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ABSTRACT This paper develops a novel stochastic geometrymodel to investigate design tradeoffs in a large-
scale radar-aided millimeter-wave cellular network to eliminate the beam training overhead. In the proposed
system, each base station comprises two sub-systems: the sensing sub-system, where radar localizes users,
and the communication sub-system, where directional antennas serve the detected users. Both sub-systems
operate simultaneously to eliminate the beam training overhead and reduce misalignment errors. The system
is modeled under realistic fading conditions with scatterers and interferers in the environment. System
parameters, such as the density of mobile users and undesired clutter, radar cross-section fluctuations, radar
search duration, antenna directivity, and bandwidth are considered in the analytical model. Two scenarios are
studied; the first considers antenna misalignment for the communication sub-system, where error magnitude
depends on the radar sub-system accuracy. The other scenario considers perfect alignment for benchmarking.
It is demonstrated that the radar search duration, which controls the radar antenna beamwidth, is a crucial
parameter for optimizing the system throughput. Moreover, the beamwidth of the communication antenna
exhibits a tradeoff in which a narrow beam yields higher gain and reduces interference but increases the
misalignment error impact. The results demonstrate that if the beamwidths of both sub-systems are carefully
chosen, the proposed system can eradicate the beam training overhead without compromising the system’s
performance, in addition to significantly enhancing the average total system throughput.

INDEX TERMS Radar-assisted communication, beam training, radar, clutter, radar cross section (RCS),
millimeter-wave, beam misalignment error, cellular networks, stochastic geometry.

I. INTRODUCTION
The proliferating bandwidth-hungry applications (e.g., vir-
tual reality, online gaming, and holographic communication)
within 5G/6G networks are driving a paradigm shift towards
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approving it for publication was Bilal Khawaja .

higher frequency bands such as millimeter-wave (mm-wave)
and terahertz. To enjoy their enormous bandwidth, high-
gain antennas with pencil beams are required to compensate
for the significant path loss attenuation at such high
frequencies [1], [2]. By virtue of the short wavelengths,
it is possible to implement compact-size highly directional
antennas with a large number of antenna elements [1], [2].
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However, accurate antenna alignment between transmitters
(Tx) and receivers (Rx), i.e. beam training, becomes more
challenging, where a slight misalignment error can lead to an
overwhelming signal attenuation [3], [4], [5], [6]. In general,
beam training methods in mm-wave communication can be
categorized into three main groups:

• Blind beam training: includes exhaustive search which
is the most precise method that tests all possible beam
pairs between the Tx and Rx. However, it incurs sig-
nificant overhead. To reduce this overhead, alternative
approaches like hierarchical search and two-stage search
are now employed [4].

• Side information-aided beam training: involves gath-
ering information about the user, such as its position,
through sensors. This information is utilized to limit
the beam search space [3], [4], [5], [6]. These sensors
encompass automotive sensors, cameras, or radar-
assisted beam training, leveraging information derived
from radar to configure mm-wave communication
beams.

• Machine learning-based beam training: utilizes informa-
tion gained from previous training to restrict the search
area and predict the next training phase [4].

Nevertheless, blind beam training techniques remain the
most widely used in practical systems. These methods are
complex and slow due to the substantial number of antenna
array elements and the required extensive beam sweeps
[3], [4], [5], [6]. A complex and time-consuming beam
training process reduces spectrum utilization, which should
be better utilized for transmitting user data. A prolonged
beam training procedure also has negative consequences on
handovers, initial user access, the number of supported users,
and total system throughput [3], [4], [5], [6]. This negative
impact of beam training is exacerbated with mobility (e.g.,
vehicular communications), which is more susceptible to
beam misalignment errors, and hence, severe connectivity
disruptions. In addition, the trained beams rapidly become
outdated, necessitating frequent intra-cell and inter-cell
handovers [3], [4], [5], [6].

Utilizing the radar sensing capabilities of mm-wave
frequencies, beam alignment can be accelerated by estimating
the location of mobile users [3], [4], [5], [6], [7], [8], [9],
[10]. Owing to the large bandwidth available at the mm-
wave band, the precise radar range resolution is plausible,
i.e., the ability to detect targets (users) that are close to
each other [7], [11]. In such radar-assisted communication
systems, the mm-wave communication beams are configured
based on the position information obtained from the radar
sensing beams. Consequently, this approach alleviates the
complexity of estimating real-time channel state information.
This can improve the overall system reliability and drastically
reduce beam training overhead [3], [4], [5], [6], [7], [8],
[9], [10]. For instance, according to [3], obtaining the user
position information from the global navigation satellite
system (GNSS) can reduce the beam training latency by 53%
when compared to the exhaustive search approach.Moreover,

authors in [3] show that radar-assisted communication can
reduce the beam training latency by 97%.

Although radar-assisted systems can significantly accel-
erate beam alignment, inaccurate radar detection can result
in beam misalignment errors for communication signals;
therefore, it is essential to consider the impact of position
estimation error in the beamwidth choice [3], [4], [5], [6].
In particular, it is required to balance the gain/error tradeoff
in the beamwidth design, where narrower beams exhibit
higher gains but are more susceptible to alignment errors, and
vice versa [3], [4], [5], [6]. These misalignment errors can
significantly impact the performance of mm-wave systems as
described in [12]. Consequently, the beamwidth design trade-
off and the effect of potential antenna misalignment errors for
the proposed radar-assisted communication systems must be
investigated, which is missing in the literature.

A. RELATED WORK
The systems that employ radar for acquiring location
information to assist communication in the mm-wave
frequency band are studied in [13], [14], [15], [16], and [17].
Particularly, [13] suggests a dual-functional approach to radar
communication beamforming, incorporating a power alloca-
tion scheme to minimize the overhead associated with beam
tracking. In [14], deep learning algorithms trained on location
data acquired from radar are employed for beam prediction,
leading to a substantial 93% reduction in beam training
overhead. In [15] and [16], beam-training overhead is reduced
by employing radar to extract the location information, where
radar and communication operations are conducted at distinct
frequencies. Particularly, [15] demonstrates that theoretically,
radar information has the potential to decrease beam training
overhead by 97%, although the practical reduction in real-
world scenarios may be less than this value. Finally, in [17],
the 802.11ad MAC frame is adapted to incorporate radar
alongside communication operations, resulting in an 83%
reduction in beam training overhead.

All the aforementioned studies leverage radar information
to constrain the search space during beam training, thereby
reducing overhead. This is necessitated by the presence of
localization errors in radar operations, requiring a beam
training phase but over a reduced area. In contrast, this
paper follows a different approach that eliminates the entire
beam training overhead. The radar location information is
directly utilized while tolerating associated location errors
without requiring additional beam training. In Section V of
the results, it is demonstrated that the misalignment error
resulting from imperfect radar localization is insignificant
when carefully choosing the beamwidths for both radar
and communication sub-systems, effectively eliminating
the beam training overhead. Moreover, the aforementioned
studies merely the performance of single-link or single-cell
within a vehicular communication setting. This motivates
a large-scale system-level investigation of the beamwidth
design tradeoffs in radar-assisted cellular networks.
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Stochastic geometry (SG) is a powerful mathematical tech-
nique for developing tractable models that analyze random
phenomena in the R2 vector space or higher dimensions [1],
[2], [18]. It enables spatial averages, considering vast num-
bers of nodes at various locations or across multiple spatial
realizations. The tractability of SG-based analytical models
is a key feature, allowing the extraction of system-design
insights that are mainly not achievable through system-level
simulations [1], [2], [18]. In a large-scale network setup,
SG is indispensable to account for the intrinsically random
locations of devices as well as characterizing the mutual
interference within the network analytically. In mm-wave
networks, SG is widely utilized to account for the impact
of directional antennas, as well as the high susceptibility
to blockage, on the network performance [1], [2], [18].
In addition, SG is also utilized to study the performance of
radar systems [19], [20], [21], [22], [23]. With the growing
interest in integrating radar sensing with communication
applications; SG tools have recently been applied to assess the
performance of such systems as listed in Table 1. However,
in all the previous works, the mathematical model lacks
either the consideration of clutter effects, radar cross-section
(RCS) fluctuations of the target, or a comprehensive analysis
of interference. In addition, a perfect alignment is usually
assumed for the communication link, which is too idealistic.

B. CONTRIBUTIONS
In this paper, the beamwidth tradeoffs in a mm-wave radar-
assisted communication system are studied to eliminate
the beam training overhead.1 A novel mathematical model,
based on SG, is developed to evaluate the performance
of the proposed system while considering interference
from undesirable clutter and the simultaneously transmitting
nodes. The numerical results demonstrate the significance
of carefully assigning the beamwidths for both radar and
communication antennas as crucial design parameters to
eliminate beam training overhead without compromising the
system’s performance as well as enhancing the average total
system throughput. The main contributions of this work are:

• In contrast to the previous approaches in the literature
that aimed to minimize beam training overhead, the
proposed method goes a step further by completely
eradicating beam training overhead. This is achieved
through the direct utilization of radar information
without the need for additional training, tolerating the
misalignment error. This error is demonstrated to be
insignificant when the beamwidths for both sub-systems
are carefully selected.

• To the best of our knowledge, this paper is the first
to examine a comprehensive radar-assisted millimeter-
wave cellular network on a large-scale level.

1This work was partially presented in [34] for an ideal scenario with no
consideration of the possible antenna misalignment.

FIGURE 1. The proposed system model (blue triangle: BMR node, red
circles: MUs, and black circles: clutter scatterers).

• The proposed analytical model captures the effect of
undesirable clutter, RCS fluctuations, and aggregate
interference from simultaneously transmitting nodes.

• The effect of antenna misalignment error during com-
munication is considered and evaluated which is missing
in previous works.

• The beamwidth design tradeoffs for both the radar and
communication sub-systems are characterized.

The remainder of the paper is organized as follows.
Section II introduces the system model. Section III
presents the radar sub-system analysis that is based on the
signal-to-clutter-plus-interference-plus-noise ratio (SCINR).
Section IV presents the communication sub-system analysis
that is based on the signal-to-interference-plus-noise ratio
(SINR). Section V presents the numerical findings and
simulations. Finally, Section VI concludes the paper.

II. SYSTEM MODEL
In this section, the system model is described. First, the
spatial and transmission models, then the antenna models,
and finally, the channel and propagation models.

A. SPATIAL AND TRANSMISSION MODELS
Consider a large-scale network with mobile users (MUs)
distributed according to a Poisson Point Process (PPP) φMU
with a density of λMU . The undesirable scatterers whose
backscatters represent the clutter (ct) form another PPP φct as
in [21] and [23] with density λct . The network area is divided
into many adjacent hexagonal small cells of radius Rc. Each
cell is equipped with a base station-mounted radar (BMR)
node at the cell center, which acts as a monostatic radar, i.e.
radar Tx and Rx are co-located, and as a base station (BS)
to establish communication links with the detected MUs.
These BMR nodes can be supported by the 5G/6G cellular
network, and are envisioned as part of future cognitive cities.
A depiction of the system model is shown in Figure 1, where
the operation of the BMR nodes in different cells is not
synchronized. The unambiguous range of a radar Rmax is
the target’s maximum range while ensuring that the reflected
signal from the target matches the most recent sent pulse
such that Rmax =

c
2 fPRF

, where fPRF is the pulse repetition
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TABLE 1. Research works considering SG and integration of radar and communication systems.

frequency (PRF) and c is the speed of light. Accordingly, each
node performs a scan of its cell area where Rmax = Rc. Since
the departing pulse must physically clear the antenna before
the echo can be processed, the minimum range that the radar
sub-system can detect is Rmin =

c τ
2 , where the radar pulse

width τ is the reciprocal of the radar bandwidthWr .
During a fixed search duration, Tr , each BMR node

sweeps the azimuthal search space of 2π to cover its cell
area. The sensing and communication functionalities are
carried out simultaneously at different frequency bands.
Therefore, when a MU is detected by the radar sub-system,
the communication link is established immediately using
a directive beam antenna over a different frequency for a
fixed communication time slot duration Tc to avoid any
additional delay with detected users. The antenna beam
alignment for the communication sub-system is based on
the locations detected by the radar sub-system, and hence,
misalignment errors are possible for the communication link.
The misalignment error angle φ is defined between the actual
and the detected directions of the MU, which is random but
related to radar sub-system accuracy. Moreover, universal
frequency reuse is considered, such that the radar band Wr
and the communication bandWc are reused in all cells.
Remark 1: The radar and communication sub-systems

function simultaneously without interfering with one another
since they use different frequency bands. Such simultaneous
operation of the two sub-systems highly reduces the impact
of misalignment errors during communication. Importantly,
the utilization of radar information directly without additional
training eliminates beam training overhead, as there is no
time wasted on such tasks by the communication sub-system.
The cost of eliminating this overhead is the possibility of
encountering misalignment errors during communication,
which has been demonstrated to be insignificant, as detailed
in Section V. Furthermore, the extra bandwidth required for
radar is not a major concern within the context of the mm-
wave frequency band.

B. ANTENNA MODELS
Consider the half power beamwidth (HPBW) of the Tx and
Rx radar sub-system antennas in the azimuthal plane to
be θTx and θRx respectively such that θTx = θRx = θr .

FIGURE 2. Antenna radiation pattern at Gm = 10 dBi for different
beamwidth spread parameter values.

If a simple parabolic reflector antenna is used, then θr =
70λ
D [35], where λ is the radar wavelength and D is the
antenna diameter. For the radar sub-system, a constant gain
and a zero gain are assumed inside and outside the HPBW
respectively, where Tx and Rx gains are given byGTx(θTx) =

GRx(θRx) = G =
π2D2Ka

λ2 [35], and Ka is the antenna
aperture efficiency. Furthermore, let Tb be the antenna beam
duration at a fixed direction (dwell time) such that 2π

θr
=

Tr
Tb
,

which shows that Tr and θr are inversely proportional. For
the communication sub-system, the detected MU is assumed
to have an omnidirectional antenna while the BMR node
communication antenna gain is modeled using the cosine
model, which provides a more accurate approximation of the
main lobe gains [2] given by

Gc(θ ) =

Gmcos2(
bθ
2
) |θ | ≤

π

b
0 otherwise

(1)

where Gm is the maximum gain, b controls the spread
of the antenna beam and θ is the antenna angle relative
to the bore sight angle of the antenna. An illustration of
the communication sub-system antenna radiation pattern for
different values of b is shown in Figure 2.

C. CHANNEL AND PROPAGATION MODELS
Given that both radar and communication sub-systems
operate over adjacent frequencies in the same millimeter-
wave band. Hence, it is logical to unify the channel
conditions assumption for both sub-systems. Owing to the
small-cell setup, assume all the MUs within the cell area
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have line-of-sight (LOS) conditions as in [2], while the
inter-cell interferers can be either in LOS or non-line-of-
sight (NLOS) conditions. This assumption aligns with the
widely adopted LOS-ball model prevalent in the literature on
mm-wave communication [1], [2]. Moreover, from radar’s
perspective, the assumption of considering only the direct
link between radar and target is also widely adopted in mm-
wave radar-based systems [19], [20], [21], [22], [23] or joint
communication and radar sensing systems [25], [26], [27],
[28], [29], [30], [31], [32], [33], [36]. Following [18] and [37],
an interference link of length r is in LOS with probability
pLOS (r) and NLOS with probability 1 − pLOS (r), such that

pLOS (r) = e−βr , (2)

where β is a constant that depends on the geometry and
density of the blockage process.

The RCS2 of the target (the MU in our case) is modeled
according to the Swerling I model as in [21], [23], and [33].
In this model, the RCS varies according to a chi-square
distribution with two degrees of freedom [38]. This describes
the case in which the target velocity is low compared to
the observation time and the magnitude of the backscattered
signal from the target is relatively constant during Tb [20],
[39] which fits our system. On the other hand, the RCS of
clutter is modeled using the generalized Weibull distribution
as in [21] and [23], which is widely utilized in the literature
to model clutter owing to its tractability and adaptability
to various environmental conditions [40]. Particularly, here
the environment is considered to have clutter whose RCS
is comparable to that of the target. In addition, MU, clutter
scatterers, and noise statistics are considered fixed during
the Tb time but change from one Tb to another, which is
acceptable given Tb is in the range of a few milliseconds.

For the communication sub-system and the interfering
radar signals, a quasi-static Nakagami-m multipath fading is
assumed as in [1] and [2], where the channel gains remain
constant during Tc and Tb but randomly change across
different intervals. Consequently, channel fading gains are
modeled as independent and identically distributed (i.i.d.)
Gamma random variables with shape parameters mL and mN
for LOS and NLOS conditions, respectively.
Remark 2: For tractability in the radar sub-system, the

multipath signals from targets are neglected. That is, only the
direct reflected signal from a target is considered. This is a
plausible approximation owing to the high losses at the mm-
wave frequency band and the relatively longer propagation
distances of the multi-path radar signals reflected from
targets [19], [20], [21], [22], [23].

III. RADAR SUB-SYSTEM ANALYSIS
In this section, The radar sub-system analysis that is based
on the SCINR is carried out. First, the SCINR is formulated,

2RCS is defined as the ratio of the power scattered back to the radar
receiver over the incident radar power density per unit of solid angle on the
target measured in the far field (i.e., it indicates the target’s capacity to reflect
radar signals in the direction of the radar).

FIGURE 3. Monostatic radar range resolution cell area of 1D × 1C .

then the radar detection probability is derived, and finally, the
average radar detection rate is calculated.

A. SCINR FORMULATION
Before formulating the SCINR, the definition of the radar
range resolution cell area needs to be introduced. According
to [41] and [42], the monostatic radar range resolution cell
area is the smallest area in which a radar cannot detect more
than one target. It is defined by the size of the resolution cell
in the range, 1D =

c
2 Wr

, and the size of the resolution cell in
the cross-range, 1C = θrR as illustrated in Figure 3 then the
resolution cell area is

Arc(R) = 1D × 1C =
c θr R
2 Wr

. (3)

Without loss of generality, consider a reference BMR node
located at the origin. Note that not all the BMR nodes are
interfering, but only those BMR nodes whose radar antennas
are directed towards the radar antenna of the reference
BMR node. As such, the following approximation for the
interfering BMR nodes of the radar sub-system is adopted.
Approximation 1: To ensure mathematical tractability and

since the BMR nodes density is λBMR nodes =
2

3
√
3R2c

but
not all BMR nodes are interfering. Accordingly, the actual
interfering BMR nodes are approximated by a PPP with
density given by

λIr =
2

3
√
3R2c

×
θr

2π
×

θr

2π
(4)

where the term θr
2π ×

θr
2π is to capture the probability that

the radar antenna of the interfering BMR node is directed
towards the radar antenna of the reference BMR node.
Moreover, since the nearest BMR node is at distance 2 Rc
from the reference node, the interfering BMR nodes are
assumed to exist outside an interference-free region, which
is approximated via a circle of radius 2 Rc around the origin.
The set of interfering BMR nodes is divided into two

independent PPPs for LOS and NLOS conditions. To this
end, let 8Lr be the PPP of LOS interfering BMR nodes
with intensity pLOS (r) × λIr , and 8Nr be the PPP of NLOS
interfering BMR nodes with intensity (1 − pLOS (r)) × λIr .
As mentioned previously, for a MU at a range of R, the

direct signal is only considered and a fixed antenna gain
inside the resolution cell is assumed with no returns from
the side lobes. For the clutter, only that arises from those
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scatterers that are in the same resolution cell as the MU are
considered.

According to the radar range equation [42], the signal
received from a target, i.e. MU at a range RMU , is
given by

S(RMU ) =
PrG2σMUλ2

(4π )3R2ηLMULs
(5)

where Pr is the radar transmitted power, G is the antenna
gain, and σMU is the RCS of the target. Moreover, ηL is the
LOS path-loss exponent, and Ls represents system losses,
i.e. cable, impedance mismatch, and signal processing loss,
among others. The aggregate clutter at the receiver is

C =

∑
ct∈φct∩Arc(RMU )

PrG2σctλ
2

(4π )3R2ηLct Ls
(6)

where σct is the RCS of the clutter. The thermal
noise Nt = KBTWr , where KB is Boltzmann con-
stant, and T is the system temperature. The LOS and
NLOS interference signals from other cells are given
by ILr =

∑
BMR nodei∈φLr

PrhLr ,iG
2CLr

−ηL
i , and INr =∑

BMR nodei∈φNr

PrhNr ,iG
2CN r

−ηN
i ,where hLr ,i and hNr ,i are the

channel gains of the ith LOS and NLOS interfering BMR
nodes, respectively, and ri is the distance betweenBMR nodei
and the origin. CL and CN are the LOS and NLOS path-loss
intercepts. Therefore, the SCINR for a MU at range RMU is

SCINR =

PrG2σMUλ2

(4π )3R
2ηL
MU Ls∑

ct∈φct∩Arc(RMU )

PrG2σctλ2

(4π)3R
2ηL
ct Ls

+ KBTWr + ILr + INr
.

(7)

As the resolution cell area is typically narrow [41], [42], it is
plausible to consider that both MU and clutter signals have
the same range such that RMU = Rct = R and the SCINR is
simplified in (8), as shown at the bottom of the next page.

B. RADAR DETECTION PROBABILITY
To proceed with the analysis, here the radar detection
probability is defined as the probability that the average
SCINR at range R is greater than or equal to a predefined
threshold.3 This definition was introduced in [21] and [23]
but without the interference term. This draws an analogy with
coverage probability commonly used in wireless networks,
which represents the probability of SINR exceeding a
predefined threshold [1], [2]. Additionally, as radar cannot
differentiate betweenmultipleMUswithin a single resolution
cell, it is crucial to account for the probability that the

3It is worth mentioning that no assumptions on signal pre-processing
before the SCINR computation. The SCINR serves as an initial measure
to evaluate the received signal strength in the presence of clutter and
interference and to facilitate the theoretical formulation. In practice, a typical
target detection system includes various signal processing stages, which is
out of the scope of this paper.

radar resolution cell has only one MU. This probability will
be utilized in the subsequent derivation of radar detection
probability.
Remark 3: The probability that the radar resolution cell

contains a single MU has a zero-truncated Poisson distribu-
tion given by

P({N (MU ) ∈ Arc(R)} = 1) =
Arc(R) λMU

eArc(R) λMU − 1
(9)

where N (MU ) ∈ Arc(R) denotes the number of MUs in the
resolution cell.

Then, the Laplace Transform (LT) of interference is
calculated.
Lemma 1: The LT of the aggregate LOS and NLOS

interference seen by the typical BMR node located at the
origin is given by (10) and (11) respectively.

LILr (s) = exp
(

−2πλIr

∫
∞

2Rc
pLOS (r)(

1 −

(
1 +

sPrG2CLr−ηL

mL

)−mL
)
r dr

)
(10)

LINr (s) = exp
(

−2πλIr

∫
∞

2Rc
(1 − pLOS (r))(

1 −

(
1 +

sPrG2CN r−ηN

mN

)−mN
)
r dr

)
(11)

where pLOS (r) is given by (2).
Proof: See Appendix A.

Utilizing Remark 3 and Lemma 1, the radar detection
probability is given in the following theorem.
Theorem 1: The radar detection probability for MU at a

range R with a minimum acceptable SCINR threshold γr is
given in (12), as shown at the bottom of the next page, where
σavgm is the average RCS of MU, σavgc is the average RCS of
clutter, and LILr , LINr are given by (10) and (11).

Proof: See Appendix B.

C. AVERAGE RADAR DETECTION RATE
The total sweep area by the radar at a range R during the
search time duration, Tr , is given by

Asw = 2π R× 1D =
π c R
Wr

. (13)

Since the spatial distribution of MUs is PPP over the
network area, the average number of detected MUs at a range
R during one search duration Tr is given by

Nd (R) = Asw Pd (R) λMU =
Pd (R) λMU π c R

Wr
, (14)

and the average detection rate defined as the average number
of detected MUs per second at the range R is given by

Rd (R) =
Pd (R) λMU π c R

Wr Tr
. (15)

Remark 4: The range resolution is the ability of the radar
to distinguish between targets on the same bearing but at
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different ranges [41]. Hence, theoretically and under ideal
conditions, signals reflected from targets on the same bearing
can be resolved if the targets are separated by the resolution
cell in the range, 1D, or more [41]. It is obvious that the
number of simultaneously detected targets can be increased
by reducing 1D through increasing the radar bandwidth.

Utilizing Remark 4, the average total detection rate for any
radar sub-system in the network is the sum of the average
detection rates at all possible ranges starting from Rmin to
Rc, where each range is separated by 1D, to cover the entire
search area and is given by

Rdt =

⌊
2Rc
c τ

⌋∑
i=1

Pd ( c τ
2 i) λMU π ( c τ

2 i) c

Wr Tr
. (16)

IV. COMMUNICATION SUB-SYSTEM ANALYSIS
In this section, the analysis of the communication sub-system
based on SINR is performed, then the total system throughput
is defined. Without loss of generality, consider a reference
detected MU to be located at the origin. The intended link is
between the detected MU at the origin and the BMR node at
range R where R ≤ Rc. Furthermore, it is taken into account
that the BMR nodes are not transmitting continuously for
communication but transmit when a MU is detected by the
radar sub-system. As such, the following approximation for
the interfering BMR nodes is adopted.
Approximation 2: To ensure mathematical tractability, the

interfering BMR nodes are approximated with a PPP of
density given by

λIc =
2

3
√
3R2c

× Rdt × Tc (17)

such that Rdt ×Tc ≤ 1, and it captures the probability that an
interfering BMR node is active at any time instant. Moreover,
due to the absence of intra-cell interference, the interfering
BMR nodes are assumed to exist outside an interference-free
region, which is approximated via a circle of radius Rc around
the typical MU.

The set of interfering BMR nodes is divided into two
independent PPPs for LOS and NLOS conditions. To this
end, let 8Lc be the PPP of LOS interfering BMR nodes
with intensity pLOS (r) × λIc , and 8Nc be the PPP of NLOS
interfering BMR nodes with intensity (1 − pLOS (r)) × λIc .
Finally, for the typical detected MU located at the origin and

assuming perfect antenna alignment for the intended link, the
SINR is given by

SINR =
PchL,oGmCLR−ηL

ILc + INc + KBTWc
, (18)

where Pc is the communication sub-system transmission
power, hL,o is the intended channel fading gain, andGm is the
maximum antenna gain. The LOS and NLOS interference are
given by ILc =

∑
BMR nodei∈φLc

PchL,iGc(θi)CLr
−ηL
i , and INc =∑

BMR nodei∈φNc

PchN ,iGc(θi)CN r
−ηN
i , where hL,i and hN ,i are

the channel gains of the ith LOS and NLOS interfering BMR
nodes, and ri is the distance between BMR nodei and the
origin. Furthermore, θi represents the angle formed between
the line joining the interferer BMR nodei and its intended
MU, and the line joining the interferer BMR nodei with the
reference MU positioned at the origin.

A. MISALIGNMENT ERROR
The antenna beam alignment for communication is based
on the location of MU detected by the radar sub-system.
For an ideal scenario, a perfect beam alignment between
the BMR node and detected MU is assumed where θ = 0
and Gc(θ ) = Gm. However, since the radar information is
employed directly and no further beam training is performed,
there exists an error angle φ between the actual and the
detected directions of the MU as shown in Figure 4. This
angle is random but related to the resolution cell in the cross-
range, 1C . Since only one MU can be detected at any point
in the resolution cell with equal probability, the error angle
φ is modeled as a uniform random variable with a zero mean
between −

θr
2 and θr

2 , where |
θr
2 | < π . It is worth mentioning

that a narrower radar beamwidth (i.e., longer search time)
leads to decreased misalignment errors in communications
due to the reduction in the radar resolution cell area.

The SINR, after considering a misalignment error is

SINR =
PchL,oGc(φ)CLR−ηL

ILc + INc + KBTWc
. (19)

Remark 5: Introducing the misalignment error in the
intended link does not affect the interference gain angles,
as for each interfering BMR node, θi is independent and

SCINR(R) =
σMU∑

ct∈φct∩Arc(R)
σct +

KBTWr (4π)3R2ηL Ls
PrG2λ2 +

ILr (4π)3R
2ηL Ls

PrG2λ2 +
INr (4π)3R

2ηL Ls
PrG2λ2

(8)

Pd (R) =
Arc(R) λMU

exp (Arc(R) λMU ) − 1
× exp

(
− γKBTWr (4π )3R2ηLLs

PrG2λ2σavgm
+

− γ σavgc λct c π Tb R

Wr Tr
(
σavgm + γ σavgc

))

× LILr

(
γ (4π )3R2ηLLs
PrG2λ2σavgm

)
× LINr

(
γ (4π )3R2ηLLs
PrG2λ2σavgm

)
(12)
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FIGURE 4. Communication antenna misalignment error of angle φ

between the actual and the detected direction of the MU through radar
sub-system.

uniformly distributed. So, after introducing the misalignment
error, θi distribution remains independent and uniform.

To proceed with the analysis, the probability density
function (PDF) of the antenna gain G(φ) has to be calculated
instead of the PDF of φ itself.
Lemma 2: The probability distribution of the communica-

tion antenna gain with a uniform misalignment error angle
φ ∼ U (− θr

2 , θr
2 ) is given as follows

fG(φ)(g (φ))=


2

b θr
√
g (φ) (Gm − g (φ))

0< g (φ)<Gm

0 otherwise

(20)

where

g (φ) ∈

[
Gm cos2

(
b θr

4

)
,Gm

]
for

∣∣∣∣θr2
∣∣∣∣ <

π

b

g (φ) ∈ [0,Gm] for
π

b
≤

∣∣∣∣θr2
∣∣∣∣ < π

Proof: Starting with the definition of the cumulative
distribution function (CDF) of the gain and performing a
transformation of the random variable, i.e.

FG(φ) (g (φ))

=P{G (φ) ≤ g (φ)}

=P{−
θr

2
≤φ ≤ −G−1 (g (φ))} + P{G−1 (g (φ))≤φ ≤

θr

2
}

(21)

Substituting by the PDF of φ and integrating

FG(φ) (g (φ)) =

∫
−G−1(g(φ))

−
θr
2

1
θr

dφ +

∫ θr
2

G−1(g(φ))

1
θr

dφ

(22)

Since G−1 (g (φ)) =
2
b cos

−1
(√

g(φ)
Gm

)
, then CDF of gain is

FG(φ) (g (φ))

= 1 −
4
b θr

cos−1

(√
g (φ)

Gm

)

=



0 g (φ) < 0

1 −
2 π

b θr
g (φ) = 0

1 −
4
b θr

cos−1

(√
g (φ)

Gm

)
0 < g (φ) < Gm

1 g (φ) ≥ Gm
(23)

By taking the derivative of the CDF, the lemma is proved.

B. COMMUNICATION COVERAGE PROBABILITY
Here the communication coverage probability is calculated
for the links established with the detected MUs in the
presence of the antenna misalignment error. First, the LT of
interference is calculated.
Lemma 3: The LT of the aggregate LOS and NLOS

interference seen by the typical MU located at the origin is
given by (24) and (25) respectively.

LILc (s) = exp

(
−λIc

∫ π
b

−
π
b

∫
∞

Rc
pLOS (r)(

1 −

(
1 +

sPcGc(θI )CLr−ηL

mL

)−mL
)
r dr dθI

)
(24)

LINc (s) = exp

(
−λIc

∫ π
b

−
π
b

∫
∞

Rc
(1 − pLOS (r))(

1 −

(
1 +

sPcGc(θI )CN r−ηN

mN

)−mN
)
r dr dθI

)
(25)

where pLOS (r) is given in (2).
Proof: See Appendix C.

Utilizing the results of Lemma 2 and Lemma 3, the
coverage probability can be derived in the following theorem.
Theorem 2: The communication coverage probability at

a range R with a minimum SINR threshold γc to correctly
decode the signal is given as follows

Cp(R)

=

mL∑
n=1

(−1)n+1
(
mL
n

)∫
exp

(
−
kL n γc RηL KBTWc

PcgcCL

)

× LILc

(
kL n γc RηL

PcgcCL

)
LINc

(
kL n γc RηL

PcgcCL

)
fG (gc) dgc

(26)

where kL = mL(mL !)
−

1
mL , LILc and LINc are given by (24)

and (25).
Proof: See Appendix D.

If a perfect antenna alignment is assumed between the
detected MU and its BMR node, the coverage probability is
given by the following corollary.
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Corollary 1: The communication coverage probability in
case of perfect antenna alignment between the BMRnode and
the detected MU is given by

Cp(R) =

mL∑
n=1

(−1)n+1
(
mL
n

)
exp

(
−
kL n θt RηL KBTWc

PcGmCL

)
× LILc

(
kL n θt RηL

PcGmCL

)
LINc

(
kL n θt RηL

PcGmCL

)
(27)

Proof: It is proved similarly to Theorem 2 but the
antenna gain of the intended link is deterministic and equals
the maximum value Gm.

C. SYSTEM THROUGHPUT
The data rate of the communication sub-system can be
characterized by its outage capacity, which is

Cr (R) = P (SINR > γc) × ζWc log2 (1 + γc) (28)

where ζ accounts for the gap between the theoretical Shannon
capacity and actual modulation and coding schemes. Hence,
the average system throughput at distance R corresponds to
the product of the average radar detection rate at that distance
and the data transmitted by each detected MU within Tc4

T (R) = Rd (R) × Tc × Cr (R). (29)

While the average total system throughput by any BMR node
in bits/s is the sum of the average system throughput at all
possible ranges starting from Rmin to Rc, where each range is
separated by 1D, to cover the entire search area and is given
by

Tt =

⌊
2Rc
c τ

⌋∑
i=1

Rd
(c τ

2
i
)

× Tc × Cr
(c τ

2
i
)

(30)

Remark 6: The operation of the communication sub-
system presented in this section is greatly influenced by the
radar sub-system performance as follows:

• The communication antenna misalignment error
depends on the radar beam spread (i.e., search time) as
presented in Lemma 2.

• The interference in the communication sub-system
depends on the total radar detection rate as shown in
Approximation 2.

• Since the two sub-systems are working simultaneously,
this ensures that the communication sub-system serves
the detected MUs without queuing delay, and the
localization is as accurate as possible.

4The communication sub-system can be extended to serve multiple MUs
simultaneously in a single time slot with a single antenna beam using
some user grouping techniques such as Non-Orthogonal Multiple Access
(NOMA). This is a stand-alone problem that requires power allocation
strategy and successive interference cancellation (SIC) mechanism, and
hence is left as future work to not dilute the paper’s main focus. Employing
user grouping techniques will enhance the average total throughput of
the system but the core findings regarding eliminating the beam training
overhead will remain unchanged.

TABLE 2. Numerical parameters of the proposed system.

• The average total system throughput in bits/s depends on
the total detection rate by the radar sub-system as given
in (30).

V. NUMERICAL RESULTS
In this section, numerical demonstrations and simulations
are performed. The system is set to operate at the 28 GHz
frequency band, which is well-suited for both radar and
communication operations and the bandwidths of both sub-
systems are non-overlapping. As the majority of current inte-
grated radar and communication applications operate within
short range [11], [43], λBMR nodes = 900 BMR nodes/km2 is
selected which corresponds to a network of small cells [44]
with radius Rc = 20.68 m. The rest of the numerical values
of the parameters have been carefully selected to be realistic
and are listed in Table 2. It is worth mentioning that the
developed mathematical model is valid for a broad range of
parameter values, where the selected values in this section
are considered to demonstrate the performance results and
the effect of antenna misalignment along with the aggregate
interference.

Figure 5 compares the analytical expression of the radar
detection probability given in Theorem 1 to the simulation of
the system with exact node locations for various ranges. The
accuracy of the proposed radar sub-systemmodel is validated
by the excellent consistency between the derived expression
and numerical simulation. The figure also illustrates that
the radar detection probability diminishes as the range
increases. Figure 6 compares the analytical expressions of the
communication coverage probability for the misalignment
antenna error scenario given by Theorem 2 and the perfect
alignment scenario in Corollary 1 to the simulations of the
system with exact node locations at various ranges. Again,
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FIGURE 5. Radar detection probability versus the minimum acceptable
SCINR threshold for different ranges.

FIGURE 6. Communication coverage probability versus the minimum
acceptable SINR threshold for different ranges.

the close match confirms the accuracy of the analytical
expressions derived for the communication sub-system.
The figure also depicts the deterioration of communication
coverage probability due to antenna misalignment.

Figure 7a plots the radar detection probability given by
Theorem 1 against the search duration for different ranges.
It demonstrates that increasing the search duration increases
the radar detection probability. This is due to two factors:
increasing search time enables antenna beams to be narrower,
thereby enhancing antenna gains. Additionally, narrower
beams reduce the area of the resolution cell, which reduces
clutter as well as the probability of locating multiple MUs
within the same resolution cell. However, after a certain value
of Tr , the radar detection probability tends to saturate, as the
resolution cell area becomes very small and the system is
transformed from clutter-limited to noise-limited operation.

Figure 7b depicts the average radar detection rate cal-
culated in (15) against the search duration. Increasing
Tr increases the average radar detection rate due to the
improvement in radar detection probability. Nonetheless,
there is an optimal Tr above which the average detection rate
begins to decline. Beyond the optimal Tr value, the gain in
detection due to the increase in radar detection probability
becomes insignificant in comparison to the time expended.

Figure 8 illustrates that the radar detection probability given
by Theorem 1 decreases as the MU density increases due to
the increased probability of finding more than one MU in the
same resolution cell. Figure 8b shows that the average radar
detection rate in (15) increases with increasing MU density
because the search area contains more MUs until reaching
optimal value. However, a further increase in MU density
leads to a decline in the detection rate due to the significant
decrease in radar detection probability, as demonstrated in
Figure 8.
Figure 9a plots the average radar detection rate in (15) at

R = 15 m versus MU density for different Tr values while
keeping Wr constant. The figure confirms that increasing
the search duration in correspondence to the increase in
MU density can improve the average radar detection rate.
The figure also illustrates that there exists, for each search
duration value, an optimal MU density that optimizes the
average radar detection rate. Reducing the MU density below
this optimal value decreases the density of potential users,
thus lowering the average radar detection rate. IncreasingMU
density above this optimal value decreases the radar detection
probability due to the higher probability of locating multiple
MUs in one resolution cell. Hence, decreasing the average
radar detection rate.

Figure 9b plots the average radar detection rate in (15)
at R = 15 m versus MU density for different Wr values
when Tr is fixed. The figure confirms that increasing the radar
bandwidth that reduces the resolution cell area can preserve
the average radar detection rate at accepted levels if the MU
density is increased. Furthermore, the figure demonstrates
that for each radar bandwidth value, there exists an optimal
MU density that optimizes the average radar detection rate
for the same reasons explained in Figure 9a. However, unlike
Figure 9a, this figure shows that the peak of the average
radar detection rate always decreases when increasing Wr as
a result of amplifying the thermal noise effect.

Figure 10a plots the average total detection rate in (16)
versus the search duration at different clutter densities.
The figure demonstrates that there exists an optimal search
duration that maximizes the average total detection rate. Fur-
thermore, the figure confirms the degradation in performance
as clutter density increases. Here for λct = 105 km−2 and
according to the numerical values utilized, the optimal search
time duration is approximately 0.16 s which corresponds to
radar antenna HPBW of θr = 11.25◦.

Since introducing the misalignment error transforms
the communication antenna gain into a random variable,
Figure 10b plots the CDF of the communication antenna
gain for b = 3 at different radar beamwidth spreads. The
figure clearly demonstrates that as the radar beamwidth
becomes smaller (i.e., radar search time becomes larger),
the probability of having higher communication antenna
gain increases. This can be explained as follows: narrower
radar beamwidth reduces the radar resolution cell area,
which means more accurate radar localization. Consequently,
this reduces the misalignment error of the communication
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FIGURE 7. (a) Radar detection probability and (b) Average detection rate versus search duration for different ranges.

FIGURE 8. Radar detection probability and average detection rate versus MU density at different ranges.

FIGURE 9. Average radar detection rate at R = 15 m versus MU density for different (a) radar search duration and (b) radar
bandwidth.

antenna, increasing the probability of having a higher
communication antenna gain.

Figure 11 plots the average total system throughput in (30)
versus the communication antenna beamwidth spread param-
eter b at the optimal search duration value that maximizes
the radar average total detection rate (i.e., Tr = 0.16 s).

The results depend on both the communication coverage
probability and the radar average detection rate. Moreover,
the figure shows that there is an optimal value of b that
maximizes the average total system throughput. This can be
explained as follows, for the smaller b values corresponding
to wide communication antenna beamwidth, the antenna gain
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FIGURE 10. (a) Average total detection rate versus search duration for different clutter densities and (b) CDF of the
communication antenna gain at b = 3 with misalignment error at different radar HPBW values.

FIGURE 11. Average total throughput versus communication antenna
main lobe spread parameter at the optimal search duration value.

FIGURE 12. Average total throughput versus search duration at the
optimal communication antenna main lobe spread parameter.

is small but the penalty of misalignment error is small as well.
However, a larger b value, which corresponds to a narrower
beamwidth, increases the gain and reduces interference, but
the possible misalignment error has a greater impact. On the
other hand, if a perfect alignment is considered, increasing
b will always enhance the average total system throughput.
Here, according to the numerical values utilized, the optimal
b is 14.5.

Figure 12 shows the average total system throughput
in (30) versus the radar search duration at the optimal
communication antenna main lobe spread parameter (i.e.,
b = 14.5). There exists an optimal Tr value that allows
for the maximum average total throughput of the system,
which is recommended for operation. When employing
this optimal value along with the optimal b value, the
influence of misalignment error becomes nearly negligible,
affirming the effectiveness of the proposed system in
eliminating beam training overhead without compromising
system performance. Additionally, the observed trends in
the figure mirror those in Figure 10a. This consistency
is noteworthy as it indicates that the radar sub-system’s
performance dominates the entire system when an optimal
communication antenna beam spread is employed.

VI. CONCLUSION AND FUTURE WORK
This paper introduces an SG model for a radar-assisted
communication system operating in the mm-wave band,
aiming to eliminate beam training overhead. The model
takes into account clutter, RCS fluctuations, and interference
from concurrently transmitting nodes. The system comprises
two sub-systems: a sensing radar sub-system for locating
MUs and a communication sub-system to establish links
with detectedMUs. Both sub-systems operate simultaneously
under realistic LOS and NLOS conditions. To eradicate
beam training overhead, the communication antenna’s beam
alignment relies on the detected MUs’ locations from the
radar sub-system without additional training. Consequently,
a misalignment error is present, and its magnitude is related
to the radar sub-system’s accuracy.

The results indicate that the proposed system successfully
eliminates beam training overhead without compromising
system performance. Additionally, the findings highlight
that the radar’s sub-system dominates the overall system
performance when the communication sub-system adopts a
suitable antenna beamwidth. Specifically, the communica-
tion antenna’s beamwidth has a tradeoff, where a narrow
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beamwidth provides higher gain, and significantly reduces
interference, but amplifies the effects of misalignment error.
In summary, two key design parameters crucially impact
overall system performance: the radar search duration,
influencing radar antenna beamwidth and resolution cell size,
and the communication antenna beamwidth which involves
a tradeoff. Optimal values for these parameters can greatly
enhance the system’s average total throughput and effectively
eliminate beam training overhead.

While this paper showcased the viability of eliminating
beam training overhead in mm-wave communication through
the utilization of radar location information and controlling
the beamwidth tradeoff, there exists potential for further
enhancements. As a future extension of this research,
an opportunity lies in addressing the open research challenge
related to radar detection in environments marked by NLOS
conditions or the presence of shadowing effects. Additionally,
the exploration of user grouping techniques, such as NOMA,
to simultaneously serve multiple MUs within the same time
slot could be considered to enhance the system’s throughput.

APPENDIX A
PROOF OF LEMMA 1
Starting with the LOS interference and using the definition of
Laplace Transform

LILr (s)
= EφLr

[
exp

(
−sILr

)]
= EφLr

exp
−s

∑
BMR nodei∈φLr

PrhLr ,iG
2CLr

−ηL
i


= EφLr

 ∏
BMR nodei∈φLr

exp
(
−sPrhLr ,iG

2CLr
−ηL
i

)
(31)

From the Gamma distribution’s moment-generating function

LILr (s) = EφLr

 ∏
BMR nodei∈φLr

(
1 +

sPrG2CLr
−ηL
i

mL

)−mL


(32)

Using polar coordinates and the definition of probability
generating functional (PGFL) in PPP

LILr (s) = exp
(

−2πλIr

∫
∞

2Rc
pLOS (r)(

1 −

(
1 +

sPrG2CLr−ηL

mL

)−mL
)
r dr

)
(33)

where r is the distance from the origin to the interfering BMR
node.

For NLOS interference, the previous steps are repeated,
replacing pLOS (r) by (1 − pLOS (r)), mL by mN , CL by CN
and ηL by ηN .

APPENDIX B
PROOF OF THEOREM 1
Let γ be the minimum acceptable SCINR threshold, then
the radar detection probability at range R given a single MU
exists in the resolution cell is

Pd (R|N (MU ) ∈ Arc(R) = 1)

= P (SCINR > γ )

= P

[
σMU >

γKBTWr (4π)3R2ηLLs
PrG2λ2 +

γ ILr (4π )
3R2ηLLs

PrG2λ2

+
γ INr (4π )

3R2ηLLs
PrG2λ2 +

∑
ct∈φct∩Arc(R)

γ σct

 (34)

Adopting the Swerling I model, the PDF of σMU reduces to

P(σMU ) =
1

σavgm
exp

(
−σMU

σavgm

)
(35)

which is exponential distribution with mean σavgm denoting
the average RCS of MU. Then (34) can be written as

Pd (R|N (MU ) ∈ Arc(R) = 1)

= exp

 ∑
ct∈φct∩Arc(R)

− γ σct

σavgm

−
γ (4π )3R2ηLLs(KBTWr + ILr + INr )

PrG2λ2σavgm

)
=exp

(
− γKBTWr(4π )3R2ηLLs

PrG2λ2σavgm

)
×LILr

(
γ (4π )3R2ηLLs
PrG2λ2σavgm

)
× LINr

(
γ (4π )3R2ηLLs
PrG2λ2σavgm

)

× Ect,σct

exp
 ∑
ct∈φct∩Arc(R)

− γ σct

σavgm

 (36)

Let

A = Ect,σct

exp
 ∑
ct∈φct∩Arc(R)

− γ σct

σavgm


= Ect

 ∏
ct∈φct∩Arc(R)

Eσct

[
exp

(
− γ σct

σavgm

)] . (37)

Using the PGFL of PPP

A = exp

− λct
x

Arc(R)

Eσct

[
1 − exp

(
− γ σct

σavgm

)]
dx dy


(38)

Substituting by the area of resolution cell and calculating the
expectation

A

=exp
(

−
λctP c θr R

2 Wr

∫
∞

0

(
1 − exp

(
− γ σct

σavgm

))
P(σct ) dσct

)
(39)
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The Weibull PDF of RCS of clutter at radar, σct , is given by

P(σct ) =
k

σavgc

(
σct

σavgc

)k−1

exp

(
−

(
σct

σavgc

)k)
(40)

where σavgc is the average RCS of clutter, and k is the shape
parameter whose value can capture different conditions.

For the case where clutter arises from discrete scatterers
whose RCSs are comparable to that of the target, k = 1 is
considered as in [21] and [23]. Consequently, the distribution
is reduced to exponential which is widely accepted in the
literature, and then A in (39) can be simplified to

A = exp

(
− γ σavgc λct c θr R

2 Wr
(
σavgm + γ σavgc

)). (41)

By utilizing the probability distribution of (N (MU ) ∈

Arc(R) = 1) described in Remark 3, the theorem is proved.

APPENDIX C
PROOF OF LEMMA 3
Starting with the LOS interference, using the definition of
Laplace Transform

LILc (s)
= EφLc

[
exp

(
−sILc

)]
= EφLc

exp
−s

∑
BMR nodei∈φLc

PchL,iGci (θI )CLr
−ηL
i


= EφLc

 ∏
BMR nodei∈φLc

exp
(
−sPchL,iGci (θI )CLr

−ηL
i

)
(42)

From the Gamma distribution’s moment-generating function

LILc (s)

= EφLc

 ∏
BMR nodei∈φLc

(
1 +

sPcGci (θI )CLr
−ηL
i

mL

)−mL

(43)

Combining BMR nodes’ location with their orientations and
from the definition of PGFL in PPP

LILc (s) = exp

(
−λIc

∫ π
b

−
π
b

∫
∞

Rc
pLOS (r)(

1 −

(
1 +

sPcGc(θI )CLr−ηL

mL

)−mL
)
r dr dθI

)
(44)

where r is the distance from the origin to the interfering BMR
node.

For NLOS interference, the previous steps are repeated,
replacing pLOS (r) by (1 − pLOS (r)), mL by mN , CL by CN
and ηL by ηN .

APPENDIX D
PROOF OF THEOREM 2
Let θt be the SINR threshold required to correctly decode the
signal, then

Cp(R)

= P (SINR > θt) = P

(
PchL,oGc(φ)CLR−ηL

ILc + INc + KBTWc
> θt

)
= P

(
hL,0 > θtRηL (PcGc(φ)CL)−1

× (ILc+INc + KBTWc)
)

(45)

Utilizing Alzer’s inequality [45]

Cp(R) ≈

mL∑
n=1

(−1)n+1
(
mL
n

)
× E

[
exp

(
−
kL n θt RηL (ILc + INc + KBTWc)

PcGc(φ)CL

)]
(46)

where kL = mL(mL !)
−

1
mL

since φL and φN are independent and from the definition of
Laplace Transform

Cp(R) =

mL∑
n=1

(−1)n+1
(
mL
n

)
exp

(
−
kL n θt RηL KBTWc

PcGc(φ)CL

)
× LILc

(
kL n θt RηL

PcGc(φ)CL

)
LINc

(
kL n θt RηL

PcGc(φ)CL

)
(47)

since Gc(φ) is a random parameter, let Gc(φ) = gc with
distribution fG (gc) then Cp(R) will be given by

Cp(R)

=

mL∑
n=1

(−1)n+1
(
mL
n

)∫
exp

(
−
kL n θt RηL KBTWc

PcgcCL

)
× LILc

(
kL n θt RηL

PcgcCL

)
LINc

(
kL n θt RηL

PcgcCL

)
fG (gc) dgc.

(48)
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