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ABSTRACT Seeds are the most basic and important means of production for agriculture. During the
production and processing of seeds, theymay undergo potential mechanical damages andmildew alterations,
which might jeopardize their germination viability. Hence, checking the quality of seeds before sowing is
of paramount importance for the benefit of the sower and the safety of agricultural production. In order to
achieve an efficient detection of maize seed quality, our experiment assembled a dataset composed of 2,128
seeds with four different health statuses of maize: healthy, broken, moth-eaten, and mildewed. In this paper,
we proposed a lightweight maize seed quality detectionmodel for small objects based on improvedYOLOv8:
I-YOLOv8. Firstly, we introduced a multi-scale attention mechanism called EMA to efficiently retain
information across channels and reduce computational load. Next, we chosen the SPD-Convmodule for low-
resolution images and small objects, and applied it to the backbone, which addressed the loss of fine-grained
information and the less efficient learning of feature representations present in YOLOv8. Lastly, we reduced
the large detection layer, which directed the network to pay more attention to the location, channel,
and dimensional information of smaller objects, and we also replaced the loss function with WIoUv3.
We validated our model using ablation studies and compared it with YOLOv5, YOLOv6, and YOLOv8.
The mAP (Mean Average Precision) of the improved model I_YOLOv8 reaches 98.5%, which is 6.7%
higher than YOLOv8. The average recognition time per image was 163.9fps, a boost of 5.2fps compared
to YOLOv8. This study lays a theoretical foundation for the efficient, convenient, and rapid detection of
maize quality, while also offering a technical basis for advancing automated maize quality detection means.

INDEX TERMS YOLOv8, object detection, lightweighting, maize seed.

I. INTRODUCTION
Maize (Zea mays L.) is one of the most widely distributed
crops in the world [1]. About one-third of the world’s pop-
ulation depends on maize as a staple food [2]. It has high

The associate editor coordinating the review of this manuscript and
approving it for publication was Liandong Zhu.

nutritional and economic value [3]. During the production
and processing of maize seeds, they may undergo potential
mechanical damages and mildew alterations, which might
jeopardize their germination viability. Sowing maize seeds
with damaged quality will reduce the germination rate and
waste of labor, thus affecting economic benefits. Hence,
checking the quality of seeds before sowing is of paramount
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importance for the benefit of the sower and the safety of
agricultural production.

Traditional methods for detecting maize seed quality are
categorized into empirical, physical, and chemical meth-
ods. These methods are often cumbersome, time-consuming,
and limited by experimental locale [4]. The application of
machine vision technology can achieve rapid and accurate
detection and identification of maize seeds, which has very
important application value [5].
In the early stages of conventional machine learning, some

scholars used image processing techniques to simply process
maize seed images for recognition. Chen et al. [6] proposed
a method based on image In HSV and Otsu method based on
genetic algorithm optimization, which achieved more accu-
rate segmentation and recognition of the disease of color
and shape features, and enhanced the real-time and accuracy
of the image of maize disease detection and recognition.
Subsequently, many researchers began to use neural network
approaches for maize seed image analysis. Kiratiratanapruk
and Sinthupinyo [7] extracted color histograms from RGB
and HSV color spaces, along with textures based on Gray-
Level Co-Occurrence Matrix (GLCM) and Local Binary
Patterns (LBP), and then applied Support Vector Machine
(SVM) to classify maize seed defects.

Traditional machine learning approaches have achieved
some applications in the recognition of maize seeds. How-
ever, these traditional methods are subject to limitations such
as their reliance on manually selected features, and the prob-
lem such as high computational demands and costs, which
can impact recognition accuracy. In contrast, deep learning
can autonomously learn complex features from raw data
without the need for manual feature extraction. Presently, the
most pervasive deep learning technique in machine learning
is Convolutional Neural Network (CNN) [8]. For the detec-
tion of maize seeds, there are two main directions: image
classification and target detection. Unlike image classifica-
tion, which only categorizes objects within an image, object
detection techniques perform image segmentation based on
geometric and statistical features of targets, combining the
tasks of object segmentation and recognition, so it has
excellent accuracy and real-time processing capabilities.

Object detection algorithms based on deep learning
are mainly divided into two categories: two-stage and
single-stage methods. The two-stage object detection
algorithm initially generates RP (Region Proposals), fol-
lowed by sample classification using convolutional neural
networks. Representative two-stage object detection algo-
rithms include R-CNN [9], SPP-Net [10], Faster R-CNN [11],
Mask R-CNN [12]. Zhao et al. [13] designed four distinct
network models based on Faster R-CNN, and achieved supe-
rior recognition results for the selection of maize kernels
by directly inputting color images. Velesaca et al. [14] used
the Mask R-CNN algorithm for segmenting and extracting
maize group images, and designed a lightweight network
CK-CNN to classify good kernels, defective kernels, and
impurities. Although two-stage detection algorithms exhibit

high accuracy, their slower detection speed renders them
unsuitable for real-time detection. The single-stage object
detection algorithm can directly generate the class probability
and location coordinates of the target in one stage without
generating RP. Representative two-stage object detection
algorithms include SSD [15], YOLO [16], RetinaNet [17].
Although these algorithms may exhibit moderate accuracy,
their fast detection speed makes them suitable for real-time
detection tasks. Liu and Wang [18]proposed a method for
detecting damaged maize kernels based on YOLOv3-tiny.
The proposed maize detection method is implemented on
NVIDIA TX2 and can achieves the speed up to 10fps speed,
which can perform almost real-time detection. Li et al. [19]
investigated a maize seed breakage detection device based
on YOLOv4-tiny, which is applicable to combine harvesters,
addressing the issue of low accuracy in existing methods
for maize seed integrity assessment. Thangaraj Sundara-
murthy et al. [20] proposed an object detection method
based on YOLOv5 to accurately detect maize seeds infected
with Fusarium Head Blight (FHB), enabling real-time detec-
tion of FHB-infected maize seeds on the processing line.
Wang et al. [21] aimed to rapidly and accurately identify bro-
ken maize kernels, proposing a model BCK-YOLOv7 based
on an improved YOLOv7, which fine-tuned the model’s pos-
itive sample matching strategy and incorporated Transformer
encoding modules and CA attention mechanisms, enhancing
the model’s accuracy to 96.9%, recall to 97.5%, and mAP
to 99.1%.

The study proposed a more streamlined convolutional
neural network model, I_YOLOv8, based on YOLOv8
benchmark, addressing the loss of fine-grained information
and low-efficiency feature representation learning inherent to
YOLOv8, it also reducing the model’s complexity for ease
deployment on mobile devices. This experiment established
a dataset for maize seed variety recognition, encompassing
2128 maize seeds of four types: healthy, broken, moth-eaten,
and mildewed. Extensive comparative experiments were
conducted with the I_YOLOv8, YOLOv5, YOLOv6, and
YOLOv8 using this dataset. The results indicated that the pro-
posed I_YOLOv8 significantly outperformed other methods,
providing technical support for the automated recognition and
non-destructive testing of maize seed quality.

II. MATERIALS AND METHODS
A. DATASET CONSTRUCTION
This experiment collected four types of maize seeds with
different health conditions to establish a dataset, as shown
in Figure 1, which are healthy, broken, moth-eaten, and
mildewed. In order to enhance the robustness of the model,
we chose five maize seeds varieties, namely JINYU118,
KENUO58, LIYUAN296, HUIYU18, and TIEYAN630.
Under natural lighting conditions, these seeds were ran-
domly arranged in a ratio of healthy, broken, moth-eaten,
and mildewed at 5:1:1:1. A total of 133 photographs were
taken, each featuring 16 seeds, culminating in a dataset of
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FIGURE 1. Maize seeds with four different health conditions. (a) Healthy
maize. (b) Broken maize. (c) Mildewed maize. (d)Moth-eaten maize.

2128 seeds, the images of each maize seed category were
randomly divided into training, validation, and test sets in a
ratio of 7:2:1.

To further enhance the robustness and generalization capa-
bilities of the model, this study augmented the training image
number of the dataset through data augmentation techniques,
these enhancements primarily included rotation, exposure
adjustment, and mosaic techniques. The augmented maize
seed dataset is shown in Figure 2. Figure 2(a) showed
the quantity of maize seeds across different categories.
Figure 2(b) depicted the spatial distribution of themaize seeds
bounding boxes, indicating a relatively uniform spread of
maize seeds without excessive clustering. Figure 2(c) pre-
sented the dimensions of the maize seeds bounding boxes,
it can be seen that the height and width of the bounding box
are relatively uniform.

FIGURE 2. Visualization of the dataset. (a) Number of annotations per
class. (b) The statistical distribution of the bounding box position. (c) The
statistical distribution of the bounding box sizes.

B. MAIZE SEED DETECTION MODEL: I_YOLOv8
Since its initial release in 2015, YOLO (You Only Look
Once) series of computer vision models has consistently been
one of themost popular in the field of deep learning. YOLOv8
is the latest version of the YOLO series of algorithms, which
can be used for object detection, segmentation, classifica-
tion tasks, and learning of large-scale datasets. Compared
to previous outstanding models in the YOLO series, such
as YOLOv5 and YOLOv7, YOLOv8 offers higher detection
accuracy and speed. YOLOv8 is a detection algorithm known
for its fast detection speed and high accuracy. It performs well
on some open-source datasets but requires improvement for
seed detection tasks.

In order to address the challenges such as small seed
size and low resolution in maize seed quality detection, this
paper improved and optimized on the basis of YOLOv8, and

proposed an algorithm I-YOLOv8 for maize seed quality
detection.

The proposed model architecture was illustrated in
Figure 3, and the specific improvements were summarized
as follows:

(1) By incorporating attention mechanisms to enhance
the object detection capability of the network and extract
regions of interest. As illustrated in Figure 3, an efficient
multi-scale attention mechanism EMA was introduced in
the Backbone and added in front of the SPPF structure to
efficiently retain the information on each channel and reduce
the computational load.

(2) By integrating SPD-Conv module to boost detec-
tion capabilities of low-resolution images and small objects.
As demonstrated in Figure 3, SPD-Conv was applied within
the Backbone at the following stages: the 1st, 3rd, 5th, and 7th
convolutional layers. This addressed the loss of fine-grained
details and learning of less effective feature representations
in YOLOv8.

(3) By removing one of the large object detection lay-
ers (P5), the network was directed to focus more on the
location, channel, and dimensional information of smaller
objects, thereby enhancing the detection of small-scale tar-
gets. As indicated in Figure 3, the detection layers of
YOLOv8n were simplified from large, medium, and small to
medium and small. The 24th layer (Convolution layer), the
25th layer (Concat module), and the 26st layer (C2f module)
of the feature fusion layers were removed.

(4) By altering the loss function, the model’s accuracy and
overall performance were further improved. The loss function
CIoU was replaced with WIoUv3, which balanced the ratio
between low and high-quality samples, addressing issues of
detecting small, blurry objects and those with overlapping
occlusions.

1) EFFICIENT MULTI-SCALE ATTENTION MODULE
The attention mechanism is a mechanism that simulates
human vision, focusing on important features while sup-
pressing unnecessary ones. Remarkable effectiveness of the
channel or spatial attention mechanisms for producing more
discernible feature representation are illustrated in various
computer vision tasks. However, modeling the cross-channel
relationships with channel dimensionality reduction may
bring side effect in extracting deep visual representations.
Ouyang et al. [22] proposed a novel efficient multi-scale
attention (EMA) module. The design prioritizes the retention
of information from each channel while minimizing com-
putational overhead. By reshaping certain channels into a
batch dimension and segmenting the channel dimension into
multiple sub-features, it ensures a homogeneous distribu-
tion of spatial semantic attributes within each feature subset.
Specifically, apart from encoding the global information to
re-calibrate the channel-wise weight in each parallel branch,
the output features of the two parallel branches are further
aggregated by a cross-dimension interaction for capturing
pixel-level pairwise relationship.
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FIGURE 3. Improved YOLOv8 network structure.

FIGURE 4. Efficient multi-scale attention structure.

The parallel substructures help the networks avoid more
sequential processing and large depth. As shown in Figure 4,
the EMA module employs a parallel processing strategy.

(1) Feature Grouping. For any given input feature map
X ∈ RC×H×W , EMA will divide X into G sub-features
across the channel dimensions direction for learning different

semantics, where the groups-style can be donated by X =

[X0,Xi, . . . ,XG−1], X ∈ RC×H×W .
(2) Parallel Subnetworks. The large local receptive fields

of neurons enable the neurons to collect multi-scale spatial
information. Accordingly, EMA conducts that three parallel
routes are exploited to extract attention weight descriptors of
the grouped feature maps. Two of parallel routes is in 1x1
branch and the third one route is that the 3x3 branch. For
capturing dependencies across all channels and relieving the
computation budgets, they model the cross-channel informa-
tion interaction at channel direction. To be more specific,
there are two 1D global average pooling operations employed
to encode the channel along two spatial directions respec-
tively in 1x1 branch and only a single 3x3 kernel is stacked in
3x3 branch for capturing multi-scale feature representation.

Given the truth that there is no batch coefficient in the
dimension of the convolution function for the normal con-
volution, the number of convolution kernels are independent
of the batch coefficients of the forward operational inputs.
Accordingly, the group G is reshaped and replaced into the
batch dimension, and the shape of the input tensor is rede-
fined as C//G × H × W . On one hand, the two encoded
features are concatenated against the images height direction
and share the same 1x1 convolution, without dimensionality
reduction in the 1x1 branch. After factorize the outputs of
1x1 convolution into two vectors, two non-linear Sigmoid
functions are employed to fit the 2D Binormial distribution
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upon linear convolutions. In order to implement different
cross-channel interaction features between two parallel routes
of 1x1 branching, the attention maps of the two channels
are aggregated within each group by a simple multiplica-
tion. On the other hand, the 3x3 branch captures the local
cross-channel interaction via a 3x3 convolution to enlarge the
feature space.

(3) Cross-spatial learning. EMA provides a cross-spatial
information aggregation method at different spatial dimen-
sion direction for richer feature aggregation. Please note that
here, two tensors are still introduced: one from the output
of the 1x1 branch and the other from the output of the 3x3
branch. Then, global spatial information is encoded into the
output of the 1x1 branch using 2D global average pool-
ing. The output of the 3x3 branch is directly transformed
to the corresponding dimension shape before the joint acti-
vation mechanism of channel features, i.e., R1

1×C//G
×

R3
C//G×HW . The 2D global pooling operation formula is

shown in Equation (1):

zc =
1

H ×W

H∑
j

W∑
i

xc(i, j) (1)

which is designed for encoding the global information and
modeling the long-range dependencies. For efficient com-
putation, the natural non-linear functions Softmax for 2D
Gaussian maps is employed at the outputs of 2D global
average pooling to fit the upon linear transformations.
By multiplying the outputs of above parallel processing with
matrix dot-product operations, the first spatial attention map
can be derived. To observe this, it collects different scale
spatial information in the same processing stage. Moreover,
global spatial information in the 3x3 branch is encoded
using 2D global average pooling and the 1x1 branch will
be transformed to the correspond dimension shape directly
before the joint activation mechanism of channel features,
i.e., R1

1×C//G
× R3

C//G×HW . After that, the second spa-
tial attention map, which preserves the entire precise spatial
positional information is derived. Finally, the output feature
map within each group is calculated as the aggregation of the
two generated spatial attention weight values followed by a
Sigmoid function. It captures pixel-level pairwise relation-
ship and highlights global context for all pixels. The final
output of EMA is the same size of X , which is efficient yet
effective to stack into modern architectures.

2) SPD-CONV MODULE
Convolutional Neural Networks (CNNs) have achieved sig-
nificant success in various computer vision tasks such as
image classification and object detection. However, their
performance rapidly deteriorates in more challenging tasks
characterized by lower image resolutions or smaller objects.
This limitation arises from a common yet flawed design in
existing CNN architectures, which involves the use of strided
convolutions and/or pooling layers. These components lead
to the loss of fine-grained information and inefficient learning

of features. SPD-Conv [23] serves as a novel CNN module,
capable of replacing each strided convolution and pool-
ing layer. SPD-Conv is composed of an SPD layer and a
non-strided convolution layer.

a: SPACE-TO-DEPTH (SPD)
The SPD component extends the (original) image transfor-
mation technique to downsample feature maps inside CNNs
and throughout the entire CNN.As illustrated below, consider
any intermediate feature map X of size S × S × C1, where a
series of sub-feature maps is extracted as

f0,0 = X [0 : S : scale, 0 : S : scale],

f1,0 = X [1 : S : scale, 0 : S : scale], . . . ,

fscale−1.0 = X [scale− 1 : S; scale, 0 : S : scale];

f0,1 = X [0 : S : scale, 1 : S : scale], f1,1, . . . ,

fscale−1,1 = X [scale− 1 : S : scale, 1 : S : scale];
...

f0,scale−1 = X [0 : S : scale, scale− 1 : S : scale],

f1,scale−1, . . . ,

fscale−1,scale−1=X [scale− 1 : S : scale, scale−1 : S : scale].

In general, for any given (original) feature map X , a sub-
map fx,y is formed by all stripes X (i + y) where i+ x and
i+ y are divisible by a scaling factor. Thus, each sub-map
undergoes downsampling on feature map X according to the
scaling factor.

Next, these sub-maps are concatenated along the channel
dimension, resulting in a feature map X ′, where its spatial
dimensions are reduced by a scaling factor, and the channel
dimension is increased by a scaling factor. In other words,
SPD transforms the feature map X (S, S,C1) into an interme-
diate feature map X ′( s

scale ,
s

scale , scale
2C1).

b: NON-STRIDED CONVOLUTION
After the SPD feature transformation layer, a non-strided
(i.e., stride=1) convolutional layer with C2 filters, where
C2 < scale2C1, is added, and further transforms
X ′( s

scale ,
s

scale , scale
2C1) → X ′′( s

scale ,
s

scale ,C2). The use of
non-strided convolution aims to preserve all discriminative
feature information as much as possible.

3) DETECTION LAYER MODULE
The input size of YOLOv8 is set to 640× 640, and the output
layer modules P3, P4, and P5 are designed for detecting large,
medium, and small objects, respectively. The maize seeds are
characterized by their small volume and minimal variation
within the image, so the detection belongs to small object
detection. Based on this, the detection layers of YOLOv8n
were simplified from large, medium, and small to medium
and small. The 24th layer (Convolution layer), the 25th layer
(Concat module), and the 26st layer (C2f module) of the
feature fusion layers were removed. Reducing the number
of detection layers effectively decreased model parameters
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and computational complexity, thus leading to improved
detection speed.

4) DETECTION LAYER MODULE
The YOLOv8 uses CIoU [24] bounding box loss function,
which incorporates the overlap area, center point distance,
and aspect ratio during bounding box regression, which
enhanced the precision of regression localization. However,
CIoU still suffers from the following problem: during the
regression process of the prediction frame, if the height
and width aspect ratios between the predicted box and the
ground truth box are linearly proportional, the penalty for
the relative proportions degenerates zero, thereby affecting
the optimization of the network.

Due to the inherent imbalance in the dataset, there were
inevitably low-quality samples in the training data. In order
to address the issue of sample quality imbalance, based
on WIoUv1, WIoUv3 was proposed to balance the ratio
of low-quality to high-quality samples, thereby addressing
challenges related to the unclear delineation of small tar-
gets and difficulties in detecting overlapping and occluded
objects [25]. Consequently, it further enhanced the model’s
accuracy and overall detection performance. We replaced the
loss function with WIoUv3, the spatial relationship between
the ground truth box and the predictive box is shown in
Figure 5.

FIGURE 5. The spatial relationship between the ground truth box(red)
and the predictive box(blue). w and h represent the width and height of
the predicted box respectively; wgt and hgt represent the width and
height of the ground truth box; Wi and Hi respectively indicate the width
and height of the overlapping rectangle between predictive box and the
ground true box; Wg and Hg are the width and height of the minimum
enclosing rectangle of the predictive box and the ground truth box.

The calculation formula for WIoUv1 is shown in
Equations (2) - (4):

LIoU = 1−IoU = 1 −
WiHi

wh+ wgthgt −WiHi
(2)

LWIoUv1 = RWIoULIoU (3)

RWIoU = exp(
(x − xgt )2 + (y− ygt )2

(W 2
g + H2

g )
∗ ) (4)

The abnormality degree of the anchor box β is represented
by the ratio of L∗

IoUand LIoU , as shown in Formula (5):

β =
L∗
IoU

LIoU
∈ [0, +∞) (5)

Applying β to WIoUv1 to construct nonmonotonic focus-
ing coefficients yields WIoUv3 as shown in Eq. (6):

LWIoUv3 = rLWIoUv1, r =
β

δαβ−δ
(6)

where the mapping of outlier degree is β and gradient gain is
r, which is controlled by the hyper-parameters α and δ; The
value of a is 1.9 and the value of δ is 3.

C. MODEL TRAINING ENVIRONMENT CONFIGURATION
All model training and testing procedures were conducted
on the same workstation (Windows 11 with 64-bit operating
system, Intel (R) Core (TM) i9-13900HX, NVIDIA GeForce
RTX 4060), PyTorch2.0.0, Python 3.8, and CUDA 11.7 was
utilized for training acceleration. Detailed hyperparameters
of the experiment are shown in Table1.

TABLE 1. Detailed hyperparameters of experiment.

D. MODEL PERFORMANCE EVALUATION METRICS
We used evaluation metrics in object detection models are
confusion matrix, precision (P), recall (R), average precision
(AP), mean average precision (mAP), and model size (MB).
The confusion matrix usually has four indexes including True
Positive (TP), True Negative (TN), False Positive (FP) and
FalseNegative (FN). P andR are typically used to evaluate the
model’s ability to predict a specific category. mAP evaluates
the model’s detection performance over the entire dataset and
is calculated as the average of the mean precision over all
the categories. FPS is the number of images processed per
second by the model and is used to measure the speed of
detection. Table 2 provides a summary and brief description
of the formulas.

III. RESULT AND ANALYSIS
A. IMPACT OF DIFFERENT ATTENTION MECHANISMS
We added an attention mechanism, which helped the network
focus on the key information related to effective targets,
extracted regions of interest, and further improved the net-
work’s detection capabilities. Various attention mechanisms,
including CBAM, SE, EMA, SimAM, and CoTAttention,
were individually added.
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TABLE 2. Model performance evaluation index.

TABLE 3. Impact of different attention mechanisms.

Table 2 indicated that the addition of EMA led to a notice-
able improvement in the network detection performance,
with mAP increasing by 2.6%, exceeding the performance
enhancements yielded by the SE, CBAM, SimAM, and
CoTAttention attention mechanisms. EMA demonstrated
superior efficiency in filtering effective feature informa-
tion, so we adopted EMA to further improve the network’s
performance.

B. IMPACT OF ATTENTIONAL MECHANISM ADDED IN
DIFFERENT LOCATIONS
The adoption of attention mechanisms brought multiple
advantages, but the specific advantages depended on the
location you add the attention module. We conducted a
comparative experiment to evaluate various positions of
EMA integration, investigating the impact of adding EMA at
different positions on detection performance.

The experiment results are presented in Table 4. In Exper-
iment A, the mAP increased, but the number of parameters
also increased. This is because although the C2f_EMA mod-
ule could better fuse shallow feature maps and deep feature
maps, the introduction of the attention mechanism increased
the depth of the model.

Experiment B achieved higher accuracy, but recall and
mAP were lower. This was due to the addition of EMA to
the small object detection layer aiding themodel in accurately
locating targets but not accurately obtaining the characteristic
information of individual maize seeds.

In experiment C, the number of parameters increased, but
the network detection performance was greatly improved.

TABLE 4. The impact of EMA adding in different locations.

This is because adding EMA to the front of the Backbone’s
SPPF helped the Backbone selectively focus on different parts
of the input feature map. This made it easier for the model to
learn complex image patterns and improved the accuracy of
maize seed quality detection.

C. THE IMPACT OF DIFFERENT LOSS FUNCTIONS
In order to verify the superiority of WIoUv3, we conducted
comparative experiments on YOLOv8 and I-YOLOv8 using
WIoUv3 and some mainstream loss functions.

The experiment results are presented in Table 5. Both
models exhibited the highest mAP when using WIoUv3 as
the bounding box loss function, this indicated that using
WIoUv3 as bounding box regression results in the best
detection performance. Furthermore, the improved YOLOv8
achieved a 2.1% higher mAP when using WIoUv3 compared
to CIoU, which demonstrated the effectiveness of introducing
WIoUv3.

IV. DISCUSSION
A. MODEL PERFORMANCE ANALYSIS
We analyzed the performance of I-YOLOv8 from the training
phase to the testing phase and evaluated its ability to detect
the quality status of various types of maize seeds.

As depicted in Figure 6, as the iteration proceeded, the
loss of I-YOLOv8n decreased and mAP improved corre-
spondingly. After approximately 100 epochs of training,
higher mAP and lower loss were achieved. Between 100 and
150 epochs, fluctuations occurred in the training process, this
was due to the absence of a corresponding pre-trained model,
which led to randomness in the weights during gradient
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TABLE 5. The impact of different loss functions.

FIGURE 6. Loss and Accuracy Values during Training of I-YOLOv8.

TABLE 6. Performance Comparison between YOLOv8 and I-YOLOv8.

descent and made it challenging to achieve optimal training
results. After 150 epochs, the model tended to stabilize with
both mAP and loss maintaining a relatively stable state.

It was evident from Table 6 that the improved model
exhibited enhanced performance compared to the original
YOLOv8. The precision had increased by 14.2%, the recall
had improved by 8.2%, and the mAP value had risen by 6.4%.

Figure 7 illustrated the detection results of YOLOv8 and
I-YOLOv8 under different backgrounds. The left two images
displayed the detection results of YOLOv8, while the right
two images showed the results of I-YOLOv8. The red bound-
ing box represented detected broken maize seeds, the pink
bounding box represented healthy maize seeds, the orange
bounding box representedmildewedmaize seeds, and the yel-
low bounding box represented moth-eaten maize seeds. The
confidence scores for each detected maize seed in the images
were displayed to the right of the corresponding bounding

FIGURE 7. Comparison of Detection Results between YOLOv8 and
I-YOLOv8. (a) Represents the detection result of YOLOv8 on a black
background. (b) represents the detection result of I-YOLOv8 on a
black background. (c) represents the detection result of YOLOv8 on a
white background. (d) represents the detection result of I-YOLOv8 on a
white background.

boxes. In Figure 7(a), the predictions were generally accurate,
but it misidentified the infested maize seed in the upper right
maizeer as a damaged one. In contrast, Figure7(b) correctly
detected all maize seeds without any misidentifications or
omissions. In Figure7(c), it misidentified the healthy and
damaged maize seeds in the upper left maizeer as infested
ones, while Figure 7(d) accurately detected all maize seeds
without any misidentifications or omissions.

In summary, YOLOv8 could detect all seeds, which
was why it was chosen as the baseline model. However,
compared to the unimproved YOLOv8, I-YOLOv8 could
better distinguish between damaged and moth-eaten maize
seeds, making it more suitable for maize seed quality detec-
tion.This was because broken and moth-eaten corn seeds
exhibited fundamental similarities in texture and contour
edges, with only slight variations in color at the locations of
insect holes or broken edges, making it challenging for the
model to extract features. I-YOLOv8 introduces an efficient
multi-scale attention mechanism (EMA) in the Backbone
section, allowing it to focus more on the deep features of the
seeds, thereby improving accuracy in identifying damaged
and infested corn seeds. Therefore, through targeted improve-
ments to YOLOv8, there was a successful enhancement in its
performance in the detection of specific seeds.

B. ANALYSIS OF EXPERIMENT RESULTS UNDER
DIFFERENT MODELS
In order to validate the performance of the improved
YOLOv8, the enhanced I-YOLOv8 was compared with the
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original YOLOv8, YOLOv5, and YOLOv5. Precision rate,
recall rate, average precision mean, and detection speed were
used as performance evaluation metrics.

As can be seen from Figure 8, the accuracy, recall,
and mAP values of the improved YOLOv8 were 96.4%,
95.4%, and 98.5% respectively, which surpassed the other
three networks in performance. In terms of model detection
speed, I-YOLOv8 processes each image in 0.059 seconds
(169.5 fps), which was the fastest among the four net-
works. Additionally, the model size of I-YOLOv8 was only
4.5 MB and the number of parameters was 2,264,728, both of
them were far smaller than the other three network models.
I-YOLOv8 could still achieve high detection accuracy and
speed even in small size. This indicated that the improved
network model exhibits superior recognition capabilities for
maize seed quality detection compared to other detection
models.

FIGURE 8. Performance comparison of four object detection networks.

In general, increasing the depth and width of a neural
network model can improve its performance to a certain
extent. However, when performance reaches a certain level,
further increasing the depth and width of the network may
no longer lead to performance improvement, it may lead to
problems such as gradient instability, network degradation,
a significant increase in computation complexity and the
number of parameters. This study introduced attention mech-
anisms and SPD-Conv modules into YOLOv8, enhancing the
network’s performance to some extent but also increasing the
number of parameters. Therefore, the study chose to prune
the model on this basis, reducing redundancy by eliminating
a significant amount of irrelevant semantic information in the
model. This is why I-YOLOv8 achieves superior detection
speed and network size compared to the other three models
while maintaining the highest accuracy.

As depicted in Figure 9, we used a confusion matrix for
visual performance evaluation of the four different models.
The color of the matrix represented the effectiveness of
predictions, the darker the color of the matrix block, the

higher the probability of occurrence. The deeper the colors
of the blocks along the diagonal of the matrix, the higher the
predictive accuracy in this category.

It can be seen from Figure 9 that the color of the diagonal
matrix blocks of I-YOLOv8 was darker than that of the other
models, and its overall correct recognition rate was higher
than other models in the experiment. The correct recogni-
tion rates of I-YOLOv8 for healthy and mildewed maize
seeds were almost the same as that of other models, but
the correct recognition rate in broken and moth-eaten maize
seeds was much higher than that of other models. This is
because healthy andmildewedmaize seeds exhibit noticeable
differences in color and texture, while broken and moth-eaten
maize seeds are very similar in the contours of the missing
parts, with only slight differences in color. In summary, the
overall performance of I-YOLOv8 significantly outperforms
the other models in the study.

FIGURE 9. Confusion matrix for different models (a)YOLOv5 (b)YOLOv6
(c)YOLOv8 (d)I-YOLOv8.

C. ABLATION STUDY
To validate the effectiveness of each proposed improvement
strategy in this study, we designed ablation studies based on
the baseline model YOLOv8n to evaluate its effectiveness.
The results of the ablation experiments were presented in
Table 7, where ‘‘

√
’’ indicated the usage of the corresponding

module, while its absence indicated the non-usage of the
module.

Table 7 demonstrated that each improvement strategy
had effectively enhanced the detection performance.
Experiment 2 introduced the efficient multi-scale attention
mechanism EMA, resulting in a 2.6% increase in mAP, while
the number of parameters only increased by 0.34%. This indi-
cated that EMA could efficiently retain information on each
channel, and the number of parameters was not significantly
increased while ensuring accuracy. Experiment 3 added the
SPD-Convmodule on the basis of Experiment 2, and themAP
increased by 1.2%, which solved the problem of a loss of
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TABLE 7. Detection results after introducing different improvement strategies.

fine-grained information caused by the strided convolution
or pooling layer in the existing CNN architecture, and could
effectively reduce the missed detection rate for small targets.

To mitigate the increased parameters resulting from the
addition of attention mechanisms and the SPD-Conv module,
a large object detection layer was reduced to decrease a
large amount of irrelevant semantic information in the model,
which enhanced network speed and reduced network size.
Experiment 4 reduced a large target detection layer based
on Experiment 3, the number of parameters was reduced by
30.9%, the FPS was increased by 20f/s, and the mAP value
was also improved.

Experiment 5 was the improved model proposed in this
article, it was based on Experiment 4 and the loss function
was replaced with WIoUv3. WIoUv3 was used to weigh the
ratio of low-quality samples to high-quality samples, which
increased mAP by 1.2% and solved the problem of small
target are blurry and difficult to detect. Compared to the base-
line model, the number of parameters decreased by 24.7%,
mAP increased by 6.7%, recall improved by 8.2%, precision
increased by 14.2%, and FPS decreased by 5.2f/s, this indi-
cated that the improved network had excellent performance.

V. CONCLUSION
In response to the characteristics of dense image distribution
and small targets in maize seed object detection, we proposed
a lightweight maize seed quality detectionmodel based on the
improved YOLOv8: I-YOLOv8.

I-YOLOv8 achieved mAP of 98.5%, a 6.7% increase
compared to YOLOv8, and an average recognition speed
of 163.9 frames per second, a 5.2 frames per second
improvement over YOLOv8. Furthermore, when compared
to YOLOv5, YOLOv6, and YOLOv8 network models,
I-YOLOv8 outperformed these three models in various
aspects, and showed a significant improvement in detection
performance. The improvedmodel can providemore efficient
computing performance and rapid real-time decision-making
in agricultural deployment, helping to realize intelligent agri-
cultural management in farm equipment, airborne equipment
and edge computing, and improve production efficiency and
resource utilization efficiency.

The combination of deep learning and machine vision can
achieve non-destructive and efficient identification of corn
seeds. The application of deep learning and machine vision
in quality detection for maize seeds is expected to bring
about significant transformation in agricultural production,
promoting the development of a more intelligent, efficient,

and sustainable direction for agriculture. In the next steps,
we will further optimize the model and increase the variety
and quantity of samples to enhance the model’s applicability.

ACKNOWLEDGMENT
The authors thank the Shandong Academy of Agricultural
Sciences for providing experimental support.

REFERENCES
[1] O. Erenstein, J. Chamberlin, andK. Sonder, ‘‘Estimating the global number

and distribution of maize and wheat farms,’’ Global Food Secur., vol. 30,
Sep. 2021, Art. no. 100558.

[2] F. Guzzon, L. W. A. Rios, G. M. C. Cepeda, M. C. Polo, A. C. Cabrera,
J. M. Figueroa, A. E. M. Hoyos, T. W. J. Calvo, T. L. Molnar,
L. A. N. León, T. P. N. León, S. L. M. Kerguelén, J. G. O. Rojas,
G. Vázquez, R. E. Preciado-Ortiz, J. L. Zambrano, N. P. Rojas, and
K. V. Pixley, ‘‘Conservation and use of Latin American maize diversity:
Pillar of nutrition security and cultural heritage of humanity,’’ Agronomy,
vol. 11, no. 1, p. 172, Jan. 2021.

[3] K. Tu, S. Wen, Y. Cheng, T. Zhang, T. Pan, J. Wang, J. Wang, and Q. Sun,
‘‘A non-destructive and highly efficient model for detecting the genuine-
ness of maize variety ‘JINGKE 968’ using machine vision combined
with deep learning,’’ Comput. Electron. Agricult., vol. 182, Mar. 2021,
Art. no. 106002.

[4] M. Kharbach, M. Alaoui Mansouri, M. Taabouz, and H. Yu, ‘‘Current
application of advancing spectroscopy techniques in food analysis: Data
handling with chemometric approaches,’’ Foods, vol. 12, no. 14, p. 2753,
Jul. 2023.

[5] T. U. Rehman, M. S. Mahmud, Y. K. Chang, J. Jin, and J. Shin, ‘‘Current
and future applications of statistical machine learning algorithms for agri-
cultural machine vision systems,’’ Comput. Electron. Agricult., vol. 156,
pp. 585–605, Jan. 2019.

[6] G. Chen, Y. Meng, J. Lu, and D. Wang, ‘‘Research on color and shape
recognition of maize diseases based on HSV and OTSU method,’’ in
Proc. Int. Conf. Comput. Comput. Technol. Agricult., vol. 509. Cham,
Switzerland: Springer, 2016, pp. 298–309.

[7] K. Kiratiratanapruk and W. Sinthupinyo, ‘‘Color and texture for corn
seed classification by machine vision,’’ in Proc. Int. Symp. Intell. Signal
Process. Commun. Syst. (ISPACS), Dec. 2011, pp. 1–5.

[8] B. B. Traore, B. Kamsu-Foguem, and F. Tangara, ‘‘Deep convolution neu-
ral network for image recognition,’’ Ecol. Informat., vol. 48, pp. 257–268,
Nov. 2018.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierar-
chies for accurate object detection and semantic segmentation,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2014,
pp. 580–587.

[10] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in deep
convolutional networks for visual recognition,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

[11] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[12] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980–2988.

[13] C. Zhao, L. Quan, H. Li, R. Liu, J. Wang, H. Feng, Q. Wang, and K. Sin,
‘‘Precise selection and visualization of maize kernels based on electro-
magnetic vibration and deep learning,’’ Trans. ASABE, vol. 63, no. 3,
pp. 629–643, 2020.

32936 VOLUME 12, 2024



S. Niu et al.: Research on a Lightweight Method for Maize Seed Quality Detection

[14] H. O. Velesaca, R. Mira, P. L. Suárez, C. X. Larrea, and A. D. Sappa,
‘‘Deep learning based corn kernel classification,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020,
pp. 294–302.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot MultiBox detector,’’ in Proc. Eur. Conf.
Comput. Vis., Oct. 2016, pp. 21–37.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[17] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for
dense object detection,’’ in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017,
pp. 2980–2988.

[18] Z. Liu and S. Wang, ‘‘Broken corn detection based on an adjusted YOLO
with focal loss,’’ IEEE Access, vol. 7, pp. 68281–68289, 2019.

[19] X. Li, Y. Du, L. Yao, J. Wu, and L. Liu, ‘‘Design and experiment of a bro-
ken corn kernel detection device based on the YOLOv4-tiny algorithm,’’
Agriculture, vol. 11, no. 12, p. 1238, Dec. 2021.

[20] R. P. Thangaraj Sundaramurthy, Y. Balasubramanian, and M. Annamalai,
‘‘Real-time detection of fusarium infection in moving corn grains using
YOLOv5 object detection algorithm,’’ J. Food Process Eng., vol. 46, no. 9,
Jun. 2023, Art. no. e14401.

[21] Q. Wang, H. Yang, Q. He, D. Yue, C. Zhang, and D. Geng, ‘‘Real-
time detection system of broken corn kernels based on BCK-YOLOv7,’’
Agronomy, vol. 13, no. 7, p. 1750, Jun. 2023.

[22] D.Ouyang, S. He, G. Zhang,M. Luo, H. Guo, J. Zhan, and Z. Huang, ‘‘Effi-
cient multi-scale attention module with cross-spatial learning,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2023,
pp. 1–5.

[23] R. Sunkara and T. Luo, ‘‘No more strided convolutions or pooling:
A new CNN building block for low-resolution images and small objects,’’
in Proc. Eur. Conf. Mach. Learn. Knowl. Discovery Databases (ECML
PKDD), 2023, pp. 443–459.

[24] Z. Tong, Y. Chen, Z. Xu, and R. Yu, ‘‘Wise-IoU: Bounding box regression
loss with dynamic focusing mechanism,’’ 2023, arXiv:2301.10051.

[25] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, ‘‘Distance-IoU loss:
Faster and better learning for bounding box regression,’’ in Proc. AAAI
Conf. Artif. Intell., Apr. 2020, vol. 34, no. 7, pp. 12993–13000.

SIQI NIU was born in 2000. She is currently
pursuing the master’s degree in agricultural engi-
neering and information technology with Qingdao
Agricultural University.

XIAOLIN XU was born in 1999. He is currently
pursuing the master’s degree in agricultural engi-
neering and information technology with Qingdao
Agricultural University.

AO LIANG was born in 1999. He is currently
pursuing the master’s degree in agricultural engi-
neering and information technology with Qingdao
Agricultural University.

YULIANG YUN received the Ph.D. degree in
agricultural engineering from China Agricultural
University, China. He is currently an Associate
Professor with the School of Mechanical and Elec-
trical Engineering, Qingdao Agricultural Univer-
sity, China. His current research interests include
agricultural artificial intelligence and decision
support systems.

LI LI received the Ph.D. degree in agricultural
electrification and automation from China Agri-
cultural University, Beijing, China, in 2007. She
is currently an Associate Professor with the Infor-
mation and Electrical Engineering College, China
Agricultural University. Her current research inter-
ests include agricultural artificial intelligence and
greenhouse environmental regulation.

FENGQI HAO received the master’s degree in
computer system architecture from ShandongUni-
versity, China, in 2006. He is currently an Asso-
ciate Researcher with the Qilu University of Tech-
nology, Jinan, China. His current research interests
include intelligent control, computer vision, and
deep learning.

JINQIANG BAI received the Ph.D. degree from
Beihang University, Beijing, China, in 2020.
He has been a Research Assistant with the
Qilu University of Technology, Jinan, China,
since 2020. His current research interests include
computer vision, deep learning, and intelligent
agriculture.

DEXIN MA received the Ph.D. degree in computer
science and technology from the Beijing Univer-
sity of Posts and Telecommunications, Beijing,
China, in 2014. He is currently a Professor with
the Intelligent Agriculture Institute, QingdaoAgri-
cultural University, China. His current research
interests include agricultural artificial intelligence
and agricultural informatization.

VOLUME 12, 2024 32937


