,
the enhancement of the rare class (Cr ) is still maintained.
This leads to the definition of the revised asymmetric Focal
Tversky loss (FraT ) is formulated in Equation 11:

FraT =

∑
c̸=Cr

(1 − aTi)+

∑
c=Cr

(1 − aTi)
1−τ (11)

Therefore, the asymmetric version of the proposed Unified
loss (Lc) is described in Equation 12.

Lc= τFra + (1 − τ)FraT (12)

The problem of suppression of loss that occurs with the Focal
loss is addressed by combining it with the Focal Tversky loss
in a complementary manner. The asymmetry in this combi-
nation allows for simultaneous attenuation of the background
loss and amplification of the foreground loss.

By integrating concepts from preceding loss functions,
the suggested loss generalizes both CE loss and Dice loss
functions within a unified framework. it can be demonstrated
that all previously described Dice and CE loss functions are
specific instances of the unified loss. For instance, when γ is
set to 0 and δ is set to 0.5, the DSC loss and the CE loss are
retrieved by setting λ to 0 and 1 respectively. By elucidating
the interrelation among these loss functions, optimizing the
Comprehensive Focal loss is significantly more straightfor-
ward than independently experimenting with distinct loss
functions. Moreover, it is more robust as it can handle both
input and output imbalances. Notably, considering the effi-
ciency of both the DSC loss and CE loss operations, and the
minimal increase in time complexity introduced by the focal
parameter, the Unified loss is not expected to extend training
time beyond its constituent loss functions.

In practical applications, streamlining the optimization
process for the Unified loss can be achieved by simplifying it
to a single hyperparameter. Because the focal parameter has
varied effects on each component loss, the role of λ is some-
what unnecessary. As a result, we suggest setting λ = 0.5,
allocating equal weight to each component loss, a recommen-
dation supported by empirical evidence [69]. Additionally,
we propose setting δ= 0.6 to address the tendency of the Dice
loss to generate segmentations with high precision and low
recall, particularly in the presence of class imbalance. This
value is less than δ = 0.7 in the Tversky loss, considering
the influence of the CE loss component. By heuristically
reducing the hyperparameter search space to the single γ
parameter, the Unified loss becomes both effective and easy
to optimize.

IV. DATASET DESCRIPTION
A. BUS2017 DATASET
Digital mammography is widely utilized as a primary screen-
ing modality for breast cancer detection. The BUS2017
dataset, specifically curated for breast cancer detection,
comprises 163 ultrasound images. These images have
dimensions of 760 × 570 pixels. Within the dataset,
110 images represent benign lesions, including 39 fibroade-
nomas, six from other benign categories, and 65 unspec-
ified cysts. The remaining 53 ultrasound images illustrate
cancerous masses, primarily consisting of invasive ductal
carcinomas.

B. THE DIGITAL DATABASE THYROID IMAGE (DDTI)
The DDTI dataset serves as an extensive repository of
ultrasound images specifically designed for the screening
of thyroid cancer. The DDTI primarily emphasizes the
B-mode UI of thyroid cancer, offering detailed diagnostic
descriptions and annotations for each image. The dataset
comprises 298 UI, with 270 images featuring women and
29 images featuring men.

C. LiTS MICCAI 2017
This dataset comprises a collection of 260 MR images,
each sized 512 × 512 x 3, obtained from different patients
diagnosed with liver cancer. Each case includes MRI scan
and a corresponding segmentation mask that labels the liver
and liver tumors. The tumor area constitutes the minority
class, comprising less than 30% in each scan and exhibiting
variability in size, shape, and texture, thereby presenting a
challenging task for tumor segmentation.

D. ATLAS DATASET
The ATLAS dataset comprises 90 liver-focused MR images
obtained from patients diagnosed with unresectable Hepato-
cellular Carcinoma (HCC). Each image has dimensions of
512× 512 x 3. The tumor region in each image spans 15-30%,
with the extent varying depending on the stage of liver cancer.
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FIGURE 3. Shows the epochs vs different loss functions on MRI datasets during training. 3(f) illustrates DSC performance for each value of λ ranging from
0.1 to 0.9 for unified loss across all datasets.

E. BRATS 2015
The BRATS 2015 dataset consists of brain tumour MR
images employed for the detection of brain tumour. The
dataset includes a total of 220 Magnetic Resonance Imaging
(MRI) scans of high-grade gliomas (HGG) and 54MRI scans
of low-grade gliomas (LGG).

V. EVALUATION METRICS
To assess the segmentation performance of the proposed
strategy, we have utilized widely recognized metrics such as
Intersection over Union (IoU), Dice Similarity Coefficient
(DSC), Precision, and Recall. These metrics are defined by
equations 13,14,15, and 16, as provided below.

IoU =
2T P

2T P + FP + FN
(13)

DSC =
T P

T P + FP + FN
(14)

Precision =
T P

T P + FP
(15)

Recall =
T P

T P + FN
(16)

VI. IMPLEMENTATION DETAIL
For our experiments, we utilized Python 3.6 along with
libraries: Numpy, TensorFlow, and Keras, which are com-
monly employed for deep learning tasks. Additionally,
we employed Matplotlib to create visualizations and plots for
analyzing and presenting the results of our experiments. For
each dataset, we resized the images to dimensions of 128 ×

128 x 3, 256 × 256 x 3, and 512 × 512 x 3 pixels. To nor-
malize the pixel values, we applied Z-score normalization,
which brings the values within the range of 0 to 1. Random
assignment was used to perform five-fold cross-validation.
We evaluated the baseline performance of several models,

including UNet, FCN, RCNN, SegNet, and Deeplab-V3.
Subsequently, we examine the effects of progressive resizing,
selective attention, and multiple loss functions on the perfor-
mance of models as shown in Figure 3. We have integrated
attention layers in the DeepLab-v3 model within the atrous
spatial pyramid poolingmodule, in the case of FCNwithin the
decoder part of the network, in CGAN within the generator,
and similarly for R-CNN, we have incorporated them into
the feature extraction part of the network. This enables the
models to effectively capture multi-scale contextual features.
The same hyperparameters were used during all experiments,
while the parameters of models were initialized on the basis
of their default settings. Various experiments were conducted
to analyze the effectiveness of loss functions across five state-
of-the-art deep learningmodels. For this purpose, the selected
evaluation metrics include DSC, IoU, precision, and recall.
The assessment involves extensively used loss functions for
medical image segmentation, such as binary crop entropy
loss, focal loss, Tversky loss, combo loss and unified. All
models used the same batch size i.e. 32 and hyperparame-
ters. Networks are trained using Stochastic Gradient Descent
(SGD) with an initial learning rate of 0.001, momentum of
0.9, and weight decay of 0.0005, respectively. The model
underwent training through a 5-fold cross-validation tech-
nique, with an incorporated early stopping mechanism to
halt training in case there was no improvement in the loss
functions.

VII. RESULTS ANALYSIS
To evaluate the performance of the proposed Unified
approach, we conducted a series of experiments on multiple
datasets i.e., BUS2017, DDTI, LiTSMICCAI 2017, ATLAS,
and BRATS 2015. During experiments, the individual com-
ponents of the Unified appraoch on the state-of-the-art
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segmentation models such as UNet, FCN, RCNN, SegNet,
and DeepLab-V3 were also evaluated. The objective was to
systematically analyze the impact of each component of the
proposed scheme on the segmentation results on selected
datasets. Each component of the proposed technique was
gradually incorporated with UNet, FCN, RCNN, SegNet, and
DeepLab-V3 to monitor the performance. When all compo-
nents were present, a significant improvement was observed,
resulting in an Intersection over Union (IoU) score of 0.860 in
comparison to the IoU scores for U-Net (0.820) without
a class-imbalance strategy. The other models also demon-
strated significant improvements in segmentation tasks across
all datasets, which confirms the generalizability of the pro-
posed approach for segmentation tasks in the medical image
domain.

The results of all the models are presented in Table 1.
DeepLab-V3 achieved the highest performance across all
evaluation metrics and datasets. DeepLab-V3 exhibited out-
standing results with a Dice Similarity Coefficient (DSC)
of 0.953, Intersection over Union (IoU) of 0.893, preci-
sion of 0.943, and recall of 0.944. These scores reflect an
improvement of 5% in DSC, 6% in IoU, 4% in precision,
and around 4% in recall compared to baseline DeepLab-
v3. The highest increase was noticed in ATLAS and LiTS
MICCAI 2017 datasets. A 5%, 7% increase in IoU and DSC
is observed over the previous extant (DeepLab-V3 DSC=

0.628, DSC= 0.695) for ATLAS dataset and 5%, 9% increase
in IoU andDSC for LiTSMICCAI 2017 dataset for DeepLab-
v3 model employing proposed strategy. Segmentation results
for DeepLab-V3 are illustrated in Figure 4 using baseline
and proposed strategy. The proposed scheme generalizes
well with consistently accurate segmentation across different
datasets. The images related to the poor delineation quality
are either objectively challenging ROI to identify or, in many
cases, poor-quality images.

Various experiments were conducted to investigate these
components’ contribution to medical image segmentation
further; the experimental results are presented in Table 1,
Table 2, and Table 3. The comprehensive description of each
component is summarized in the section below.

A. IMPACT OF SELECTIVE ATTENTION STRATEGY
Based on the results of the ablation study, it is evident that
the average segmentation scores of deep learning models
performance compared to models with SAS, as shown in
Table 2. Specifically, for the DeepLab-V3 model on the
BUS2017 dataset, the scores for Intersection over Union
(IoU), Dice Similarity Coefficient (DSC), Precision, and
Recall are observed to be 0.871, 0.920, 0.933, and 0.921,
respectively. Similarly, for the UNet model on the BUS2017
dataset, the IoU score reaches 0.739, and the DSC score
reaches 0.921.

The scores achieved without SAS are considerably lower
than those achieved with SAS, indicating a significant impact
of SAS on the performance of these models for the given
datasets. Additionally,

Table 2 presents the performance of other attention mech-
anisms, wherein it can be observed that the proposed
mechanism outperforms others in most datasets. As a result,
we have selected the proposed mechanism as the preferred
choice in our proposed strategy.

B. IMPACT OF UNIFIED LOSS FUNCTION
Table 3 presents the impact of the proposed unified loss func-
tion evaluated across multiple metrics on all five imbalanced
datasets. Consistently, the proposed Unified loss function
demonstrated a significant impact across these datasets, i.e.,
Dice Similarity Coefficients (DSC) of 0.910, 0.865, 0.741,
0.673, and 0.791 on the BUS2017 DDTI, LiTS MICCAI
2017, DDTI, ATLAS dataset, and BRATS 2015 datasets,
respectively. Table 3 also demonstrates the performance of
other losses for DDTI, ATLAS, and BRATS 2015 datasets.
The proposed loss is consistent across all datasets and demon-
strated improvement in all segmentation metrics compared to
others. The visual results of various loss functions, including
the proposed ones, are depicted in Figure 5. Conversely, the
cross-entropy-based losses performed comparatively worse,
with the focal loss exhibiting even lower performance than
the cross-entropy loss on the BRATS 2015 and MIC-
CAI 2017 datasets. Notably, no significant differences were
observed between the dice-based losses.

C. IMPACT OF PROGRESSIVE RESIZING
Table 4 provides a comprehensive overview of the effect of
progressive resizing on the performance of deep learning
models. The results of the proposed model highlight a sub-
stantial improvement in the segmentation outcomes across all
the datasets. Table 4 demonstrates that progressive resizing
simplifies the diversity in the training data, enhancing the
model’s capabilities to learn from various scales of the same
input image. As a result, the models show better performance
for both the majority and minority classes of the datasets.

VIII. DISCUSSION
The research community has conducted several studies to
address the challenges associated with a class imbalance in
computer vision and other image-processing domains. Pre-
vious medical research has focused on specific problems
and targets the specific dataset for experimental purposes.
Consequently, these approaches mostly fail to generalize
effectively. In this research, we intend to develop a compre-
hensive and generalized model that can effectively handle
class imbalance across various medical image datasets for
segmentation tasks. The proposed scheme performs segmen-
tation tasks in three key steps: 1) Progressive resizing as
a preprocessing step, 2) A selective attention mechanism
to prioritize regions of interest (ROIs), and 3) A robust
Unified loss function to address the discrepancy between
dominant and minority classes. To demonstrate the efficiency
of ourmethod, wemerged it into several state-of-the-art deep-
learning models for image segmentation, including UNet,
SegNet, RCNN, FCN, and DeepLab-V3. After that, we
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TABLE 1. Performance of different models using proposed class imbalance strategy on different MRI image datasets.
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TABLE 1. (Continued.) Performance of different models using proposed class imbalance strategy on different MRI image datasets.

FIGURE 4. Segmentation results of DeepLab-v3 ]on different datasets. (The yellow color represents the deepLab-v3 generated mask without
imbalancing scheme, and red represents the output of deepLab-v3 with the proposed scheme).

FIGURE 5. Instances of segmentation using a different loss function.

evaluated these models’ performance using five highly unbal-
anced image segmentation datasets.

After the processing step, the progressive resizing mecha-
nism of input images from the entire dataset become active,
such as for the first iteration, and we resize input images into
128 × 128 x 3 pixels. For the second run of the experiment,

we used images of 256 × 256 x 3; for the final run, we used
512× 512 x 3 pixels.We have employed the concept of trans-
fer learning in which weights from the first run were used
in the second run, and the second-run pretrained model was
employed for the third round of experiments. This progressive
resizing yielded considerable improvement. From Table 4,

27378 VOLUME 12, 2024



L. Cui et al.: Unified Approach Addressing Class Imbalance in MR Image for Deep Learning Models

TABLE 2. Impact of Selective attention strategy on the segmentation performance of different extant models.

you can notice a consistent improvement in evaluation met-
rics across all datasets for all models for the medical image
segmentation task. Due to progressive resizing, the variation
in scale can aid in capturing different levels of details and
improving themodel’s ability to distinguish between different
classes. Secondly, by gradually increasing the size of the input
images, the model becomes exposed to more complex and
detailed information, which can be beneficial for accurately
segmenting smaller or more challenging objects or classes.
This exposure to larger images helps the model learn finer
details and enhances its ability to capture the nuances of the
minority class.

We have introduced a novel selective attention strategy,
enabling deep learning models to learn salience regions inte-
grated with focal parameters to control the suppression of
irrelevant regions. Importantly, the suggested SAS performs
consistently well across all models on all datasets, demon-
strating the method’s capability to generalize to unseen data.

For a fair comparison, we have implemented several atten-
tion strategies—namely, spatial attention, channel attention,

and hybrid attention—into existing deep learning models,
and the respective impacts of each strategy are presented in
Table 5. The incorporation of these attention mechanisms
has resulted in noticeable enhancements in the segmentation
performance of the deep learning models. However, an issue
arises with excessive upsampling, which leads to a reduction
in the inter-pixel information. Additionally, these techniques
encounter challenges when dealing with images that exhibit
similar Regions of Interest (ROI) due to the presence of
area similarity and positional changes. The suggested selec-
tive attention mechanism utilizes a dual attention approach,
employing parallel processing to prevent the loss of important
information and incorporating focal parameters to regulate
the extent of background suppression.

To assess the effectiveness of the suggested Unified loss
function for MR image segmentation, we conducted several
experiments employing various segmentation models on five
class-imbalanced datasets. Additionally, we compared the
proposed loss function with five other losses. The results
presented in Table 3 and Figure 4 confirm that the proposed
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TABLE 3. Illustrate the effect of unified loss function using state-of-the-art deep learning models on highly imbalanced datasets.

TABLE 4. Provides the effect of progressive resizing on the results of segmentation models.

method consistently performs well for the segmentation task
across all datasets and deep learning models. We observed

that this hyperparameter remains stable, making the opti-
mization process relatively straightforward. The Unified loss
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TABLE 5. Comparative analysis of different attention strategies.

TABLE 6. Shows the results of different balancing techniques.

function offers practical advantages by simplifying hyper-
parameter tuning, enhancing training efficiency, improving
convergence properties, and providing a robust solution for
handling imbalances. These features contribute to the overall
effectiveness of the model in various practical applications,
particularly in medical image segmentation where imbal-
ances in data distributions are common.

A. COMPARISON WITH OTHER BALANCING TECHNIQUES
To ensure an equitable comparison, we have conducted
an assessment of the performance of various models by
employing different techniques designed to address the data
imbalance problem. The outcomes of the analysis are pre-
sented in Table 6, showcasing the segmentation results across
three datasets.

IX. CONCLUSION
This research has devised a comprehensive approach to
address the issue of medical image segmentation in MR
images using a dataset with a significant class imbalance. The
study has introduced a selective attention strategy focusing
more on the Region of Interest (ROI) and a novel uni-
fied loss function. This loss function can suppress features
from the majority classes (background) while highlighting
features from the minority class(foreground). This helps mit-
igate any bias towards the background, making the model
more balanced. The integration of progressive resizing with

transfer learning aids the models in capturing varying lev-
els of detail, thereby enhancing their ability to differentiate
between different classes. The effectiveness of this uni-
fied approach was evaluated on five distinct MR image
datasets in multiple deep-learning models, revealing that
the proposed strategy outperforms alternative techniques for
addressing class imbalance. In the future, we are inter-
ested in applying it to other datasets having class imbalance
issues.
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