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ABSTRACT The aim of this study is to investigate the capabilities of edge-AI in the field of structural
health monitoring, with a particular emphasis on detecting cracks in concrete bridges. Comprehensive
literature suggests that edge-AI approaches have not been utilized in the structural health monitoring domain
(SHM). This article proposed two novel frameworks: an edge-AI framework for the SHM domain and a
cloud-edge adaptive intelligence for crack detection (CEAIC) to utilize edge-AI approaches for real-time
scenarios. The framework incorporates a novel edge-AI framework, the crowd intelligence approach, and
the CrANET framework to perform weakly supervised crack segmentation. Quantization approaches are
used to transform the deep learning model into an optimized model to be compatible with edge devices. The
edge-AI experiments for the cracks detection task are conducted using Kneron KL520 and Google Coral
development board. A responsive website has been developed to demonstrate the real-world implications
of the CEAIC framework. This study has the potential to provide a cost-effective and reliable solution for
real-time monitoring and assessment of concrete bridge cracks, thereby improving the safety and longevity
of bridges. The outcomes of this research endeavor will furnish us with invaluable insights regarding the
feasibility and potential advantages of incorporating edge AI into the SHM domain.

INDEX TERMS Cracks detection, edge-AI, neural networks, quantization, structural health monitoring.

I. INTRODUCTION
According to the latest National Bridge Inventory (NBI) data,
as of 2021, over 4 out of 10 bridges in the United States were
either structurally deficient or functionally obsolete. The
American Society of Civil Engineers (ASCE) infrastructure
report (https://infrastructurereportcard.org/cat-item/bridges/)
indicates 7.5% out of 600,000 of the nation’s bridges are
labeled as ‘‘poor’’ in condition. The failure of these bridges
can have a direct impact on public safety and economic
growth; for example, they are major assets of transportation
infrastructure and help to serve communities [6], [36].

However, the increasing traffic loads and the threat of
structural fatigue make it crucial to monitor the condition of
bridges. Structural Health Monitoring (SHM) can play a key
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role in increasing the lifespan and performance of bridges [4].
The optimal system for monitoring, managing, and assessing
the condition of bridges is required for performing tasks such
as bridge maintenance and deterioration. Periodic and con-
tinuous monitoring via bridge deck inspections is necessary
for structural health monitoring (SHM) [19], [63]. Advances
in technology like wireless sensor networks and artificial
intelligence have allowed bridge structural health monitoring
to be more effective. In the past, AI approaches including
machine learning, computer vision, and robotics along with
data mining and image processing techniques are utilized
to address the SHM challenges [19], [22], [25], [45], [62],
[63], [66]. Especially deep learning approaches are broadly
utilized in the past for detecting and segmenting bridge
components [21], [27], [42]. Results obtained through these
computational approaches have shown immense potential
to support health monitoring tasks such as crack detection,
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segmentation of bridge components, UAV inspection of
bridges, and damage detection for bridge structure [22], [25],
[60], [62]. However, real-time inferences in Structural Health
Monitoring (SHM) systems pose a significant challenge
due to a range of factors, including the complexity of
deep learning models that require substantial computational
resources, limited computing power, and the need for high
accuracy, which is difficult to achieve due to noisy data [65].
Additionally, given the network constraints in real-time
settings, efficient data processing can be further impeded.
It is important to deploy complex AI models with limited
resources by developing lightweight AI models, efficient AI
algorithms, and hardware acceleration techniques to address
real-time challenges. This article proposes an integration of
edge-AI platforms and their approaches in structural health
monitoring to optimize the deployment of complexAImodels
with limited resources.

Edge-AI allows inference and computation on-device
rather than on cloud servers or network connections that
optimizes the response time and accelerates AI computation
when data is generated and inferred [32]. Edge-AI can
be utilized as embedded technology that includes machine
learning, neural network processing, and run-time mecha-
nisms on the device itself. This leads to the advantages
of optimized response time, high privacy, more robustness,
better for dedicated AI tasks, and there is no need for internet
connectivity everywhere. In a case where data is generated
or collected and simultaneously needs to be inferred, edge-
AI has been widely recognized as a promising solution
because the inference will be done on the device itself. Edge
computing is proposed to address this challenge by reducing
the computing capability from the cloud data center to the
edge side, i.e., data generation source, which enables AI
processing with high performance [32]. Zhou et al. [32]
discuss that in August 2018, edge-AI emerged in the Gartner
HypeCycle for the first time. In the industry, many companies
like Google, Qualcomm, and others are providing edge AI
platforms that enable end devices to run ML inferences
with pre-trained models locally. Various dedicated edge AI
chips are commercially available on the market, like Google
Edge TPU, Intel Nervana NNP, Kneron edge-AI chip, and
Huawei Ascend 910 and Ascend 310. Mendez et al. [31]
and Zhou et al. [32] explain that integrating edge-AI with
cloud computing can enhance personalized AI. They claim
this by showing levels of edge intelligence based on data
offloading reduction. Zhou et al. [32] also claimed that there
is no best level of edge intelligence in general, considering
the cost of computational latency and energy consumption
due to data offloading. They further claimed that edge
intelligence is application-dependent and must be determined
based on scenarios. The present article acknowledges the
aforementioned claim and expounds upon the practical
implication of utilizing cloud-edge intelligence. The details
of this discussion as an application in the SHM domain are
elaborated in section III-D.

A. RESEARCH GOALS AND PROPOSED APPROACH
In this research study, drawing from artificial intelligence
(AI), neural network process acceleration, and edge comput-
ing literature, the study aims to investigate edge-AI integra-
tion in structural health monitoring tasks to tackle the issues
in real time. The objective is to develop deep learning-based
neural network models that are optimized for real-time
inference at physical bridge sites while balancing accuracy
and minimizing latency. A novel edge-AI framework is
proposed that integrates edge-AI approaches in SHM tasks.
This framework represents a significant advancement in the
field of SHM by leveraging the capabilities of deep learning
and edge-AI platforms. The edge-AI framework showcases
the effectiveness of developing optimized and compatible
deep learningmodels using pruning, quantization, and weight
clustering techniques or through on-device training with
transfer learning to refine an existing edge neural network
model. The framework offers insight into the functionality
and application of these approaches and highlights their
potential value in tasks like crack detection, rust detection,
displacement, vibration monitoring, etc., within the SHM
domain. The edge-AI platforms compromising Kneron
KL520 and Google Coral board are used to conduct the
experiments. Fig. 5 demonstrates the proposed edge-AI
framework. A series of experiments is conducted following
the framework to perform real-time crack image classifica-
tion tasks. The details of these experiments are discussed in
section III-C4.
Zhou et al. [32] and Mendez et al. [31] discuss integrating

cloud computing and claiming that edge intelligence is
application-dependent. Acknowledging this discussion and
the limitations of edge-AI platforms used for experiments,
this study also introduces a novel cloud-edge adaptive
intelligence framework for crack detection and quantification
(CEAIC) within the SHM domain to address the inherent
challenges of performing inference tasks at the physical
concrete bridge site. This framework comprises four essential
components: proposed edge-AI framework in the SHM
domain, cloud computing services, crowd intelligence for
gathering human feedback, and adaptive AI for continuous
model refinement with new data. Fig. 13 illustrates the
CEAIC framework. The CrANET framework, proposed by
Mishra et al. [68], is utilized in the proposed CEAIC
framework to accomplish the crack detection task. The
edge-AI platform compromising Kneron KL520 and Google
Coral board performs the binary image classification task,
whereas the segmentation, quantification, human feedback
recording, and adaptive AI tasks are performed on the
cloud using Amazon AWS services. A responsive web
application is developed that executes the aforementioned
task in the CEAIC framework. This web application is
tested on a physical bridge site in real time, validating
the proposed CEAIC framework’s effectiveness and robust
implementation. More details of the experiments can be
found in section III.
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The use cases, methods, results, and discussion in this
study will help and motivate researchers to utilize edge AI
for real-time applications in fields such as robotics, smart
surveillance, and automation in structural health monitoring.
In summary, the technical contributions are as follows:

1) Proposed a novel edge-AI framework for the SHM
domain

2) Proposed a novel cloud-edge adaptive intelligence
framework for crack detection and quantification
(CEAIC) framework in the SHM domain in real-time

3) Developed and deployed the optimized and compatible
edge-AI CNN model using attention networks for
classifying cracks in image data

4) Integrated crowd intelligence and adaptive AI approach
that retrains the model incorporating human feedback

II. RELATED WORKS
A. AI/ML AND STRUCTURAL HEALTH MONITORING
In the past, researchers utilized AI/ML approaches such as
data mining, image processing, machine learning, computer
vision, and robotics to approach the challenges associ-
ated with SHM [19], [22], [25], [45], [62], [63], [66].
Gandhi et al. [62] proposed big data, data management,
and decision support systems in structure health monitoring.
Here, they advocated developing a smart big data pipeline
targeting structural health monitoring systems for bridges
such that these approaches can reduce manpower require-
ments, especially for scenarios like manual visual inspection.
Many SHM tasks like crack detection, bolts detection, rivets
detection, bridge vibration analysis, etc., were approached
using deep learning and computer vision [21], [27], [42].
Most of these approaches utilized convolutional neural
networks [5], [21], [22], [27], [42]. Segmentation algorithms
like Mask RCNN, pyramid networks, and Fast RCNN are
used to detect bridge components in SHM [21].
Crack detection or segmentation is an important aspect

of bridge health inspection [14], [22], [25]. The inspection
attributes include patterns, location, and width of cracks
on structural surfaces that help to identify the structural
defects and their progression for deriving necessary rec-
ommendations for decision-making of maintenance and
deterioration [13]. However, most of the crack detection in
the literature are designed with high resource requirements,
inherit weight redundancy, and include large-scale param-
eters that lead to a high amount of multiply-accumulate
(MAC) operations. For example, ResNets is a 152-layer
model that helps to achieve state-of-the-art performance in
various computer vision applications. However, increasing
the number of layers makes the model resource-hungry.
Choudhary et al. [1] explain that VGG16, a convolutional
neural network has 138 million learnable parameters and
15.5 billion MACs to perform while inferring a single image.
These large-scale parameters and highMAC operations cause
high latency in inference time for a given input. In real-
time environments, this will be a potential reason for adding

loss to the business objectives. Also, this high resource setup
of deep neural networks has memory and high computation
constraints to deploy on devices such as mobile phones and
wearable devices.

Integrating edge-AI approaches can be a feasible solution
for deep neural networks to run on mobile devices to provide
low latency and high prediction performance. Thus, this
paper aims to develop a crack detection model using an
image dataset and deploy it on edge devices to optimize the
inference time.

B. EDGE-AI: AN APPLICATION
Edge-AI is an emerging area, and numerous related ques-
tions require thoughtful consideration regarding its appli-
cation, capability, model development, and real-time usage.
Recently, Singh and Gill [70] shed light on edge computing
paradigms, particularly focusing on Edge AI. It delves into
various stages of development for cloudlets, fog computing
(FC), mobile edge computing (MEC), and micro-data centers
(mDCs). Furthermore, it showcases application use cases
for both edge computing and edge-AI that are currently
being explored in proof-of-concept studies. Additionally,
it analyzes initial commercial service offerings and models.
It also conducts a comparative analysis of Edge AI with
cloudlets, FC, MEC, and mDCs, considering basic com-
puting characteristics alongside application, functionality,
and technological viewpoints. By focusing on the edge-AI
approach for deploying AI algorithms and models on
resource-constrained edge devices, the survey offers valuable
insights. Lastly, to provide direction for future researchers,
it highlights potential research areas and presents open
challenges. A potential key approach they endorse is edge-to-
cloud integration, where Edge AI and cloud computing will
be utilized as a hybrid solution. They discussed that the cloud
can be used for training and developing ML models, while
the edge-AI platforms can perform real-time inference.

Murshed et al. [46] provides a comprehensive overview
of edge intelligence with different techniques employed and
various applications of edge AI and discusses state of the
art. Zhou et al. [32] comprehensively survey the different
architectures of edge and artificial intelligence techniques
like machine learning, deep learning for prediction, and
inference. They discuss that edge-AI emerged in the Gartner
Hype Cycle for the first time in August 2018. Zhao et al. [24]
proposed ZOO that supports model construction, design,
and model uploading on the edge device, including a
use-case utilizing the Inception model on Raspberry Pi.
Hsieh et al. [37] developed GAIA, which stands for
a geo-distributed machine learning system having WAN
bandwidth usage to eliminate unnecessary communication
between data centers. Zeng et al. [16] proposed a Boomerang
framework that performs on-demand cooperative DNN
inferencing. Kang et al. [50] developed a cloud model-based
scheduler called Neurosurgeon, which partitions the DNN
computations between the edge devices and data centers
using automation. They discuss that edge-cloud mode is
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FIGURE 1. Edge-Computing use-case illustration by Zhou et al. [32].

similar to edge device mode, and data generated is stored
on the cloud [50]. These articles have only high-level
discussions. Use cases are merely provided. Contents like
experimental challenges, hardware constraints, and limita-
tions are missing.

Badidi et al. [71] proposed a study in the form of a system-
atic review of Edge AI-assisted video analytics in smart cities
by examining ML models and privacy-preserving techniques
for edge video analytics. They discuss that edge video
analytics, powered by Edge AI, presents exciting possibilities
but faces several challenges. The key hurdles include real-
time processing, limited resources, power, privacy& security,
scalability, robustness & adaptability, and the human-in-
the-Loop. They further added that research areas like
explainable AI, multi-modal fusion, adversarial robustness,
and edge-cloud collaboration hold promise for advancing
edge video analytics. While challenges remain, edge video
analytics driven by Edge AI has immense potential to
revolutionize video analysis and decision-making. They were
optimistic about the hurdles and concluded that continuous
innovation and adaptation are key to unlocking its full
potential.

Wulfert et al. [72] introduce AIfES, a next-generation
framework specifically designed for resource-constrained
embedded devices. They claim that traditional edge AI
frameworks struggle with hardware flexibility and custom
hardware integration, limiting their ability to handle modern
machine learning advancements. They propose that AIfES
offers several advantages, including flexibility on hardware
support, on-device training, and modular architecture, and
benchmarks show AIfES outperforms TensorFlow Lite for
Microcontrollers (TFLM) in both execution time and mem-
ory consumption for certain neural network architectures.
It even demonstrates the feasibility of training complex
CNNs on devices with limited resources. They also aim to
expand AIfES by supporting new ANN architectures and
further developing federated and online learning techniques.
Mendez et al. [31] reveal the edge-AI application in image
recognition, like the Caffe2GO framework, which integrates
CNN models in mobile devices to accelerate inferencing and
transmitting the data to the cloud. Liu et al. [11] built a

food recognition system using DNN on edge. Tuli et al. [33]
accomplished object detection via embedding YOLOv3
architecture using the COCO dataset on Raspberry PI
devices. Lin et al. [34] developed EdgeSpeechNet, a human
speech recognition model implemented for mobile phones
using edge-AI. Chen et al. [59] implement a small footprint
model for edge devices using a deep KWS framework.
Zhang et al. [52] utilized edge-AI for autonomous vehicles
to process real-time AI tasks like pedestrian detection,
object detection, and traffic detection using Intel Movidius.
Xu et al. [61] designed STTR, a smart surveillance system
to track vehicles in real-time, integrating a camera device on
edge.

Based on the discussed literature, edge-AI can be advanta-
geous in the following ways:

1) Reduce the need for data storage and bandwidth:
By processing data at the edge, edge AI reduces the
need to store and transmit data to the cloud or a data
center. This can save on data storage and bandwidth
costs.

2) Increase privacy and security: By processing data
locally, edge AI can help to increase privacy and
security. Data can be stored locally on devices rather
than being transmitted to the cloud or a data center. This
can help to reduce the risk of data breaches.

3) Reduce latency: Edge AI can help to reduce latency
by processing data locally. This benefits applications
requiring real-time responses, such as gaming or
virtual reality, autonomous vehicles, and other mobile
industrial applications.

4) Increase scalability: Edge AI can be scaled more
easily than cloud-based AI. This is because edge AI can
be distributed across many devices rather than being
concentrated in a few data centers.

After conducting a comprehensive literature review, it was
determined that the use of edge-AI for structural health
monitoring has not yet been explored. This presents an
exciting opportunity for further research in this area and
could potentially lead to significant advancements in the
field.

1) SOFTWARE FRAMEWORKS
Tensorflow, Tensorflow Lite, Caffe, and PyTorch have
supported frameworks for heavy-weight and light-weight
DNNs [8], [9], [23], [24]. Apache MX Net is an open-source
framework for edge-based object detection and visual
recognition. MLKit by Google and CoreML by Apple are
mobile system frameworks used for image, text recognition,
and bar-code scanning [26], [27]. In edge-AI develop-
ment, it is required for the models to get converted to
certain file extensions like binary files. These optimized
files are compiled on hardware to get deployed. This
paper utilized Tensorflow Lite and ONNX to develop
an edge-compatible deep neural network model for crack
detection tasks.
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2) HARDWARE FOR EDGE-AI
In the industry, many companies like Google, Amazon, and
Microsoft are providing the edge AI service platform by
enabling end devices to run ML inferences with pre-trained
models locally. Various dedicated edge AI chips are commer-
cially available like Google Edge TPU, Intel Nervana NNP,
Kneron edge-AI chip, and Huawei Ascend 910 and Ascend
310 [10]. In this paper, two edge-AI platforms, i.e., Kneron
KL 520 and Google Coral Dev Board, are used to perform
crack detection tasks.

III. METHODS
A. DATASET
The public crack dataset from Çağlar and Özgenel includes
concrete building crack images from METU campus build-
ings [20]. The dataset consists of two class labels, i.e.,
‘‘Positive’’ and ‘‘Negative’’. Each class label contains
20000 images with a total of 40,000 images of cracks
and non-cracks. The image characteristics of the images
describe that images contain three color channels (RGB) with
227 × 227 dimensions. Fig. 2 shows the sample positive
cracks from the dataset.

FIGURE 2. Sample images from the positive class of the dataset from
Çağlar and Özgenel [20]. (a) shows a single crack, while (b) and (c) depict
multiple cracks.

B. WEAKLY SUPERVISED CRACK SEGMENTATION
FRAMEWORK USING CRANET
CrANET is a framework for generating crack segmentation
on crack images utilizing weakly supervised learning [68].
This framework includes neural network architecture built
using the convolutional (Conv) and convolutional block
attention module (CBAM) that performs binary image
classification. This neural network architecture is trained on
image-level labels and further produces crack segmentation
without being explicitly trained on pixel-level labels utilizing
a weakly supervised approach. The framework incorporated a
two-stage process to generate the crack segmentation. Firstly,
it performs the binary image classification for crack and no-
crack objects. Secondly, if the image is identified as having
cracks, i.e., true positive, it employs gradient class activation
maps to generate heatmaps that can accurately segment the
cracks.

The architecture shown in Fig. 3 has six convolution
layers and three CBAM attention modules. Mishra et al. [68]
performed an ablation study to devise this architecture and its
hyperparameters. The first CBAMmodule is located between
the second and third convolution layers, while the second is

TABLE 1. Performance evaluation comparison of multiple models by
Mishra et al. [68]; Train(Acc) represents the accuracy evaluation on 95%
of random samples and Test(Acc) is the accuracy belongs to 5% random
samples from the main dataset of [20]; Param represents the total
number of parameters in the model; IOUmean describes the mean IOU
score of 135 random samples labeled manually from testing sample.

between the fourth and fifth convolution layers. The third
and last CBAM module is placed between the fifth and
sixth convolution layers. The CBAM integration adds the
attention mechanismwhile classifying the images. After each
convolution layer, there is a corresponding max pooling layer
with a 2 × 2 kernel. The convolution layer, followed by the
pooling layer, is then followed by flatten and fully connected
layers. The input image is processed by a final layer
Sigmoid activation function, which produces binary outputs.
Stochastic gradient descent(SGD) is the optimizer for finding
the best fit between predicted parameters and ground truths.
Binary cross entropy is utilized as the loss function that
compares each predicted probability to actual class output in
contrast to 0 or 1. These parameters are integrated into the
architecture for the training process of CrANET architecture.
The batch size is 32 for the training process. The training
process is designed to complete 20 epochs. This classification
model is trained on the concrete cracks dataset provided by
Çağlar and Özgenel [20], discussed in section III-A. The raw
image size in the dataset is 227×227, which is pre-processed
to an input size of 224 × 224 for the training process. The
gradient activationmaps gradCAM and guided-gradCAM are
extracted from the feature maps obtained from the proposed
architecture’s last convolution layer (sixth convolution layer)
to generate refined segmentation of cracks. The performance
of the CrANET architecture in an ablation study is shown
in table 1.
Li et al. [3] discussed the lack of an open-access concrete

crack dataset, especially with ground truths with segmented
masks. Mishra et al. [68] also acknowledges the lack of
benchmark datasets on concrete crack structures. Literature
findings show that the majority of papers in crack detection
are performing self-data collection, labeling, and ground truth
generation processes. For example, Joshi et al. [14] have
collected 3000 images of cracks and manually annotated the
cracks to feed in Mask-RCNN architecture to segment the
cracks. Bhowmik et al. [67] integrated robotics and deep
learning by using U-NET architecture on UAVs for crack
detection. They used manually annotated cracks through
pixel-labeling to perform crack segmentation. A human
validation study is conducted as an additional evaluation
strategy where professional experts like bridge inspectors,
supervisors, and civil engineers evaluate the segmentation
results based on their visual perception. More details
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about this can be found in section III-E. Woo et al. [17]
evaluated computer vision-based visualization with human
(experts) evaluation. Also, binary masks of gradCAMoutputs
are generated. The ground truths and binary masks from
gradCAM images are used to calculate the mean IOU
score. Fig. 4 shows images generated from the CrANET
framework.

The CrANET framework, developed by Mishra et al. [68],
is effective and reliable by utilizing a weakly supervised
learning approach. The framework is less training extensive
as image-level labels used to guide the learning process are
responsible for learning a good representation of the data.
This learning process enables CrANET to generate refined
segmentation without the need for additional approaches like
image thresholding techniques, which is a significant advan-
tage. The quantitative results, including table 1, demonstrate
that this approach generates refined crack segmentation.
Furthermore, the CBAM attention module proposed by
Woo et al. [17] is an efficient and lightweight model that
is ideal for real-time applications. This feature makes it
extremely useful for edge-AI developments, where dedicated
ML chips have limited memory.

C. EDGE-AI DEVELOPMENT FOR STRUCTURAL HEALTH
MONITORING TASK
The section aims to build a model capable of executing
inference and related computations on the edge device
itself. In this section, we discuss the setup of hardware and
software interfaces and the process for compatible model
development for edge-AI devices. This article proposed
an edge-AI framework in structural health monitoring as
illustrated in Fig. 5. The framework is followed to create
a highly optimized and compatible binary classifier for the
edge device, which can effectively detect cracks. The edge-AI
model development task replicated the binary classifier
from the CrANET framework [68] using CBAM attention
networks as discussed in section III-B. However, the classifier
models further undergo for transformation and optimization
process following Fig. 8. Two edge-AI hardware are used for
platform testing, i.e., Kneron KL520 and Google Coral dev-
board. These devices have compatibility constraints related
to specific layers of neural networks that limit their support
for certain layers. Later sections discuss the development
in detail. The edge-AI development stack includes Python
as a mainframe language along with machine learning
frameworks like Tensorflow, Tensorflow lite, Keras, and
ONNX for model optimization for device compatibility.

1) KNERON KL520
Kneron KL520 chip series I used to test the edge-AI-
based optimized model. This chip is assembled on a single-
on-chip board. More details about Kneron KL520 can
be found at URL: https://www.kneron.com/page/soc/. The
documentation describes the device supports popular CNN
models like VGG16, VGG19, MobileNet, etc. However,
it has limited support for operators to design a CNN

architecture, for example, a softmax function in the given
scenario. This restricts model architecture design specific to
this very device. A snapshot of the Kneron KL520 is shown
in Fig. 6. From [40], brief specifications of the chip are as
follows-

1) Single-on-chip (SoC) design platform
2) 32MB SDRAM (16-bit LPDDR2-1066)
3) Neural Processor Unit(NPU) for accelerating neural

network process
4) CPU: Two ARM Cortex-M4, one for system control

and the other as an AI co-process for NPU
5) Maximum Frequency: 300 MHz

2) GOOGLE DEV BOARD
The CrANET architecture is tested in the Google Coral dev
board. This single-board computer performs fast machine
learning (ML) inferencing. It includes an onboard Edge TPU
coprocessor that is capable of performing 4 trillion operations
(tera-operations) per second (TOPS), using 0.5 watts for each
TOPS (2 TOPS per watt) [39]. More details about the dev
board can be found at URL: https://coral.ai/products/dev-
board/. A snapshot of the Google coral dev board is shown
in Fig. 7. From [39], a few brief specifications of the chip are
as follows-

1) Single-on-chip (SoC) design platform
2) 1GB RAM
3) CPU: NXP iMX 8M SoC (quad Cortex-A53,

Cortex-M4F)
4) GPU: Integrated GC7000 Lite Graphics
5) ML accelerator: Google Edge TPU coprocessor 4 TOPS

(int8); 2 TOPS per watt

3) OPTIMIZED MODEL DEVELOPMENT FOR CHIP
COMPABILITY
Fig. 8 describes the flowchart and stages that led to optimized
model development. These steps are followed to transform
the binary classifier from the CrANET framework, illustrated
in Fig. 3, to perform inference on edge devices for the
crack classification task. This flowchart for developing a
binary classifier involves two main operations: integrating
quantizations approach to enhance the model’s performance
(with fine-tuning), targeting memory, latency, and power
consumption, andmodel transformations for compatibility on
the edge deployment.

a: ONNX CONVERSION
ONNX stands for Open Neural Network Exchange [51].
It is an open-source standard to represent machine learning
(ML) models. ONNX is a common file format for storing
ML models that allows usage for various frameworks and
compilers [51]. Thus, it supports deployment to various
devices with different hardware architectures. This article
uses ONNX conversion to deploy the model on KL520 only.
Google Coral dev-board supports model deployment using
Tensorflow-Lite.
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FIGURE 3. Weakly supervised segmentation process including binary classification, gradCAM, and guided-gradCAM
approaches [68]; Red blocks are convolution layers; Green blocks represent pooling layers; Blue blocks represent flatten
layers; Rest layers fully connected layers and output function.

FIGURE 4. Crack examples with binary mask and gradCAM generated
images from CrANET (sigmoid) framework [68]; Row 1- a) raw image
b) gradCAM output c) binary mask, IOU score - 0.92; Row 2- d) raw image
e) gradCAM output f) binary mask, IOU score- 0.87.

b: QUANTIZATION
The edge devices have limited memory usage, storage size,
and computing power. For an optimized model development,
the quantization technique plays a crucial role in producing
an optimized model. This technique involves altering the
neural network to a more manageable size by implementing
low-bit width numbers. Its primary objective is to decrease
the size and complexity of models, thereby increasing their
speed and efficiency [55]. This process reduces latency,
the memory requirement, and the computational cost of
neural network usage [44], [55]. In this study, quantization-
aware training and post-training quantization are used to
optimize the model for edge-AI devices. Post-training
quantization technique quantizes the baseline model, i.e.,
optimizes it after being trained [54]. In this study, the model
development incorporates 8-bit model transformation using
post-training quantization. The quantization-aware training
approach enables quantization steps during the model’s
training loop [54]. In this study, the model development
incorporates 8-bit model transformation using quantization-
aware training. These approaches allow models to reduce

the model size, latency, and computation power. However,
post-training quantization may enhance the efficiency of
inference time, but it could also potentially lead to a decline
in accuracy. Thus, it is recommended to choose between
approaches after the performance comparison. This study
uses a quantization-aware training approach. The details of
the performances are discussed in section III-C4 in detail.
In order to produce a highly efficient model that can be

used on the aforementioned edge devices, the development
process entails three crucial steps that are utilized to build the
edge-compatible model:

1) Perform quantization aware training: necessary to
ensure 8-bit/float16 quantization required for the Edge
Device (TPU/ NPU).

2) Or Perform post-training quantization: to ensure full
8-bit integer quantization required for the Edge Device
(TPU/ NPU).

3) Choose the best methods from the above two based on
performance considering accuracy or time inference

4) Test the model’s performance using docker or sim-
ulation to evaluate results before deploying on the
device.

5) Convert the original model to a device-supported file
format and ensure it supports all operators used. Train
the model until the desired accuracy is achieved.

Three models are built by following the flowchart illus-
trated in Fig. 8. All these three models are inspired by
CrANET framework discussed in section III-B. The first
model consists of a simple convolution neural network (CNN)
with three convolution layers, while the second model is
a CNN with six convolution layers. These two models are
labeled as CNN (3) and CNN (6) in table 2. The binary
classifier in the crANET frameworkwith the CBAMattention
network is replicated and processed utilizing the flowchart,
resulting in the third model and labeled as CNN+CBAM.
All the parameters, including pooling, kernel, input layer
shape (227 × 227), etc., are replicated from the CrANET
framework. Fine-tuned Efficient-Net is also tested to compare
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FIGURE 5. a) Proposed edge-AI framework in the structural health monitoring domain for tasks like crack detection, rust detection,
displacement/vibration monitoring; b) The framework demonstrates the transformation into an optimized model via pruning, weight clustering,
and quantization approaches; c) On-device training to support transfer learning makes it possible to accelerate inference; d) TensorFlow Lite,
PyTorch, Keras, and ONNX are potential frameworks for developing optimized models on edge platforms; e) Edge-supportive data representations
are operationalized to gain a desired output.

FIGURE 6. Kneron KL520 hardware assembly.

the performance both in Kneron KL520 and Google Coral.
The next section elaborates on the model performance
achieved as determined by experiments.

4) EDGE-AI MODEL PERFORMANCE
Table 2 and 4 illustrate the edge-AI model performance
determined by the experiments. The performance evaluation
of the models is done using classification accuracy. Mean
inference time is also calculated to check the latency of
the models. The table illustrated that CNN+CBAM, the
binary classifier from the CrANET framework, achieved
the highest accuracy in training and testing. The model
training is designed based on training and testing sets, with
a split of 36000-4000 based on 40000 images, similar to
the CrANET framework’s binary classifier. The training set

FIGURE 7. Google Coral Dev-board from [39].

consists of 36000 random samples, while the testing set
comprises 4000 random samples from the public dataset.
Interestingly, the edge-AI experiments revealed that Kneron
KL520 exhibited a different mean inference time and
accuracy than Google Coral Dev-board. It is worth noting
that the difference in hardware specifications between these
two devices could be a potential reason for the observed
differences. The results in tables 2 and 4 indicate that the
Google Coral dev-board outperforms the Kneron KL520
regarding classification accuracy and mean inference time.
These 4000 image samples are tested using offline mode by
sending image batches directly to the dev boards. The later
section describes operational scenarios for each individual
device.

Section III-C3 discusses quantization-aware training and
post-training quantization approaches to optimize the model.
It is discussed that the final model can be selected based
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FIGURE 8. Flowchart outlining the various stages involved in the binary crack classification model development process on the edge
devices; Quantization-aware training or post-training quantization can be opted based on their performance on accuracy and inference time.

TABLE 2. The time inference in the table shows the mean time taken by
the devices to infer the samples from the edge-selected models using
quantization-aware training (QAT) approach; TPU- is inference
performance on Google Coral board, NPU- inference performance
on Kneron KL520, CPU- inference performance on mainframe CPU;
NA- Kneron KL520 is having limitation for the layers in CNN+CBAM
model from CrANET framework thus untested.

TABLE 3. Table shows the mean inference time taken by Google Coral
dev board to infer the testing samples using post-training quantization
(PTQ) and quantization aware training(QAT).

TABLE 4. Table shows the training and testing performance of three
different models on Kneron KL520 and Google Coral dev-board based
on quantization-aware training approach; TPU(TrA)-training accuracy
on Google Coral; TPU(TeA)-testing accuracy on Google Coral;
NPU(TrA)-training accuracy on Kneron KL520; NPU(TeA)-
testing accuracy on Kneron KL520; NA- layers in CNN+CBAM
model are limited to Kneron KL520 thus not tested.

on the trade-off of accuracy and inference time. In the
experiments, it was observed that post-training quantization
resulted in lower average inference times compared to
quantization-aware training. Table 3 shows the average
inference time comparison of quantization-aware training
and post-quantization training based on testing performed on
the Google Coral dev board. However, the testing accuracy
decreased significantly and resulted in almost 75% across all
three models. The CNN+CBAM model has a precision of
65.9%, a recall of almost 99.8%, and F1 score of 79.4%. The
model performs well for the crack class and significantly low
scores for the non-crack class. Thus, the quantization-aware
training is selected for inference for further operations.

Later sections discuss the device-wise performance using
quantization-aware training.

5) KNERON KL520 INFERENCE
The KL520 is an NPU chip on Kneron assembly shown in
Fig. 6. A camera device and a mainframe system via USB
are attached to the Kneron assembly for real-time testing.
The assembly captures an image and sends the image into
the chip to perform inference. The Kneron KL520 requires
a unique process for obtaining the final inference in order to
perform binary classification on image inputs. In preparation
for inference, the image undergoes pre-processing on the
mainframe system. This includes transforming its dimensions
to 227 × 227, ensuring compatibility with the model. The
models in table 4 accept an input layer of size 227 × 227,
as detailed in section III-C3. Kneron KL520 requires
additional compilation conversion of the onnx model into
NEF format to operationalize the model prediction. More
about NEF format and process to perform NEF conversion
can be found on the URL: https://doc.kneron.com/docs/.
Since Kneron KL520 does not support softmax and sigmoid
functions, they are removed before NEF format conversion.
A post-processing step is required to generate the final
inference by the KL520 NPU chip. This post-processing is
done on the mainframe system. This process is capable of
inferencing live-stream images in real-time settings and a
pool of offline images. The testing of KL520 was done for
both settings. A total of 4000 random samples are tested from
the public dataset, whichmodels have not seen while training.
However, the CNN+CBAMmodel is not tested on theKL520
due to its limitation on specific layers. The current evaluation
is on the performance of a CNN model that comprises six
and three convolutional layers, respectively. The study results
indicate that CNN(6) surpasses CNN(3) in terms of both
training and testing accuracy. The classification results of
the CNN model show a training accuracy of 99.54% and
a testing accuracy of 92.3%. However, table 2 reveals that
CNN(3) is more efficient than CNN(6) when it comes to
the average inference time per image on the device. CNN(3)
takes an average of 20 milliseconds to perform inference
on an image, including pre-processing and post-processing,
whereas CNN(6) takes 34 milliseconds. The Kneron KL520
chip provides an efficient AI computing performance of
0.35 TOPS per watt.
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6) CORAL DEV BOARD INFERENCE
Google Coral dev-board is a single-board computer with fast
ML inferencing, including bluetooth and wireless connec-
tivity capabilities. It supports runs Mendel, a Debian-based
Linux operating system. The device operates differently
from the Kneron assembly without needing a mainframe
thus, all of the necessary operations can be performed on-
device. The camera can be attached directly to the board
for real-time image capture up to 30 FPS. The input image
is pre-processed, and the result is post-processed on the
onboard CPU, while the inference is carried out on the high-
performing TPU.

The testing setup and samples are the same as illustrated
in section III-C5 for Kneron KL520. Table 4 reveals that
the CNN+CBAM model surpasses CNN(6) and CNN(3) in
terms of both training and testing accuracy. The classification
results of the CNN+CBAM model show a training accuracy
of 99.72% and a testing accuracy of 92.4%. Table 2 reveals
that CNN(3) is the most efficient model, followed by CNN(6)
and CNN+CBAM when it comes to the average inference
time per image on the device. It takes an average of
24 milliseconds to perform inference on an image. Whereas
CNN(6) takes an average of 28 milliseconds to perform
inference on an image, including pre-processing and post-
processing, whereas CNN+CBAM takes 350 milliseconds.
It was observed in post-training quantization that the
CNN+CBAM layers in the inference process utilize both
TPU and CPU sequentially. Fig. 9 shows the CNN+CBAM
model’s layer utilization on the edge-TPU and edge-CPU
of the Google Coral dev board. This may be a potential
reason for resulting in a high average inference time both
in post-training quantization and quantization-aware training.
Table 2 also suggests that the Google Coral dashboard has a
better average inference time for performing inference than
Kneron KL520.

FIGURE 9. a) Google Coral Dev-board inference for post-training quan-
tization utilizing both TPU and CPU and resulting in higher inference
time; b) If a layer is not mapped to edge-TPU then by default
it is mapped to edge CPU.

The results obtained from the experiments conclude that
edge-AI devices excel in the task of crack classification in
live-streamed images and offline imageswith significant clas-
sification scores and average inference time. The conducted
experiments also validate the effectiveness and practicality of

the proposed edge-AI framework as depicted in Fig. 5. The
next section III-D describes the integration of edge-AI with
cloud computing to enhance the usability and implication of
the proposed edge-AI framework. This integration utilizes
Google Coral board along with CNN+CBAM and CNN(6)
for further experiments based on their hardware design and
classification accuracy strength, respectively, as shown in
table 2 and 4. Fig. 10 shows the instance of crack image
classification using the Google Coral dev board.

FIGURE 10. Google Coral Dev-board inference using EfficientNet after
on-device training on live-streaming of cracks on a concrete bridge;
On-device training for adaptive approach is discussed in section III-F;
a) The image shows the real-time classification scores for the crack image
classification task; b) output view of a); c) The setup demonstrates the
real-time inference on the console.

D. CLOUD-EDGE ADAPTIVE INTELLIGENCE FRAMEWORK
This section proposes a cloud-edge adaptive intelligence
framework by integrating cloud computing capabilities along
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with the proposed edge-AI framework to enhance usability
and effectiveness on crack detection and quantification in
real-time physical SHM sites. Section I discusses the thoughts
of Zhou et al. [32] and Mendez et al. [31] claiming the
best level of edge intelligence is application-dependent. The
bottleneck in weakly supervised segmentation performance
due to minimal memory and limited operator support led to
the proposal of this framework integrating edge-AI and cloud
resources. Fig. 13 illustrates the proposed framework in the
SHM domain. This framework comprises two crucial stages:
image classification inference on the edge and segmentation
and quantification on the cloud. These stages sequentially
generate final outputs, including crack classification score,
segmentation, and quantification of cracks for a given input
image. The framework proposed here is also designed to
facilitate the integration of crowd intelligence by utilizing
human-in-the-loop feedback and adaptive AI. By combining
these characteristics, the framework aims to create a more
effective and efficient system that can adapt to changing
circumstances and achieve better results. The experiments
done in this section are conducted using Google Coral
dev-board and Amazon AWS cloud services.

A responsive web application is developed to opera-
tionalize and execute the proposed CEAIC framework.
The application takes an image input and performs tasks,
including classification, segmentation, and quantification,
sequentially. Once these outputs are generated, the user
can also record their feedback following human-in-the-
loop characteristics. Further, the generated outputs and the
human feedback are processed for adaptive AI setup. Fig. 11
demonstrates the snapshot of the developed web application.
The later section describes how these characteristics and
stages are integrated, operationalized, and utilized on a
physical concrete bridge site following the proposed CEAIC
framework. There are limitations in the use-case of this

FIGURE 11. Snapshot of the responsive web application developed
following the proposed CEAIC framework; The application is capable of
taking a live-stream (online) image using a camera and also accepts
offline images; The bottom images are generated by CrANET framework
explaining the segmentation of the cracks in the image along with
quantification measures;The validate button is the function where user
can record their feedback.

FIGURE 12. Segmentation generated by gradCAM approach using CNN(6)
using cloud resources; The segmentation generated by the CNN(6) are
noisy; Addition of CBAM enhances the segmentation as seen
in Fig. 11.

web application. These limitations are discussed in detail in
section IV-C.

1) IMAGE CLASSIFICATION ON THE EDGE
This article outlines various options for determining an
optimal approach for deploying the models discussed above,
considering the limitations of edge devices used in this
study. These devices have minimal memory and supported
operations, which can create performance bottlenecks while
processing resource-intensive tasks like segmentation or
engaging multi-user scenarios. A series of experiments were
conducted to generate segmentation using the weakly super-
vised approach on edge devices. It is found that the gradCAM
approach for weakly supervised learning is not a well-suited
process on edge devices, but as per the dev-board document,
supervised learning segmentation is possible on edge devices.
The article targets to perform the image classification task
at the edge-AI platform to implement an efficient system
considering the bottlenecks. The possible deployment options
include deploying the model on an edge device, sending the
image from the host to the device for inference, or utilizing
an edge device like a mobile web browser.

This article acknowledges the potential Google Coral dev-
board, to deploy models from the cloud seamlessly. Cloud-
edge integration provides a seamless and efficient way to
transmit data from an edge device to the cloud, making it
easier to manage and analyze data remotely. The web appli-
cation developed allows one to click/feed the image on the
bridge site. After capturing the image, it is sent to the edge-AI
platform to execute the classification task. The input is sent
to the cloud for segmentation and quantification after being
classified as cracks. The connection of the web application
using a smartphone with the Coral dev board is established
using Bluetooth connectivity. The experiments conclude that
Bluetooth connection is not reliable. Section IV-C and IV-B
discuss this bluetooth reliability issue in detail. Google Coral
dev-board offers on-device training capabilities that can be
utilized for Adaptive AI capability. This is outlined in the
section.
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FIGURE 13. Proposed Cloud-edge adaptive intelligence framework (CEAIC) for cracks detection and quantification in the structural health
monitoring domain using weakly supervised segmentation; In this proposed framework, there are four main components, namely deep learning
setup, cloud resources, edge-AI model development, and use-cases.

2) SEGMENTATION ON THE CLOUD
The cloud services fromAmazonAWS services are utilized to
perform the tasks, including segmentation and quantification.
The above section discussed the image classification task
and execution once the image is uploaded. After performing
the classification task, if the result reveals a true-positive
class, i.e., the cracks, then further operation is offloaded to
the cloud. In practice, images are sent to an API endpoint
hosted on the cloud, where they are processed using CrANET
framework from section III-B to create segmented outputs
and quantification data. In the CEAIC framework, CNN (6)
and CNN+CBAM are implemented. CNN+CBAM is used
for the final segmentation due to its efficient performance,
as discussed in section III-B. The CNN+CBAM in the
CrANET framework generated two distinct segmentations
using explainable AI approaches, which are gradCAM and
guided-gradCAM. The gradCAM image undergoes further
processing, leading to the generation of a binary mask for
quantification purposes to compute the width analysis of
the crack, as illustrated in section III-D3. Fig. 3, 4, and
section III-B discuss the crack segmentation process in detail.

This cloud-centric approach ensures efficient handling of
resource-intensive tasks of gradCAM to segmentation in the
cloud environment.

3) CRACK QUANTIFICATION
In the framework, as shown in Fig. 13, one of the tasks
includes quantification of cracks, i.e., analysis of cracks
based on width. The proposed approach for quantification
involves turning the segmented results into a binary image
using image processing methods. The quantification process
on the binary image consists of three steps, including distance
transform, skeletonization, and crack width measurement.
Fig. 14 demonstrates the flowchart for the crack quantization
process. It is important to clarify that the primary objective
is to evaluate the efficiency of the proposed framework,
rather than focusing on the implementation details of the
width measurement. Although the proposed approach for
quantifying cracks serves the purpose of crack quantification,
there are several alternative techniques available, eachwith its
own strengths and applications that can be explored as future
work for specific use cases.
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a: DISTANCE TRANSFORM
The first step involves the application of a distance
transform to a binary image of segmented cracks. This
transform calculates the distance of each pixel within the
crack to its nearest background pixel [10]. The distance
map generated provides accurate information on the exact
distance of each point within the crack from the closest
edge.

b: SKELETONIZATION
Subsequently, skeletonization is employed to refine further
understanding of the crack’s structure. Skeletonization is a
process that reduces the binary mask of the crack to a one-
pixel-wide representation, emphasizing the core of the crack
while preserving its essential characteristics [28].

c: CRACK WIDTH MEASUREMENT
By superimposing the skeleton on the distance transform
output, It is possible to compute the thickness of the
cracks at individual points. This thickness data is pivotal
for quantifying the dimensions of the cracks within the
segmented area. The key metrics, such as the minimum,
maximum, average, and standard deviation of the crack
widths, are also computed.

The proposed CEAIC with cloud-edge integration also
incorporates human-in-the-loop(HITL) as an approach to
crowd intelligence to enhance the model performance and
evaluation strategy. Details are provided in section III-E. Fur-
ther, the HITL approach is also helping to practice adaptive
learning in the proposed framework of CEIAC. Section III-F
provided comprehensive insights about adaptive learning
integration. The use-cases CEAIC using web application is
discussed in the next section IV.

E. CROWD INTELLIGENCE: HUMAN-IN-THE-LOOP
This study incorporates two practices for improving the
CrANET framework for weakly supervised segmenta-
tion, i.e., crowd intelligence and human-in-the-loop(HITL).
Crowd intelligence is the ability of a group of people(crowd)
to solve a problem [18]. In machine learning (ML), crowd
labeling is used to enhancemodel performance by incorporat-
ing the crowd for data labeling, performance evaluation, and
bias mitigation [23]. The integration of the HITL approach
as crowd intelligence can lead to significant improvements
in ML model performance [7], [23]. Additionally, this
approach can help to identify and overcome potential biases
and limitations, thus making the model more accurate and
reliable.

As discussed above and in the article by Mishra et al. [68],
the human validation study is utilized as HITL strategy
(apart from IOU scores) to evaluate crack segmentation
from the CrANET framework. In this study, 21 professionals
participated, including bridge inspectors, supervisors, bridge
designers and engineers, scour inspectors, etc. Most of
these professionals have more than ten years of professional

experience in civil engineering and structural health monitor-
ing domains. Thirty-five (35) sample images are randomly
selected from the predicted true positive samples from the
testing sample. A total of 733 votes are counted out of 735
(21 × 35) in this validation study from 21 professionals
for 35 questions. The aim of the human validation study
is to provide expert opinion about the degree to which
the predicted gradCAM visual heatmap (shown in Fig. 4)
is similar to the raw image. A construct SIMILArity is
proposed to objectively measure expert’s opinions as HITL
approach. The construct SIMILArity is proposed to assess the
conformance of the location, pattern, and shape of the cracks
given in the raw image and predicted image. Almost 71% of
votes are given for exactly similar and somewhat similar by
participants in the study. Based on the findings of the human
validation study and the mean IOU score presented in table 1,
it can be concluded that the proposed approach is a highly
effective framework for image segmentation using image-
level labels. More details of the human validation study for
the CrANET framework can be found in the discussion of
Mishra et al. [68].
The proposed CEAIC framework in this article also

incorporated a crowd intelligence approach to evaluate
and validate the output generated by the framework. The
framework utilizes the same human evaluation strategy that
was discussed earlier to evaluate segmentation from the
CrANET framework. The use cases of the crowd intelligence
incorporating HITL system are discussed in detail in the next
section IV.

F. ADAPTIVE AI
The Google Coral dev-board and Kneron KL520 are used as
edge-AI platforms to conduct experiments for crack detection
tasks. The documentation for both devices claims they
can perform on-device training using transfer learning and
fine-tuning [39], [40]. This approach implements on-device
training for the adaptive AI model to learn and adapt to
new data. The limitations of the devices are discussed in
Section III-D. These devices have certain limitations that
prevent them from implementing the adaptive AI approach
proposed in the CEAIC framework. The Google Coral
development boards offer support for on-device training.
According to the documentation, Coral board only supports
pre-built models from their repository for on-device training
and does not support custom models [39].
This article focuses on performing on-device training using

pre-built models from the Coral dev board’s repository.
EfficientNet is used to conduct on-device training. For
testing purposes, 400 new images are used, comprising
250 images of cracks and 150 images of non-cracks. These
400 test samples for both positive and negative classes are
collected manually by the authors in real-time testing. The
manually collected samples impact testing accuracy with
only 75% due to different data distributions and variations
in crack characteristics, including length and width, and
background textures. Fig. 10, 19, and 20 are instances of
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FIGURE 14. Flowchart outlining the various stages involved in crack quantification task utilizing the cloud resources; Once the image is
segmented it undergoes binary image transformation followed by distance transform and skeletonization.

manually collected cracks. The testing accuracy is improved
to 95.2% by utilizing on-device training by retraining the
model using the transfer learning approach as proposed in
the edge-AI framework in Fig. 5. The Efficient-Net model
also achieves 2.5 milliseconds of average inference time for
400 testing samples. These results indicate that the model’s
performance is enhanced through on-device training using
transfer learning. This outcome serves as evidence for the
proposed CEAIC framework for adaptive AI.

IV. DISCUSSIONS
A. USER INTERACTION IN REAL-WORLD LAB
ENVIRONMENT
This section outlines a user’s steps to interact with real-world
scenarios following the CEAIC framework discussed in
section III-D. The created lab settings replicate a real-time
scenario with cracks on the bridge. However, the setting
follows the CEAIC framework but does not include a human
feedback loop or an adaptive AI approach due to memory
limitation. A USB camera is attached to the Google Coral
dev board that takes online images in real time. After the
user selects the perfect crack frame, the system sequentially
performs crack detection tasks, including classification,
segmentation, and quantification. Fig. 15 describes the lab
settings performing crack detection tasks. Section III-D
describes how crack detection is performed using a Google
Coral dashboard for crack image classification on the edge,
while weakly supervised segmentation and quantification are
generated using cloud resources. The lab settings displayed
in Fig. 15 imitate similar tasks on the Google Coral dev
board and Amazon AWS cloud. The crack detection task
is completed in an average of 13.5 seconds per image to
generate results, as shown in Fig. 15, based on 50 test
samples. Users can adapt this setting to test images in offline
mode.

B. USER INTERACTION ON WEB APPLICATION
This section outlines a user’s steps to interact with the
application to perform the crack detection task and record the
feedback. Section III-D demonstrates the two-stage process
in the proposed CEAIC framework - image classification
on the edge device, segmentation, and quantification on the
cloud service, with periodic data transmission. The steps to
operate the developed web application are described below.

The web application is being operated using an iOS device.
The Google Coral dev-board is connected to the iOS device
for image transmission using a bluetooth connection. These
settings are tested on a physical bridge site in Lincoln,
Nebraska. The test experiments on the site conclude that
the bluetooth connection is unreliable. The connection kept
dropping frequently while transmitting the image data on the
edge device from an iOS platform. Ten images are tested
using a bluetooth connection on the physical bridge site.
The details of reliability issue using Bluetooth is discussed
in detail in section IV-C. The testing of ten image samples
showed that it takes an average of 16 seconds to generate
results for one image.

1) IMAGE INPUT
Fig. 16 demonstrates the web app in an iOS device requesting
an input image. The application allows users to capture
images in real time using the camera and upload images
saved offline. Furthermore, the images in a digital access
management system can also be fed to an app for inference.
If the user is accessing the camera of the iOS/Android device,
they can adjust the zoom to feed a desired input. Offline
image integration also incorporates the same functionality.
Users can adjust cropping before feeding them into the app.
The limitation in section IV-C discusses zoom adjustment and
offline cropping.

2) MODEL SELECTION
Once the image request is accomplished, the user can proceed
to perform model selection. Based on their performance, the
app has integrated only CNN (6) and CNN+CBAM from the
CrANET framework. CNN+CBAM model is recommended
for use against CNN(6) to achieve the best outcome, as table 1
in section III-B validates the classification and segmentation
performance of CNN+CBAM.

3) INFERENCE
After model selection, the user must press the Process
Image button to generate inference for the image. This
process performs binary image classification for the image
input on the Google Coral dev board through bluetooth
image data transmission. The inference results include three
metrics- class, inference time, and confidence score. The
class defines whether image input belongs to the cracks or
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FIGURE 15. Crack detection task demo in a lab environment; This setting
does not include the human-feedback functionality; a) The image shows
the real-time generated outputs for the crack image; b) Output view
of a); b) The setup demonstrates the real-time use case with edge camera
that is adjusted to take a perfect snippet of the crack image.

non-cracks category. The inference time unit is milliseconds,
representing the time it takes for the Google Coral Dev-board
to complete an inference. The confidence score indicates
how certain the model is about the accuracy of the image
classification and is represented with probability percentage.
Fig. 17 shows the inference result generated by the web app
once the image input is processed.

4) SEGMENTATION AND QUANTIFICATION
The Process Image button processes the classification task,
segmentation, and quantification sequentially. The Explana-
tion column in the web app displays the generated results

FIGURE 16. Web application in an iOS device requesting an input image.

FIGURE 17. Potrait mode of web app in an iOS platform demonstrating
results generated for segmentation and quantification; Bottom row-Left
image: displays the segmentation generated by gradCAM; Middle image:
displays the segmentation by guided-gradCAM; Right box: shows the
quantification metrics describing the width analysis in pixel units.

after the classification task. The segmentation results in
outputs using gradCAM and the guided-gradCAM approach.
The segmentation and quantification task together takes
an average of 12 seconds, based on 100 image sample
tests (only tested for segmentation), to execute the final
results. The quantification task is performed by utilizing the
segmentation generated by the gradCAM approach. In the
AWS cloud, the binary mask is generated using grayscale
image transformation and undergoeswidth analysis discussed
in section III-D3. The quantification results yield four
metrics representing the width analysis, including minimum,
maximum, and average width and standard deviation. These
metrics are calculated in pixels as a unit. Fig. 17 illustrate the
segmentation and quantification results.

5) HUMAN VALIDATION
A crowd intelligence approach utilizing HITL feedback
is practiced in the app. More details can be found in

VOLUME 12, 2024 25339



A. Mishra et al.: Investigation Into the Advancements of Edge-AI Capabilities for SHM

FIGURE 18. User’s feedback on app using iOS platform; User’s feedback
options based on Likert Scale for SIMILARity and satisfaction score
constructs;.

section III-E. Users have to press Validate button to record
their feedback input. They can provide objective feedback
based on visual perception by comparing raw and generated
images using a construct, SIMILARity. This construct is
replicated from the CrANET framework as discussed in
section III-B and III-E. Additionally, satisfaction score,
which is objective feedback, is also integrated with the HITL
feedback system. Users can provide this feedback using
a Likert scale that measures their perception of generated
results, including images and crack quantification. Users can
press the Submit button to record their feedback. Fig. 18
demonstrates the HITL feedback in the web application.

C. LIMITATIONS AND FUTURE WORK
Section IV-B demonstrates the user interactions on the lab
settings and web application to perform crack detection
and quantification utilizing edge-AI and cloud computing
capability. The crANET framework in section III-B and
the quantification approach in section III-D3 are integrated
into the web application to generate final outputs. This
section clearly identifies the importance of acknowledging
the study’s limitations and providing a better understanding
of the research’s scope and potential implications.

1) CRANET FRAMEWORK
Fig. 5 and 13 illustrate the proposed edge-AI and cloud-
edge adaptive intelligence framework in the SHM domain
incorporating the CrANET framework. Section III-B and
Mishra et al. [68] explains the objective of the proposed
CrANET framework is to perform crack segmentation using
image-level labels in a weakly supervised manner. However,
they observed a few failure modes in using the gradCAM
approach. The observation determines that gradCAM has
limitations when dealing with images that contain complex
backgrounds, i.e., having a variance of color saturation on
concrete surfaces based on surface finish and wide cracks in

FIGURE 19. Crack on concrete bridge column present under the bridge
deck.

the image. Çağlar andÖzgenel [20] acknowledge the variance
in concrete surfaces. From exploratory data analysis, it is
observed that these images have a limited presence in the
distribution. As part of future work, increasing the samples
of these images utilizing adaptive AI and crowd intelligence
can potentially overcome this limitation.

2) REAL-TIME TESTING USING WEB APPLICATION
Zoom and crop adjustment functions for the live stream and
offline image input are discussed in section IV-B. In this
study, it is important to acknowledge this functionality
considering the data distribution (data behavior) used in
model training for the proposed CEAIC framework. The
machine learning literature recommends that training and
testing data should belong to the same distribution in
machine learning [8], [12], [64]. ML models learn to
predict patterns in training data. If the testing data comes
from a different distribution, the model may not be able
to generalize well to the new data. The images were
clicked approximately 1m away from the surface. They
claimed the images were captured on the same day with
similar illumination conditions. Fig. 2 are the samples from
the dataset proposed by Çağlar and Özgenel [20]. The
observation in exploratory data analysis suggests that training
samples which is 36000 samples contain similar cracks
characteristics as shown in Fig. 2. In this context, crack
characteristics in the image are defined by patterns of crack
progression, width, and background color. Fig. 19 shows a
crack on a concrete bridge column present under the bridge
deck. This crack image appears to differ significantly from
the dataset from Çağlar and Özgenel, used to train the model.
Interestingly, the web app classified the image as cracks with
a confidence score of 99.29%. However, the segmentation
results are noisy and do not represent the crack localization.
Fig. 21 demonstrates the results of the image shown in
Fig. 19. Using the cropping (or zoom adjust for online
images) function, a portion of the crack is cropped to imitate
similar crack characteristics from the training dataset as
shown in Fig. 20. This image produces a significant outcome
when processed in the app, as demonstrated in Fig. 22. The
results generated from this image input validate the accuracy
and effectiveness of the app. Thus, it is recommended to
feed image inputs that possess similar crack characteristics
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FIGURE 20. Cropped crack portion belongs to crack shown in Fig. 19; The
cropped image includes almost similar crack characteristics from the
training sample.

FIGURE 21. Results for the bridge crack from Fig. 19.

to ensure the best possible performance from approaches
proposed in the current CEAIC framework.

However, the literature also acknowledges that training and
test data with similar distribution is seldom the case in a real-
world setting, thus, transfer learning came into practice [8].
Transfer learning is used to generalize an ML model for the
new data distribution. This can be accomplished by gathering
data from various sources or through data augmentation
techniques that generate similar data to existing data [8],
[64]. Transfer learning is a potential future work of this study
to include crack data from various locations, backgrounds,
colors, and textures.

3) WEAKLY SUPERVISED SEGMENTATION ON EDGE
DEVICES
Section III-D1 describes the binary image classification task
on cracks image using edge-AI capability. The section also
discusses the edge-AI device capability to operationalize
the crack detection task including segmentation, especially
weakly supervised segmentation. The explanation includes
that edge-AI devices have minimal memory and supported
operations, which can create performance bottlenecks while
processing resource-intensive tasks like segmentation or
engaging multi-user scenarios. Several experiments were
carried out to generate segmentation using the gradCAM
method on edge devices. It was discovered that the gradCAM
method is not well suited for weakly supervised learning
on edge devices. The segmentation results generated by

FIGURE 22. Results for cropped crack portion from Fig. 19.

gradCAM are noisy as shown in Fig. 12. The Google Coral
document claims that dev-board can generate segmentation
by supervised ML approach [39]. Potential future work
motivated by this study is to explore the possibility of the
limitation of generating WSL-based segmentation on-device
itself. This will allow generating results all-on-device rather
than using cloud services to generate weakly supervised
segmentation.

4) DATA TRANSMISSION ON EDGE-DEVICE
Section IV-B and III-D explains the connectivity issue using
bluetooth for transmitting the image from an iOS device to
Google coral dev-board. It was observed that the bluetooth
connection frequently dropped during image transmission
while testing on the physical bridge site. The testing was done
only on ten image samples. Fig. 20 and 19 shows the instances
of testing on a physical bridge scenario. A native application
development utilizing the mobile GPU as an edge device is a
potential future work to overcome this connection issue. This
future work does not involve any need for transmitting data
through the application.

D. IMPLICATIONS
1) ASSESSING CEAIC TRUST
This section discusses the factors that support the effec-
tiveness and trustworthiness of the proposed CEAIC frame-
work in section III-D. The proposed cloud-edge adaptive
intelligence framework for performing crack detection and
quantification integrates edge-AI framework in the SHM
domain, weakly supervised crack segmentation approach,
and crowd intelligence approach to practice human feedback.
Mishra et al. [68] discuss characteristics of the CrANET
framework to asses its trust by referencing Selvaraju et al.
for the gradCAM approach. They highlighted the benefits of
using gradCAM visualization, which can provide valuable
visual explanations to understand and interpret data-driven
decisions. The gradCAM observations offer valuable insights
into how neural networks function to detect cracks in images
accurately. They advocate that the gradCAM feature in the
CrANET framework can effectively identify the regions of
interest within an image that are being targeted by the neural
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network during binary image classification tasks. It has been
suggested by Selvaraju et al. [38] that the gradCAM approach
can be a valuable tool for users to enhance their evaluation
of automated systems and to foster end-user confidence.
Table 1 in section III-B illustrates the performance evaluation
of models and segmentation evaluation using meanIOU
scores and human validation study. This concludes that the
implementation of weakly supervised learning techniques
would greatly benefit the task of crack segmentation.
Thus, the proposed two-stage CEAIC framework, including
edge-AI for binary image classification tasks and cloud
service to perform segmentation, quantification, and adaptive
AI based on crowd intelligence, can help users and domain
experts place trust

2) IMPLICATIONS FOR PRACTICE
Fig. 13 illustrates the potential use-case of the frame-
work implementation in the SHM domain. The framework
shows use cases of the framework incorporating drones,
mobile/tablets, and smart cameras. The article provided
comprehensive insights into the framework by showcasing
two practical and effective use cases via a responsive
web application. Firstly, using the web application on the
mainframe system as shown in Fig. 11 and 12, secondly on
the iOS platform using a mobile system that has a camera
function for live-stream (online) images and also utilizes
digital access management system for offline images.

The economic viability of implementing the proposed
deep learning models on the edge is primarily related to
the hardware or assembly on which these models would be
run for monitoring large bridges such as UAVs, ML chips,
and mobile devices. These supplementary costs must also be
considered in addition to training costs for new ML models.
The impact of AI chip developments on hardware costs
depends on various factors, such as the type and scale of
AI workloads, the availability and demand of AI chips, and
the innovation and differentiation of AI chip makers [69].
However, this study anticipates that hardware costs may
rapidly decrease with new AI chip developments.

A potential use case for the CEAIC framework is its
integration with drones. This integration proves to be a
valuable solution for bridge locations that are out of reach
for humans, allowing bridge health inspectors to address and
resolve any issues in those areas effectively. This integration
will potentially help to mitigate any risks to human life. The
integration can be accomplished by mounting the edge-AI
device on the drone. The device’s compact size, as shown
in Fig. 6 and 7, which is almost the same as a credit card,
makes it easy to carry it around. Edge-AI devicemounting can
significantly improve the maintenance of bridge decks and
other inaccessible areas, ensuring their longevity and safety.

In this article, the authors introduce the edge-AI and
CEAIC framework in the Structural Health Monitoring
(SHM) domain. The main purpose of this framework is to
perform crack detection and quantification tasks. In addition,

Fig. 5 shows that the proposed edge-AI framework can also
be used for other tasks such as rust detection, displacement
monitoring, and vibration monitoring on a bridge. The
CEAIC framework usage within other areas of the SHM
domain can be another crucial implication.

Section IV-C discusses the limitations of edge-AI devices
practiced in this study to perform crack detection tasks.
The edge-AI devices have limitations in performing weakly
supervised segmentation and performing data transmission.
A potential future work that can rectify this limitation
will enable the edge-AI device to have full capability to
perform crack detection tasks completely, including on-
device training. This implication will not only reduce the
usage of cloud computing resources but will enhance the
data offloading, privacy, and latency in result generation.
The development of native applications for a smart (mobile)
device that utilizes mobile GPUs and resources can be a
potential implication of practice to perform all-on-device
crack detection task.

3) IMPLICATIONS FOR RESEARCH
This article utilized a weakly supervised segmentation
approach to perform a crack detection task consider-
ing image-level (weak) labels rather than pixel-annotated
(strong) labeling. The literature claims that most of the data
in the world are unlabeled [26], [47], [48]. One of the reasons
is that labeling data can be a challenging and time-consuming
task. Mishra et al. [68] and Hamishebahar et al. [2] highlight
the importance of label-free and weak-label algorithms in
Structural Health Monitoring (SHM). This is due to the
large amount of unlabeled data in SHM and the need to
minimize human intervention, as human annotations and
labeling can be expensive and introduce bias. Li et al. [3]
acknowledges the lack of an open-access concrete crack
dataset, especially with ground truths with segmented masks.
The literature for crack detection tasks in the SHM domain
suggests that most papers in crack detection are performing
self-data collection, labeling, and ground truth generation
processes [68]. In the context of structural health monitoring
(SHM), the development of label-free algorithms holds
significant implications.

Unsupervised learning algorithms are designed to identify
patterns and relationships in unlabeled data without the
need for human guidance. This type of machine learning
is particularly useful for discovering hidden insights and
making predictions based on raw data. In recent years,
self-supervised learning has become increasingly popular
due to the abundance of unlabeled data available. Self-
supervised learning(SSL) enables models to learn from
unlabeled data through tasks that do not require human
labeling [58]. The SSL implementation includes contrastive
learning algorithms, which can distinguish between cracked
and non-cracked images by learning their differences.
Liu et al. [57] explain that SSL algorithms perform two
stages of training. Initially, the algorithm is trained on a huge
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set of unlabeled data using a pretext task or a contrastive
learning algorithm. After the algorithm has been trained,
it can perform various downstream tasks, such as image
classification or detecting cracks in tasks. Vision transformers
(ViTs) are a neural network type utilized for self-supervised
learning that achieves state-of-the-art results on various
computer vision tasks, including image classification, object
detection, and semantic segmentation [49]. ViTs can extract
and learn features that represent the visual features of images.
These features are utilized in visual representations that aid
in various computer vision tasks, such as classification and
segmentation tasks. DINOv2 and DINO are self-supervised
learning methods for training vision transformers (ViTs) to
perform robust, efficient, and state-of-the-art on a variety of
computer vision benchmarks, including image classification,
object detection, and semantic segmentation [29], [35]. These
have significant implications for performing crack detection
tasks in the SHM domain given the context of the large
amount of unlabeled data in SHM and the need to minimize
human intervention, as human annotations and labeling can
be expensive and introduce bias.

V. CONCLUSION
The aim of this study is to uncover the untapped poten-
tial of edge-AI approaches in the domain of structural
health monitoring (SHM). The article explored the edge-AI
approach by conducting experiments using edge-AI devices
on crack detection tasks and proposed two frameworks.
Firstly, an edge-AI framework that demonstrated the inte-
gration of edge-AI to perform inference on SHM tasks.
Secondly, a cloud-edge adaptive intelligence framework to
perform crack detection (CEAIC) in real-time physical sites.
This CEAIC framework incorporates the proposed edge-
AI framework, the crowd intelligence approach, and the
CrANET framework to perform weakly supervised crack
segmentation. Themain objective of weakly supervised crack
segmentation is to segment cracks based on image-level
labels with minimum human interventions to reduce human
cost and labeling time and prevent bias due to incorrect
human annotations and labeling.

Kneron KL520 and Google Coral dev-board are used as
platforms to operationalize edge-AI capabilities. The edge-AI
platform only performs binary image classification for crack
detection due to minimal memory and supported operations,
which created performance bottlenecks while processing
resource-intensive tasks like segmentation using weakly
supervised learning and engaging multi-user scenarios. Thus,
Amazon AWS cloud services are utilized to integrate cloud
capabilities to perform weakly supervised segmentation,
quantification, and recording human feedback tasks. The
average inference time to perform binary image classification
from the CrANET framework is 49 milliseconds taken by the
Google Coral dev board. The segmentation and quantification
task together takes an average of 12 seconds (based on
100 image tests) to execute the final results. A responsive
web application is implemented following the proposed

CEAIC framework that successfully tests its effectiveness
and provides validity. The user interaction is demonstrated
by the web application to execute crack detection tasks on
real-bridge sites. This research will motivate researchers and
practitioners to integrate edge-AI approaches in the SHM
domain to enhance productivity in real-time scenarios.

ACKNOWLEDGMENT
This article acknowledgesMishra et al. [41],Mishra et al. [68],
and poster and presentation of CEAIC framework in Bridging
Big Data Workshop 2023 conducted at the University of
Nebraska, Lincoln [53].

REFERENCES
[1] T. Choudhary, V. Mishra, A. Goswami, and J. Sarangapani, ‘‘Inference-

aware convolutional neural network pruning,’’ Future Gener. Comput.
Syst., vol. 135, pp. 44–56, Oct. 2022.

[2] Y. Hamishebahar, H. Guan, S. So, and J. Jo, ‘‘A comprehensive review of
deep learning-based crack detection approaches,’’ Appl. Sci., vol. 12, no. 3,
p. 1374, Jan. 2022.

[3] Y. Li, T. Bao, B. Xu, X. Shu, Y. Zhou, Y. Du, R. Wang, and K. Zhang,
‘‘A deep residual neural network framework with transfer learning for
concrete dams patch-level crack classification and weakly-supervised
localization,’’Measurement, vol. 188, Jan. 2022, Art. no. 110641.

[4] V. R. Gharehbaghi, H. Kalbkhani, E. Noroozinejad Farsangi, T. Y. Yang,
A. Nguyen, S. Mirjalili, and C. Málaga-Chuquitaype, ‘‘A novel approach
for deterioration and damage identification in building structures based on
stockwell-transform and deep convolutional neural network,’’ J. Structural
Integrity Maintenance, vol. 7, no. 2, pp. 136–150, Apr. 2022.

[5] C.-Z. Dong and F. N. Catbas, ‘‘A review of computer vision-based
structural health monitoring at local and global levels,’’ Struct. Health
Monitor., vol. 20, no. 2, pp. 692–743, 2021.

[6] G. C. Lee, S. Mohan, C. Huang, and B. N. Fard, A Study of US Bridge
Failures (1980–2012). Buffalo, NY, USA: MCEER Buffalo, 2013.

[7] X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, and L. He, ‘‘A survey of human-
in-the-loop for machine learning,’’ Future Gener. Comput. Syst., vol. 135,
pp. 364–381, May 2022.

[8] S. J. Pan andQ. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Jan. 2009.

[9] L. Xu, S. Lv, Y. Deng, and X. Li, ‘‘A weakly supervised surface defect
detection based on convolutional neural network,’’ IEEE Access, vol. 8,
pp. 42285–42296, 2020.

[10] A. Telea and J. J. Van Wijk, ‘‘An augmented fast marching method for
computing skeletons and centerlines,’’ Univ. Groningen, Johann Bernoulli
Inst. Math. Comput. Sci., 2002.

[11] C. Liu, X. Wang, J. Ni, Y. Cao, and B. Liu, ‘‘An edge computing visual
system for vegetable categorization,’’ in Proc. 18th IEEE Int. Conf. Mach.
Learn. Appl. (ICMLA), Orlando, FL, USA, Dec. 2019, pp. 625–632.

[12] D. Witten and G. James, An Introduction to Statistical Learning With
Applications in R. Berlin, Germany: Springer, 2013.

[13] K. Won and C. Sim, ‘‘Automated transverse crack mapping system with
optical sensors and big data analytics,’’ Sensors, vol. 20, no. 7, p. 1838,
Mar. 2020.

[14] D. Joshi, T. P. Singh, and G. Sharma, ‘‘Automatic surface crack detection
using segmentation-based deep-learning approach,’’ Eng. Fract. Mech.,
vol. 268, Jun. 2022, Art. no. 108467.

[15] L. Ali, F. Alnajjar, W. Khan, M. A. Serhani, and H. Al Jassmi,
‘‘Bibliometric analysis and review of deep learning-based crack detection
literature published between 2010 and 2022,’’ Buildings, vol. 12, no. 4,
p. 432, Apr. 2022.

[16] L. Zeng, E. Li, Z. Zhou, and X. Chen, ‘‘Boomerang: On-demand
cooperative deep neural network inference for edge intelligence on the
industrial Internet of Things,’’ IEEE Netw., vol. 33, no. 5, pp. 96–103,
Sep. 2019.

[17] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, ‘‘CBAM: Convolutional block
attention module,’’ in Proc. Eur. Conf. Comput. Vis., Munich, Germany,
Sep. 2018, pp. 3–19.

VOLUME 12, 2024 25343



A. Mishra et al.: Investigation Into the Advancements of Edge-AI Capabilities for SHM

[18] D. Ha and Y. Tang, ‘‘Collective intelligence for deep learning: A survey
of recent developments,’’ Collective Intell., vol. 1, no. 1, Aug. 2022,
Art. no. 263391372211148.

[19] Z. Liu, Y. Cao, Y. Wang, and W. Wang, ‘‘Computer vision-based concrete
crack detection using U-Net fully convolutional networks,’’ Autom.
Construct., vol. 104, pp. 129–139, Aug. 2019.

[20] F. Çağlar and Özgenel, ‘‘Concrete crack images for classification,’’
Mendeley Data, V2, doi: 10.17632/5y9wdsg2zt.2.

[21] Q. Yang, S. Jiang, J. Chen, and W. Lin, ‘‘Crack detection based on
ResNet with spatial attention,’’ Comput. Concrete, Int. J., vol. 26, no. 5,
pp. 411–420, 2020.

[22] A. Reghukumar and L. J. Anbarasi, ‘‘Crack detection in concrete
structures using image processing and deep learning,’’ in Advances in
Electrical and Computer Technologies. Berlin, Germany: Springer, 2021,
pp. 211–219.

[23] W. Li,W.Wu, H.Wang, X. Cheng, H. Chen, Z. Zhou, and R. Ding, ‘‘Crowd
intelligence in AI 2.0 era,’’ Frontiers Inf. Technol. Electron. Eng., vol. 18,
pp. 15–43, Jan. 2017.

[24] J. Zhao, T. Tiplea, R. Mortier, J. Crowcroft, and L. Wang, ‘‘Data analytics
service composition and deployment on edge devices,’’ in Proc. Workshop
Big Data Analytics Mach. Learn. Data Commun. Netw., Budapest,
Hungary, Aug. 2018, pp. 27–32.

[25] A. Guo, A. Jiang, J. Lin, and X. Li, ‘‘Data mining algorithms for bridge
health monitoring: Kohonen clustering and LSTM prediction approaches,’’
J. Supercomput., vol. 76, no. 2, pp. 932–947, Feb. 2020.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[27] C. Tan, N. Uddin, and Y. M. Mohammed, ‘‘Deep learning-based crack
detection using mask R-CNN technique,’’ in Proc. 9th Int. Conf. Struct.
Health Monitoring Intell. Infrastructure, St. Louis, MO, USA, 2019,
pp. 1–7.

[28] R. C. Gonzalez, Digital Image Processing. London, U.K.: Pearson, 2009.
[29] M. Oquab et al., ‘‘DINOv2: Learning robust visual features without

supervision,’’ 2023, arXiv:2304.07193.
[30] G. Borgefors, ‘‘Distance transformations in digital images,’’ Comput. Vis.,

Graph., Image Process., vol. 34, no. 3, pp. 344–371, Jun. 1986.
[31] J. Mendez, K. Bierzynski, M. P. Cuéllar, and D. P. Morales, ‘‘Edge

intelligence: Concepts, architectures, applications, and future directions,’’
ACM Trans. Embedded Comput. Syst., vol. 21, no. 5, pp. 1–41, Sep. 2022.

[32] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, ‘‘Edge intelligence:
Paving the last mile of artificial intelligence with edge computing,’’ Proc.
IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[33] S. Tuli, N. Basumatary, and R. Buyya, ‘‘EdgeLens: Deep learning based
object detection in integrated IoT, fog and cloud computing environments,’’
in Proc. 4th Int. Conf. Inf. Syst. Comput. Netw. (ISCON), Nov. 2019,
pp. 496–502.

[34] Z. Qiu Lin, A. G. Chung, and A. Wong, ‘‘EdgeSpeechNets: Highly
efficient deep neural networks for speech recognition on the edge,’’ 2018,
arXiv:1810.08559.

[35] M. Caron, H. Touvron, I. Misra, H. Jgou, J. Mairal, P. Bojanowski,
and A. Joulin, ‘‘Emerging properties in self-supervised vision transform-
ers,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 9650–9660.

[36] F. Xie and D. Levinson, ‘‘Evaluating the effects of the I-35W bridge
collapse on road-users in the twin cities metropolitan region,’’ Transp.
Planning Technol., vol. 34, no. 7, pp. 691–703, Oct. 2011.

[37] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, ‘‘Gaia: Geo-distributed machine learning
approaching LAN speeds,’’ in Proc. 14th USENIX Symp. Networked Syst.
Design Implement., Boston, MA, USA, 2017, pp. 629–647.

[38] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-CAM: Visual explanations from deep networks via
gradient-based localization,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 618–626.

[39] Google Coral Dev Board. Accessed: Sep. 2023. [Online]. Available:
https://coral.ai/products/dev-board/

[40] Kneron. [Online]. Available: https://www.kneron.com/
[41] A. Mishra, G. Gangisetti, and D. Khazanchi, ‘‘Integrating edge-AI in

structural health monitoring domain,’’ 2023, arXiv:2304.03718.
[42] X. Cui, Q. Wang, J. Dai, Y. Xue, and Y. Duan, ‘‘Intelligent crack detection

based on attention mechanism in convolution neural network,’’ Adv. Struct.
Eng., vol. 24, no. 9, pp. 1859–1868, 2021.

[43] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, ‘‘Learning
deep features for discriminative localization,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016,
pp. 2921–2929.

[44] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, ‘‘Low-bit quantization
of neural networks for efficient inference,’’ in Proc. IEEE/CVF Int.
Conf. Comput. Vis. Workshop (ICCVW), Seoul, South Korea, Oct. 2019,
pp. 3009–3018.

[45] M. Flah, I. Nunez, W. Ben Chaabene, and M. L. Nehdi, ‘‘Machine learning
algorithms in civil structural health monitoring: A systematic review,’’
Arch. Comput. Methods Eng., vol. 28, no. 4, pp. 2621–2643, 2021.

[46] M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan,
and F. Hussain, ‘‘Machine learning at the network edge: A survey,’’ ACM
Comput. Surv., vol. 54, no. 8, pp. 1–37, Oct. 2021.

[47] K. P. Murphy,Machine Learning: A Probabilistic Perspective. Cambridge,
MA, USA: MIT Press, 2012.

[48] M. Belkin, P. Niyogi, and V. Sindhwani, ‘‘Manifold regularization: A geo-
metric framework for learning from labeled and unlabeled examples,’’
J. Mach. Learn. Res., vol. 7, pp. 2399–2434, 2006.

[49] H. Fan, B. Xiong, K. Mangalam, Y. Li, Z. Yan, J. Malik, and
C. Feichtenhofer, ‘‘Multiscale vision transformers,’’ in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 6824–6835.

[50] Y.Kang, J. Hauswald, C. Gao, A. Rovinski, T.Mudge, J.Mars, and L. Tang,
‘‘Neurosurgeon: Collaborative intelligence between the cloud and mobile
edge,’’ ACM SIGPLAN Notices, vol. 52, no. 4, pp. 615–629, Apr. 2017.

[51] (2019). ONNX: Open Neural Network Exchange. [Online]. Available:
https://github.com/onnx/onnx

[52] X. Zhang, Y. Wang, S. Lu, L. Liu, L. Xu, and W. Shi, ‘‘OpenEI: An open
framework for edge intelligence,’’ in Proc. IEEE 39th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Dallas, TX, USA, Jul. 2019, pp. 1840–1851.

[53] A. Mishra, G. Gangisetti, and D. Khazanchi. (2023). Poster-
CEAIC: Cloud-Edge Adaptive Intelligence for Concrete Crack
Detection and Quantification, Lincoln, NE, USA. [Online]. Available:
https://bridgingbigdata.github.io/pages/bbd2023agenda.html

[54] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks for
efficient integer-arithmetic-only inference,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Salt Lake City, UT, USA, Jun. 2018, pp. 2704–2713.

[55] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, ‘‘Quantized convolutional
neural networks for mobile devices,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016,
pp. 4820–4828.

[56] Q. Zhang, K. Barri, S. K. Babanajad, andA. H. Alavi, ‘‘Real-time detection
of cracks on concrete bridge decks using deep learning in the frequency
domain,’’ Engineering, vol. 7, no. 12, pp. 1786–1796, 2020.

[57] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang, ‘‘Self-
supervised learning: Generative or contrastive,’’ IEEE Trans. Knowl. Data
Eng., vol. 35, no. 1, pp. 857–876, Jun. 2021.

[58] L. Jing and Y. Tian, ‘‘Self-supervised visual feature learning with deep
neural networks: A survey,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 43, no. 11, pp. 4037–4058, Nov. 2020.

[59] X. Chen, S. Yin, D. Song, P. Ouyang, L. Liu, and S. Wei, ‘‘Small-
footprint keyword spotting with graph convolutional network,’’ in Proc.
IEEE Autom. Speech Recognit. Understand. Workshop (ASRU), Dec. 2019,
pp. 539–546.

[60] Z. Zhang and C. Sun, ‘‘Structural damage identification via physics-guided
machine learning: A methodology integrating pattern recognition with
finite element model updating,’’ Struct. Health Monitor., vol. 20, no. 4,
pp. 1675–1688, Jul. 2021.

[61] Z. Xu, H. Gupta, and U. Ramachandran, ‘‘STTR: A system for tracking
all vehicles all the time at the edge of the network,’’ in Proc. 12th ACM
Int. Conf. Distrib. Event-Based Syst., Hamilton, New Zealand, Jun. 2018,
pp. 124–135.

[62] R. A. Gandhi, D. Khazanchi, D. Linzell, B. Ricks, and C. Sim, ‘‘The hidden
crisis: Developing smart big data pipelines to address grand challenges of
bridge infrastructure health in the United States,’’ in Proc. 15th Int. Conf.
Inf. Syst. Crisis Response Manag. (ISCRAM), Rochester, NY, USA, 2018,
pp. 1016–1021.

[63] Y.-S. Yang, C.-M. Yang, and C.-W. Huang, ‘‘Thin crack observation in a
reinforced concrete bridge pier test using image processing and analysis,’’
Adv. Eng. Softw., vol. 83, pp. 99–108, May 2015.

25344 VOLUME 12, 2024

http://dx.doi.org/10.17632/5y9wdsg2zt.2


A. Mishra et al.: Investigation Into the Advancements of Edge-AI Capabilities for SHM

[64] L. Shao, F. Zhu, and X. Li, ‘‘Transfer learning for visual categorization:
A survey,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 5,
pp. 1019–1034, May 2015.

[65] S. O. Sajedi and X. Liang, ‘‘Uncertainty-assisted deep vision structural
health monitoring,’’ Comput.-Aided Civil Infrastruct. Eng., vol. 36, no. 2,
pp. 126–142, Feb. 2021.

[66] A. Khaloo, D. Lattanzi, K. Cunningham, R. Dell’Andrea, and M. Riley,
‘‘Unmanned aerial vehicle inspection of the placer river trail bridge through
image-based 3D modelling,’’ Struct. Infrastruct. Eng., vol. 14, no. 1,
pp. 124–136, Jan. 2018.

[67] S. Bhowmick, S. Nagarajaiah, and A. Veeraraghavan, ‘‘Vision and deep
learning-based algorithms to detect and quantify cracks on concrete
surfaces from UAV videos,’’ Sensors, vol. 20, no. 21, p. 6299, Nov. 2020.

[68] A. Mishra, G. Gangisetti, Y. E. Azam, and D. Khazanchi, ‘‘Weakly
supervised crack segmentation using crack attention networks (CrANET)
on concrete structures,’’ Struct. Health Monit., 2024.

[69] B. Gaurav, Z. Jacobson, S. Madhav, A. Queirolo, and N. Santhanam,
‘‘Artificial-intelligence hardware: New opportunities for semiconductor
companies,’’ McKinsey, Tech. Rep., 2019. [Online]. Available: https://
www.mckinsey.com/industries/semiconductors/our-insights/artificial-inte
lligence-hardware-new-opportunities-for-semiconductor-companies

[70] R. Singh and S. S. Gill, ‘‘Edge AI: A survey,’’ Internet Things Cyber-Phys.
Syst., vol. 3, pp. 71–92, Mar. 2023.

[71] E. Badidi, K.Moumane, and F. E. Ghazi, ‘‘Opportunities, applications, and
challenges of edge-AI enabled video analytics in smart cities: A systematic
review,’’ IEEE Access, vol. 11, pp. 80543–80572, 2023.

[72] L. Wulfert, J. Kühnel, L. Krupp, J. Viga, C. Wiede, P. Gembaczka,
and A. Grabmaier, ‘‘AIfES: A next-generation edge AI framework,’’
IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–16, 2024, doi:
10.1109/TPAMI.2024.3355495.

ANOOP MISHRA is an Responsible AI
researcher and a doctoral candidate at the
College of Information, Science & Technology
at the University of Nebraska at Omaha. His
main research focuses on fairness, transparency,
explainability, perception, and human-in-loop
in AI/ML systems. His recent focus includes
responsible AI practices in Structural Health
Monitoring.

GOPINATH GANGISETTI is currently pursuing
the degree with the University of Nebraska
Omaha. He is a Research Assistant with the Uni-
versity of Nebraska Omaha. His research interests
include the intersection of cloud-based machine
learning applications and software engineering.

DEEPAK KHAZANCHI received the B.Tech.
degree (Hons.) in civil engineering from the Indian
Institute of Technology Kharagpur, the M.B.A.
degree from SIUCarbondale, and the Ph.D. degree
from Texas Tech University. He holds affiliate
appointments at the UNO’s International Studies
Program and the Goldstein Center for Human
Rights. He is currently a Professor of information
systems and quantitative analysis and the Exec-
utive Director of the Center for Management of

IT, University of Nebraska Omaha. He has collaboratively received $10
million in grants/donations/awards from private foundations, corporations,
federal, and state agencies to support his teaching/research and community
engagement activities. His current research publications are in the following
areas: applied AI/ML, perceived fairness of AI/ML systems, fast response
virtual teams during the crisis, mhealth interventions, virtual project
management, metaverse technology capabilities, B2B risk, and mixed
research methods.

VOLUME 12, 2024 25345

http://dx.doi.org/10.1109/TPAMI.2024.3355495

