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ABSTRACT Wind power poses a challenge to the stability of the power grid due to its unpredictability
and intermittency. This study aims to analyze the forecasting law and uncertainties of short-term wind farm
power forecasting (WFPF) at various time scales, in order to support the stability of energy generation.
To achieve this, we propose a framework for short-term WFPF and uncertainty analysis, utilizing the
whale optimization algorithm (WOA), convolutional neural network-bidirectional long short-term memory
network (CNN-BiLSTM), cloud model (CM), and non-parametric kernel density estimation (NPKDE). The
data is trained using a hybrid model of CNN-BiLSTMwith multiple convolution and pooling methods, while
the parameters are optimized using the WOA algorithm. The uncertainty of WFPF is described qualitatively
by the expectation, entropy, and hyper-entropy of the cloud model, and quantified through the confidence
interval based on non-parametric kernel density estimation. Test results show that the proposedWOA-CNN-
BiLSTM model achieves RMSE forecasting errors of 3.79%, 4.52%, and 5.12% at 4 hours, 24 hours, and
72 hours, respectively. The maximum peak errors are less than 10.5758MW, 21.128MW, and 20.0292MW,
and are better than other models. Additionally, the WOA optimization performance is superior, consistent
with the results described by the cloud model. Furthermore, the RMSE forecasting value of WFPF increases
with the time scale, while the growth rate of RMSE decreases with the increase of time scale. This study
provides valuable insights into the uncertainties of short-term WFPF and offers a robust framework for
improving the stability of energy generation.

INDEX TERMS Wind farm power forecasting (WFPF), uncertainty analysis, WOA-CNN-BiLSTM, non-
parametric kernel density estimation (NPKDE), cloud model (CM).

NOMENCLATURE
ANN Artificial Neural Network.
BELM Bayesian Extreme Learning Machine.
BiLSTM Bidirectional long short-term memory net-

work.
BP Back Propagation Neural Network.
CM Cloud Model.
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CNN Convolutional Neural Networks.
CNN-BiLSTM Convolutional Neural Network- Bidirec-

tional Long Short-Term Memory Net-
work.

CNN-LSTM Convolutional Neural Network- Long
Short-Term Memory Network.

ELM Extreme Learning Machines.
GAN Generative Adversarial Networks.
GMM Gaussian Mixture Model.
GNN Graph Neural Networks.
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GWO Grey Wolf Optimizer.
GWO-CNN-BiLSTM Grey Wolf

Optimization-Convolutional
Neural Network-Bidirectional
Long Short-Term Memory
Network.

IPSO-LSTM-GMM Improved Particle Swarm
Optimization-Long
Short-Term Memory
Network-Gaussian Mixture
Model.

IPSO-GRU Improved Particle Swarm
Optimization-Gate Recurrent
Unit.

LSTM Long Short-Term Memory
Network.

MAE Mean Absolute Error.
MCP Multi-Convolution and

Multi-Pooling.
NWP Numerical Weather

Forecasting.
PSO Particle Swarm Optimization.
PSO-BP Particle Swarm Optimization

Back Propagation Neural
Network.

PSO-CNN-BiLSTM Particle Swarm
Optimization-Convolutional
Neural Network-Bidirectional
Long Short-Term Memory
Network.

RMSE Root Mean Square Error.
SC Single-Convolution.
SCSP Single-Convolution and

Single-Pooling.
SCMP Single-Convolution and

Multi-Pooling.
SD Standard Deviation.
SGM Single Gaussian Model.
TCN Temporal Convolutional

Network.
VMD-ELM Variational mode

decomposition- Extreme
Learning Machines.

WFPF Wind farm power forecasting.
WNN Wind farm power forecasting.
WOA Wind farm power forecasting.
WOA-CNN-BiLSTM Whale Optimization

Algorithm-Convolutional
Neural Network-Bidirectional
Long Short-Term Memory
Network.

WOA-QRCNN-BiLSTM Quasi recurrent-Convolutional
Neural Network-Bidirectional
Long Short-Term
Memory.

I. INTRODUCTION
Wind energy is a rapidly expanding sustainable and eco-
friendly power source, with an annual installation of over
50 GW of new wind power globally [1]. However, the
unpredictable and intermittent nature of wind power presents
significant challenges for large-scale grid integration, impact-
ing the safe and cost-effective operation of the power grid.
The power output of each wind turbine is influenced by
various factors, including wind speed, wind direction, tem-
perature, and humidity, making it challenging to accurately
predict the power output of an entire wind farm solely by
forecasting individual turbine outputs. Predicting the power
output of the entire wind farm allows for the comprehen-
sive consideration of multiple turbine influencing factors.
Through scientific data analysis and model forecasting,
a more precise forecast of the overall power output of the
wind farm can be achieved, providing a reliable basis for
the operation and management of the wind farm. Wind
farm power forecasting (WFPF) technology has emerged
as an effective solution to mitigate the adverse impacts of
wind power generation on the grid and enhance wind power
integration. WFPF provides crucial technical support for
ensuring the safety, stability, and economic viability of power
systems and wind farms..

In the current research field of wind power forecasting, the
forecasting time scale can be divided into medium-and-long
term forecasting, short-term forecasting, and ultra-short term
forecasting [2], [3], [4]. From the perspective of forecasting
theory, WFPF studies can be separated by physical and statis-
tical forecasting methods [5], [6], [7]. Due to the instability
and nonlinearity of WFPF, traditional data-driven forecasting
methods can produce significant deviations. The use of deep
learning-based forecasting models has shown stronger non-
linear fitting ability and improved accuracy in wind power
forecasting [8]. Previous studies have proposed various deep
learning algorithms for WPF, including LSTM, ANN, TCN,
GAN, and GNN [9], [10], [11], [12], [13], [14]. These meth-
ods have established a solid foundation for improving WFPF
forecasting accuracy [15], [16]. However, there is still a lack
of in-depth research on the forecasting characteristics of wind
power at different scales and the analysis of forecasting errors
in wind power. Therefore, this study proposes a novel wind
power forecasting and uncertainty analysis framework based
on WOA, CNN-BiLSTM, CM, and NPKDE to analyze the
uncertainties of WFPF at different short-term scales.

In addition, the development of wind power forecasting
models has evolved from single forecasting models to hybrid
forecasting models [17], [18], [19]. In the realm of deep
learning hybrid model research, Reference [20] proposed
the use of the VMD-ELM hybrid algorithm for short-term
wind power forecasting, demonstrating a significant improve-
ment in forecasting accuracy compared to the single ELM
algorithm. Similarly, Reference [21] introduced a hybrid fore-
cast based on ARIMA-GARCH-T, which exhibited enhanced
forecast performance compared to a single model. Notably,
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successful attempts have been made with the CNN-LSTM
algorithm. For instance, Reference [22] developed a hybrid
model based on CNN and LSTM for ultra-short-term wind
power forecasting, resulting in a 10.97% increase in accuracy.
However, the stability and adaptability of short-term fore-
casting at different time scales in wind farms require further
verification. Additionally, most WPF studies predominantly
rely on wind speed time series data, with limited consider-
ation of numerical weather forecasting (NWP) data and the
optimization of model parameters.

In the domain of wind power forecasting uncertainty anal-
ysis, accurate uncertainty analysis is crucial for maintaining
power supply-demand balance and reducing the rotating
spare capacity of power generation units [23], [24]. Current
uncertainty analysis in power forecasting primarily focuses
on two methods. The parametric method involves using
historical single point forecasting errors as input for the
model based on a single point forecasting model [25], [26].
On the other hand, the non-parametric method employs
non-parametric estimation to enhance the theory of the con-
ditional distribution of WFPF errors, typically constructing
uncertainty confidence intervals using distribution laws [27].
Reference [28] utilized the Gaussian distribution to analyze
wind power uncertainty, while Reference [29] proposed a
probabilistic forecasting analysis of wind power based on
improved kernel density estimation and established confi-
dence intervals. To enhance the precision of rolling bearing
remaining life predictions, Song et al. introduced an innova-
tive heavy-tailed degradation model with power drift [30].
This model accounts for the long-range dependencies in
degradation patterns and leverages fractional stable motion
for diffusion modeling. Additionally, they applied variational
mode decomposition to effectively discern degradation trends
from noisy vibration signals, significantly improving fore-
casting accuracy.

Despite significant advancements in wind power forecast-
ing uncertainty analysis methods, most studies concentrate
on the quantitative analysis of wind power forecasting
results [31], assuming the wind power error distribution as a
single-model distribution by parameter estimation. However,
the uncertainty of wind power forecasting is characterized
by irregular fluctuation and chaos, necessitating qualitative
analysis prior to quantitative analysis. While the application
of cloud theory has been extended to uncertainty evaluation
and qualitative analysis [32], [33], limited discussions exist
in the context of WFPF in depth.

As shown in TABLE 1, although existing research has
delved into wind power forecasting and its uncertainty
analysis, further exploration is warranted to characterize
multi-scale wind power forecasting and uncertainty analysis.
For this, this study proposes to construct a comprehen-
sive WFPF framework incorporating WOA, CNN, BiLSTM,
Cloud Model, and non-parametric kernel density estimation,
referred to as WOA-CNN-BiLSTM-CM-NPKDE, facilitat-
ing WFPF and uncertainty analysis under different time
scales. The combination of CNN-BiLSTM leverages the

advantages of CNN and BiLSTM to extract potential features
among continuous sequences, addressing the deficiency of
long sequence information andmaking it suitable for learning
long time scale data and multi-dimensional feature data. Fur-
thermore, the WOA group intelligent optimization algorithm
is integrated to further optimize the learning parameters of
the CNN-BiLSTM model. In addition, the CM-NPKDE is
applied for qualitative and quantitative analysis of forecast-
ing, redefining the performance of WFPF in uncertainty
through evaluation indicators such as expectation, entropy,
and hyper-entropy. The non-parametric kernel density esti-
mation is adopted to further analyze the WFPF based on the
cloud model, clarifying the uncertainty patterns caused by
WFPF across different time scales.

This study aims to provide valuable insights into the uncer-
tainties of short-term WFPF and offer a robust framework
for improving the stability of energy generation. The main
contributions of this study are summarized as follows.

1) Development of a comprehensive forecasting frame-
work, the WOA-CNN-BiLSTM-CM-NPKDE model, which
addresses the limitations of quantitative forecasting and stan-
dardizes the workflow ofWFPF uncertainty analysis. In com-
parison to existing forecasting algorithms and uncertainty
analysis models, this framework enables both qualitative and
quantitative evaluations of multi-time scale WFPF models,
leading to improved stability and accuracy of forecasting
results.

2) Exploration of forecasting and uncertainty patterns of
wind farms at different time scales, providing valuable data
and theoretical insights for the accurate forecasting of wind
farm power in the future.

The structure of the remainder of this paper is organized as
follows. Section II describes the WOA-CNN-BiLSTM net-
work and model construction. Section III introduces the CM-
NPKDE methodology for uncertainty analysis. Section IV
presents a comparative analysis of multiple time-scale model
forecasting results and discusses the uncertainty analysis of
WFPF. Finally, Section V concludes this study.

The structure of the remainder of this paper is organized as
follows: Section II describes the WOA-CNN-BiLSTM net-
work and model construction. Section III introduces the CM-
NPKDE methodology for uncertainty analysis. Section IV
presents a comparative analysis of multiple time-scale model
forecasting results and discusses the uncertainty analysis of
WFPF. Finally, Section V concludes this study.

II. WOA-CNN-BILSTM MODEL
A. STRUCTURE OF CNN
A CNN has multiple filters essentially and is capable of
extracting spatial features hidden in data [34]. The number
of convolutional and pooling layers can impact the richness
of the extracted features, which affects the data analysis
results of a learning model. For this reason, this study aims
to improve the CNN structure with convolutional and pooling
layers.
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TABLE 1. Model superiority and function.

In this study, multi-layer convolution kernel is added to
the traditional single convolution operation, and features are
extracted from the input matrix from different angles many
times. This can generate multiple feature graphs, allow-
ing that the feature information become more abstract and
complete. Meanwhile, the multi-pooling technology of max-
pooling is added in this study on the basis of multi-layer
convolution. The feature points can be sampled in the con-
volutional feature graph by pooling technique to obtain new
features. Compared with traditional single pooling and no
pooling techniques, more topic features can be extracted,
potential valid information is prevented from being lost in a
single pool, and the overfitting risk is lowered [35]. TheMCP
structure in CNN is shown in Fig. 2

To facilitate convolution and reduce computational work,
the width of K convolution kernel is set as m and the convo-
lution scale is set as f . The convolution formulas are defined
as follows:

ci = T (
[
xi : xi+f−1

]
× Ki + bi) (1)

FIGURE 1. The flowchart of short-term WFPF and uncertainty analysis
based on the WOS-CNN-BiLSTM-CM-NPKDE model.

C = [c1, c2, . . . , ci+f−1] (2)

where T is the activation function;
[
xi : xi+f−1

]
is the i to i+

f − 1 matrix vectors in X ; bi is offset.
In the process of the error gradient computation, gradient

explosion may occur when the computational size becomes
large. Here, it incorporates a rectified linear unit (ReLU)
function into the convolution process. Unlike other activation
functions, such as sigmoid, it can avoid suffering from satura-
tion problems and increase the sparsity of the network during
the convolution process, better to solve the gradient explosion
problem. The calculation formula is as follows.

ReLU (x) = max(0, 1) (3)

B. MODEL STRUCTURE OF BiLSTM
Temporal data exist, having a correlation with the previous
data and extending to the subsequent data. Although LSTM
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FIGURE 2. CNN multi-convolution and multi-pooling structure diagram.

models are able to perform forward data feature extraction
on temporal data, they are not able to perform backward data
feature extraction. As a variant structure of LSTM, BiLSTM
can perform bidirectional feature extraction because it con-
tains both forward and backward propagation layers.

Fig. 3 shows the BiLSTM model, in which each unit
state contains two hidden layers—-forward LSTM layer sft
and reverse LSTM layer srt . By using these layers, the past
information and the future information of the input sequence
can be respectively obtained, and then the state of the two
hidden layers can be connected to obtain the same output Qt .
Its computation is shown in (4)-(6).

sft = σ
(
Wxsf xt +Wsf sf s

f
t−1 + bsf

)
(4)

srt = σ
(
Wxsf xt +Wsr sr srt+1 + bsr

)
(5)

Qt = Wsf Qs
f
t +WsrQsrt + bQ (6)

where σ is the activation function; b is the corresponding
bias vector; Wxsf , Wsf sf and Wsf Q are the weight matrices
of the input layer, the hidden layer, and the output layer,
respectively.

FIGURE 3. BiLSTM network model structure.

C. CNN-BiLSTM STRUCTURE BUILDING
Although CNNs specialize in extracting the features of data,
they only consider the correlation linkage of adjacent vectors
of data, and they fail to cover the temporal order between
continuous data. Although BiLSTM models can deal with
time-series-related features, their feature extraction is not as

comprehensive as that of CNNs. This study thus integrates
a CNN and a BiLSTM to form a new hybrid model with
the ability of CNN to extract unique features and the ability
of BiLSTM to solve the problem of temporal features. The
structure of the CNN-BiLSTM hybrid model is displayed in
Fig. 4.

The layers of the CNN-BiLSTM model are as follows.
1) Input layer: The training data are passed into the model.
2) Sequence folding layer: The time step of the image

sequence can be independently convoluted by using the
sequence folding layer.

3) Convolution layer: This layer performs the convolution
calculation on the input by using filters that move vertically
and horizontally along the input direction, counting the con-
volution of the weights with the input, and finally adding a
deviation term.

4) Multi-scale maximum pooling layer: The maximum
pooling layer performs sampling by dividing the input into
rectangular pooling regions and calculating the maximum
value of each region.

5) ReLU layer: The interdependence between the param-
eters is reduced, the overfitting problem is relieved, and the
gradient dissipation problem is solved.

FIGURE 4. CNN-BiLSTM model topology.

D. WHALE OPTIMIZATION ALGORITHM
The initial parameters of the CNN-BiLSTM model such as
the number of neurons, InitialLearnRate, L2Regularization,
etc., can make a positive impact on the learning of model. For
this reason, we use the whale optimization algorithm (WOA)
to optimize the initial parameters of the CNN-BiLSTMmodel
for obtaining the optimal parameters. WOA is a new group
intelligent optimization algorithm proposed by Mirjalili in
2016. In addition to an easy implementation, the conditions
of the objective function are relaxed. The original WOA can
provide mathematical models for surrounding prey, spiraling
bubbles, and finding prey.

1) ENCIRCLING PREY
In the WOA, the position of each whale represents a feasi-
ble solution. Usually during the hunt, whales will randomly
choose two behaviors to hunt. In the behavior of whales to
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surround prey, whales will randomly choose to drive prey and
surround prey towards the optimal position.

The initial position of a general whale is Xi(xi1, xi2, . . . ,
xiz), which represents each feasible solution, and the optimal
position can be found gradually, namely by equations (7)
and (8).

E =
∣∣C · X∗ (t) − Xi (t)

∣∣ (7)

Xi (t + 1) = X∗ (t) − D · E (8)

where E represents the distance between the overall optimal
position and the individual whale of the population, X∗ (t)
and Xi (t) are the location of the whale population and indi-
vidual whale at the t iteration.

D = 2a · r − a (9)

C = 2r (10)

For example, in equations (9) and (10), a is the random
number uniformly distributed within (0,2). r is the oscillation
factor with a random value between 0 and 1.

2) PREDATION MECHANISM
Whales have two feeding mechanisms: a retraction encircling
mechanism and a spiral renewal position. From Equation (8),
the change of whale position is determined by the conver-
gence factorE .When the value ofA drops linearly from 2 to 0,
whales can achieve the reduction of prey.

As shown in the formula (10), the whale herd in each
search for prey, will constantly renew the enclosure, and then
constantly spiral upward, until the top of the search is stopped.
The reason for adopting the helical updating position mecha-
nism is to simulate the whale feeding process realistically by
calculating the optimal distance from individual whales and
then establishing a spiral equation for the optimal location of
individual whales and populations.

Xi (t + 1) = E · ebl · cos(2π l) + X∗ (t) (11)

where b defines the constant of spiral shape; l is a follower of
number of machines [−1, 1].

When whales hunting their prey, they will produce bubble
nets to attack. They focus on the global optimal location of the
population, so the WOA assumes that the ratio of two modes
is−1:1. The formula for the calculation of themovement path
of the single-headed whale to the global optimal position of
the population is expressed as in (12).

Xi (t + 1) =

{
X∗ (t) − D · Ep < 0.5
E · ebl · cos(2π l) + X∗ (t) p ≥ 0.5

(12)

During the hunting phase, in addition to bubble attack, the
trigger condition is required at p < 1.

3) RANDOM SEARCH
The global random search process equations of WOA are as
follows: (13) and (14). The ability of individual whales to
randomly update their own positions and moving toward the

global optimal position of the population can ensure that the
whale population can search for prey in a larger area (with
global search capability). Humpback whales need to search
for prey through different random ways. As in formula 11,
when the convergence factor |E| < 1, individual whales will
move to the global optimal locations of the population. When
the convergence factor |E| > 1, individual whales move away
from the population, extending the population’s search area.

E =
∣∣C · Xi,rand − Xi(t)

∣∣ (13)

Xi(t + 1) = xi,rand − D · E (14)

where xi,rand is the random position vector of the whale.

III. QUALITATIVE AND QUANTITATIVE MODELS OF
UNCERTAINTY
A. CLOUD MODEL
The cloudmodel is a transformationmodel that represents the
uncertainty between a qualitative concept and a quantitative.
Let Q be a quantitative domain containing exact numerical
values, and C represent the qualitative concept of Q. If the
quantitative value is Q = {x} and µA(x) ∈ [0, 1], and the
number of x is realized by the first random realization of
the concept C , then the distribution of x on the quantitative
domain Q is called cloud. And, each x is called a cloud
droplet.

The application of CM can be measured by three indexes,
namely expectation Ex , entropy En, and hyper-entropyHe. Ex
is the expectation of the data, as shown in (15). En is an index
used to measure the ambiguity and probability of qualitative
concepts, comprehensively, shown in (16). En presents the
fuzziness and randomness of data. He presents the volatility
of data within a certain space, that is, the uncertainty of En.
The magnitude of the value of He, calculated by (17)-(18),
indicates the degree of dispersion and thickness of the cloud.
The larger the He, the greater the cloud thickness, and the
greater the degree of dispersion.

Ex =
1
N

N∑
i=1

xi (15)

En =

√
π

2
×

1
N

N∑
i=1

|xi − Ex | (16)

S2 =
1

N − 1

N∑
i=1

(xi − Ex)2 (17)

He =

√
S2 − E2

n (18)

where eup is the ith sample value, eup is the sample volume,
and eup is the sample variance.

For He, it is imaginary when S2 − E2 < 0. To solve this
issue, another computation is proposed to ensure He be real
always.

He =

√∣∣S2 − E2
n

∣∣ (19)
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Generally, cloud models are separated to forward CM
and reverse CM, both of which can realize qualitative and
quantitative conversion. The forward CM is comprised of
the formulas (20)-(22). Based on forward cloud and reverse
cloud, the Gaussian cloud is adopted in this study to analyze
the WFPF uncertainty. Fig. 5 shows the Gaussian cloud,
and its expectation curve follows a Gaussian distribution.
It can clearly reflect the quality of the WFPF results and
how the uncertainty fluctuates. And, this study adopted the
Gaussian cloud to analyze the uncertainty of error distribution
qualitatively.

Enn = rand (1) × He + En (20)

x = rand (1) × Enn + Ex (21)

y = e
−(x−Ex)∧2
2Enn∧2 (22)

FIGURE 5. Cloud model schematic.

B. NON-PARAMETRIC KERNEL DENSITY ESTIMATION
Regarding the difficulty in quantifying the uncertainty of
WFPF, the uncertainty of WFPF can be further quantified by
NPKDE and confidence interval.

NPKDE is attractive because it does not require assump-
tions to be made about the distribution. It only requires the
selection of a kernel function, where each kernel function
produces a different distribution. Thus, the kernel func-
tion chosen for this study is the following Gaussian kernel
function:

g (x) =
1

√
2πσ

exp

(
−

(x − µ)2

2σ 2

)
(23)

where µ represents the mean value of WFPF error, and σ is
the standard deviation. The probability density distribution
function of NPKDE is

f (x) =
1
N

N∑
i=1

g
(
x − xi
h

)
(24)

where N is the number of interval samples, and h is the
bandwidth coefficient.

After the probability distribution is obtained, the confi-
dence interval is used to calculate it quantitatively.

The WFPF error is defined as the difference between the
WFPF value Pfore and the wind power real value Pture at a
certain time point, i.e., e = Pfore−Ptrue. The confidence level
for the wind power error is calculated as follows:

P
(
elow < e < eup

)
= 1 − θ (25)

In Eq.(25), the confidence interval [elow, eup] is given
with the confidence level 1 − θ . P

(
elow < e < eup

)
means

the probability of WFPF error e falling within the interval
[elow, eup]. And, the confidence interval for WFPF is [Pfore −

elow,Pfore − eup].
For the modeling of uncertainty analysis, the holistic error

modeling cannot satisfy the demonstration of high reliability
and adaptability at all model. To tackle this issue, hybrid
modeling with CM and NPKDE is proposed for qualitative-
to-quantitative analysis, particularly in short-term WFPF
uncertainty analysis. This new analysis approach can make
the forecasting more comprehensive and distinct.

IV. DATA ANALYSIS AND PARAMETER SETTINGS
A. DATA SETS AND PARAMETER SETTINGS
This study utilizes wind power data from a wind farm in
northern China, located in [114◦E, 41◦N]. The wind farm
covers an area of about 100 square kilometers and has 90wind
turbines. The diameter and height of the wind turbine are
70.5 m and 67 m, respectively, and the output power of a
single wind turbine is 1.5 MW.

The WFPF data with a time resolution of 15 minutes
includes wind farm unit operation data, unit attributes and
NWP data. The data comes from the wind farm’s monitoring
and data acquisition system. It is obtained from the data
center (http://www.cma.gov.cn) with 1 km spatial resolution.
As wind power is affected by wind speed and direction, the
WFPF based on NWP data has been proven to be reasonable
and feasible. It is the means of the NWP data from these
spatial grid points with the attributes including barometric
pressure, wind speed, temperature and wind direction.

The WFPF data span the period from January 1, 2010,
to August 31, 2011, which are divided into a training set
and a test set. The training set consists of NWP data for
the whole year of 2010 and wind power data for one year.
After data processing, 25384 groups of data were retained for
experiment. The test lasted for 243 days from January 1 to
August 31, 2011. In this study, 4-hour, 24-hour and 72-hour
forecast data samples were selected for winter (Feb. 13-15th,
2011) and summer (Jun.17-19th, 2011) to verify the validity
and performance of the model on multiple time scales and
seasons.

B. EVALUATION METRICS
Figs. 6(a) and (b) show the wind speed on February 13-15 and
June 17-19 respectively. Since the wind speeds and the NWP
are highly correlated, the trend and magnitude of fluctuations
in NWP wind speed and wind mast show almost identical.
The variation of the NWP data appears smoother than that of
the wind gauge mast data. Meanwhile, both wind speed and
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wind direction impact the wind power generation and thus
the utilization of wind speed and wind direction in NWP for
WFPF is reasonable and feasible.

FIGURE 6. NWP wind speed versus wind speed at the wind measurement
mast.

V. RESULTS AND COMPARISONS
A. SHORT-TERM WFPF ANALYSIS
1) INTERNAL STRUCTURAL ANALYSIS OF THE CNN-BILSTM
To verify the improvement of CNN-BiLSTM in WFPF accu-
racy, this study compares the proposed CNN-BiLSTMmodel
containing an MCP structure, to the CNN-BiLSTM mod-
els with three other internal structures: single-convolution
(SC), single-convolution and single-pooling (SCP), and
single-convolution and multi-pooling (SCMP). As shown
in TABLE 2, $ mean$ is the mean value of RMSE;
SD is the standard deviation of RMSE; 25%, 50%, and
75% are the confidence levels of RMSE; min and max
are the minimum and maximum values of RMSE. These
parameters provide a comprehensive description for the
distribution of the RMSE of WFPF. Five characteristic val-
ues (minimum, upper quartile, median, lower quartile, and
maximum) are used to describe the forecasting effects of
wind power in different situations. Box plots are used to
identify data symmetry, data dispersion, skewness, and tail
weight.

As shown in TABLE 2, with the increase of convolu-
tion kernel and pooling operation, the RMSE mean value
and standard deviation of the model become smaller, where
the MCP value is minimum and interval stable. Since the
CNN-BiLSTM with MCP is able to extract more feature

TABLE 2. Results of CNN-BiLSTM models with four internal structures.

parameters, it can better map the relationship with the output
values in learning process.

The box plot in Fig. 7 indicates the RMSE fluctuations
of the CNN-BiLSTM with different convolution and pooling
layers. It can be seen that MCP box is the shortest and RMSE
average is the lowest.The CNN-BiLSTM with MCP also
shows a higher stability of forecasting than that of the CNN-
BiLSTM with SCP, which is consistent with the description
in TABLE 2.

FIGURE 7. NWP CNN-BiLSTM box diagram of forecasting results under
different internal structures.

TABLE 3. The RMSE and MAE values of 4-hour WFPF model.

2) ANALYSIS OF SHORT-TERM WFPF
Fig. 8(a) and (b) show the 4-hour WFPF results on February
13 and June 18, respectively. The red dashed line is the
WOA-CNN-BiLSTM; the red solid line is the CNN-BiLSTM
model; the yellow solid line is the BELM model; the pur-
ple line is the WNN model; and the green line is the BP
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FIGURE 8. 4-hour WFPF results.

model, etc. TABLE 3 compares the RMSE and MAE for
4-hour WFPF models. The WOA-CNN-BILSTM has better
performance than other six models, with the minimum of
RMSE and MAE, followed by the CNN-BILSTM model.
Meanwhile, it can be seen from Figure 12 that the trend of
the red line is most similar to the real value. Although there
are some errors between the forecasted results and the real
values. Because the wind speed can be influenced by the
topography and the wake in wind farm, and characterized by
some randomness that can cause forecasting and measuring
errors.

Figs. 9(a) and (b) show the 24-hour WFPF results on
February 13 and June 18. The RMSE and MAE values of the
five models in the 24-hour forecasting are listed in TABLE 4.
In these cases, the WOA-CNN-BiLSTMmodel also achieves
the highest forecasting accuracy in the 24-hourWFPF.But the
24-hour forecast has a significantly larger effect and range
of fluctuations than the 4-hour forecast, with a noticeable
improvement in RMSE and MAE values.

Figs. 10(a)-(b) and TABLE 5 display the 72-hour WFPF
covering the two periods of February 13-15 and of
June 17-19, respectively. It can be seen that the forecast
power curve is smoother than the actual power curve. This
is because NWP data is processed as forecast data and is
smoother than the actual wind speed in Fig. 6(a) and 8(b).
The fluctuation and variation trend of the predicted curve are
basically consistent with the actual curve. This proves the
correctness of WFPF model. Although the RMSE and MAE
forecasting errors for 72 hours continue to be significantly

FIGURE 9. 24-hour WFPF results.

TABLE 4. The RMSE and MAE values of 24-hour WFPF results.

high, the degree of increase in RMSE and MAE is noticeably
lower compared to 4 hours and 24 hours.

However, it should be noted that the forecasting power
of WOA-CNN-BiLSTM in Fig. 10(b) from the 100th data
point to the 150th data point is consistent with the NWP
fluctuations, unlike the other four forecasting models. This
is because of the advantages of CNN-BiLSTM in feature
selection and learning. Specifically, WOA-CNN-BiLSTM
can use not only the learning capability of BiLSTM but also
the features extracted by the CNN for further learning to
remove the uncertainty from the forecasting and achievemore
consistency with the forecasting pattern. Between the 150th
and 200th data points shown in Fig. 10(a), this capability is
proved again.
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From Figs. 8-10 and TABLE 2-4, the errors of WOA-
CNN-BiLSTM model are smaller than those of the other
four models at different time scales, which indicates that
WOA-CNN-BiLSTM can obtain higher forecasting accuracy
in short-termWFPF than other four models. At the same time,
it was discovered through research that as the forecasting time
scale increases, the WFPF’s predicted RMSE and MAE val-
ues significantly increase. However, the rate of improvement
shows a negative correlation trend. Moreover, the predicted
RMSE and MAE values for WOA-CNN-BiLSTM remain
stable within 9%.

FIGURE 10. 72-hour WFPF results.

TABLE 5. The RMSE and MAE values of 72-hour WFPF results.

We found from TABLE 6 that the maximum error peak of
WOA-CNN-BiLSTM is the smallest at different time scales.

In addition, various indicators such as expectation, entropy,
super-entropy, RMSE, and MAD are used to mutually cor-
roborate and further demonstrate the quality and performance
of this model.

TABLE 6. Maximum peak error at different time scales.

To further verify the variability of the forecasting across the
individual models. The author employed a T-test to assess the
significance of differences in forecasting errors and RMSE
results for June data from the same sample. A p-value p ≤

0.05 led to the rejection of the null hypothesis, indicating a
significant difference in the predictive outcomes of the two
models. Conversely, a p-value p ≥ 0.05, resulted in the
acceptance of the null hypothesis, suggesting no significant
difference between the models’ forecastings. As presented
in TABLE 7 there were statistically significant differences
between the WOA-CNN-BiLSTM model and other models
in terms of 72-hour and 24-hour forecasts for both forecast-
ing error and RMSE, with negative t-values, indicating that
the mean forecasting error and RMSE of the WOA-CNN-
BiLSTM model were lower than those of the other models,
thus confirming its superior predictive performance.

Furthermore, at the 4-hour forecast interval, comparisons
with all models except the WNN model yielded p-values
p ≥ 0.05, with negative t-values. Considering that the fore-
casting error was measured in MW, and the base values could
be small, the lack of significance could be attributed to an
insufficient sample size. To further substantiate the predictive
differences at the 4-hourmark, we recalculated the T-test after
converting the forecasting error unit to KW. As shown in
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TABLE 7. MW level T-test distribution.

TABLE 8, at the KW level, the WOA-CNN-BiLSTM model
exhibited significant differences compared to other models,
with p-values p ≤ 0.05 and negative t-values, affirming that
the WOA-CNN-BiLSTM model had lower mean forecasting
errors and RMSE for the 4-hour forecasts as well.

To further demonstrate the optimal effect of WOA,
we selected PSO, Grey Wolf Optimizer (GWO) and non-
optimized algorithms for result comparisons. As can be seen
from Figure 11 and TABLE 9, the forecasting results with
the optimized model are shown better than those of the non-
optimized model. Particularly, the WOA group intelligent

TABLE 8. KW level T-test distribution.

optimization algorithm is tested with the best effects, prior
to the GWO optimization algorithm and the PSO algorithm.

FIGURE 11. Comparison of CNN-BiLSTM model under different
optimization algorithms.

TABLE 9. The RMSE and MAE values of 72-hour WFPF results.

To improve the practicality of the validation forecasting
algorithm, we compared it with the most advanced technolo-
gies, namely Generative Adversarial Networks (GAN) and
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TABLE 10. The RMSE and MAE values of 72-hour WFPF results.

FIGURE 12. The box diagram of RMSE effect predicted by CNN-BILSTM
and LSTM models under different forecast data conditions.

TABLE 11. Comparison of RMSE results between CNN-BILSTM and GAN
and GNN with different data conditions.

Graph Neural Networks (GNN). We found that the CNN-
BiLSTM model performs the best in overall forecasting
capability for WFPF.

The reason why CNN-BiLSTM is chosen as the forecast-
ing model is that in terms of forecasting strategy, in the field
of wind power forecasting, the stability of the hybrid model
for wind farm power forecasting is higher than that of a single
model, as shown in TABLE 10, TABLE 11 and Figure 12.
Random selection After five days of data for forecasting,
GAN, GNN, and CNN-BiLSTM have their advantages and
disadvantages in forecasting accuracy in multiple forecast-
ings, but CNN-BiLSTM is slightly better than these two
algorithms in terms of forecasting stability. The reason is that
the actual wind farm data has strong uncertainty due to the
influence of terrain wind speed, and this problem is difficult
to eliminate its influence in the learning of a single model.

In addition, LSTM, BILSTM CNN-LSTM algorithm, as a
classic algorithm of deep learning, has been used in recent
years, which can reflect the advantages of the current use
of the algorithm. For example, we have investigated and
done some related projects to show: the UK wind farm

forecasting system some uses the Xgboost algorithm. The
forecasting systems used by the subordinate wind power in
China include IPSO-LSTM-GMM, IPSO-GRU forecasting
system, etc., which are more suitable algorithms for local
application after testing, and have higher priorities.

Here, all test cases take the short-term forecast of large
wind farm as a classic example. Regarding to the current wind
farm operation, it requires the coming three-day forecasting
to ensure the power supply quality. The real wind power data
from wind farms are different from the simulation data, gen-
erally affected by the influence of power supply and demand
and even the fan damage. Besides, all power generation units
in a wind farm are not run fully in 24 hours, which leads
to the power outputs unstable and produce large fluctuations
on other time scales (e.g. 24-hour, 72-hour). After multiple
test analysis, it is found that the WOA-CNN-BILSTMmodel
remains some deviations in actual forecasting. Thus, the
WFPF uncertainty analysis is performed for the characteristic
determination of WFPF results.

B. UNCERTAINTY ANALYSIS FOR WFPF
1) UNCERTAINTY ANALYSIS BASED ON CLOUD MODEL
To further analyze the uncertainty of WFPF, we propose
using the CM method to describe WFPF errors. Figs. 13
show the cloud droplet diagrams of the forecasting models
for comparisons, including LSTM, BP, PSO-BP, WNN, and
CNN-BiLSTM and WOA-CNN-BiLSTM and BELM. The
forecasting time span is set to 4 hours.

As Fig. 8 cannot directly reflect the randomness and
volatility of each model, the data analysis displays the cloud
droplet diagrams in Fig. 13 to show the error distribution
of WOA-CNN-BiLSTM clearly. And, the forecasting errors
from GAN, GNN and CNN-BILSTM in TABLE 7 are used
to evaluate the quality of the models.

The minimum entropy and super-entropy values of WOA-
CNN-BiLSTM represent the minimum randomness and
volatility of the model forecasting, which shows the superi-
ority of WOA-CNN-BiLSTM.

Figs. 14-15 show the cloud droplets of 24-hour and
72-hour forecasting errors. It can be seen that the expecta-
tion, entropy, and super-entropy of WOA-CNN-BiLSTM’s
forecasting error display smaller than those of other models at
different time scales. It is further proved that the performance
of WOA-CNN-BiLSTM is superior to other models.

The characteristics of the CM values of the forecasting
errors of the five models at different time scales are shown in
TABLE 12. The eigenvalues of the CMvalues ofWFPF errors
for WOA-CNN-BiLSTM are smaller than those of the other
four models for the three forecasting time scales in February
and June.

Particularly, the distribution law of CM’s digital character-
istics is determined from the WFPF results of all models as
follows:

1) When the forecasted power value is greater than the
actual wind power output, the expectation of CM should be
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FIGURE 13. The cloud droplets of 4-hour WFPF errors in June.

a positive value. The absolute value of the expected value
become smaller, which can lead to a smaller mean error.

2) The entropy value reflects the concentration of the prob-
ability density distribution of the WFPF. The entropy value
tends to be larger, which makes the shape of the distribution
curve become sharper. When the distribution gets sharper, the
confidence interval shrinks.

3) The super entropy tends to be smaller, which indicates
the cohesiveness of the distribution curve is improved. There
exists the situation that the forecasting errors between the
real output and the forecasting values become minor, and the
volatility of these errors lessens.

This part of analysis has proved that the CM can provide
more directional evaluation characteristics than the classic
model evaluation measure in WFPF, namely, the average
value of error amplitude, the amplitude fluctuation range,
and the randomness of the amplitude fluctuation. The WFPF
cloud theory, i.e., the forecasting distribution and character-
istics, can be further used to perform the probability joint
distribution forecasting and the coupling characteristics anal-
ysis.

2) CONFIDENCE INTERVAL OF WFPF
As the probability density distribution of WFPF errors would
be determined through the NPKDE method, the confidence
intervals are computed here for the further discussions of the

FIGURE 14. The cloud droplets of 24-hour WFPF error in June.

TABLE 12. The characteristics of CM with four models in June.

uncertainty analysis. Figs. 16(a) and (b) show the probability
density distributions of 24-hour and 72-hour WFPF errors,
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FIGURE 15. The cloud droplets of 72-hour WFPF error in June.

respectively. All plots show that the probability density dis-
tribution can characterize the distribution of WFPF errors
accurately.

The confidence intervals of 4-hour, 24-hour, and 72-hour
WFPF results can be obtained by NPKDE. Figs.17-
19 show the confidence interval distributions of CNN-
BiLSTM at 97.5%, 95%, 90%, and 85% confidence levels,
respectively.

It can be seen that the confidence interval reliability of the
4-hour WFPF is higher than that of the 24-hour and 72-hour
WFPF. This is because with the increase of time span, the
fluctuation degree on the forecasting values and the real val-
ues becomes larger, which increases the forecasting difficulty.
This further confirms the qualitative analysis of WFPF by
cloud model. The quantitative analysis results of NPKDE
show higher interval accuracy at different time scales, making
the probability of WFPF falling into the confidence interval
greater than the current confidence level. However, there
exists some of WFPF excluded in the confidence interval due
to sudden changes in actual output power, e.g. NWP errors,
the changes of unit operating conditions, and wind gusts.
In addition, the increases of confidence level can enlarge
the width of the confidence interval, which can increase the
reliability of the WFPF values.

Table 13 lists the coverage rates of confidence intervals
for WFPF based on CNN-BiLSTM at 4-hour, 24-hour, and
72-hour time scales. The coverage rate ∂P is consistently

FIGURE 16. Probability density distribution of WFPF errors.

FIGURE 17. Confidence levels for 4-hour WFPF by CNN-BiLSTM.

FIGURE 18. Confidence levels for 24-hour WFPF by CNN-BiLSTM.

higher than the confidence level, which verifies that the
confidence interval method based on NPKDE can accurately
describe the distribution range of the actual output power of
the wind farm.
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FIGURE 19. Confidence levels for 24-hour WFPF by CNN-BiLSTM.

TABLE 13. Coverage rate of confidence interval of CNN-BiLSTM model.

To verify the advantages of the non-parametric kernel den-
sity algorithm. As shown in the figure 20 and TABLE 14 in
this study, the Gaussian Mixture Model (GMM) and Single
Gaussian Model (SGM) are chosen to compare with the
NPKDE. It can be seen that since the error distribution of
wind power is not normal in the traditional sense its dis-
tribution number is irregular. The GMM and SGM need to
define their distributions in advance, so although they can be
quantified so that their forecasting are within the confidence
interval, the accuracy is very poor, and they do not work prop-
erly in the real grid-connected power generation, which will
consume a lot of economic costs to stabilize the wind power
grid operation. The non-parametric kernel density estimation
does not need to assume the distribution, and the accuracy
is not only guaranteed to be within the confidence interval,
but also to ensure the minimum area of the interval, which
enables the grid to reduce certain costs to ensure the smooth
operation of wind power grid connection.

FIGURE 20. 4-hour wind power probabilistic forecasting results of Feb.

The application of confidence interval provide a feasible
region for wind power dispatching and improve the dispatch-
able capability for wind farms and integrated energy systems.

TABLE 14. Confidence intervals of wind power forecasting errors under
different distribution methods.

FIGURE 21. 4-hour wind power probabilistic forecasting results of Feb.

FIGURE 22. 24-hour wind power probabilistic forecasting results of Feb.

FIGURE 23. 72-hour wind power probabilistic forecasting results of Feb.

Meanwhile, the explicit interval can aid in determining the
required reserve capacity in power grids as well as in improv-
ing the economic benefits of wind power generation.

To further explore the WOA-CNN-BiLSTM model WFPF
and its uncertainty analysis, the authors also added prob-
ability forecasting results corresponding to the existing
data. As shown in the Figs.21-23, which is the short-term
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probability forecasting of wind power in the WOA-QRCNN-
BILSTM algorithm. It can be seen that the probabilistic
forecasting has certain advantages. It can accurately cover
the true wind power in the 0.1-0.9 quartile range. However,
although all data can be included within the 90% confidence
interval, the interval range is 20% larger than the confi-
dence interval established in this paper, making the required
reserve capacity too large and without any economic benefits.
Therefore, in practical use, the current technology cannot
meet the requirements. But the WOA-CNN-BiLSTM-CM-
NPKDE model can accurately and precisely characterize
WFPF, providing better and safer technical support in actual
uncertain optimization operations.

VI. CONCLUSION
In the context of a significant integration of wind power
into the grid, the demand for higher accuracy and reliability
of WFPF at each operating point becomes more crucial.
This study proposes a WOA-CNN-BiLSTM-CM-NPKDE
based forecasting framework for WFPF and uncertainty
analysis, aimed at supporting short-term multi-scale fore-
casting. To enhance the diversity of wind features in the
models, the multi-scale pooling technique is adopted, and
model optimization techniques are employed. The hybrid
model achieves the extraction of feature links between
continuous sequences and addresses issues related to miss-
ing information and long-term dependencies. Furthermore,
the uncertainty analysis incorporates the Cloud model and
NPKDE methods to determine the characteristics of WFPF
and introduces three evaluation indices, refining and visual-
izing the WFPF uncertainty.

Insights obtained from the test case analysis include the
following:

The CNN-BiLSTM model, owing to its time-recursive
nature and feature extraction learning, demonstrates sig-
nificant superiority over single models for WFPF. It is
particularly suitable for analyzing wind power data with
time-series characteristics, and compared to classical network
models, the proposed model improves accuracy by 5.6%.

The adoption ofWOAoptimizes parameter settings, result-
ing in better performance and significantly improving the
accuracy of the original model.

The proposed expectation, entropy, and hyper-entropy of
the Cloud model facilitate qualitative description of the
magnitude, fluctuation range, and concentration of fluc-
tuation range of the WFPF amplitude. Additionally, the
confidence interval of NPKDE provides a reliable forecasting
range through quantitative analysis of WFPF uncertainty.
These improvements collectively offer alternative forecasting
options when optimizing the operational scheduling of wind
power generation.

Future studies will focus on analyzing the law of forecast-
ing uncertainty to enhance forecasting accuracy and model
reliability. Also, further research will explore the application
of theWOA-CNN-BiLSTMmodel in a complex spatial envi-
ronment and the improvement ofWFPF accuracy considering

the type division of wind farms and multiple parameter opti-
mization.
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