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ABSTRACT The transformation from physical network function to Virtual Network Function (VNF)
requires a fundamental design change in how applications and services are tested and assured in a hybrid
virtual network. Once the VNFs are onboarded in a cloud network infrastructure, operators need to test
VNFs in real-time at the time of instantiation automatically. This paper explicitly analyses the problem
of adaptive self-healing of a Virtual Machine (VM) allocated by the VNF with the Deep Reinforcement
Learning (DRL) approach. The DRL-based big data collection and analytics engine performs aggregation to
probe and analyze data for troubleshooting and performance management. This engine helps to determine
corrective actions (self-healing), such as scaling or migrating VNFs. Hence, we proposed a Deep Queue
Learning (DQL) based Deep Queue Networks (DQN) mechanism for self-healing VNFs in the virtualized
infrastructure manager. Virtual network probes of closed-loop orchestration perform the automation of the
VNF and provide analytics for real-time, policy-driven orchestration in an open networking automation
platform through the stochastic gradient descent method for VNF service assurance and network reliability.
The proposed DQN/DDQN mechanism optimizes the price and lowers the cost by 18% for resource usage
without disrupting the Quality of Service (QoS) provided by the VNF. The outcome of adaptive self-healing
of the VNFs enhances the computational performance by 27% compared to other state-of-the-art algorithms.

INDEX TERMS Self-healing VNF, deep queue networks, operational automation, cloud-native deployment,
ONAP, network intelligence.

I. INTRODUCTION lifecycle of the software and hardware, comprising the NFV

Software Defined Network (SDN) has engendered the
virtualization of applications and networks, culminating
in a cloud-native phase. Network Function Virtualisation
(NFV) is being adopted in mobile networks with the
deployment of 5G [1]. Each cellular network generation
has led to the development of new business models [2].
Virtualized Infrastructure Manager (VIM) manages the entire
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Infrastructure (NFVI), and maintains a live inventory and
allocation plan of both physical and virtual resources [3].
This approach follows the Management and Orchestration
(MANO) function proposed by the European Telecommu-
nication Standards Institute (ETSI). It results in simplifying
service delivery and reduces cost with high-performance
lifecycle management. Automation is the key to managing
these complex networks and applications in various stages,
such as Physical Network Function (PNF), Virtual Network
Function (VNF), and Cloud-native Network Function (CNF)
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over a massive number of devices and different types
of devices and services across many industries [4]. The
cloud-native network is a software service that adheres
to the design principle of cloud-native network functions
without any hardware appliances attached to it. It includes
CNF as the software component of a network function
performed in a physical device and deployed on cloud-native
data centres or cloud servers. The transformations in the
underlying architecture and technologies lead to complexities
in service lifecycle management [5]. Network Intelligence
(NI) considers the embedding of Artificial Intelligence (AI)
in future networks to fasten service delivery and operations,
leverage Quality of Experience (QoE), and guarantee service
availability, better agility, resiliency, faster customization,
and security [6]. Network Intelligence technology allows the
CSPs to capture the details of service and application-level
VNF deployment in the network. The NI transforms how
we optimize our network operations, significantly reducing
operating costs. NI is envisioned to manage, pilot, and operate
the forthcoming networking built upon SDN, NFV, and
cloud [7].

Machine Learning (ML) for networking has enabled con-
stant monitoring of a particular application of an ML tool that
leads to optimizing the next-generation networks [8]. ML can
exploit the hidden relationship between voluminous input
data and complicated system outputs, especially for advanced
techniques like deep learning. The other techniques, such
as reinforcement learning, could further adapt the learning
results and evolve automatically to the new environments [9].
The re-instantiating and benchmarking of complex services
in automating the standard techniques are followed to deliver
NFV solutions via ML techniques [10]. Predictive analytics
powered by an Al engine enables forecasting results through
leverage of data, sophisticated algorithms, advanced ML
ability, and building on historical data [11]. Al algorithms
are driven to monitor the present condition of equipment
and help predict failure through data-driven techniques based
on the analysis of preceding patterns [12]. These prediction
and analysis techniques proactively fix issues with data
centres, power lines, cell towers, and equipment present at
the customer premises [13].

ML and Al can make edge networks more intelligent and
show the way for next-generation networks. The Al can
scale and operate the networks automatically in adopting
new requirements in the model [14]. With this information
model, a plug-and-play algorithm constitutes the changes
to topology and route optimization as of the environmental
changes. ML is a subset of Al that refers to collective data
and pattern analysis, where the software system learns and
adapts from continuous experiences over time.

The enhancement of NFV has matured with the intro-
duction of advanced orchestration models to a whole new
paradigm. The Existing system addressed the self-healing
problem with on-policy methods such as Proximal Policy
Optimization (PPO) uses a new type of gradient method
where policy uses a neural network to implement easily on
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the network. Advantage Actor-Critic (A2C) with Generalized
Advantageous Estimation (GAE) uses a trajectory where
the values are stored and executed in the environment
in calculating the estimated advantageous function. The
Trust Region Policy Optimization (TRPO) calculates the
weighted probability of the current policy and formulates
the optimization of that policy using Kullback-Leibler
(KL) divergence measurement using action and reward with
a Monte-Carlo trajectory. The proposed DRL algorithm
chooses the DQN mechanism over other PPO, A2C GAE
and TRPO mechanisms because of its scalability issues.
The DQN is proposed using Stochastic Gradient Descent
(SGD) to calculate the weight of the network. The learning
objective uses a target network and an evaluating network.
The algorithms were implemented to work on VMs with
Apcera installed and were trained with data collected through
Apceras API, and the simulation was carried out through a
cloud cluster. We could see that DQN/DDQN outperforms
PPO+MC, PPO+GAE, TRPO+MC, and TRPO + GAE
compared to the applied agents. The proposed algorithm is
designed with zero human intervention, where the service
provider reads through the provisioning of data through Deep
Queue Networks (DQN) that decide which public cloud is
being used to serve the customer better. The self-healing
operation restarts the VNF applications whenever it detects
that the application has crashed or is down, increasing the
overall availability of VNF. This leads to building a resilient
and fault-tolerant application that can handle changes and
perform well in emergencies. The existing solutions in
comparison to proposed methodologies are discussed, and the
objective of the proposed system is described below:

e The proposed system analyses the problem of
self-healing VNF through the DRL mechanism that
helps in decision-making based on the DQN prediction
model.

« VNFs have become a powerful base operation to use
the DRN technique in chaining operations where service
providers can enable/disable services based on QoS.

o The proposed DQN algorithm decides on available
instances on VMs, voice services to deploy, type
of hardware resources to use, and rapid enabling of
services.

e The DQN mechanism minimizes the resource usage
provided by VNF without disrupting the QoS. Adaptive
Self-healing of VNF results in faster deployment cycles
and lower CapEx and OpEx.

The Open Networking Automation Platform (ONAP) is
an organized open-source cloud networking project built
with the objective of developing a greater orchestration and
automation platform. The major goals of this paper are listed
below:

o Provides a real-time operational environment based
on AI/ML policy-driven orchestration and automation
techniques.
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FIGURE 1. A network intelligent operations analytics system for NFV framework.

o The management of new services and their resources
across the entire life cycle of the network

o ONAP addresses the industry problem of fragmentation
as an initiative in taking the industry towards automation
and convergence of enabling an ecosystem between
open source and standards.

« Innovation through dis-aggregated services is deployed
using VNF workloads in containers and virtual machines
at the Edge that intensively push the envelope to 5G.

The major contributions of this paper are listed as follows:

o The six state-of-the-art Deep Reinforcement Learning
(DRL) algorithms are examined with fundamental
differences in their properties ranging from off-policy
methods such as Deep Queue Networks (DQN) and
Double Deep Queue Networks (DDQN) to on-policy
methods such as Proximal Policy Optimization (PPO)
Advantage Actor Critic (A2C).

o The different policies are compared to a baseline
P-Controller in order to evaluate the performance with
respect to simpler methods.

« The final policy applied by the agent shows considerable
improvements over a simple control algorithm with
respect to reward and performance with multiple exper-
iments with varying loads and configurations tested.

The structure of the remaining paper is sectioned as follows:
Section II describes the properties of DRL applied to VNFs
in an NFV architecture for managing horizontal autoscaling.
Section III deals with the system model and properties of
applying DRL to the problem. Section IV describes how DRL
solves the autoscaling problem by applying six state-of-the-
art DRL agents to the proposed model. Section V presents the
evaluation of results from various experiments and modeling.
Lastly, section VI presents the conclusion and future work.
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Il. RELATED WORKS

Network virtualization is in place because of a massive
influx of devices coming with IoT and 5G applications [15].
Hence, there is tremendous pressure on next-generation
infrastructure. Today’s network largely comprises purpose-
built infrastructure, with each device containing its own
management software [16]. The network of tomorrow will
be deployed using NFV and SDN. Instead of a separate
router, VPN, and firewall on three different hardware pieces,
you can run all three on the same Intel architecture-
based infrastructure with a network intelligent operations
analytics system as represented in Fig. 1. When you add
softwaredefined networking, you add a degree of intelligence
and flexibility to your network provider that can greatly
reduce operating costs.

Traditional infrastructure and new NFV-based infrastruc-
ture will need to coexist in the network for a number of years
to come. For all this to work, NFV service assurance must
be integrated with the service orchestrator responsible for
managing the VNF lifecycle. Service assurance analytics is
a key input to the orchestrator, driving remedial changes to
services/VNFs. To know what open source has already done
to transform the operating system (Linux), the virtualization
Infrastructure (OpenStack), and big data (Hadoop) started
to work in a collaborative manner rather than relying on
proprietary solutions [17].

A. OBSERVABILITY BRINGS CLARITY TO CLOUD-NATIVE
NETWORK

In microservices, the observability in the cloud-native
network has become very important. Zero intervention
automation and containerization are important concepts,
but microservices bring transparency and assurance to
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FIGURE 2. Al Engine for next-generation cloud-native networks.

network performance evaluation. In the telecom sector, the
vendor-specific solution for service assurance observes the
network traffic by pulling the data from the fibre optic
connections via physical taps [18]. The observability of
cloud-native networks has various properties, as listed below:
How can we put a physical tap on a VM? How do we
monitor the microservices when deployed in thousands on a
single VM at a particular time? Whatever happens in physical
infrastructure cannot be virtually possible in the cloud-
native network [19]. The OpenSource cloud community has
built robust ecosystem tools to provide service assurance
compared to Fault Management, Configuration, Accounting,
Performance, and Security (FCAPS) functionalities in the
traditional physical telco cloud.

B. NETWORK AUTOMATION AND OPTIMIZATION

Due to the rapid increase in number of devices connected
to the network, the communication networks have become
complicated and hard to manage. The deployment of the
latest technology like SD-WAN and its services like NFV
and SDN has an enormous increase in complexity [20]. The
advancement of automation techniques in network operation
is leveraged by allowing network operators to use Al and
ML technologies. Collecting network and device data usually
predicts and pre-empts the possible issues in the network and
applies fixes to optimize the network’s reliability [21]. The
service request on the customer portal holds detailed activities
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such as requests, complaints, interactions, and cross-channel
portals. Quantitative and qualitative data are analyzed using
various Al, ML, and deep learning techniques [22]. It also
uncovers various trends and issues in performance (i.e.) based
on the device, location, and time zone.

C. 5G WILL BE A TURNING POINT FOR NFV

The ETSI Zero-touch network and service management
(ZSM) aims to enable largely autonomous networks driven
by high-level policies and rules. These networks are
capable of self-configuration, self-monitoring, self-healing,
and self-optimization without any human intervention in
the future for automated execution of overall operational
processes [23]. This requires a new horizontal and vertical
end-to-end architecture framework designed for closed-loop
automation and optimized for data-driven machine learning
and artificial intelligence engine for future generation cloud-
native deployment as illustrated in Fig. 2. The ZSM architec-
ture allows for managing the operational data by separating
it from the management applications. The efficient access
to cross-domain data exposure (e.g., topology, telemetry
data) could be leveraged by intelligent network and server
capabilities (e.g., A, ML for automation) [24]. This archi-
tectural design helps enable closed-loop automation (i.e.)
service assurance and process fulfillment at the network and
service-management levels in the VNF self-healing process.
This indeed results in automated decisions bounded by
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various policies and rules using a self-optimization decision-
making mechanism. The data has become the lifeblood of
bringing automation across cross-domain services. Rapid
access to real-time management data has become a key
process to Al, ML, and closed-loop automation [25]. The
rise in data persistence from cross-domain data services
allows data to be stored separately from the application and
shared amongst other consumers. The data includes various
attributes such as performance, trace, configuration, assur-
ance, topology, and inventory data. The ZSM architectural
design is meant for closed-loop automation and is optimized
with data-driven ML and Al techniques [11].

Closed-loop is a feedback-driven operation that helps in
continuous adaptation and optimization of network resource
utilization and fulfillment of automated service assurance.
The analytics are bounded by various policies and rules in
determining the operational conditions for which automation
conditions are allowed. Based on the insights from various
research literature, the auto-scaling problem in VNFs is
analyzed. The proposed DQN mechanism uses traditional
model-free Q-learning to learn about a scaling policy and
implements an auto-scaling solution based on the available
legacy system in VNF. These approaches demonstrate good
results based on the traditional rule-based auto-scaling
solutions. The experiment evaluations are hard to compare
as they operate in different environments for implementing
RL solutions and modeling the auto-scaling problem. It is
solved using the DRL mechanism with VNFs generates
the performance measurements as inputs and executes
scaling operations (VNF self-healing) based on those existing
measurements. This paper has addressed six DRL algorithms
to an NFV system architectural model for the autoscaling
problem in ONAP platform using closed-loop automation
orchestration as illustrated in Fig. 3. Virtual Probe analytics
chooses the DQN approach rather than RPROP because
of its scalability issues. The DQN proposes an update to
the network through stochastic gradient descent of smaller
batches sampled from stored observations.

Ill. SYSTEM MODEL

A. PROBLEM DEFINITION

NFV removes the dependency between the network functions
hardware and software using VNF. To achieve faster deploy-
ment cycles, we need lower Capital Expenditure (CapEx) and
dynamic utilization of cloud resources to lower Operating
Expenses (OpEx) [2]. Reactive action is needed to allocate
more resources during an unprecedented load rise during the
modeling of VNF during self-healing operations with closed-
loop orchestration. To make these changes happen, a VNF has
to be managed by some system with action to be executed.
Meanwhile, for now, this management is carried out manually
with the analytics of data being generated by the VNFs. The
systematic procedures in a management platform have a large
complexity that examines the possibility of using DRL in
networks by initiating the analytics and action selection. The
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collective input dataset comprises an internal and external
load of VNFs being deployed on the data centre for four
days of data collection. The output comprises the average
CPU load of 8 VNFs measured with respect to the packets
sent and received from the live network. The computation
is performed using a GitHub TensorForce based on Google
Cloud SDK with a local installation of Python 3.5 on the
Linux platform. Six state-of-the-art algorithms are compared,
and computations are performed using this dataset.

Reinforcement Learning (RL) can take action toward an
environment by studying self-learning and adaptable agents
that progress to maximize the rewards resulting from the
actions made. The actions a; are taken by the agent in an
environment that is based on the current state s;, reward
ry, and policy . The policy evaluation in the intermediate
state s;4+1, reward r,y1 and its next action are carried out
in a closed-loop, which turns the interaction between the
agent-environment. In essence reinforcement learning is an
optimization problem to maximize the reward over time.
Wherein the optimization is based on the state’s environment,
reward influence, and actions performed in changing the
states and the reward. The agent in an environment exploits
the current knowledge and maximizes the rewards by taking
greedy actions, pushing forward the acquisition of new
knowledge by exploring actions. Lastly, the agent adapts to
its policy with respect to the dynamics of state transition over
time.

B. VNF MODELLING DURING SCALING (SELF-HEALING)
OPERATIONS

In this section, a VNF is modeled with horizontal scaling
operations. The states are generic in the nature of the
environment. Translating the states to different counters with
various kinds of VNFs is possible. The states are chosen, and
the measurements are based on the three classes L%, L™
p2°5 . The total of three observable values are divided into
loads I, errors e and allocation u. The loads are considered
either as internal L™, or external L%, and the errors pQ"S .The
observable values are represented in Table 1. To strengthen
MDP properties, the model with values k=5 of one state is
combined with the last observed values into one state. So, the
delay in observation is measured three times for every time
step by the RL agents that are being applied to the model.
The state at time t is observed with values with k=5, which
holds 15 dimensions in a state as given in eq. 1.

vm vm vm
utr utt_l Mltfk
r r r
se= | L, [ M

pr pr pr
lt lt—l lt—k
The scaling action possible to perform on the model, and

those actions can be executed on the model via an external
entity such as an RL agent,

a € (1,0, —1}Vt 2)

The values where a;=1 represent a scale-out function and
a; = —1 represent a scale-in function. Whenever a scaling
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FIGURE 3. Closed-loop orchestration in ONAP for VNF Self-healing process.

action with a; # 0 model is performed, the model is
set to a scaling state, where the distributed loads and their
work have been reflected in state-transition dynamics, which
is described in eq. 2. The present state and its timeframe
Nreg» With 3 and 5-time steps, is randomized by leading
from the real system. In reality, a VNF configuration and
its scaling vary based on the allocation of the number of
VMs by the VNF. In the case of dealing with the model
that is configurable, with respect to modeled scaling using
the parameters N," and N, . Therefore, the result of those

max*

. . . m v
scaling actions becomes limited when N, and N7 .

C. DYNAMICS OF STATE-TRANSITION IN DISCRETE MODEL
The state transition determines in detail the internal calcu-
lations and samplings that are used in the state transitions
traversed in time with the discrete model [10]. Based on a
state transition, the overview of an implemented model and
its internal dependencies is accustomed at DQN/DDQN for
the self-healing of VNFs.

1) CALCULATION OF uyM
The VM utilization rate is calculated through a normalized

measurement with respect to the minimum and maximum
number of VMs.

vm __ ajvm
vm __ Nt Nmin
u" = (3
Nym — NV
max min

2) SAMPLING OF PROCESS LOAD L?R

The whole sample load processing model is driven by
generating external traffic with /", Based on the generated
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traffic load, the current process load is calculated in two ways
based on the scaling state. In a real VNF, the scaling action
generates additional load on the VM by means of internal
processes in re-distributing data and leads to the preparation
of a new VM configuration. With this, the process load is
calculated as given below in eq. 4.

pr | B+ U(=1pr, pr + Nscate),  If scaling state
' lttr + U(_nprs npr), else

“

Random variable U(a,b) is drawn between (a, b) from a
uniform distribution, where 7, nyca1e>0

3) SAMPLING LOAD OF L$PU, [ RAM

The CPU and RAM load reflects the traffic load and how
it gets processed and distributed between VMs. The initial
values of CPU and RAM have been inspired from the real
system lgp " Iy and varied with the number of processes
and their noise [48]. The re-distribution also holds the load
between VMs and scaling in/out processes. The share update
rule, where i € {cpu, ram} is given in eq. 5.

I = gD +ai(@ =1 N+ — 1" ) + niU(=1, 1)

)
. NVm 1
i I, 2 (= + U(=0.1,0.1)), if scaling state
8se(ly) = ' N n
(-1
(6)
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TABLE 1. List of Symbols.

Symbol Description

Lewt External load of the VNF

Lint Internal load of the VNF

pRoS QoS degradation

uy™ VM utilization normalized at time ‘t’

wr process load normalized at time ‘t’

li" traffic load normalized at time ‘t’

P Average CPU load of the VMs utilized at time

lpem Average RAM load of the VMs utilized at time ‘t’

epw Magnitude of hardware error at time ‘t’

eé‘“ Magnitude of latency error at time ‘t’

NP VM utilization scaled in at time ’t’

Ny Maximum number of VMs

Ny Minimum number of VMs

Npr Noise level on process load

Nscale Added process noise due to scaling

gsc(l}) Added/removed load between VMs

klat Gain on latency error

Pplat Probability of latency error on bad state

Phw Probability of hardware error in bad state

Q(s,a;0) Q-function approximation using a neural network with
weights 6

LP®@N(s,a;0) |Loss function to minimize  when training a DQN
agent

m(als, 6) Representation of policy probability distribution of ac-

tion ‘a’ in state ‘s’ given neural network weights 6
Loss function to maximize # when training a TRPO
agent with Monte Carlo trajectories

Loss function to maximize & when training a PPO
agent with Monte Carlo trajectories

LTRPO—AC(9) |Loss function to maximize @ when training an Advan-
tage Actor-Critic agent with TRPO and GAE

Loss function to maximize € when training an Advan-
tage Actor-Critic agent with PPO and GAE

LTRPO—A (9)

LPPO—A (0)

LPPO-AC (0)

Or 14 Future discounted reward (Q) given actions sampled
from old policy
KL(r) Kullback-Leibler divergence measurement between

current and old policy distribution
Gt Future discounted reward (Q) calculated from Monte
Carlo trajectory

V(s¢;w) Critic as representation of value functions using a neu-
ral network with weights w
AGABQN) Estimation of advantage functi ing GAE with eli-
: s ge function using with eli
gibility tracy A
Ot Temporal difference (TD) error at time ‘t’

Here gsc(l,i) is the load add/remove due to re-distribution
when the scaling action is active, m defines the number of
time steps taken in a system in scaling state since the last
scaling action a; # 0. Further calculations are performed
in a real system based on the CPU and RAM measurements
mentioned in eq. 6.

1, if lf > 1
lit = tlnin’ lf l; < l;nin N
IH else

4) ERROR SAMPLING

The agent resource optimization is carried out to avoid the
negative impact the model provides. The measurement of
a negative impact is said to be hidden and sampled with
probability P, wherein in real VNF, there seems to be a high-
risk factor [6]. The errors are defined based on the reasoning
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as listed below in eq. 7 and eq. 8.

klat(l;‘r_u;/m), lf lttr Zu;’m and U(O, ])> (1 _Pial)

eiat —
0, else
(3
o =1 (" + &) ©
where,
1
et — 15 ltcpu >09and U0,1) > (1 — PZW)
0, else
1
eram _ 5’ l;’am > 0.95 and U(O, 1) > (1 _ PZZW)
0, else

IV. PROPOSED SYSTEM

The autoscaling problem is solved using the DRL mechanism
with VNFs generating the performance measurements as
inputs and executing scaling operations (VNF self-healing)
based on those existing measurements as represented in
Fig. 4. This paper has addressed six DRL algorithms to
an NFV system architectural model for the autoscaling
problem in ONAP platform using closed-loop automation
orchestration. Virtual Probe analytics chooses the DQN
approach rather than RPROP because of its scalability
issues. The DQN proposes an update to the network through
stochastic gradient descent of smaller batches sampled
from stored observations. This paper addresses changes in
comparison with the previously developed NFQ:

1) Using Stochastic Gradient Descent (SGD) as an update
method for calculating the weight of the network.

2) Collective sampling of transitions using random mini-
batches for updates; the method is called experience
replay.

3) Two networks are used during learning (i.e.) a target
network Q(s,t;é) and an evaluating network Q(s,t;0)

The two network learning approaches advance in strength-
ening the learning stability, where the first one is meant for
updating weights, and the latter is meant for evaluating the
value as shown in eq. 9. In every C time step, it held constant
in between two networks (i.e.) target network Q(s,t;é) and
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Algorithm 1 DQN/DDQN With Inspiration

1: Initialize memory D

2: Initialize Q-network with random weights 6

3: Initialize the target Q-network with weights 6'=0

4: for episode = [1,...,M] do

5:  Sample initial state sl from the environment

6 fort=[1,T]do

7: //Execute action with e-greedy approach
random action with probability €

5 a= arg max,Q(s, a; 0), else

9: Execute a; on the environment and observe 7, 5,41

10: Store transition {s;, a;, 1y, S;4+1} in D

11: //Update network with experience replay

12: Sample minibatch B={(S(TI), a(Tl), (Tl), 521, e, (T"), a(Tn), r(Tn), 5?—1)}

r;’), ifs (-)H = terminal
13: y= (’) + yam“xQ(siH, a; 9), elseif DON
(') + )/Q(sr_H, arg maxaQ(si+1, a; 0); 9) elseif DDQON

14: e=( ... y™ — @G, alY; 0)....06W, a8

15: L) =ce.e"

16: Perform a minimizing step in 6 on L(6)(*)

17: //Reset target network

18: if ((episode — 1)T + t)%C = 0 then

19: 6=06
20: end if
21:  end for
22: end for

23: (¥*)=e.g., with Stochastic gradient descent or Adam optimization

QGs,t;0). The steps that occur in between synchronizing the
network weights Q(s,t;0) are updated with experience replay
and SGD.

~ A\2
LP(si. a3 0) = (1o + v, Q(Sr41. @ 0) = Sy, a: 0)
(i0)

A. TRUST REGION POLICY OPTIMIZATION

The ratio of a weighted probability is maximized with a
constraint with respect to 6, between the current policy
and change in that policy is formulated as an optimization
problem as shown in eq. 10.

ﬂ(aflsts 9)
7T(at|st, BOoid)
1 7 (a|s, )

= — 0. , 11
TT lﬂ(atlst, ) n(,/d(st at) ( )

rngax L,TRPO?A(Q) = Et{ O (St a,)}

The Kullback-Leibler divergence measurement is one
way of calculating the future discounted reward, G, of
approximation Qg ,(s:, a;) with a trajectory experienced
in interaction with the environment, i.e., Monte Carlo
trajectories.
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B. DQN AND DDQN

The DQN algorithm is proposed with improvements fed
with better learning capabilities for handling autoscaling of
Self-healing of VNFs in a network. The influential improve-
ments that are driven by the DQN algorithm are Double DQN
(DDQN), experienced replay based on prioritization, and
Dueling networks. The overview of an implemented model
and its internal dependencies, by arrow representation, are
given in Fig. 5. The DDQN has become the simplest method
to implement as it requires only a minimal change to the loss
function represented in eq. 11. The action values proved that
DDQN reduces overestimations compared to standard DQN.
The pseudocode with experience replay for DQN and DDQN
is mentioned in algorithm 1.

LPPON (s, ay; 0) = (rz + yQ(sm, arg
. 2
maax Q(Sl+la a; 9)9 - Q(Sla (27 9)))
(12)

C. PROXIMAL POLICY OPTIMIZATION (PPO)

The PPO algorithm holds a new type of gradient method
where policy uses a neural network for policy optimization
based on TRPO logic, but it’s easy to implement on
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Algorithm 2 PPO With Monte Carlo Trajectories

1: Initialize the -network as Actor with weights 6

2: Initialize memory D

3: for episode =[1,...,M] do

4:  Sample initial state s1 from the environment

5 while s; # terminal do

6 //Save transitions from T steps with the old policy
7: fort=[1,...,T] do

8 Sample a; from 7 (a;|s;; 0)

9 Execute a; and store {s;11, r;} in D

end for
11: // MC Estimate of future discounted reward
12: fort=[1,...,T] do
13: G[ = ZlT:_Ot ylrt+[
14: end for
15: //Update policy network
. (m(ar|sT: 6") - s
(—, 1 +€)QT, ifOr >0
16: LT(O) = L ZT w(arlst; 0)
' T &T=l w(arlst; 6" <
(—, 1-— G)QT, else
w(arlst; 0')
17: Perform a maximizing step in 6 on L7 (0”) (*)
18:  end while
19: end for

20: (*) =e.g., with Stochastic gradient ascent or Adam Optimization

the network. Using KL- KL-divergence measurement, PPO
optimizes the ratio between different policies to attenuate
the ratio difference, as mentioned in eq. 12. Stable update
and implementation are performed with PPO in algorithm 2,
resulting in faster convergence. Al-driven Closed-loop net-
work architecture is a feedback-driven operation that helps in
continuous adaptation and optimization of network resource
utilization and fulfillment of automated service assurance.
The analytics are bounded by various policies and rules in
determining the operational conditions for which automation
conditions are allowed. Based on the insights from various
research literature, the auto-scaling problem in VNFs is

solutions. The experiment evaluations are hard to compare as
they operate in different environments for implementing RL
solutions and modeling the auto-scaling problem. (13)—(15),
as shown at the bottom of the page.

D. ADVANTAGE ACTOR-CRITIC (A2C) WITH GAE
The actor-critic method approximates the advantage function
as Generalized Advantageous Estimation (GAE), as men-
tioned in algorithm 3.

The trajectory T is stored and executed in the environment
in calculating the estimated advantage function as

lyzed. Th d DQN hani traditional GAE
analyze e propose QN mechanism uses traditiona ) Z()‘V) Sier (16)
model-free Q-learning to learn about a scaling policy and
implements an auto-scaling solution based on the available
legacy system in VNF. These approaches demonstrate good ~ Where,
results based on the traditional rule-based auto-scaling 8 =1+ yV(ser: w) — V(s w)
. (m(arlsr; 0") ,
(14 €) Qr st @), i (st ) > 0
PPO-Agy _ £ n(arlsr; 0)
Ly 0)=E g (13)
X(M — e)Q (sy,ap), else
w(alsi; 67 o T
. (m(ar|sT;0') .
1 & mln(f’ + G)Qno/d(st’ ar), ifOrpa(st,a:) > 0
— _ z w(ar|st; 0) (14)
T T=1 max(w 1—6)@ (st,ar), else
- JT(QT|ST;9/)/7 Told T,4T)s
s.t E{KL((|s;. 0), w(|si. Ooia)} < 15)
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Simulation of VNF
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FIGURE 5. State transition model driven by an external load represents real VNF traffic.

Here V(.) is represented using a neural network as a value
function. The implementation of both PPO and TRPO with
GAE estimates by replacing Qy,,, (s;, a;) with

7)

GAE(L
A (51, a) = AZF P (s, ap)

Advantage function methods of A2C and optimization
problems for TRPO and PPO changes are mentioned in eq.
13 and eq. 14. (18)—(20), as shown at the bottom of the next

page.

V. PERFORMANCE EVALUATION

The evaluation section helps analyze the task and implements
a discrete-time model for VNFs to capture the characteristics
of the scaling operation. It also examines the robustness and
generalization during the learning process of six state-of-
the-art DRL algorithms. The auto-scaling or self-healing of
VNF agents is based on workload management on virtual
machines and happens in an automatic manner without any
human intervention.

A. APPLICATION PERFORMANCE MANAGEMENT

1) TENSORFORCE

TensorForce is a new Python framework where the agents
are tuned and trained. TensorForce is based on TensorFlow,
allowing for agent modularization and a control logic
separation from the environment. The parameter model has a
separate component, hence implemented with a standardized
interface and read by all the agents. For specific autoscaling
problems, the agent implementation has given off-the-shelf
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TABLE 2. DQN and DDQN parameters.

Parameter Value
Q-Network [200,200] ReLu
Target sync fre-| 10000
quency

Adam stepsize 2e-0.4
Batchsize 70
Discount 0.99
Reward True
normalization

Epsilon start 1
Epsilon end 0.05
Epsilon anneal [ 50000
steps

TABLE 3. PPO/TRPO GAE parameters.

Parameter Value
Value-Network [20,20] ReLu
Adam stepsize le-5

A 0.985

components in TensorForce and needs to be tuned based on
the implemented model. The list of different parameters used
in the model for various agents is described in Tables 2, 3, 4,
and 5.

The trained agent evaluation is modified to evaluate
the agent’s performance on robustness with respect to
environmental changes. The parameters listed in the table
are fine-tuned to show the dynamics of performing scaling
actions to different workloads. Furthermore, the probability
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Algorithm 3 PPO Advantage Actor-Critic With GAE ()

1: Initialize V-network as Critic with weights w

2: Initialize the w-network as Actor with weights 6
3: Initialize memory D

4: for episode = [1,...,.M] do

5:  Sample initial state s from environment

6:  while s; 7 terminal do

7: //Save transitions from T steps with the old policy
8 fort=1[1,...,T] do

9 Sample a,fromm(.|s;; 6)

Execute a; and store {s;+1, ¢} in D
11: end for
//Update the Critic with TD(1) learning

2
13: LV(w) — z%zo ((V(sl; w)) — sump— Ty"rit + n))

Perform a minimizing step in w on LY (w) (%)

15: /[Estimate the advantage function A; using GAE(A)
16: fort=11,...,T] do
17: YVith 8t =1 +yV(see1; w) — V(s w)
18: Al =3000p) St
19: end fort
20: //Update the actor
T 16 A N
' (—(“T|ST U e)Ar, ifAr >0
21 LIT(O/) — 1 ZT JT(aT|ST; 9)
: T &T=1 w(ar|st; ") A
(—, 1-— e)AT, else
n(arlst; 6')
22: Perform a maximizing step in & on L™ (0") (*¥)
23:  end while
24: end for
of latency is set to 1 for the time it takes to call or send a 2) TRACING

package. Learning optimal scaling becomes easier in com-
parison with stochastic states of performance degradation.
The reward signal weights are carefully tuned as of policy,
and good behavior is rewarded. The rewards define the
traits of scaling up at a high load and scaling down at
a low load.

The tracing is a third-party open-source tool where virtual
Probes are meant to record data logs present within the
microservices. The virtual Probes have collective logging and
events, thus capturing the data from the microservices of
every CNF and user endpoints such as TCP RTT, retrans-
mission rate, and DPI inspection. Unlike physical probes,

7 (a|s;, 0)

maxg LTRPO=AC (9) — I w(als, 0)
m(arlse, Ooia)

T
1 7T(6h|st: 0) AGAE()

A:r[ald (8¢, ar) }

— R 18
=T 2 sy ) ) (19
s.t E,{KL(n(.|s,, 0), m(.|s;,0)} <«
;60
' (M 1+ e)AW(Sz, ar), Az, (st ar) >0
LPPO—A(g) = w(ar|sT; 6) ‘ (19)
n(ar|sr; 6')
(W’ 1-— E)A”uld(st’ a,), else
. (m(ar|sT: 6"
1 T l}’l(m, 1+ )Ag‘?dE()‘)(Tt, at)y Ag{ﬁE(}n)(S[, Clt) >0
- T Z w(ar|st; 0") AGAE() I (20)
T=1 max(m, ) Told (ST, aT)s else
34499
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TABLE 4. PPO parameters.

Parameter Value
Policy-Network [200,200] ReLu
Adam stepsize le-4

Batchsize 300
Discount 0.99
Clipping ratio 0.2
Reward True
normalization

TABLE 5. TRPO parameters.

Parameter Value
Policy-Network [200,200] ReLu
« 4e-4

Batchsize 300

Discount 0.99

Reward True
normalization

virtual Probes don’t involve negative network performance
and generate a wealth of data supporting Al and ML. The
dataset for evaluation is from the customers as the VNFs
are deployed at the customer premises to interact with
other network functions. The dataset is from the Telecom
Regulatory Authority of India (TRAI), Government of India,
with the assistance of an Indian telecom operator in order to
visualize and analyze. The complete dataset comprises the
internal and external load of a VNF deployed during four
data collection days. The average CPU load for 8 VNFs
is measured with respect to the packets sent and received
from the live network. The computation is performed using
a GitHub TensorForce based on Google Cloud SDK with a
local installation of Python 3.5 on the Linux platform.

B. EXPERIMENTS AND RESULTS

The experimental result is based on the implementation
evaluation carried out in the previous section. The focus is on
the agents pertaining to reward, the robustness/generalization
of policies, and convergence rates applied to the model. Self-
Healing using DRL on model consists of 140 timesteps that
define one episode as agents trained on the same traffic
pattern. The pattern was a sinusoidal function to represent
the different dynamics of the different episodes encountered
during traffic with a period of 140 timesteps and varied
between 0.10 and 0.95 in load. The evaluation is divided into
two phases, as listed below:

1) Training phase evaluation
2) Learned policy evaluation

1) EXPERIMENT 1: GATHERING STATISTICS OF TRAINING

The training agent is evaluated based on how long each
agent, based on average, takes to converge. This has indeed
become an important agent measurement being implemented
and deployed on VNFs since they are known as slow real-
time systems. The average reward in Fig. 6 shows that DQN
and DDQN show the concrete result of having the highest
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FIGURE 6. Average reward per timesteps for agents.
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FIGURE 7. Average reward for traffic pattern.

converged reward amongst the agents. The graph displays
that PPO A2C has a fast initial increase in reward and
stands tall until 60000 timesteps. The convergence rate of
all agents happens at approximately 180000 timesteps in
70 days on a real-time system model. The DQN and DDQN
have the most stable value of convergence and have a small
margin of variance when they are stable. The interesting thing
to note is that TRPO+GAE has not reduced the variance
compared to TRPO+MC to see an increase in converged
reward. PPO shows a greater impact on being applied
A2C with faster convergence, smaller variance, and higher
reward.

The training results analyze as to why one algorithm
performs better than the others. Initially, the episodic rewards
show how well the algorithm performs during training. The
result shows how each algorithm explores new paths and
solutions for 1000 episodes. We used a € -greedy policy with €
decreasing after each episode. While € decreases, so does the
number of random actions taken, and the algorithms instead
choose actions to maximize the reward. The concentration
of higher rewards in the mean rewards for DQN than the
comparative algorithms are listed in Table 7. These rewards
are the total returns from the reward functions after 285 steps
without any random actions. The DQN/DDQN has the best
training mean and end reward for 1000 episodes; hence,
the rest of the algorithms fall behind. From the simulation
performed and from the table, we found that DQN/DDQN is
the best among the rest of the algorithms.
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TABLE 6. Episode reward.

Algorithm Mean Reward End Reward Simulation
Reward
DQN/DDQN -142.36 -85.39 -83.13
PPO+MC -141.26 -87.99 -86.43
PPO+GAE -144.40 -89.23 -88.34
TRPO+MC -139.93 -88.43 -87.44
TRPO+GAE -140.44 -86.83 -86.84
TABLE 7. Episode cost.
Algorithm Mean Cost End Cost
DQN/DDQN 0.565 0.545
PPO+MC 0.576 0.515
PPO+GAE 0.652 0.610
TRPO+MC 0.688 0.710
TRPO+GAE 0.645 0.630
TABLE 8. Episode speed.
Algorithm Time (s) % faster than
TRPO+GAE
DQN/DDQN 987s 27.0%
PPO+MC 997s 26.0%
PPO+GAE 1015s 25.8%
TRPO+MC 1256s 24.6%
TRPO+GAE 1452s

Compared to episode rewards, the episode cost covers
running the VM cloud clusters online. The comparative
analysis of various algorithms is carried out based on the
mean and end costs after training for 1000 episodes. The
training reward of DQN/DDQN outperforms the rest of
the algorithms, as listed in Table 8. The VNF agents had
acted optimally with respect to the learned policies during
training, and each experiment was carried out 300 times
with different random seeds and statistics, and it was
saved and compared for each VNF agent. During each
experiment, the statistics consist of average reward count
with percentiles, average resource utilization, maximum
resource utilization, and average latency problems for every
timestep.

To make a proper comparison between algorithms, speed
is the desired attribute for measuring the performance of
the cloud infrastructure. The computation time for various
algorithms is listed in Table 8. The DQN/DDQN algorithm
has taken minimum time with a higher percentage of
faster computation in completing the 1000 episodes of
training with TRPO+GAE as the baseline for the speed
comparison.

2) EXPERIMENT 2: CHANGING THE MODEL PARAMETERS

For this experiment, the best weights amongst DQN, DDQN,
PPO, and PPO A2C agents are saved with changes in the
traffic pattern and internal dynamics of the model being used
in the environments based on the training data. To evaluate
the performance of agents in critical (or) new situations, i.e.,
measurement of generalization properties in the change of
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FIGURE 9. Automatic adaptation of virtualized resource selection policy.

parameters in the model. This change has become important
in the process of self-healing of VNFs since there are different
traffic patterns and configurations on their respective VNFs.
A simple P-controller is added to the trained agents, and it’s
been deployed in the environment. The P-controller does not
tune the external load (gain = 1) in the feedback of action
selection.

The baseline for deploying the most influential funda-
mental control algorithm compared to the performance of
other agents. The agents act optimally due to the policy
being learned during training, where the agents are evaluated
for each state and action without feedback. In Fig. 7, the
plot compared statistics with respect to the policy deployed
by each agent. The blue line indicates the external load,
and the rest of the solid lines are the average resource
allocation by each agent. The plot shows resource utilization
and handles the average latency problems represented in
dashed lines and maximum VM utilization (dotted) for each
timestep.

The DQN and DDQN show consistency in getting the
highest reward during training. In Fig. 8, the customer
network is applied for mimicking the pattern. This pattern
acts as a training pattern and stretches much longer over three
days in the model, representing 5000 timesteps. In Fig. 9,
the basis of the fixed virtualized resource selection policy
deployed by our agents we conclude the fact that DQN
receives the highest reward. In Fig. 10, the graph shows
how the process load is updated in two different ways
depending on whether the system performs a scaling action.
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FIGURE 10. Visualisation of process load during random scaling actions.
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FIGURE 11. Visualization of the errors together with the other states.

In Fig. 11, the visualization of errors is shown together with
the other states during random scaling operations. The graph
clearly shows that errors are present when a low number
of VMs are allocated and when the external load is high,
a state where we can expect QoS issues in a real VNF. The
episodic reward-based performance measurement is based on
the computation time in seconds and speed in calculating
percentages compared to DQN/DDQN with various other
algorithms. The DQN/DDQN uses the two neural networks
for calculating the TD target, and DDQN predicts the output
computation of 27 % greater with 128 training samples, from
0.5ms to 1ms for each DQN/DDQN compared to PPO+MC,
PPO+GAE, TRPO+MC, TRPO+GAE.

VI. CONCLUSION AND FUTURE WORK

The six state-of-the-art algorithms are trained for 1000
episodes and evaluated based on performance, rewards, cost,
and speed. The PPO4-MC agents marginally improve the cost
by 1.7 % but it still raise the overhead for resource efficiency
during autoscaling operations. TRPO+4-GAE agents are fairly
good in auto-scaling, with an improvement of cost by
3.2 %. In comparison, our proposed DQN/DDQN learning
approach best optimizes the price and lowers the cost by
18.4%. The adaptive self-healing of VNFs enhances the
computation performance by about 27%, which is faster than
the baseline of TRPO+GAE and other comparative state-
of-the-art algorithms. These RL algorithms are developed
in Python, using the TensorForce framework, and their
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performance is compared based on cost and stability. The
algorithms were implemented to work on VMs with Apcera
installed and were trained with data collected through
Apceras API, and the simulation was carried out through a
cloud cluster. We could see that DQN/DDQN outperforms
PPO+MC, PPO+GAE, TRPO+MC, and TRPO + GAE
compared to the applied agents. We note that TRPO and
PPO with GAE estimation show better results than Monte
Carlo estimation concerning stability and convergence rate.
The comparison of DQN with other agents is strongly based
on the relative performance in completing the task. The
self-healing of VNF is solved using DRL, where the cost of
development and maintenance has resulted in a performance
gain.

The limitation that comes with the deployment of DRL
to VNF is due to the fact that traffic patterns differ
between customers, which results in uncertainty due to varied
configurations and load patterns. The learning performance is
bad, and there is a high risk of divergence as the VNF agents
need to work in a multi-agent context. Even though we had
achieved the optimal results of 27 % compared to all the
state-of-the-art algorithms, the result proves that the simpler
method based on control theory is equally good. Furthermore,
using various configurations, VNF chaining process and
load patterns results in a tedious validation for DRL with a
heavy bottleneck of training the policies. We could embed
the control methods with the classical machine learning
properties in the future.
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