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ABSTRACT This study delves into the domain of dynamical systems, specifically the forecasting of
dynamical time series defined through an evolution function. Traditional approaches in this area predict
the future behavior of dynamical systems by inferring the evolution function. However, these methods may
confront obstacles due to the presence of missing variables, which are usually attributed to challenges in
measurement and a partial understanding of the system of interest. To overcome this obstacle, we introduce
the autoregressive with slack time series (ARS) model, that simultaneously estimates the evolution function
and imputes missing variables as a slack time series. Assuming time-invariance and linearity in the
(underlying) entire dynamical time series, our experiments demonstrate the ARS model’s capability to
forecast future time series. From a theoretical perspective, we prove that a 2-dimensional time-invariant
and linear system can be reconstructed by utilizing observations from a single, partially observed dimension
of the system.

INDEX TERMS Autoregressive model, completely missing variables, dynamical system, slack time series.

I. INTRODUCTION
Notwithstanding its difficulty, forecasting of the evolution
of intricate non-linear dynamical time series has been in
the spotlight in various scientific fields [1], [2]. A plausible
approach to forecasting the evolution is to isolate the
non-linear estimation problem into (i) learning non-linear
representations by applying highly non-linear functions such
as deep neural networks [3], and (ii) estimating its evolution
with simple linear models. One example is a reservoir com-
puting (RC) [4], [5]. RC first randomly specifies a state in the
reservoir layer in recurrent neural network [6], and optimizes
the weights only in the output layer; RC corresponds to
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non-linearly transform its input (in the reservoir layer) and
trains a simple linear prediction model (in the output layer).
It has been reported that such a simple combination of the
non-linear representation learning and the linear estimation is
effective to forecasting the evolution of intricate dynamical
series [7]. Effectiveness of the simple combination is not
limited to RC; applying a linear model to the non-linear
representation in more general deep neural network is also
regarded as a solid forecasting strategy [8].

Unfortunately, however, partial degrees of freedom corre-
sponding to several state variables are not observed in some
practical situations [9], [10]. There could be a variety of
reasons for missing observations: it would be caused by the
difficulty of measurement, it would be caused by the imma-
ture understanding of the system of interest, and so forth.
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Generally speaking, it is quite difficult to find and identify
all the related state variables in the system in real world
situations. To address the issue, studies in line with dynamical
systems have considered and substituted the delay embed-
ding [11], [12], with the aid of delay embedding theorem
(also known as Takens’ theorem) [13]. While the delay
embedding theorem indicates that the (topological) attractor
structure of the entire dynamical system is recovered by the
delay embedding of the partial observations, i.e., this theorem
provides a ‘‘rough estimate’’ of the entire system, it does
not intend to provide any accurate forecasting. Therefore,
for more accurate forecasting purposes, [14] leverages the
random feature maps of the delay embedding, [15] applies
a deep neural network to the delay embedding, and [16]
proposes estimating themissing variables themselves directly
by a simple transformation of the observed variables. Therein,
neural ordinal differential equation (neural ODE) [19] is
used to model the evolution of the time series. In line
with these approaches, forecasting of the evolution of a
partially-observed dynamical time series with the estima-
tion of the missing variables has been actively studied
recently [10].

Recent research has leveraged deep neural networks to
reconstruct the full dynamics of systems, but the com-
plexity of training these networks highlights the appeal of
simpler, more manageable models as alternatives. Consider
a straightforward scenario where a 2-dimensional time
series exhibits circular motion, yet only the first dimension
(corresponding to a cosine curve) is observable. In such
cases, while the complete dynamics adhere to a simple, time-
invariant linear system at regular discrete time points (that
are considered in many literature; see, e.g., [17] and [18]),
the observed cosine function exhibits time-variance. This
discrepancy suggests that partial observations may appear
to follow ostensibly complex patterns, even when the
underlying dynamics are fundamentally simpler. Motivated
by this fact, we introduce the autoregressive with slack
time series (ARS) model, designed to estimate the evolution
function and impute missing variables using a slack time
series simultaneously. By assuming the entire underlying
dynamical time series is time-invariant and linear, our
experiments validate the efficacy of the ARS model. The-
oretically, we demonstrate that it is possible to reconstruct
a 2-dimensional, time-invariant, and linear system using
observations from just one partially observed dimension,
as depicted in Figure 1.
Organization of this paper is as follows: Section I-A

describes the symbols and notations used throughout this
paper, Section II describes the preliminaries, Section III
describes the proposed ARS model, Section IV describes the
numerical experiments, and Section V describes the remain-
ing discussions and conclusions. Particularly, the discussion
section includes a theoretical guarantee for the ARS model
prediction with a simple setting, and relations to classical
state-space models and higher-order autoregressive (AR)
models.

FIGURE 1. Time series forecasting with (red) conventional AR model
shown in Equation (4) and (blue) proposed ARS model shown in
Equation (5). See Section III-A for further details of the experiment.

A. SYMBOLS AND NOTATIONS
This section provides a summary of the symbols used
throughout this paper. The symbol t ≥ 0 represents time,
and x = x(t) signifies a state at time t , which takes on a
value within the non-empty state space X ⊂ Rd . As long
as x(t) follows a dynamical system, the temporal state x(t)
is also referred to as the dynamical time series. Time t is
discretized into small intervals h > 0, such that t = jh for
j = 1, . . . , n. At each discretized time point t = jh, the state
x(jh) ∈ Rd is split into an observed component z(jh) ∈ Rr

and a missing (hidden) component z†(jh) ∈ Rs, resulting
in x(jh) = (z(jh), z†(jh)). The sequence {z†j }

n
j=1 represents a

slack time series, where each element z†j acts as a substitute
for the missing component z†(jh). This study aims to estimate
the slack time series as ẑ†j , with the completed time series

expressed as x̂‡(jh) = (z(jh), ẑ†j ) for j = 1, 2, . . . , n.

II. PRELIMINARIES
This section provides preliminaries. More specifically,
Section II-A describes the dynamical system, Section II-B
describes the autoregressive model, and Section II-C
describes the problem setting considered in this study.

A. DYNAMICAL SYSTEM
Let d ∈ N. A dynamical system is a pair (X , ϕ), where
X ⊂ Rd is a non-empty set called state space and ϕ : R≥0 ×

X → X denotes an evolution function satisfying

ϕ(t ′, ϕ(t, x)) = ϕ(t + t ′, x), ϕ(0, x) = x

for all t, t ′ ≥ 0 and x ∈ X . Intuitively speaking, ϕ(t, x) ∈ X
represents the state evolved from x ∈ X during the period
of time t ≥ 0. As x = x(t) ∈ X depends on the time t ≥ 0,
we call x(t) as a (dynamical) time series herein. Typically, the
dynamical system can be specified by a differential equation

dx(t)
dt

=
dϕ(t ′, x(t))

dt ′

∣∣∣∣
t ′=0

= ft (x(t))

equipped with the time derivative ft : X → T defined
with some set T ⊂ Rd . The time derivative ft is called
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time-invariant if ft is independent of the time t (herein,
f represents such a time-invariant derivative); an example of
such a time-invariant dynamical system (with d = 3, x =

(x1, x2, x3)) is the Lorenz system [20] f (x) = (−αx1 +

αx2, −x1x3 + βx1 − x2, x1x2 − γ x3) for some constants
α, β, γ ∈ R. See, e.g., [1] for the long-standing history of
the dynamical systems.

While the above dynamical system considers the evo-
lution of the series in continuous time, in practice, the
evolving states are observed only for the discrete-time t =

h, 2h, . . . , nh; with sufficiently short period of time h > 0,
the evolution of the time-invariant dynamical system can be
approximated by a first-order Taylor expansion

x(t + h) = ϕ(h, x(t))

= ϕ(0, x(t)) + h
dϕ(t ′, x(t))

dt ′

∣∣∣∣
t ′=0

+ O(h2)

= x(t) + hf (x(t)) + O(h2). (1)

O(h2) denotes the term smaller than h2 in the limit h ↘ 0.
By assuming the linearity in the time derivative f ,
i.e., f (x) = Ax for somematrix A ∈ Rd×d , the approximation
shown in Equation (1) indicates that the state evolved for the
short period of time h ≥ 0 is approximated by a simple linear
transformation

x(t + h) = Bx(t) + O(h2) (2)

for some matrix B = B(h) := I + hA ∈ Rd×d

defined with the d × d identity matrix I . The short period
approximation of the time-invariant dynamical system shown
in Equation (2) leads to the autoregressive model described in
the following Section II-B.
While the discussions below consider only the linear

time derivative f for simplicity, dynamical systems equipped
with even non-linear (and continuous) time derivative f can
be approximated by a polynomial extension. Also see the
discussion in Appendix A.

B. AUTOREGRESSIVE MODEL
With a positive integer n, assume that the evolving states x(t)
are observed at the discrete timepoints t = h, 2h, 3h, . . . , nh.
For modeling the short period approximation of the dynam-
ical system shown in Equation (2), we may employ an
autoregressive (AR) model of order 1 :

x̂((j+ 1)h) = B̂x(jh) (j = 1, 2, . . . , n− 1), (3)

where B̂ ∈ Rd×d is a matrix typically estimated by
minimizing the loss function

B̂ := argmin
B∈Rd×d

n−1∑
j=1

∥x((j+ 1)h)−Bx(jh)∥22.

While this study considers the AR model of order p = 1
(typically denoted by AR(1)) for simplicity, the AR(1) model
can be straightforwardly extended to the AR model of higher
order p ∈ N: x̂((j+ 1)h) =

∑p
k=1 B̂kx((j+ 1− k)h), with the

estimated matrices {B̂k}
p
k=1 ⊂ Rd×d . See, e.g., [21] and [22]

for details of the extensions, and Section V-C for further
discussions.

C. PROBLEM SETTING
Herein, assume that the evolving time series {x(jh)}j=1,2,...,n
follows the time-invariant dynamical system (shown in
Equation (2)) equipped with the linear time derivative f . The
AR model shown in Equation (3) is expected to approximate
the dynamics well. However, in some practical situations, not
all the variables in the state x ∈ X can be observed; we
assume that the time series is divided into two time series of
observed and missing (hidden) variables:

x(jh) = (z(jh), z†(jh)) (j = 1, 2, . . . , n),

where z(t) ∈ Rr represents the time series of the observed
variables (of interest) and z†(t) ∈ Rs represents that of the
missing variables, with r, s ∈ N satisfying r + s = d . As the
time series z†(t) is missing, the conventional AR model can
consider only the observed part in this setting, i.e.,

ẑ((j+ 1)h) = Ĉz(jh) (j = 1, 2, . . . , n− 1), (4)

where Ĉ ∈ Rr×r is a matrix typically estimated by
minimizing the loss function

∑n
j=1 ∥z((j+ 1)h) − Cz(jh)∥22.

However, while the time-invariance of the system is
considered important as also discussed in Section II-A,
evolution of the partial observation z(t) may lose the time-
invariance property, even if the entire dynamics x(t) is
time-invariant. A simple example is the circular motion; see
Example 1 and Figure 2.
Example 1: Consider the case that x(t) follows a circular

motion in R2, i.e., x(t) = (cos t, sin t), and assume that r =

s = 1, i.e., z(t) = cos t, z†(t) = sin t . Then, the evolution of
the partial observation z(t) = cos t is time-variant while that
of the entire time series x(t) is time-invariant (as x(t + h) =

Bx(t) for some rotation matrix B = B(h)).

III. AUTOREGRESSIVE WITH SLACK TIME
SERIES (ARS) MODEL
Section III-A describes the proposed ARS model, and
Section III-B describes the estimation procedure of the
ARS model.

A. ARS MODEL
To address the problems described in Section II-C, this
study proposes autoregressive with slack time series (ARS)
model, whose definition is based on a simple idea. In this
model, we simply impute the missing variable {z†(jh)}nj=1

in AR model by a slack time series z†j to be estimated
from the (partial) observations. Using the completed variables
x‡(jh) = (z(jh), z†j ), ARS model is then defined by

ẑ((j+ 1)h) = Er,sB̂x‡(jh), x‡(jh) =

(
z(jh)
ẑ†j

)
, (5)
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FIGURE 2. Circular motion. While (left) the entire dynamics x(t) = (cos t, sin t) is time-invariant (as x(t + h)
can be identified as a function of x(t)), (right) the partial observation z(t) = x1(t) = cos t is time-variant (as
the next state of x(t) = 0 can be both x(t + h) > 0 and x(t + h) < 0 depending on the current time t).

where Er,s := (Ir ,Or,s) is a r × d matrix defined with the
r × r identity matrix Ir and the r × s zero matrix Or,s. B̂ is
a matrix and ẑ†j ∈ Rs̃ is a vector, where they are estimated
by solving the following problem:

(B̂, {ẑ†j }
n
j=1) = argmin

(B,{z†j }
n
j=1)

ℓ(B, {z†j }
n
j=1), where

ℓ(B, {z†j }
n
j=1) :=

n−1∑
j=1

∥x‡((j+ 1)h) − Bx‡(jh)∥22. (6)

{z†j } is especially called slack time series, and the dimension

s ∈ N of the vector z†j is a user-specified parameter. The above
optimization problem is solved with the aid of the simple
linear regression analysis; see Section III-B for details.

While the idea behind the ARS model (i.e., the time series
{z†(jh)} of missing variables is completed by the estimated
slack time series {ẑ†j }) seems intuitive and simple enough,
one natural question here is whether the completion really
works. Regarding this question, for simplicity, this study
assumes the time-invariance (and linearity) of the entire
dynamical system to recover the entire dynamics from the
partial observations. Then, we demonstrate the ARS model
by a simple numerical experiment with missing variables
shown in Figure 1. Therein, we first compute the dynamical
time series x(t) = (z(t), z†(t)) = (cos t, sin t) following the
circular motion and assume that r = s = 1 (i.e., z(t) =

cos t is observed and z†(t) = sin t is missing) and h = 0.3,
n = 30. The overall dynamics of the entire circular motion
x(t) = (cos t, sin t) is time-invariant, while the dynamics
of the partial observation z(t) = cos t is time-variant.
Then, we forecast the future time series by leveraging AR(1)
and ARS models (with s̃ = 1). Both AR(1) and ARS
models are trained with only the observed time series {z(t)}
though ARS model additionally estimates the slack time

series {z†(t)}. In this experiment of the circular motion, the
slack time series is initialized by a standard normal random
numbers, and is optimized by optim function in R language.
The affirmative experimental result is also proved by our
proposition; Section V-A shows for the above simple case
d = 2, r = s = 1 that the ARS model can recover the
underlying true dynamics.

Historically speaking, it has been widely known that
the time series of partially observed variables contain rich
enough information to (partially) recover the entire dynamics.
The well known Takens’ theorem (also known as delay
embedding theorem) [13] proves under some assumptions
that the delay embedding (z(t), z(t − h), z(t − 2h), . . . , z(t −

(k − 1)h)) ∈ Rk computed only from the partial observation
z(t) has the same (topological) attractor structure to the entire
dynamical time series {x(t)}. Namely, the delay embedding
at least roughly recovers the (topological) ‘‘shape’’ of the
entire dynamical time series. While the classical Takens’
theorem considers only the deterministic sequence, Takens’
theorem can be further generalized to stochastic variants.
See, e.g., [23].

Although Takens’ theorem only provides the rough
estimate of the entire dynamical system through the delay
embedding (computed only from the partial observations),
we find that directly estimating the missing variables can
improve the forecasting accuracy. Therefore, compared to
previous approaches based on Takens’ theorem, the simpler
ARS model holds the potential to offer a more general and
comprehensible model.

We last note that the minimizer of the ARS loss function
ℓ(B, {z†j }

n
j=1) is not unique. For instance, if we multiply z†j

by any positive real number α > 0, the matrix Bα , whose
corresponding rows are also multiplied by 1/α, yields the
same loss function value ℓ(B, {z†j }

n
j=1) = ℓ(Bα, {αz†j }

n
j=1).

There remain the freedom of the constant multiplication,
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though this multiplication does not affect the forecast,
i.e., x̂‡((j + 1)h) = B̂x‡(jh) = B̂αx

‡
α(jh), where x

‡
α(jh) =

(z(jh)⊤, αẑ†⊤j )⊤. Also see Section Section V-A for our
proposition, indicating the prediction uniqueness of the ARS
model.

B. ESTIMATION OF THE ARS MODEL
While ARSmodel needs to estimate the ARmodel parameter
B ∈ Rd×d and the slack time series {z†j }

n
j=1 simultaneously,

we can skip the estimation of the parameter B ∈ Rd×d .
We describe the procedure in the following.

With given vectors {ẑ†j } (whereby we obtain x‡(jh) =

(z(jh)⊤, ẑ†⊤j )⊤), the AR model parameter B ∈ Rd×d

is estimated by a simple matrix formulae used in the linear
regression analysis:

argmin
B∈Rd×d

ℓ(B, {ẑ†j }
n
j=1) = (D̂⊤D̂)−1D̂⊤D̂+,

where D̂ ∈ R(n−1)×d denotes the matrix concatenating the
vectors x‡(jh) ∈ Rd for j = 1, 2, . . . , n − 1, and D̂+ ∈

R(n−1)×d denotes the matrix of 1 step further of the time
points, i.e., the matrix concatenating x‡((j+ 1)h) ∈ Rd . Note
that the matrices D̂, D̂+ depend on the vectors {ẑ†j }

n
i=1. Then,

the minimum loss function value is also obtained as

min
B∈Rd×d

ℓ(B, {ẑ†j }
n
j=1) = tr{D̂⊤

+(I − Ĥ )D̂+}, (7)

where Ĥ = D̂(D̂⊤D̂)−1D̂⊤ is the hat matrix and trH =∑d
j=1 hjj denotes the trace of the matrix H = (hjk ),

i.e., the sum of diagonal entries. Equation (7) is obtained
by x̂‡ = D̂B̂ = D̂(D̂⊤D̂)−1D̂⊤D̂+ = ĤD̂+ and Ĥ2

= Ĥ
(see, e.g., [24] for basic matrix formulae). As Equation (7)
indicates that

min
(B,{z†j }

n
j=1)

ℓ(B, {z†j }
n
j=1) = min

{z†j }
n
j=1

min
B∈Rd×d

ℓ(B, {z†j }
n
j=1)

= min
{z†j }

n
j=1

tr{D̂⊤
+(I − Ĥ )D̂+}, (8)

in practice, we may solve the minimization problem (8)
by leveraging some general-purpose optimization functions.
We useoptim function inR language in our implementation.
Appendix A provides a possible extension of the ARS model
to consider the interaction effects.

IV. NUMERICAL EXPERIMENTS
We examine AR and the proposed ARS models using
synthetic datasets. Particularly, the experimental settings and
results are shown in Section IV-A and IV-B, respectively.
R source codes to reproduce the experimental results are
provided in https://github.com/oknakfm/ARS.

A. SETTINGS
1) SYNTHETIC DATASET GENERATION
we generate two different types of synthetic datasets,
following (i) the circular motion and (ii) Lorenz dynamics.
More specifically, (i) and (ii) are defined as follows. (i)

1) Circular motion: x(j) = (cos(5+ j/20), sin(5+ j/20)).
2) Lorenz dynamics: define the evolution function g :

R3
→ R3 (of period of a constant length) for x =

(x1, x2, x3) as follows:

g(x) :=

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


+

1
200

−α α 0 0 0 0
β −1 0 0 −1 0
0 0 −γ 1 0 0


× (x1, x2, x3, x1x2, x1x3, x2x3)⊤,

where α = 10, β = 28, γ = 8/3. The above g
is a first-order Taylor approximation of the original
Lorenz dynamics [20] shown in Equations (10)–(12).
With the function g(m), which is the composition of
the function g of degree m ∈ N, define x(0) =

g(100)(1/4, 1/4, 1/4) and x(j+ 1) = g(x(j)).
For the training set, we generate 10 instances of the

sequence of length n = 100 for settings (i) and (ii).
Independent normal errors with the standard deviations
σ = 0, 0.01 are incorporated to the training sequences. For
the test set (of forecasting), we compute the subsequent
sequence of length n = 30, 100, for settings (i) and (ii),
respectively.

2) MISSING MECHANISM
for the setting (i), we regard the first r = 1 entry as the
observed variable: z(j) = x1(j), and the remaining s = 1 entry
as the missing variable: z†(j) = x2(j). For the setting (ii),
we regard the first r = 2 entry as the observed variable:
z(j) = (x1(j), x2(j)), and the remaining s = 1 entry as the
missing variable: z†(j) = x3(j).

3) METHODS TO BE COMPUTED
using the training sets (of observed variables), we compute
AR and ARS models. For ARS models, we employ s̃ = 1;
we initialize the parameter by adding the standard Gaussian
noise to the true missing parameter z†(j). We employ optim
function with BFGS option in R package, to train the
ARS models. While the slack time series here is initialized
by adding random noise to the true missing parameters
(for computational stability purposes), note that the series
is initialized randomly by a standard normal distribution
(without referencing the true parameters), in the forecasting
of the circular motion shown in Figure 1.

B. RESULTS
Using the training instances, we train AR and ARS models,
and forecast z(n+k), for k = 5, 10, . . . , 25. For the estimator
ẑ(n+ k) for each method, we compute the MSE êk := ∥z(n+

k)− ẑ(n+ k)∥22/r for k = 5, 10, . . . , 25. We further compute
the relative error of ARS models to the baseline (AR model),
and compute the mean and the standard deviation. The results
for the settings (i) and (ii) are shown in Tables 1–2. We can
observe that all the relative errors are less than 1, i.e., theMSE
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of ARS models are smaller than that of the conventional AR
models.

For visualization, the training sets and the forecasts of
AR/ARS models (using the training instance 1) are also
plotted in Figures 3–6. We can examine that ARS models
forecast the true points better than the conventional AR
model.

V. DISCUSSIONS AND CONCLUSION
Section V-A, V-B and V-C provide discussion on theory, and
the relation to state-space model and higher-order AR model,
respectively, and Section V-D concludes this study.

A. DISCUSSION 1: ARS MODEL CAN RECOVER THE
UNDERLYING TRUE DYNAMICAL TIME SERIES
The ARS model involves a significant number of parameters:
{z†j }

n
j=1 contains n · s parameters, and B contains d2 param-

eters. Therefore, ARS model has a high degree of freedom
(at least the ARSmodel is overparameterized, i.e., the number
of parameters excees the sample size n), and it remains
uncertain whether the ARS prediction is obtained correctly
and uniquely.

In the specific scenario of d = 2, r = s = 1, the
answer to this question is affirmative. This section provides
theoretical evidence that the ARS model can successfully
recover the underlying true dynamical time series, regardless
of the ostensibly large number of parameters.

To rigorously describe the theory, we employ the following
notations: let h > 0 be a fixed interval, and assume that x∗‡

j =

(z⊤j , z∗†⊤j )⊤ with zj := z(jh) follows an underlying true linear
dynamics

x∗‡
j+1 = B∗x∗‡

j , (j = 1, 2, . . .). (9)

Then, Proposition 1 holds.
Proposition 1: Let d = 2, r = s = 1 and assume

the identity (9) for the underlying true dynamics. With
sufficiently large n, the future prediction via the ARS model:
ẑn+k = (1, 0)B̂k x̂‡n coincides with the underlying true zn+k ,
for any k ∈ N.

Proposition 1 proves for the 2-dimensional case (with
1-dimensional observation) that the ARS model can recover
the underlying true dynamical time series. See Appendix B
for the proof. While we skip generalizing the proposition for
simplicity, we can expect that the similar holds for d > 2 by
considering the numerical results shown in Section IV.

B. DISCUSSION 2: RELATION TO STATE-SPACE MODEL
While the aforementioned experiments consider a small
random error (where σ = 0, 0.01), we may employ a
state-space model to deal with more influential random
errors. A state-space model for linear systems is defined as

z((j+ 1)h) ∼ N (Er,sx((j+ 1)h), 6Z ),

x((j+ 1)h) ∼ N (Bx(jh), 6X ),

where {x(jh)}nj=1 ⊂ Rd represents a series of latent
states, Er,s ∈ Rr×d represents the observation matrix,

and B ∈ Rd×d denotes the transition matrix. The proposed
ARS model corresponds to the above state-space model
defined with the observation matrix Er,s = (Ir ,Or,s) where
Ir denotes the r × r identity matrix and Or,s denotes the zero
matrix of size r×s. While the state-space model is defined as
a general framework, in practical situations, most of studies
estimates only the hidden states x by preliminarily fixing
the model parameter B. See, e.g., Bayesian filters including
Kalman filters [25], [26]. The difference to our ARS model
is that the model parameter B is usually fixed in most of the
Bayesian filters, while ARS estimates both the unobserved
variables and the model parameter B simultaneously.
From another perspective, hidden markov model

(HMM) [27] has much in common with the state-space
model. However, in most cases, HMM employs a finite set
for the state space X , and estimate the transition probability
from a state x ∈ X to another state x′

∈ X . Baum-Welch
algorithm [28] (also known as EM algorithm) assumes a
latent structure on the hidden state x, and taking marginal
with respect to the unobserved x. Viterbi algorithm [29] is
closer approach to ours; it estimates the actual value of hidden
state x by leveraging dynamic programming. While the state
space X in HMM can be extended to a set of countably many
states [30], HMM still focuses on modeling the transition of
discrete states, while this paper considers a set of uncountably
many states.

C. DISCUSSION 3: RELATION TO HIGHER
ORDER AR MODEL
While this study so far considers AR(1) model ẑ((j+ 1)h) =

ĉz(jh), we may employ higher order ARmodels. For instance,
AR(2) model ẑ((j+1)h) = ĉ1z(jh)+ ĉ2z((j−1)h) is expected
to have higher expressive power than the AR(1) model. This
observation is true. Intuitively speaking, AR(1) model can
approximate first-order differential equation by considering
the relation dz(t)/dt

∣∣
t=jh ≈ {z((j+1)h)− z(jh)}/h with small

h > 0, while AR(2) model can approximate second-order one
by considering the second-order central d2z(t)/dt2

∣∣
t=jh ≈

{z((j+1)h)−2z(jh)+z((j−1)h)}/h2. However, even increasing
the order p ∈ N, AR model is limited to approximate
the dynamics described by a linear differential equation∑p

k=0 ckd
kz(t)/dtk = 0 (for some c0, c1, . . . , cp ∈ N).

For instance, AR model cannot approximate the partial
observation x1(t) of Lorenz system

dx1(t)/dt = −αx1(t) + αx2(t), (10)

dx2(t)/dt = −x1(t)x3(t) + βx1(t) − x2(t), (11)

dx3(t)/dt = x1(t)x2(t) − γ x3(t). (12)

defined with parameters α, β, γ ≥ 0. This is because the
partial observation x1(t) of the Lorenz system shown in Equa-
tions (10)–(12) follows a non-linear differential equation. See
Proposition 2 whose proof is shown in Appendix C.
Proposition 2: Partial observation x1(t) of Lorentz

dynamics (shown in Equations (10)–(12)) follows a
non-linear ordinary differential equation. More specifically,
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TABLE 1. Relative errors to AR model, with the setting (i) circular motion.

TABLE 2. Relative errors to AR model, with the setting (ii) Lorenz dynamics.

FIGURE 3. (i) Circular motion, n = 100, σ = 0.

FIGURE 4. (i) Circular motion, n = 100, σ = 0.01.

x1(t) satisfies
∑3

k=0 Pk (x1(t))d
kx1(t)/dtk = 0 for some

functions P1,P2,P3,P4 and at least one of P1,P2,P3,P4 is
a non-constant function.

Mathematically speaking, higher order AR model is a
special case of the ARS model. Here, consider arbitrary time
series {z((jh)}nj=1; this inclusion relation can be proved by
substituting the delayed series z((j− 1)h) into the slack time
series ẑ†j in ARS model. Then, the ARS model reduces to the

FIGURE 5. (ii) Lorenz, n = 100, σ = 0.

FIGURE 6. (ii) Lorenz, n = 100, σ = 0.01.

AR(2) model ẑ((j + 1)h) = ĉ1z(jh) + ĉ2z((j − 1)h). General
AR(p) model also can be implemented by substituting the
delayed series z((j − 1)h), z((j − 2)h), . . . , z((j − p + 1)h)
to the ARS model in the same way. Furthemore, the ARS
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model (more rigorously speaking, extension of ARS model
shown in Appendix A) is capable of representing the Lorenz
equation while the higher-order AR model cannot describe
Lorenz dynamics. We last note that the slack time-series can
be incorporated to the higher-order ARmodels; we can easily
define higher-order ARS models (though we skip the details
in this paper for simplicity).

D. CONCLUSION
This study considered the setting that some variables in
dynamical time series were missing; we extended the
autoregressive (AR) model to propose AR with slack time
series (ARS) model. The effectiveness of the ARSmodel was
demonstrated by numerical experiments.

As this study provides the concept of the slack time series,
there remain following limitations indicating potential future
works.

1) The optimization procedure is currently lacking in
efficiency. We may consider more efficient and stable
optimization algorithms; one possible approach is to
employ some parametric models (or some restrictions)
for the slack time series z†(t).

2) Random errors included in more practical dynamical
time series should be removed. We may combine the
concept of slack time series to the conventional filters
for state space models.

3) The proposed ARS model still offers considerable
scope for further theoretical exploration. It would
be worthwhile to elucidate mathematical conditions
that the proposed ARS approximates the underlying
dynamics from the partial observations. Also the
evaluation of the spatial and temporal complexity is
preferred.

4) ARS model has a high expressive capability (at least
ARS model generalizes general order AR model as
described in SectionV-C, and it includes n·s parameters
therein). Given this complexity, the potential for
overfitting warrants careful consideration. To address
this, some strategies such as regularization appears
essential for practical applications.

5) Lastly, the ARS model has been evaluated solely
through experiments on synthetic datasets. We plan
to estimate the proposed ARS to solve more prac-
tical problems. As an end-goal in mind, this study
has been started to model the time evolution of
the temperature/density profiles of fusion plasmas.
This real-world application would be a demon-
stration for the potential utility of the proposed
ARS model.

APPENDIX A
EXTENSION: INTERACTION EFFECTS
As discussed in Section II-A and II-B, the AR model is
derived from the short period approximation of the dynam-
ical system (shown in Equation (1)) with the assumption
f (x) = dϕ(t, x)/dt = Ax for some matrix A ∈ Rd×d .

Unfortunately, however, this assumption f (x) = Ax is
restrictive. For instance, a dynamical system following a
Lorenz equation f (x) = (−αx1 + αx2, −x1x3 + βx1 −

x2, x1x2 − γ x3) for some constants α, β, γ ∈ R (see [1] for
details) does not satisfy this assumption as interaction terms
x1x2 and x1x3 are included therein.

Therefore, to deal with the interaction effects in ARS
model, we consider a function which generates interaction
terms:

I(x) = (x1, . . . , xd , x1x2, . . . , x1xd , x2x3, . . . , xd−1xd )

: Rd
→ Rd(d+1)/2 (13)

for x = (x1, x2, . . . , xd ) ∈ Rd , and define an extended ARS
model:

x̂♮((j+ 1)h) = ÊI(x‡(jh)), (14)

where x‡(jh) is defined same as Equation (5). Ê ∈

Rd×d(d+1)/2 is a matrix and ẑ†j is a vector, where they are
estimated by solving the following optimization problem:

(Ê, {ẑ†j }
n
j=1) = argmin

(E,{z†j }
n
j=1)

ℓ̃(E, {z†j }
n
j=1),

ℓ̃(E, {z†j }
n
j=1) :=

n−1∑
j=1

∥x‡((j+ 1)h) − EI(x‡(jh))∥22. (15)

While this study considers only the interaction of order 2
for simplicity, the function (13) can be further generalized
so as to include the interaction of order 3 (i.e., x1x2x3)
and so on. Note that polynomial functions of sufficiently
high degree can approximate any continuous functions
(Weierstrass’ theorem; see, e.g., [31]); the extended ARS
model equippedwith the interaction terms of sufficiently high
degree is expected to express any time-invariant dynamical
system (equipped with continuous and non-linear time
derivative f ).

APPENDIX B
PROOF OF PROPOSITION 1
In this proof, e1 = (1, 0)⊤, e2 = (0, 1)⊤ denote unit vectors.
As the observations {zj}nj=1 are assumed to follow the linear

dynamics x‡j+1 = Bx‡j , we have the following identity:

0 = min
B,{z†j }

n−1∑
j=1

∥x‡j+1 − Bx‡j ∥
2
2

= min
B,z†1

n−1∑
j=1

{zj+1 − e⊤1 B
jx‡1}

2, (16)

where the last equality is obtained by substituting z†j+1 =

e⊤2 B
jx‡1. We prove the assertion by the following 2 steps.

Step 1: In this first step, we show that the ARS model
e⊤1 B

jx‡1 is specified by identifiable few parameters. To this
end, we employ the eigendecomposition B = U−13U ,
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where 3 is a diagonal matrix whose diagonal entries are
λ1, λ2 ∈ C, and U is an eigen matrix. Then, we have

e⊤1 B
jx‡1 = e⊤1 U

−13jUx‡1

=
u22(u11z1 + u12z

†
1)

1
λ
j
1 −

u21(u21z1 + u22z
†
1)

1
λ
j
2

= αλ
j
1 − βλ

j
2,

where 1 := |U | = u11u22 − u12u21 and α := u22(u11z1 +

u12z
†
1)/1, β := u21(u21z1 + u22z

†
1)/1. Considering that

u11, u12, u21, u22 are real numbers, and the eigenvalues
λ1, λ2 of the matrix U are compatible with {(u11 + u22) ±√
(u11 − u22)2 + 4u12u21}/2, the following hold:
1) if λ1 ̸∈ R, we have (λ1, λ2) = (η exp(iθ ), η exp(−iθ))

for some η > 0 and θ ∈ (0, 2π ) \ {π}.
2) if λ1 ∈ R, we have (λ1, λ2) = (η1, η2) for some real

numbers η1, η2 ∈ R.

For the case 1), ẑj+1 = e⊤1 B
jx‡1 = 2αηj cos(jθ) =:

f (1)j (α, η, θ ) as the imaginary part of αλ
j
1 − βλ

j
2 should be 0.

For the remaining case 2), ẑj+1 = e⊤1 B
jx‡1 = αη

j
1 − βη

j
2 =:

f (2)j (α, η, β). Considering both cases 1) and 2), the essential
parameters in the ARS prediction ẑj+1 are identifiable,
i.e., (i) f (1)j (α, η, θ ) = f (1)j (α′, η′, θ ′) holds for all j if and

only if (α, η, θ) = (α′, η′, θ ′), (ii) f (1)j (α, η, θ ) = f (2)j (α, η, β)

does not hold for all j, (iii) f (2)j (α, η, β) = f (2)j (α′, η′, β ′)
holds for all j if and only if (α, η, β) = (α′, η′, β ′).
Step 2: True parameters B∗, {z∗†j } satisfy the equality (16).

As the above Step 1 indicates that the ARSmodel is specified
by identifiable few parameters, all the solutions satisfying
the equality (16) corresponds to the same (identifiable)
parameters. Therefore, the prediction ẑn+k is also uniquely
determined and is compatible with the underlying true
dynamical time series zn+k . Therefore, the assertion is
proved. □

APPENDIX C
PROOF OF PROPOSITION 2
As Equation (10) indicates that

x2(t) = x1(t) +
1
α

dx1(t)
dt

, (17)

we have
dx2(t)
dt

=
dx1(t)
dt

+
1
α

d2x1(t)
dt2

. (18)

Substituting the identities (17) and (18) into both sides of the
equation (11) yields

dx1(t)
dt

+
1
α

d2x1(t)
dt2

= −x1(t)x3(t) + βx1(t)

−

{
x1(t) +

1
α

dx1(t)
dt

}
.

Arranging the obtained terms proves

x3(t)=−
1

x1(t)

{
1
α

d2x1(t)
dt2

+
1 + α

α

dx1(t)
dt

+(1 − β)x1(t)
}
.

(19)

This identity proves

dx3(t)
dt

=
1

x1(t)2

{
1
α

d2x1(t)
dt2

+
1 + α

α

dx1(t)
dt

+ (1 − β)x1(t)
}

−
1

x1(t)

{
1
α

d3x1(t)
dt3

+
1 + α

α

d2x1(t)
dt2

+(1−β)
dx1(t)
dt

}
.

(20)

As the Lorenz equation (12) indicates with Equations (18)
and (19) that

dx3(t)
dt

= x1(t)x2(t) − γ x3(t)

= x1(t)
{
dx1(t)
dt

+
1
α

d2x1(t)
dt2

}
+ γ

1
x1(t)

×

{
1
α

d2x1(t)
dt2

+
1 + α

α

dx1(t)
dt

+ (1 − β)x1(t)
}
.

(21)

Comparing equations (20) and (21), where both are
multiplied by x1(t)2, yields{
1
α

d2x1(t)
dt2

+
1 + α

α

dx1(t)
dt

+ (1 − β)x1(t)
}

− x1(t)
{
1
α

d3x1(t)
dt3

+
1 + α

α

d2x1(t)
dt2

+ (1 − β)
dx1(t)
dt

}
= x1(t)3

{
dx1(t)
dt

+
1
α

d2x1(t)
dt2

}
+ γ x1(t)

{
1
α

d2x1(t)
dt2

+
1 + α

α

dx1(t)
dt

+ (1 − β)x1(t)
}

.

Therefore, rearranging the terms proves the assertion∑3
k=0 Pk (x1(t))

dkx1(t)
dtk = 0, where

P0(x) = (1 − β) − (1 − β)γ x,

P1(x) =
1 + α

α
−

(
1 + α

α
γ − (1 − β)

)
x − x3,

P2(x) =
1
α

−
1 + α + γ

α
x −

1
α
x3,

P3(x) = −
1
α
x.

□
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