
Received 14 January 2024, accepted 5 February 2024, date of publication 13 February 2024, date of current version 23 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3365742

A Review on Large Language Models:
Architectures, Applications,
Taxonomies, Open Issues
and Challenges
MOHAIMENUL AZAM KHAN RAIAAN 1, MD. SADDAM HOSSAIN MUKTA 2,
KANIZ FATEMA 3, NUR MOHAMMAD FAHAD1, SADMAN SAKIB 1,
MOST MARUFATUL JANNAT MIM 1, JUBAER AHMAD1, MOHAMMED EUNUS ALI 4,
AND SAMI AZAM 3
1Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh
2LUT School of Engineering Sciences, Lappeenranta-Lahti University of Technology, 53850 Lappeenranta, Finland
3Faculty of Science and Technology, Charles Darwin University, Casuarina, NT 0909, Australia
4Department of CSE, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh

Corresponding author: Md. Saddam Hossain Mukta (Saddam.Mukta@lut.fi)

ABSTRACT Large Language Models (LLMs) recently demonstrated extraordinary capability in various
natural language processing (NLP) tasks including language translation, text generation, question answering,
etc. Moreover, LLMs are new and essential part of computerized language processing, having the ability to
understand complex verbal patterns and generate coherent and appropriate replies in a given context. Though
this success of LLMs has prompted a substantial increase in research contributions, rapid growth has made it
difficult to understand the overall impact of these improvements. Since a plethora of research on LLMs have
been appeared within a short time, it is quite impossible to track all of these and get an overview of the current
state of research in this area. Consequently, the research community would benefit from a short but thorough
review of the recent changes in this area. This article thoroughly overviews LLMs, including their history,
architectures, transformers, resources, training methods, applications, impacts, challenges, etc. This paper
begins by discussing the fundamental concepts of LLMs with its traditional pipeline of the LLMs training
phase. Then the paper provides an overview of the existing works, the history of LLMs, their evolution
over time, the architecture of transformers in LLMs, the different resources of LLMs, and the different
training methods that have been used to train them. The paper also demonstrates the datasets utilized in the
studies. After that, the paper discusses the wide range of applications of LLMs, including biomedical and
healthcare, education, social, business, and agriculture. The study also illustrates how LLMs create an impact
on society and shape the future of AI and how they can be used to solve real-world problems. Finally, the
paper also explores open issues and challenges to deploy LLMs in real-world scenario. Our review paper
aims to help practitioners, researchers, and experts thoroughly understand the evolution of LLMs, pre-trained
architectures, applications, challenges, and future goals.

INDEX TERMS Large language models (LLM), natural language processing (NLP), artificial intelligence,
transformer, pre-trained models, taxonomy, application.

I. INTRODUCTION
Language is a vital tool for human expression and com-
munication which we begin to learn after our birth and
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make diverse use of it throughout our lifetime [1], [2].
Nevertheless, machines are unable to possess the innate
ability to understand and speak in human language without
the help of sophisticated artificial intelligence (AI) [3].
Therefore, a long-standing scientific challenge and aim
has been to achieve human-like reading, writing, and
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FIGURE 1. Pipeline of the LLMs training phase.

communication skills in machines [4]. Advances in deep
learning approaches, the availability of immense computer
resources, and the availability of vast quantities of training
data all contributed to the emergence of large language
models (LLMs). LLMs are category of language models that
utilizes neural networks containing billions of parameters,
trained on enormous quantities of unlabeled text data using
a self-supervised learning approach [5]. Frequently pre-
training on large corpora from the web, these models
may learn complicated patterns, language subtleties, and
semantic linkages. However, LLMs have proved their ability
in various language-related tasks, including text synthesis,
translation, summarization, question-answering, and senti-
ment analysis, by leveraging deep learning techniques and
large datasets.Moreover, fine-tuning thesemodels on specific
downstream tasks has been quite promising, with state-
of-the-art performance in several benchmarks [6]. LLMs
have their roots in the early development of language
models and neural networks. Statistical approaches and
n-gram models were used in earlier attempts to develop
language models [7]; but these models have shortcomings
in expressing long-term interdependence and context in
language. After that, researchers began to explore more
complex ways with the development of neural networks
and the availability of larger datasets. The creation of
the Recurrent Neural Network (RNN) [8], which allowed
for the modeling of sequential data, including language,
was a crucial milestone. However, RNNs were limited in
their efficacy due to vanishing gradients and long-term
dependencies. The significant advancement in LLMs systems
occurred when the transformer architecture was introduced in
the seminal work [9]. The transformer model is built around
the self-attention mechanism, enabling parallelization and
efficient handling of long-range dependencies. Furthermore,
LLM architectures served as the basis for models such
as Google’s Bidirectional Encoder Representations from
Transformers (BERT) [10] and open AI’s Generative Pre-
trained Transformer (GPT) series, which excelled at various
language tasks.

The pipeline of the basic LLMs architecture is shown
in Figure 1. LLMs architecture receives text data from
multiple sources and then the architecture forwards text to
the subsequent stage for preprocessing. It then completes its
training process by executing a series of stages, including
random parameter initialization, numerical data input, loss
function calculation, parameter optimization, and iterative
training. They offer text translation, text summarization,
sentiment analysis, and other services following the training
phase. Prior research has shown the potential of LLMs
in many NLP tasks, including specialized applications in
domains such as the medical and health sciences [11] and
politics [12]. Moreover, after inventing the most sophisticated
GPT model [13], developing the state-of-the-art models
(LLaMa and Bard [14]), and exploring their capabilities, such
as Alpaca and GPTHuggingface [15], LLM has become a
crucial and effective domain. As a result, a trustworthy assess-
ment of current LLMs research is becoming increasingly
important, and prior research has shown the potential and
superiority of LLMs in NLP tasks. Despite this, only a few
studies [3], [16], [17] have thoroughly reviewed latest LLMs
developments, possibilities, and limitations in their research.

Besides, researchers have presented various aspects of
the LLMs domain in several studies [3], [16], [17], [18];
but their work still has several limitations. These studies
miss many aspects of LLM including high-level architecture
and configurations, taxonomies, API and domain-specific
applications, and datasets of LLMs. For example, there
is a lack of introduction to the core architecture and
configurations of the LLMs model, a lack of adequate
explanation of the taxonomy of LLMs, differentiation based
on ML, domain-specific applications, API applications, and
descriptions of LLMs datasets. Furthermore, the vastmajority
of LLMs review papers are not peer-reviewed works. The
absence of these key points in a review indicates that a
thorough investigation is missing in the current literature.
Due to the significant extent of the constraints, it is possible
to mitigate these research gaps by thoroughly analyzing and
addressing these missing points. Thus, the motivation of
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FIGURE 2. Section organization of the review.

this paper is to comprehensively explore the current review
papers, identify their limitations, and outline the current
state-of-the-art methods to address these vital challenges.
Therefore, our primary objective is to explore, comprehend,
and evaluate LLMs that encompass domains, evolution,
classification, the structure of pre-trained models, resources,
and real-time applications. Additionally, our comprehensive
review discusses open issues and challenges associated with
LLMs, including security, ethical, privacy, economic, and
environmental considerations. In addition, we present a set
of guidelines to explore future research and development
in the effective use of LLMs. We hope that this study will
contribute to a better understanding and use of LLMs. The
list of contributions to this paper is as follows:

• Providing a complete overview of LLMs, including their
evolution, classification, and transformer architecture.
The history of LLMs provides a brief account of the
evaluation from its origins (1940) to the present (2023),
as well as a taxonomy of LLMs based on pre-trained and
API-based models and major LLMs structures.

• Describing the comparison of different pre-trained
model designs in LLMs, along with their own systems
that show how the model architectures are different.

• Explaining the influence of ML models on LLMs,
demonstrating the significance of ML in various LLMs
domains.

• Providing a brief overview of the datasets used in the
training phase to differentiate between the models in
existing works.

• Presenting a thorough explanation of the hardware
implementation in training and testing models in terms
of LLMs.

• Defining insights into the potential of LLMs and their
impact on society and demonstrating bio-medical appli-
cations in five practical domains, including bio-medical
and healthcare, education, social media, business, and
agriculture.

• Investigating LLMs’s diverse set of open issues, chal-
lenges, and future opportunities. This section focuses on
identifying key challenges and future opportunities that
can aid in advancing knowledge in this area.

The remaining sections of the paper are organized as
depicted in Figure 2. In Section II, the literature review is dis-
cussed. Section III illustrates the history of LLMs; Section IV
demonstrates the Methodology; Section V explains the clear
concept of large language models; Section VI describes the
resources of LLMs; Section VII demonstrates the domain-
specific applications of LLMs; and Section VIII explains
the societal impact of LLMs, Indusrial significance of
LLMs is highlighted in Section IX, Section X discuss the
open issues and challenges regarding LLMs, Section XI
discusses about the future research directions of LLMs,
Section XII acknowledges the limitation and Section XIII
finally concludes the paper.

II. LITERATURE REVIEW
The growing number of LLMs is an extraordinary develop-
ment in the field of AI. In recent years, numerous studies [3],
[16], [17], [18] have been conducted to investigate and
evaluate their capabilities. Researchers from various fields
have contributed on the rise of LLMs, shedding light on
their remarkable advancements, diverse applications, and
potential to revolutionize tasks from text generation and com-
prehension to demonstrating reasoning skills. Collectively,
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TABLE 1. Comparison between state-of-the-art research.

these studies contribute to our comprehension of LLMs’
significant role in shaping the landscape of AI-driven
language processing and problem-solving.

Huang et al., [18] presented a study on reasoning in
LLMs that comprehensively summarizes the current state of
LLMs’ reasoning capabilities. It examines various aspects of
reasoning in LLMs, such as techniques to enhance and extract
reasoning abilities, methodologies and criteria for assessing
these abilities, insights from prior research, and suggestions
for future directions. The primary concern is the extent to
which LLMs can demonstrate reasoning skills. This paper
aims to provide an in-depth and up-to-date examination of
this topic, fostering fruitful discussions and guiding future
research in LLMs-based reasoning. In another study, Zhao
et al., [3] survey on LLMs illustrates a comprehensive
examination of the evolution and impact of LLMs in the field
of artificial intelligence and natural language processing.
It traces the historical journey from early language models
to the recent emergence of pre-trained language models
(PLMs) with billions of parameters. Notably, the paper
discusses LLMs’ unique capabilities as they scale in size,
including in-context learning. The authors highlight the
significant contributions of LLMs to the AI community and
the launch of ChatGPT, a prominent AI chatbot powered
by LLMs. The survey is structured around four key aspects
of LLMs: pre-training, adaptation tuning, utilization, and
capacity evaluation. Additionally, the paper provides insights
into available resources for LLMs development and identifies
further research and development areas.

A recent study by Fan et al. [16] conducted a bibliometric
review of LLMs research from 2017 to 2023, encompass-
ing over 5,000 publications. The study aims to provide
researchers, practitioners, and policymakers with an overview
of the evolving landscape of LLMs research. The study
also tracks research trends during the specified time period,
including advancements in fundamental algorithms, major

NLP tasks, and applications in disciplines such as medicine,
engineering, social sciences, and the humanities. In addition
to highlighting the dynamic and rapidly changing nature of
LLMs research, the study offers insights into their current
status, impact, and potential in the context of scientific
and technological advancements. Chang et al. [17] focuses
on the assessment of LMMs. Their research examines the
increasing prevalence of LLMs in academia and industry
due to their exceptional performance in various applica-
tions. The study highlights the growing significance of
evaluating LLMs at both the task and societal levels in
order to comprehend potential risks. The paper thoroughly
analyzes LLMs evaluationmethods, focusing on three critical
dimensions: what to evaluate, where to evaluate, and how
to evaluate. The research also includes tasks such as natural
language processing, reasoning, medical applications, ethics,
and education. The article examines evaluation methods and
benchmarks for assessing LLMs performance, emphasizing
successful and unsuccessful cases. The paper also underlines
future challenges in LLMs evaluation and emphasizes the
importance of evaluating LLMs as a fundamental discipline
to support the development of more competent LLMs.

Table 1 illustrates the comparison between different review
papers based on some fundamental properties such as LLMs
models, APIs, datasets, domain specific LLMs, ml-based
comparison of LLMs, taxonomy, architectures, performance,
hardware specifications for testing and training, and config-
urations. Huang et al. [18] lack information on LLMs’ API,
dataset, domain-specific LLMs, taxonomy, architectures, and
LLMsConfigurations. In contrast, Zhao et al., [3] hasmissing
aspects on LLMs’ API, domain-specific LLMs, taxonomy,
architecture, and configurations.Moreover, Fan et al. [16] and
Chang et al., [17] lack information on LLMs’ API, domain-
specific LLMs, taxonomy, architecture, and configurations.

On the contrary, our paper offers a considerably broader
aspects on the LLMs context. In addition to incorporating
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every aspect specified in the table, we provide a detailed
demonstration on the account of the hardware implemen-
tation and LLMs datasets. Previous research frequently
focuses on limited aspects of LLMs, including historical
development, bibliometric patterns, and assessment tech-
niques. However, our study recovers previous shortcomings.
A thorough examination is conducted on each of these
aspects, resulting in a comprehensive representation of
the strengths and weaknesses of LLMs. Furthermore, our
research is focused on the crucial element of reasoning
capabilities in LLMs, thereby providing a significant addition
to the body of knowledge in the field. By giving thorough
information, such as descriptions of datasets and hardware
implementations required, our paper stands out as a primary
resource for LLMs practitioners and researchers. Further-
more, we briefly discuss open issues in LLMs research,
such as ethical and responsible AI, multimodal integration,
energy efficiency, privacy and data protection, generalization
and few-shot learning, and cross-lingual and low-resource
settings. We also highlight key challenges, including data
complexity and scaling, tokenization sensitivity, computa-
tional resource demands, fine-tuning complexity, real-time
responsiveness, contextual constraints, bias and undesirable
output, knowledge temporality, and evaluation complexity.
Our review suggests future research directions to tackle
open issues and important resource for LLMs researchers
and practitioners. Our extensive systematic review presents
a detailed discussion on LLMs which makes a substantial
contribution to the field of LLMs research.

III. HISTORY OF LARGE LANGUAGE MODELS
LLMs refer to a category of AI models developed specifically
to comprehend and produce human language [19]. LLMs
have significantly contributed to the field of AI and
have been applied in diverse areas, including education,
communication, content generation, article composition,
healthcare, research, entertainment, and information dissem-
ination, among others [19], [20]. The origins of LLMs can
be attributed to the emergence and advancement of neural
network-based methodologies in the field of NLP [20].
In order to process language, early NLP systems utilized
rule-based techniques and statistical models. However, those
methods frequently encountered difficulties in comprehend-
ing the textual context in a specific discourse [21]. This
section provides a high-level overview of LLMs, including
their background, development, training, and operation.
Figure 3 depicts the history of language models.
In the 1940s, Warren McCulloch and Walter Pitts intro-

duced the idea of artificial neural networks (ANNs) [22].
Afterwards, the 1950s and 1960s saw the development of
the first language models [23]. These models included early
neural networks as well as rule-based models. The processing
of language was facilitated by their utilization of precisely
established linguistic rules and features [24]. These models
experienced limitations in their abilities and encountered
difficulties in managing the complexities of complicated

language assignments. The models were predominantly
employed for tasks involving binary classification. However,
their efficacy in dealing with the complex situation in NLP
tasks was limited [24].

Statistics-based models of language were created in the
’80s and ’90s. These models belong to a category of
models utilized in the field of NLP and machine learning
(ML) with the purpose of capturing and quantifying the
statistical patterns and correlations within language data [21].
Statistical language models have significance in several
applications, such as predictive text input, text generation,
speech recognition, spam detection, etc. These models were
superior in terms of accuracy to early neural networks and
rule-basedmodels, as they were able to process large amounts
of data with ease [21]. Although statistical language models
have been successful in many applications of NLP, they
still have limitation when these models come to predict the
semantic relationship between concepts and context of the
language. These techniques have difficulty dealing with long-
range dependencies [25].

During the mid-2000s, the field of NLP witnessed the
introduction of word embeddings, which were recognized as
a notable breakthrough and subsequently acquired consider-
able attention [26]. Word embedding refers to the process
of representing words in a continuous vector space. The
approach captures the semantic relationships among words
by representing them in a vector space. The representation
reduces the computational cost by mapping the words to a
lower-dimensional space. Word2Vec and GloVe are widely
recognized word embedding models in the domain [27].
These models are mostly utilized for assessing word sim-
ilarity and assisting in the clustering and representation of
words within semantic domains. Although not classified as
LLMs, these embeddings have significantly contributed to
the progress of natural language comprehension and have set
the path for the development of more complex models. Nev-
ertheless, these models have several limitations, such as their
difficulty in effectively dealing with words that have multiple
meanings (i.e., homonyms) or words that sound the same
(i.e., homophones), as well as their inability to comprehend
contextual information in an accepted manner [26].

The introduction of neural language models in the mid-
2010s marked a significant advancement in LLMs [28].
These models employed deep learning approaches to acquire
knowledge of language patterns from extensive textual
data and additionally utilized artificial neural networks to
comprehend, produce, or forecast human language. Fur-
thermore, they have demonstrated exceptional outcomes in
a wide range of language-related tasks. The initial neural
language model to be introduced was the recurrent neural
network language model (RNNLM) in 2010 [29]. The
purpose of its development was to capture the sequential
dependencies present in textual data. The utilization of a
hidden state allows for the retention and propagation of
information from preceding words in a particular sequence.
RNNLM has been employed in several applications such
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FIGURE 3. Brief history of language models.

as text production, speech recognition, machine translation,
and language modeling. The RNNLM demonstrated the
capability to effectively capture the contextual information of
words, resulting in the generation of text that exhibits a higher
degree of naturalness compared to earlier models. Although
the RNNLM offers certain advantages, it is not without its
drawbacks. Some of these limitations include a limited short-
term memory capacity, extended training time requirements,
and prone to suffer in overfitting [30].
In the year 2015, Google unveiled the initial large neural

language model that employed deep learning methodologies.
The technologywas referred to as theGoogleNeuralMachine
Translation (GNMT) model [31]. The model underwent
training using huge quantities of multilingual textual data.
This development signifies a notable progression in the field
of machine translation [32]. The model demonstrated excep-
tional performance on machine translation tasks, departing
from traditional rule-based and statistical techniques in favor
of neural network-based methodologies. When compared
to earlier language models, it was able to tackle complex
natural language tasks with ease. The utilization of this
model resulted in enhanced translation accuracy and the
generation of meaningful translations, while also mitigating
errors associated with intricate linguistic constructions [31].
The advancement of Language models persisted with the

emergence of the Transformer model in the year 2017 [33].
The transformer model has had a significant impact on
the field of NLP and has played a crucial role in the
development of language models such as Bidirectional
Encoder Representations from Transformers (BERT) and
Generative Pre-trained Transformers (GPT) [34]. These

models employ a self-attention mechanism that enables them
to assess the relative significance of individual words in a
sentence, thereby encoding complex relationships within the
text [34]. The primary objective behind the development
of the Transformer model was to overcome the inherent
constraints observed in earlier models such as RNNs and
Long Short-Term Memory (LSTM) networks. The Trans-
former models possess notable advantages in comparison
to other models due to their ability to capture longer-term
dependencies in language and facilitate concurrent training
on many Graphical Processing Units (GPUs) with a vast
number of parameters, enabling the construction of much
larger models [35]. Parallelization capabilities and scalability
are further benefits that have resulted in notable progress
across many NLP activities [33].

The introduction of BERT in 2018 byGoogle AI represents
a noteworthy advancement in the domain of NLP [16].
The underlying framework utilized in this study was the
transformer architecture. Before the introduction of BERT,
the preceding language model rooted in NLP had constraints
in understanding contextual information due to its reliance on
unidirectional language modeling. BERT was introduced by
Google as a solution to address this particular constraint [36].
The employed methodology involved the utilization of deep
bidirectional representations, which were conditioned on
both the left and right contexts across all layers [37]. The
pre-trained BERT model was able to undergo fine-tuning by
incorporating an additional output layer, hence enabling its
applicability to diverse tasks such as question answering and
language inference. Due to the widespread adoption of BERT,
several versions and subsequent models, such as RoBERTa,
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T5, and DistilBERT, have been developed to effectively
address diverse tasks across multiple domains [37].
Following the advent of transformers, subsequent years

saw the development of scaling-up LLMsmodels through the
expansion of training data and parameter counts [20]. OpenAI
significantly contributed to the development of LLMs in
2018. During the same year, GPT, an additional transformer-
based architecture, was developed. Multiple iterations of
the GPT models, developed by OpenAI, underwent pre-
training using extensive datasets comprising excerpts from
the Internet, novels, and various other textual sources [38].
The first version of the GPT model was referred to as GPT-
1 [39]. The introduction of GPT-1 was a notable progression
in the field of NLP. GPT-1 effectively produces words that
are contextually appropriate, showcasing the transformative
capabilities of transformers in significantly advancing natural
language processing tasks. This proficiency is attributed
to its extensive training on a vast number of parameters,
specifically 117 million. The model underwent a two-step
procedure consisting of unsupervised pre-training followed
by supervised fine-tuning [20]. The initial iteration of GPT
did not attain the same level of popularity as BERT due to
several inherent limitations [40]. These drawbacks include a
restricted context window, absence of bi-directionality, and
occasional generation of biased content. Despite the inherent
limits of GPT-1, this model played a crucial role in paving
the way for later, more advanced models. As a result, it has
sparked a new era of AI research and intensified competition
in the development of LLMs.

The subsequent version of the GPT series, known as
GPT-2, was designed with the purpose of addressing the
limitations observed in its predecessor, GPT-1 [40]. Similar
to GPT-1, GPT-2 was developed utilizing the transformer
architecture. In the year 2019, Alec Radford introduced
GPT-2, a language model that was developed on a deep
neural network consisting of 1.5 billion parameters [41].
The GPT-2 model includes a transformer design, which
incorporates self-attention processes to extract information
from different positions within the input sequence. Despite
the high computing cost associated with training and
executing the model, its substantial magnitude facilitates the
comprehension and generation of a wide range of linguistic
subtleties and diversified outputs [40]. The GPT-2 model has
played a pivotal function in the advancement of LLMs and
the execution of NLP activities. The influence of GPT-2 has
had a significant impact on successor models like GPT-3 and
GPT-4, leading to additional advancements in the field of
language processing and creation [42].
In 2019, NVIDIA produced Megatron-LM, which is an

LLMs [43]. Similar to GPT, this model is built on the
transformer architecture. The model possesses a total of
8.3 billion parameters, a notably bigger quantity compared to
the parameter count of GPT-1 andGPT-2 [16]. Themagnitude
of this dimension facilitates the model’s capacity to acquire
and produce intricate linguistic structures. Nevertheless,

Megatron-LM has certain limitations, primarily due to
its substantial dimensions, which necessitate substantial
computational resources for both the training and inference
processes [43].
In the year 2020, OpenAI introduced GPT-3 as the

successor to GPT-2 [40]. GPT-3 was trained on an extensive
collection of textual data and demonstrated the ability to
generate text that exhibited a high degree of coherence
and naturalness. Similar to GPT-1 and GPT-2, this model
also utilizes the Transformer architecture [20]. The potential
of LLMs for various NLP applications was exemplified
by GPT-3. This particular LLMs was trained on a deep
neural network with an enormous 175 billion parameters,
surpassing the size of any other LLMs available at that
particular time [16]. The ability to produce natural language
text of superior quality with less fine-tuning is facilitated
by sophisticated methodologies, including a more significant
number of layers and a wider range of training data. One of
the most essential characteristics of GPT-3 is its capacity to
engage in few-shot and zero-shot learning, hence mitigating
the necessity for extensive data in order to generate natural
language text of superior quality. The advent of GPT-3 has
catapulted the domain of natural language processing to new
heights [40]

In the year 2020, OpenAI introduced GPT-4, the sub-
sequent version of their language model, following the
achievements of GPT-3 [20]. Similar to its predecessor,
GPT-4 is a transformer-based model. The system has the
capability to analyze both textual and visual data to produce
textual outputs [16]. The performance of the system was
assessed using a range of standardized professional and
academic examinations specifically intended for human test-
takers. GPT-4 exhibited a level of performance comparable to
that of humans on themajority of examinations. Significantly,
it achieved a ranking inside the highest decile of participants
on a simulated iteration of the UniformBar Examination [44].
GPT-4 has greater dimension and efficacy compared to
its predecessor, GPT-3, as it possesses the capacity to
generate text that is even more comprehensive and exhibits
a heightened level of naturalness [20].

The development of large language models presents addi-
tional prospects for innovation, knowledge acquisition, and
experimentation across diverse domains such as healthcare,
education, research, etc. The utilization of AI and NLP in
these models has significantly transformed how we engage
people with machines.

IV. METHODOLOGY
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guide is crucial for drafting
review papers as it assists systematic reviews in conducting
transparent meta-analyses, accurately reporting aims and
concluding the study, and ensuring the adequate reliability
and relevance with the findings of the study [45]. Therefore,
this review work focuses on the adoption of PRISMA
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FIGURE 4. PRISMA flow diagram of the review.

technique in analyzing the design, configurations, applica-
tions, and challenges of LLMs.

A. INITIAL SEARCHING
The research materials employed in this study have been
acquired from recognized scientific journals and conferences
from January 2020 to August 2023, conducted through the
Google Scholar platform. A comprehensive selection of
scholarly research articles has been specified, encompassing
various reputable academic sources such as IEEE Xplore,
ScienceDirect, ACM Digital Library, Wiley Online Library,
Springer Link, MDPI, and patents. Initially, 355 papers were
selected based on their relevance to the topic and keyword.
Table 2 describes the identification technique of the materials
from various electronic sources.

B. SEARCHING QUERY AND KEYWORDS
Using the combination of the appropriate search queries
and keywords enlisted in Table 3 helps to perform a proper
literature search. To conduct a thorough search of the
articles for our LLMs-based review work, we encompass the
following terms: ‘‘LLMs AND machine learning OR deep
learning OR models,’’ ‘‘LLMs AND machine learning OR
deep learning OR API,’’ ‘‘LLMs AND machine learning OR
deep learning OR Dataset’’, ‘‘LLMs AND natural language
processing OR NLP’’ and ‘‘LLMs AND machine learning
OR deep learning OR tools.’’ These specific searching
techniques help to extract the eligible and quality research
papers.

C. INCLUSION AND EXCLUSION CRITERIA SET
To acquire the final research papers, PRISMA protocols
and principles were adhered to formulate a standard set of

TABLE 2. Electronic database search.

TABLE 3. Search queries used for the review paper.

Inclusion Criteria (IC) and Exclusion Criteria (EC). The
inclusion criteria define the standards of the paper that need
to be included, while the exclusion criteria eliminate articles
that do not meet the inclusion scope. Thus, this manual
screening process improves the transparency of selection
process. Table 4 presents the inclusion and exclusion criteria
set for the proposed study.

D. PRISMA DIAGRAM
Figure 4 depicts the PRISMA flow diagram utilized in
selecting papers for the study. It also provides the numbers
of included and excluded papers for better understanding.
The diagram begins by identifying articles from electronic
databases using keywords, queries, resulting in 355 papers.
After applying the screening method to exclude duplicated,
low-quality, and irrelevant journal papers, the total number
of papers for review is reduced to 294. Following a thorough
analysis of the titles and abstracts, a total of 207 papers were
selected. The final screening method involves the application
of inclusion and exclusion criteria. Following this process,
a total of 135 papers were ultimately selected for the final
review. The process begins with an extensive collection of
papers and reduces to the final selection that meets the pre-
defined selection criteria for the systematic review.

V. LARGE LANGUAGE MODELS
Large language models (LLMs) refer to a specific type of
AI algorithm that holds the capability to execute a diverse
range of NLP tasks. The most common tasks entail text
generation, text analysis, translation, sentiment analysis,
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TABLE 4. Inclusion and exclusion criteria.

question answering, and other related functions. GPT-3,
GPT-4, PaLM, and LaMDA are extensively used transformer-
based LLMs models trained on a large amount of textual
data. In terms of architectural properties, these models show
variations in size and depth. For example, GPT-3 generates
parameters of 175 billion, distributed across 96 levels, while
PaLM has an even larger parameter number of 540 billion,
organized across 106 layers. All of these models have distinct
configurations. The configurations of GPT-3 and PaLM
differ in terms of their techniques for generating output.
LLMs have evaluated several datasets withinWikipedia, code
repositories, books, question sets, and socialmedia data. They
have demonstrated their ability to execute diverse activities
successfully. Consequently, LLMs have drawn significant
attention for their effective contribution in different domains,
including education, healthcare, media marketing, and other
customer services. A particular LLMs program has superior
performance in a specific domain compared to others, such
as GPT-3, which has gained recognition for its proficiency in
generating text styles, whereas LaMDA demonstrates supe-
rior performance in providing accurate responses to factual
inquiries. LLMs are an emerging technological innovation
that holds the potential to bring about transformative changes
across various sectors.

A. BACKGROUND OF LARGE LANGUAGE MODELS
In this section, we present the essential aspects associated.
LLM research requires a comprehensive explanation of the
crucial concept. Various vital aspects, such as tokenization,
encoding technique, layer normalization, etc., are encom-
passed in the following background section.

1) TOKENIZATION
The primary emphasis is on tokenization, a crucial prepro-
cessing stage of LLMs that involves parsing text into discrete
parts referred to as tokens [46]. Characters, subwords,
symbols, or words may serve as tokens, contingent upon
the language model’s dimensions and nature [47], [48].
Various tokenization algorithms are utilized in LLMs, such

as WordPiece, UnigramLM, and Byte Pair Encoding (BPE).
This algorithm has distinct technique for tokenizing from the
input and then, applied for the specific tasks [47], [48], [49].

2) ATTENTION MECHANISM
The attention mechanisms used in LLMs is a crucial topic
hence it contributes in the improvement of the architecture
and performance. This mechanism helps to figure out the
representation of input sequences by forming links between
various tokens. There are several attention mechanism
available namely Self-Attention where all the queries and
values come from the same encoder-decoder block. Then,
Full Attention which is the naive understanding version of
self attention, and finally, when the output of encoder block
is used as the query of immediate decoder block, is called as
cross attention mechanism [9], [50].

3) ACTIVATION FUNCTION
The activation functions play a vital role in the curve-fitting
capacities of LLMs architectures [51]. Several activation
functions, such as ReLU, GeLU, and other GLU variations,
are explored to determine their performance in current
research on LLMs [52], [53].

4) NORMALIZATION LAYER
Layer normalization is essential for achieving faster conver-
gence in LLMs model and emphasizes their effects on stabil-
ity during training sessions. It presents different approaches,
such as LayerNorm, DeepNorm, and RMSNorm. These
layer normalization techniques offer distinct advantages and
contribute to the regularization of LLMs applications like
GPT-3, BERT, T5, etc., facilitating effective training [54].

5) TRAINING METHODS AND FRAMEWORKS
LLMs training has different distributed methodologies,
including data parallelism, pipeline parallelism, tensor par-
allelism, model parallelism, and optimizer parallelism [43],
[55]. These techniques contribute to understand the practical
and expandable training. Additionally, different libraries and
frameworks, including Transformers, DeepSpeed, PyTorch,
TensorFlow, MXNet, and MindSpore, are used frequently for
their training and further implementation [55].

6) DATA PREPROCESSING
The approaches used to preprocess data focus on the
significance of quality filtering, data de-duplication and
privacy reduction in preparing training data for LLMs.
The filtering technique helps to reduce low quality and
relevant data. Besides, it reduces the compute complexity
by ignoring the useless pattern of the input. Duplicate
samples are removed using de-duplication technique which
also avoids the overfitting tendency of the model. Finally,
privacy reduction ensures the security and compliance
of data and upholds the preservation of the personal
data.
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FIGURE 5. Background of LLMs.

7) PARAMETER TUNING
The researchers explore the many stages of adaptation for
LLMs, starting from pre-training and progressing to fine-
tuning for subsequent tasks. These approaches serve as a
guide for customizing models to suit specific applications.
Several model adaptation and parameter-efficient tuning
techniques, such as prefix tuning, prompt tuning, and adapter
tuning, provide strategies for achieving effective fine-tuning
while minimizing resource usage [56], [57], [58].

This background part aims to provide a thorough under-
standing of the underlying concepts and approaches that
form the basis of Language Models, which are constantly
developing.

The transformer is employed in most advanced LLMs as
the basic building block because its architecture, scalability,
and pretraining approach enable the model as optimal
framework for constructing robust LLMs. In addition, the
self-attention mechanism of transformers performs effec-
tively for capturing and representing long-range relationships
in language. Consequently, Transformer-based LLMs have
significantly improved the state-of-the-art achievement in
NLP related tasks. In the section V-A1, a comprehensive
overview of transformer architectures, configurations are
provided for building a high-scalable, optimized and cost-
efficient LLMs. Figure 5 depicts the visualization of the
LLMs background.

8) WHAT IS TRANSFORMER?
Transformer architecture is considered as the basic building
block of LLMs. It is intended for neural networks to
efficiently handle sequential data [9]. This architecture does
not use iteration methods. Instead, it employs a focused (i.e.,
attention based) approach to determine global input-output
dependencies. The model can take input of varying lengths
and can change its focus depending on the length of the

sequence. As a result, it has become the go-to architecture
in many fields, often replacing sophisticated recurrent or
convolutional neural networks with much more efficient
structure [59]. In this regard, it is particularly important for
LLMs applications. Figure 6 illustrates the architecture of
the transformer model. Transformer architecture consists of
seven main components. A demonstration of each component
is shown below.

• Inputs and Input Embeddings
The ML models utilize tokens, which are units of
text like words or sub words, as the training data.
However, these models process numbers. Tokenization
begins this translation process by dividing down input
text into meaningful components. A unique number
identification is assigned to each token, connecting
the linguistic information to the numerical vector. This
numerical format is known as ‘‘input embeddings.’’
These input embeddings are numerical representations
of words, which ML models may subsequently process.
These embeddings function similarly to a dictionary,
assisting the model in understanding the meaning of
words by arranging them in a mathematical space where
comparable phrases are situated close together. The
model is trained to generate these embeddings so that
vectors of the same size represent words with similar
meanings. Figure 6A illustrates the input and input
embeddings.

• Positional Encoding
The sequence of words in a sentence frequently
conveys important semantic information. The same
set of words in a different order conveys completely
different meanings. In this regard, understanding the
word order in a sentence is essential in NLP to identify
the correct utterance meaning. In general, in terms of
neural networks, they do not perceive the order of inputs.
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FIGURE 6. Architecture of a Transformer model.

To address the problem, positional encoding is used to
encode the position of each word in the input sequence
as a collection of integers. The transformer model uses
integer, input embedding and positional encoding to help
GPT in understanding sentence word order and provide
grammatically accurate and semantically appropriate
output [60]. The positional encoding part is shown in
Figure 6B.

• Encoder The encoder is a crucial component of the
neural network which is responsible for processing the
input text. Its primary function is to generate a series of
hidden states that represent the input text in ameaningful
way [61]. Then, it uses a series of self-attention layers
that are often referred to metaphorically as ‘‘voodoo
magic,’’ emphasizing their complex and powerful ability
to capture relationships between different elements in
the input text. In the transformer, the encoder is used
in more than one layer. This section is depicted in
Figure 6C comprehensively.

• Outputs (shifted right) During the training process,
the decoder in the transformer model learns to predict
the next word in a sequence by analyzing the preceding
words. This is achieved through a mechanism known as
autoregressive training. The decoder’s ability to predict
the next word is critical for generating coherent and
contextually relevant sequences. Additionally, the GPT
(GPT-3) is also trained on a massive amount of text
data, that helps it to generate sense while writing any
content. Besides, several corpus including the Common
Crawl web corpus, the BooksCorpus dataset, and the
English Wikipedia are also used during the common
issue. Figure 6D highlights the transformer’s outputs
(shifted right) module.

• Output Embeddings
Input embeddings, which contain text are not directly
recognized by the model. Therefore, the output must
be converted to a format known as ‘‘output embed-
ding.’’ Similar to input embeddings, output embeddings
undergo positional encoding, enabling the model to
understand the order of words in a sentence [62].
In machine learning, the loss function evaluates the
difference between a model’s prediction and the objec-
tive value. Loss functions are essential for complex
GPT language models. The loss function modifies a
portion of the model to increase accuracy by reducing
the discrepancy between predictions and targets. The
change improves the overall performance of the model.
The loss function is calculated during training, and
the model parameters are modified. In the inference
process, the output text is created by mapping the
predicted probability of each token in the model to
the corresponding token in the vocabulary. The output
embedding part is illustrated in Figure 6E.

• Decoder
The decoder processes both positionally encoded input
and output embeddings. Positional encoding is crucial
for the model to understand the sequential order of
the tokens in both the input and output sequences.
The positional information helps the decoder effec-
tively capture the structure within the sequences. The
decoder has an attention mechanism that helps to
improve the output’s quality by leveraging contextual
information received from the encoder. The primary
function of the decoder is to create output sequences
based on the encoded input sequences. It generates
a sequence of tokens, often representing words or
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TABLE 5. Hardware specifications for the LLMs model.

sub-words, as its output. The dependency between the
encoder-decoder in a transformer is significant where
the encoder processes the input sequence based on
the representation, the decoder provides the desired
output sequence. In addition, GPT is a decoder-only
transformer [63]. The decoder part of GPT uses a
masked self-attention mechanism which can process
the input sequence without requiring encoder explicitly.
Figure 6F demonstrates the decoder component of a
transformer.

• Linear Layer and Softmax
The linear layer is a fully connected neural network
layer that transforms the output embedding into a higher-
dimensional space. This step is required to convert
the output embedding into the original input space.
This transformation enhances the expressiveness of the
representation, allowing the model to capture more
complex patterns and relationships in the data. Besides,
the softmax function generates a probability distribution
for each output token in the developed vocabulary,
allowing us to generate probabilistic output tokens [64].
Figure 6G shows the process by which the features
are propagated through a linear layer, followed by the
activation of the accurate output probability using the
softmax activation function.

B. HARDWARE SPECIFICATIONS FOR LARGE LANGUAGE
MODELS
Understanding the computing resources and training dura-
tions needed for various language models is crucial. This
estimation helps us in decision-making when choosing a
model for specific tasks. To choose amodel that is appropriate
for a given task, a clear understanding of the training times
and computational resources is mandatory. Table 5 shows

the hardware specifications, number of parameters, training
duration and other configurations of individual LLMs
model.

GPT-3: GPT-3 uses Nvidia A100 GPUs to pre-train on
a large 300 billion token set, generating around 175 billion
parameters [65]. GPT-3 has context learning features which
enables itself to understand the words reasoning, sentence,
and language properly.

BERT: Trained on an unspecified data scale, the BERT
model has a variable number of parameters that depends
on batch size and the corresponding model’s hidden layer
numbers which is around 340 million. Nvidia A100 and
V100 GPUs are used for training, and the length of the
training depends on the scale of the model’s parameters [66].
Contextual learning is incorporated in the model also.

RoBERTa: RoBERTa, an enhanced version of BERT
which has a parameter count of 340 million and conducts pre-
training on a specific amount of data. The training process
completed on 6144 TPU v4 units, running for around a
duration of twoweeks [67]. Themodel also contains a context
learning feature.

T5: T5 uses 1024 TPU v3 units and has a number of
11 billion parameters. T5 has been pre-trained over a number
of tokens of 1 trillion [68]. There is no information available
on GPU training time. It also holds the features of contextual
learning which provides a satisfactory result.

PaLM: PaLM produces a substantial number of parame-
ters, around 540 billion, and it manages the pre-training on
a large dataset with a tokens of 780 billion. The pre-training
process is carried out utilizing by 6144 TPU v4 units [69].
The training period extends for 120 days, and the model also
incorporates contextual learning.

LaMDA: LaMDA uses 1024 TPU v3 units during the
training and the model is pre-trained over 768 billion tokens
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which generates a total of 137 billion parameters [70].
It requires a total of of 57.7 days during training.

GLM-130B: GLM-130B model possesses a total of
130 billion parameters and undergoes pre-training on a huge
amount of dataset with 400 billion tokens. The training was
conducted utilizing 1024 TPU v4 units and the training
session lasts for 60 days [71].

Gopher: Gopher is a language model that has been pre-
trained over 300 billion tokens and required 4096 TPU
v3 for the experiment. It has a total of 280 billion
parameters [72]. The GPU training period is precisely stated
as 920 hours. Furthermore, the model integrates context
learning to demonstrate an effective outcome.

Jurassic-1: Jurassic is a model with an impressive capacity
of 178 billion parameters. It has been pre-trained on amassive
dataset of 300 billion tokens, utilizing the computational
power of 800 GPUs [73]. No information regarding the
duration of GPU training is available.

MT-NLG: MT-NLG has a huge size of 530 billion
parameters. It has been trained on a massive dataset of
270 billion tokens, utilizing 4480 80GB A100 GPUs [74].
No data regarding the duration of GPU training is available.
The model integrates context learning features also.

LLaMA: LLaMA is a language model with an enormous
capacity with a total of 65 billion parameters. It has
undergone pre-training on a large dataset consisting of
1.4 trillion tokens. This training process was carried out
utilizing 2048 high-performance 80GBA100GPUs [75]. The
training period is explicitly set to 21 days.

LLaMA 2: LLaMA 2 is equipped with a total of 70 billion
parameters and has performed pre-training on 2 trillion
tokens, utilizing 2000 80GB A100 GPUs [76]. The training
period is set to 25 days, and the model also contains context-
based learning.

Falcon: Falcon, equipped with 40 billion parameters,
undergoes pre-training on a large dataset of 1.3 trillion
tokens [77]. No details regarding the duration of GPU training
and it also have the context learning features.

Chinchilla: Chinchilla is a language model that has
70 billion parameters and has been pre-trained on 1.4 trillion
tokens [78]. There is no details regarding the duration of GPU
training.

OPT: OPT, equipped with 175 billion parameters, con-
ducts pre-training on 180 billion tokens utilizing 992 A100
GPUs with a capacity of 80GB each [79]. No details
regarding the duration of GPU training.

Galactica: Galactica possesses 120 billion parameters and
has undergone pre-training using 106 billion tokens [80].
Details regarding the duration of GPU training are not given.

BLOOM: BLOOM has a remarkable capacity of 176 bil-
lion parameters and has undergone pre-training on 366 billion
tokens utilizing 384 80GB A100 GPUs [55]. The training
period lasts for 105 days, and the model incorporates
contextual learning.

PanGU-a: PanGU-a is a language model that has been pre-
trained on a massive amount of data, specifically 1.1 billion,

employing 2048 Ascend 910 processing units [81]. It has
an impressive parameter count of 207 billion. No details
regarding the duration of GPU training.

Our comprehensive description helps to understand the
hardware specifications and the computational complexity of
each model. The researchers also find an opportunity to know
about the implementation details of these models and can
improve the performance of their studies.

C. DEEP NEURAL NETWORK ARCHITECTURES OF LLMS
LLMs usually employe deep neural networks to understand
and generate new content more accurately. In this section,
we include a summary of various DNN architectures used in
different LLMs based on literature studies and different real
world applications.

1) COMPARISON BETWEEN STATE-OF-THE-ART STUDIES
An LLM is a dynamic model capable of performing various
tasks, such as creating coherent text and summarizing text.
A defining feature of a language model is its ability to
assume the subsequent words from the preceding text. The
deep neural network (DNN) framework is utilized in LLMs
to enhance its performance which is similar to human-like
understanding [3], [82]. LLMs use different DNN models in
their architecture to enhance task performance.

The transformer architecture serves as the basic building
block of all language models. GPT-1, the initial version of
GPT employs the Transformer decoder architecture [66].
In GPT-1 the decoder structure operates independently from
the encoder, therefore eliminating the multi-head attention
and layer norm components that are linked to the encoder.
The pre-trainedGPTmodel consists of 12 transformer blocks,
each with a d(model) value of 768 and a total of 110 million
parameters. GPT-2, the second version of GPT, employs
the transformer decoder architecture like GPT-1 [66]. GPT-
2 employs 50,257 BPE tokens and ensures that the masked
multi-head component is preceded by the Layer Norm.
In GPT-2, an additional layer norm is included subsequent
to the last block. There are four pre-trained GPT-2 models
available, each with a unique quantity of decoder blocks.
The largest model, which has a d(model) value of 1600 and
48 blocks, comprises a total of 1.5 billion model parameters.
BERT employs the transformer encoder structure, in contrast
to the Transformer decoder structure utilized by GPT-1 and
GPT-2 [83]. Following the final encoder block is composed of
two fully connected output layers separated by a Layer Norm
component. The calculation of the likelihood of each token’s
output depends on both the previous and next tokens, making
BERT a bidirectional language model. The smaller variant of
BERT consists of 12 encoder blocks with a model dimension
of 768 and a parameter count that is approximately equal to
that of GPT. In contrast, the larger variant has 24 encoder
blocks with a model dimension of 1024 and 336 million
parameters [66].
In contrast to encoder-only models such as BERT and

decoder-only models like GPT-1 and GPT-2, T5 pre-train
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with generative span corruption and an encoder-decoder
architecture [84]. T5 models have displayed state-of-the-art
performance on a wide variety of NLP tasks, like GLUE
and SuperGLUE, and are able to expand up to hundreds of
billions of parameters. LLaMA normalizes the input for every
transformer sub-layer rather than the output [75]. To increase
performance, it employs the RMSNorm normalizing function
and the SwiGLU activation function rather than the ReLU.
Single models are utilized by LaMDA to execute multiple
duties. The model architecture is a decoder-only transformer
language model. The Transformer is comprised of 64 layers,
a d(model) value of 8192, gated-GELU as the activation
function, and relative attention the same as T5 LLMs [70].
AlphaCode employs an encoder-decoder transformer archi-
tecture in which input tokens are passed to the encoder, and
one token is extracted from the decoder until an end-of-code
token is generated [85]. When contrasting encoder-decoder
architectures with decoder-only architectures, the encoder-
decoder architecture provides the advantage of enabling
bidirectional description representation and provides addi-
tional flexibility by separating the encoder structure from
the decoder. It employs an asymmetric architecture with
1536 encoder tokens but only 768 decoder tokens. It makes
use of multi-query attention to lower sampling costs. Cache
update costs andmemory utilization are greatly reducedwhen
all query heads are used but only shared for key and value
heads in each attention block. It employed a SentencePiece
tokenizer for tokenization, trained on a combination of
CodeContests and GitHub data, with a vocabulary size of
8,000 tokens. Through the usage of DNNs, all of these LLMs
have demonstrated remarkable performance on various NLP
tasks like as language understanding and generation.

2) APPLICATIONS OF LLMS USING VARIOUS DNN MODELS
Pre-training Transformer models have led to the proposal
of LLMs with impressive capacities in addressing a variety
of NLP tasks, including question-answering, document
summarization, and language translation [3]. Due to their
remarkable abilities in basic tasks of language processing
and creation, they have completely transformed the fields
of NLP and AI. Various DNN models have been employed
in different industries, such as technology, healthcare, and
retail to increase performance. DNNs have made substantial
progress in improving the capabilities of LLMs [87]. DNN
models, such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), generative adversarial
networks (GANs), capsule networks (CapsNets), transform-
ers, and BERT, have been extensively employed in diverse
applications of LLMs [94]. Numerous studies [86], [87],
[88], [89], [90], [91], [92], [93] suggest that DNN models
are utilized in several types of LLMs-based applications to
increase task efficiency.

Koizumi et al., [86] introduce an innovative method to
address the issue of insufficient training data in audio
captioning that utilizes a pre-trained LLMs that uses a

decoder for generating captions. The findings of the study
demonstrate the effectiveness of the proposedmethodology in
utilizing LLMs for audio captioning. The performance of this
proposed approach outperforms the traditional approaches
which are trained from the scratch.

In a recent study, Fan et al., [87] discuss the significance
of recommender systems in web applications and the
shortcomings of current DNN approaches in predicting user
preferences. They discuss the capacity of LLMs to tackle the
challenges in a recommender systems.

Bai et al. [88] developed an end-to-end non-autoregressive
speech recognition model namely LASO (Listen Attentively
and Spell Once) to improve the speed of inference by simul-
taneously predicting all tokens. The proposed model utilizes
attention methods to combine decoded speech information
into hidden representations for every token. Moreover, they
suggest using cross-modal transfer learning to increase the
performance of the speech-modal LASO model by utilizing
a text-modal language model to align the semantic meaning
of tokens.

Sun et al., [89] provide a new methodology to predict the
effect of news releases and to minimize potential negative
consequences by automatically forecasting responses in news
media. By utilizing an LLM which utilizes a deep neural
network, their method creates a belief-centered graph on
an existing social network to analyze social dynamics.
The proposed framework shows a satisfactory efficiency in
predicting responses.

Drossos et al., [90] present a technique that enables
an RNN to acquire LLMs for sound event detection. The
proposed approach adjusts the input of the RNN based on the
activity of classes in the preceding time step. This proposed
approach is evaluated on three distinct datasets: the TUT-SED
Synthetic 2016, TUT Sound Events 2016, and TUT Sound
Events 2017 datasets.

Chiu et al. [91] present an efficient method called TPBERT
(based on BERT) for improving the reranking of N-best
hypotheses in automatic recognition of speech. This approach
uses task-specific topic information to increase the BERT
model’s ability to create accurate embeddings of the N-best
hypotheses.

Elhafsi et al., [92] propose a monitoring methodology that
utilizes LLMs to tackle the issue of semantic irregularities in
robotic systems. The efficiency of LLMs-based monitoring
in recognizing semantic abnormalities and aligning with
human thinking is demonstrated through tests on autonomous
driving.

Shen et al., [93] present a self-regulating edge AI
system that utilizes a deep neural network that can plan
automatically, and adjust itself to fulfill the needs of users.
The proposed system uses a hierarchical design known as
cloud-edge-client, where the primary language model is
located in the cloud. By leveraging the robust capabilities
of GPT in language comprehension, and code creation, they
introduce a methodology that effectively handles edge AI
models to meet users’ requirements while automatically
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TABLE 6. Comparison of applications of LLMs using various DNN models.

generating new codes for training new models through edge
federated learning.

Table 6 gives a brief overview of these DNN applications-
oriented studies where they applied LLMs. These studies
suggest that employing deep neural networks in language
models increases the performance of LLMs-based applica-
tions in several industries..

D. ARCHITECTURAL OVERVIEW OF LARGE LANGUAGE
MODELS
In this subsection, we present a detailed overview on the
architecture of LLMs. Table 7 presents a description and
architecture of LLMs such as GPT-1, BERT, RoBERta, and
T5. The table assists researchers in selecting the optimal
model for a NLP task. GPT-1, BERT base, and BERT
large contain 12, 12, and 24 layers, respectively, in LLMs.
RoBERta is an enhanced variant of BERT, while T5 is
a decoder and encoder transformer. Diagram illustrating
BERT’s input token processing, context-aware embedding,
and masked language modeling tasks, where the masked
words are intended to predict the model. T5 demonstrates
the sequential layers of the transformer model, including the
feedforward neural network, and self-attention. T5 explains
how information flows and structures text. GPT-1 passes data
input embedding and positional encoding through multiple
transformer layers.

E. COMPARISON BETWEEN CONFIGURATIONS OF LLMS
Table 8 provides an extensive overview of various LLMs,
highlighting their configuration details and optimization
settings. These LLMs have played a crucial role in advancing
natural language understanding and generation tasks, making
them a key research topic in NLP. This analysis compares
and contrasts these LLMs based on critical parameters,
including model size, learning rate, category, activation
function, batch size, bias, number of layers, optimizer,
number of attention heads, hidden state size, dropout rate,

and maximum training context length. GPT-4 considered as
one of high performing LLMs with a staggering 1.8 trillion
parameters. It is comparatively faster than the prior GPT
versions and provide many advanced features. Besides, it has
fast response system, generate more accurate output and it
has reduced the biases presented in the model substantially.
GPT-1, despite being lesser with 125 million parameters,
demonstrates the significant development of LLMs over
the years. An increased number of parameters in LLMs
enhances the model’s ability to comprehend intricate patterns
and produce text that is more contextually appropriate and
reminiscent of human language. GPT3’s selection of a
modest learning rate of 6 is notable, which highlights the
significance of cautious hyperparameter selection. Models
are categorized as Causal decoder (CD), Autoregressive
(AR), Encoder-decoder (ED), and Prefix decoder (PD) to
illustrate architectural diversity. Activation functions vary,
influencing the models’ expressive strength from GeLU in
GPT-3 to SwiGLU in LLaMA and LLaMA-2. All versions
of GPT employ the GeLU as its activation function as it
mitigates the vanishing gradient problem and facilitates the
generation of smoother gradients throughout the training
process. The utilization of SwiGLU as the activation function
is observed in models such as PaLM and LLaMA versions
1 and 2, as it has gating mechanisms that enhance its ability
to capture intricate correlations within the data. Models like
BERT, OPT, and T5 use ReLU as the activation function. The
Formula of these activation functions are given below [6],
[59]:

ReLU (x) = max(0, x) = f (x) =

{
x, if x ≥ 0
0, if x < 0

(1)

GeLU (x) = 0.5x(tanh[
√
2/π (x + 0.44715x3)]) (2)

SwiGLU (x) = x.Sigmoid(βx).xV (3)

BARD is recognized for its informative response. It fea-
tures 24 attention heads and facilitates its contextually related
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TABLE 7. Architectural overview of different LLMs.

response. BERT size is identical to BARD of 340M. The
key advantage of BERT is understanding the context of
words. It has effective training settings with a proper learning

rate, batch size, and a dropout value of 0.1, leverages the
convergence of the model, and contributes to the NLP-
based tasks precisely. PanGU BLOOM, Galactica, and
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TABLE 8. Various LLMs with configuration details and optimization settings (Here, LR = learning rate, CG = Category, AF = the activation function, bs =

batch size, NL = the number of layers, NAH = the number of attention heads, SHS = the size of the hidden states, MCLDT = the maximum context length
during training, CD = causal decoder, ED = encoder-decoder, PD = prefix decoder, and AR = autoregressive).

[]

Chinchilla are also LLMs but possess distinct configurations
and challenges. Usually, PanGU is highly effective for the
Chinese language, whereas Galactica performs well with
repeated data. Chinchilla is a scaling strategy constrained by
data limitations and creates efficient resource allocation for
training and generating output. Falcon and T5 are compact
compared to other LLMs, and both are transformer-based
models. However, they have some unique differences, such
as Falcon is a decoder-based model whereas T5 integrated
both encoder-decoders. Additionally, Falcon utilizes multi-
head query attention to increase the scalability of the model.
LLaMA-2 is the updated version of LLaMA. It is an enhanced
fine-tuned version that exploits the hardware utilization
for efficient training sessions. MT-NLG and PaLM have
substantial parameter sizes of 530B and 540B, respectively.
Both of them also use the casual decoder technique. However,
they have some architectural differences, such as PaLM
uses a SwiGLU activation function and adafactor optimizer.
Moreover, it uses a higher learning rate and batch size of
1 × 102 and 1000K. On the contrary, MT-NLG uses a lower
learning rate and batch size of 5× 105 and 64K, respectively.
GLM-130B and LaMDA are also effective LLMs, widely
used for NLP-based tasks, including question answering, text
generation, etc. Both of them use the Gated GLU (GeGLU)
activation function, a GLU variant. The following equation is
used to express the GeGLU operation [99].

GEGLU(x,W ,V , b, c) = GELU(xW + b) ⊗ (xV + c) (4)

However, there are noticeable differences between GLM-
130B and LaMDA in terms of their decoder mechanisms.
GLM-130B employs a prefix decoder, whereas LaMDA
adopts a casual decoder technique. In addition, the GLM-
130B model employs a larger batch size compared to the
LaMDA model. In addition, the presence or absence of

biased terms in models, such as Falcon, T5, LLaMA 1,2,
and Galactica’s ‘‘No,’’ highlights the complexity of the
choices made. From 12 for GPT-1 to 118 for PaLM, the
number of layers affects a model’s ability to capture intricate
patterns. Optimizers are also diverse, with Adam, AdamW,
andAdaFactor playing crucial roles. All GPT variants employ
Adam as the optimizer, although models such as Galactica,
OPT, and Falcon utilize AdamW as their optimizer. Both
T5 and PaLM models utilize the Adafactor optimizer in
their respective architectures. These variations highlight the
significance of selecting models and configurations that are
tailored to particular tasks, with performance, computational
resources, and task requirements playing a central role.

The number of attention heads also exhibits variation
across different models. GPT-1 is equipped with a total
of 12 attention heads, whilst GPT-4 boasts a much larger
number of attention heads, ranging from 120 to 150 within
its model. The additional number of attention heads in the
LLMs enables the model to concurrently attend to several
segments of the input sequence, hence expediting the model’s
training process. In order to enhance the efficacy of the
LLMs, researchers employ diverse dimensions for the hidden
states within their model. The larger dimensions of the hidden
state enable the capturing of complex patterns within the
text. Both GPT 4 and MT-NLG employ hidden state sizes
of approximately 20,000, which is significantly greater in
comparison to the hidden state sizes of other LLMs included
in the table. Certain LLMs models incorporate a dropout
value of 0.1 to prevent overfitting issues, whereas others
do not employ any dropout value. The maximum context
length denotes the number of tokens that can be remembered
by the model during training. Increasing the size of the
context window boosts the model’s ability to grasp the distant
relationships between the texts. Consequently, the model is
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TABLE 9. Dataset for large language models.

able to generate text outputs with a great coherence. Table 8
reports that GPT-4 has the context length of 32768 which is
the maximum among all the LLMs. This substantial length
number indicates the capability of GPT-4 to remember the
more extended token sequence during training. LLaMA-2
obtained the second-highest context length of 4096. Most
of the models have a context length of 2048, meaning
they can handle a maximum of 2048 tokens simultaneously
during the text generation. A few compacted models,
including BARD, BERT, and T5, possess a maximum context
length of 512. This table presents a qualitative architectural
comparison among the most popular LLMs. It also provides
comprehensive knowledge about the configurations, strength
of these models. These variations highlight the significance
of selecting models for the particular tasks considering the
performance, computational resources.

F. COMPARISON BETWEEN DATASETS OF LLMS
Different LLMs utilized different datasets for the training
phase, distinguishing the models from one another. A concise
overview of the datasets is provided in this section. Moreover,
it explicitly exhibits the diverse range of datasets used by
the model since understanding of these datasets facilitates
the development and training of the model and boost
the performance. The datasets used to train various large
language models (LLMs) and their compatibility with each
model are detailed in Table 9.

Table 9 demonstrates that datasets have been divided into
multiple categories: webpages, conversation data, literature,
news, scientific data, and codes. This classification enables
us to comprehend the variety of data sources that contribute
to LLMs training. C4, OpenWebText, and Wikipedia are
examples of datasets that belong to the ‘‘Webpages’’ category.
At the same time, BookCorpus, Gutenberg, CC-Stories-R,
CC-NEWES, and REALNEWS are examples of datasets
that belong to the ‘‘Books and News’’ category. These

categories reflect the richness and diversity of text data used
to train LLMs, including web content, novels, news articles,
scientific literature, and codes.

From the ✓, we observe that LLaMA has been trained
on a wide range of data sources, with significant exposure
to webpages (87%), conversation data (5%), books and
news (2%), scientific data (3%), and codes (5%). Therefore,
LLaMA becomes a versatile model suitable for a wide array
of NLP tasks that involve these mentioned data sources.
In contrast, GPT-3 and AlphaCode have limited data access
of data sources to train their models. GPT-1 and GPT-2
focus on webpages (70%) and books & news (30%) data to
train the model. GPT-3 is proficient with web pages (84%),
literature, and news (16%) but requires additional instruction
with conversation data, scientific data, and codes. Diverse
range of datasets enables the GPT models to generate more
contextual information across various domains. Specifically,
the Webpages, books, and news datasets help to employ
formal and structured language. Besides, GPT models
achieve the capability of responding in an informative and
accurate way.

AlphaCode, as its name suggests, is solely focused on
codes (100%) and does not utilize any other data sources.
This feature uniquely distinguish AlphaCode from other
models and emphasize the significance of this model for
code-based tasks. Bard, Bert, and Pangu models exhibit
identical traits, with each of them concentrating on the
extensive textual data obtained from webpage contents and
books for pretraining the models. Bloom and OPT primarily
emphasize on evaluating data from books and websites, such
as Wikipedia or other online sources. On the other hand,
GLM-130 not only analyzes books and web data but also
incorporates computer code data to provide further techno-
logical benefits. LaMDA, Galactica and CodeGen models
use scientific data source for training which advance these
models to adapt the scientific knowledge and terminology.
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Hence, these model can lead to a more accurate responses
in scientific domains. AlphaCode and GLM-130 are the
models of choice for code-related tasks, whereas LLaMA
and BERT excel in diverse text data applications. Most of
the LLMs such as T5, GPT models, Gopher, GLam, PaLM,
and BLOOM frequently utilize websource data which helps
them to automate various practical tasks such as content
creation, data analysis and virtual chatbot for answering the
question. On the contrary, some models such as Falcon and
different version of GPT models utilize books and news
data facilitates in educational application such as document
summarization, and article writings. The models trained on
scientific data have several use cases in research domain.
In addition, Table 9 provides contextual information of the
datasets to maintain the transparency of the comparison
among models and provide an effective guide to future model
implementation. The ‘‘Size’’ and ‘‘Source’’ columns of the
Table listed the additional information. The size of datasets
ranges from 5GB (BookCorpus) to a huge 800GB (several
datasets), indicating the sheer magnitude of data required
to train these LLMs. The source information reveals when
and where the data were collected, which is essential for
understanding the temporal relevance of the training data and
potential biases. Table 9 provides a multitude of information
regarding the datasets used to train LLMs and how each
model leverages these datasets. This information is invaluable
for NLP researchers, developers, and practitioners, as it
enables them to make informed decisions about which LLMs
to use for specific tasks.

G. PERFORMANCE ANALYSIS OF LLMS
LLMs are models that perform the majority of NLP tasks
and numerous models such as GPT-1 through GPT-4,
Bing, ChatpGPT, and BERT have developed in order to
contribute jointly to the industry and academia. Since in
the literature, we find a scarcity of adequate data pertaining
to LLMs, we present performance outcomes for diverse
tasks to publicly accessible LLMs in Table 10. All GPT
series, including GPT-1, GPT-2, GPT-3, GPT-3.5, and GPT-
4, are evaluated using a variety of metrics, including the
Stanford question answering dataset (SQuAD), language
model benchmark (LAMBADA), and general language
understanding evaluation (GLUE), as shown in Table 10.
GPT-1 obtains a score of 68.4 on the GLUE, while GPT-
2, GPT-3, GPT-3.5, and GPT-4 attain scores of 84.6, 93.2,
93.5, and 94.4, respectively. GLUE results indicate that
GPT-4 outperforms prior versions of GPT. The GPT-4, i.e.,
in SQuAD and LAMBDA have scores of 93.6 and 82.4,
respectively. As shown in the table, GPT-4 outperforms its
predecessors in both LAMBDA and SQuAD. As GPT-4
outperforms its predecessors in all three benchmark metrics
and exhibits robust performance, it can be concluded that
GPT-4 is significantly more effective than its predecessors in
tasks involving language understanding and language model-
ing. The VietNamese High School Graduation Examination
(VNHSGE) English dataset was utilized to analyze various

LLMs, including GPT-3.5, BingChat, and BARD. Based
on the accuracy presented in Table 10, it is evident that
BingChat LLM outperforms the other two models, achieving
an accuracy of 92.4%. LLMs such as ChatGPT and Bingwere
evaluated using the average intraclass correlation coefficient
(ICC) values. The ICC value for Bing was 0.975, whereas
ChatGPT has an ICC value of 0.858. The higher mean ICC
value indicates that Bing exhibited robust performance and
consistency in major NLP tasks. Table 10 depicts that, all
of the LLMs mentioned in the table have been analyzed
and tested on multiple performance metrics and datasets
to validate the robustness and reliability of these language
models.

VI. RESOURCES OF LARGE LANGUAGE MODELS
LLMs have a wide range of potential applications and
resources available for their development, deployment, and
utilization. Figure 7 presents an LLM taxonomy that divided
into two main branches: i) pre-trained model-based and ii)
API-based. This taxonomy allows us to explore these two
distinct aspects of LLMs.

A. PRETRAINED MODELS
Pretrained language models play a pivotal role in NLP
tasks due to their ability to encapsulate broad language
understanding and generation skills from diverse text sources.
They offer a substantial advantage by minimizing the
computational resources and data required for fine-tuning
specific tasks. There are some of the most common
pre-trained LLMs models, which have been depicted in
Table 11.

1) GENERATIVE PRETRAINED TRANSFORMER (GPT)
GPT [65] is an influential breakthrough in AI, particularly
in NLP tasks. Developed by OpenAI, GPT leverages the
transformer architecture and extensive pre-training on vast
internet text data to achieve a deep understanding of human
language. This generative model excels at tasks like text gen-
eration, translation, question answering, and more, making it
a versatile tool across various NLP domains. GPT’s capacity
to capture intricate language patterns and context, coupled
with its iterative improvements, has profoundly impacted
in academia and industry, revolutionizing the landscape of
language understanding and generation.

2) BERT
BERT [10], short for ‘‘Bidirectional Encoder Representations
from Transformers,’’ is a language model with a distinctive
approach. Unlike previous models, BERT is designed to pre-
train deep bidirectional representations from unlabeled text
by considering both left and right context in all layers. This
pre-trained BERT model can be fine-tuned with minimal
adjustments to create cutting-edge models for various tasks
like question answering and language inference, eliminating
the need for extensive task-specific modifications. BERT is
both conceptually straightforward and remarkably effective,
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TABLE 10. Accuracy of various LLMs on different datasets.

FIGURE 7. Taxonomy of LLMs.

achieving state-of-the-art results on different NLP tasks.
Notable accomplishments include raising the GLUE score to
80.5% (an impressive 7.7% absolute improvement), boosting
MultiNLI accuracy to 86.7% (a 4.6% absolute improvement),

and significantly improving SQuAD v1.1 question answering
Test F1 to 93.2 (a 1.5 point absolute improvement) and
SQuAD v2.0 Test F1 to 83.1 (a remarkable 5.1 point absolute
improvement).
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TABLE 11. Description of LLMs.

In our analysis, we have considered variants of BERT that
are pre-trained on extensive text corpora and possess the
characteristics of LLMs, enabling them to understand and
generate natural language comprehensively. This deliberate
choice ensures that the models we have included in our
study harness the full spectrum of language understanding
and generation capabilities, thereby aligning with the core
objective of our research in exploring the impact and
advancements of LLMs in the field of NLP. Non-LLMs
versions of BERT or those with significantly reduced
model sizes were excluded from our analysis to maintain
consistency and relevance in our investigation.

3) ROBERTA
RoBERTA is another LLM which replicates the BERT
pre-training approach outlined by Devlin et al. [67].
We meticulously assess the influence of various critical
hyperparameters and training data sizes. It’s worth noting
that BERT was initially trained with room for improvement,
yet it can now perform on par with or even surpass the
performance of subsequent models that have been published.
As a result, RoBERTa achieves top-tier results in GLUE,
RACE, and SQuAD evaluations. These outcomes underscore

the significance of design decisions that were previously
overlooked and prompt inquiries into the origins of recently
reported advancements.

4) XLNET
XLNet [107] represents a versatile autoregressive pretraining
approach that achieves bidirectional context learning by
optimizing expected likelihood across all possible combi-
nations. XLNet addresses the constraints of BERT through
its autoregressive design and incorporates insights from
Transformer-XL, a leading autoregressive model. In practical
experiments with consistent conditions, XLNet consistently
surpasses BERT on 20 diverse tasks, frequently by a sub-
stantial margin. These tasks encompass question answering,
natural language inference, sentiment analysis, and document
ranking, among others.

5) SPEECH-XLNET
Speech-XLNet [108] is a method for training unsupervised
acoustic models to learn speech representations using a Self-
Attention Network (SAN) and subsequently fine-tuning it
within the hybrid SAN/HMM framework. Speech-XLNet
acts as a robust regularizer, encouraging the SAN to
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make inferences by prioritizing global structures through
its attention mechanisms. Moreover, Speech-XLNet enables
the model to explore bidirectional contexts, enhancing the
effectiveness of speech representation learning. Experimental
results on TIMIT and WSJ datasets demonstrate that
Speech-XLNet significantly enhances the performance of
the SAN/HMM system in terms of both convergence speed
and recognition accuracy compared to systems trained from
randomly initialized weights. The model best achieves an
impressive relative improvement of 11.9% and 8.3% on
the TIMIT and WSJ tasks, respectively. Notably, the top-
performing system achieves a phone error rate (PER) of
13.3% on the TIMIT test set, which, to the best of our
knowledge, is the lowest PER achieved by a single system.

6) DIALOGXL
DialogXL [109] introduces enhancements to tackle longer
historical context and multiparty structures in dialogues.
Initially, alterations are made to how XLNet manages
recurrence, transitioning from segment-level to utterance-
level, thereby improving its effectiveness in modeling
conversational data. Secondly, the integration of dialog-
aware self-attention, as opposed to the standard self-
attention in XLNet, enables capturing crucial dependencies
within and between speakers. While training the DialogXL,
a comprehensive set of experiments is conducted on four
ERC benchmarks, comparing DialogXL with mainstream
models. The experimental results consistently demonstrate
that DialogXL outperforms the baseline models across all
datasets.

7) T5
T5 (Text-to-Text Transfer Transformer) [84] is a ground-
breaking LLM developed by Google Research, revolution-
izing NLP tasks. T5’s innovation lies in framing all NLP
tasks as text-to-text tasks, simplifying the NLP pipeline
and unifying various tasks under a single framework. Built
upon the Transformer architecture, T5 utilizes multi-head
self-attention to capture intricate language relationships. Its
extensive pre-training on vast text data, followed by fine-
tuning on specific tasks, empowers T5 to excel in text
classification, translation, summarization, question answer-
ing, and more. With consistently state-of-the-art results
across NLP benchmarks, T5 has reshaped the field, offering
researchers and developers a versatile tool for comprehensive
language understanding and generation tasks.

8) BIOGPT
BioGPT [110] is a large-scale language model that was
constructed by the Allen Institute for AI (AI2) with the
explicit purpose of undertaking training on biomedical text.
It was trained on an extensive corpus of biomedical literature,
including PubMed abstracts and full-text articles, and is
based on the GPT architecture. It has been demonstrated
that BioGPT outperforms alternative biomedical language
models across a range of tasks, such as query answering,

relation extraction, and named entity recognition. The pre-
trained weights of the model are accessible to the public,
enabling researchers to optimize it using their biomedical
text data. BioGPT has the capacity to substantially drive
biomedical research forward by facilitating the analysis of
vast quantities of biomedical text data in a more precise and
efficient manner [111], [112].
In summary, pre-trained LLMs are foundational in NLP,

providing a starting point for various applications without
the need for extensive training from scratch. They are widely
used and have access to advanced language understanding
and generation capabilities. However, responsible use and
ethical considerations are essential when working with these
models to ensure fair and unbiased outcomes.

B. API OF LLMS
In this section, we discuss the APIs of LLMs, which have
been described in Table 12.
Open AI API: The API provided by OpenAI offers access

to GPT models that may be utilized for a wide range of
text-related applications [119]. The API facilitates many
tasks such as coding, question and answer, analysis, and
other related activities. The available models encompass a
spectrum of options, spanning from gpt-4 to gpt-3.5-turbo,
as well as many legacy variants. The Chat Completions API
facilitates interactive dialogues by incorporating distinct roles
such as user, and assistance. The programming language
provides support for function calling, which allows for
the retrieval of structured data. The OpenAI API provides
developers with the capability to leverage advancedmodeling
of languages for a diverse range of applications.
Hugging Face: Hugging Face provides a complimentary

Inference API that facilitates the examination and assessment
of more than 150,000 publicly available ML models [120].
It features predictive capabilities, and integration with more
than 20 open-source libraries, and facilitates fast change
between models. The API facilitates a range of operations,
including classification, image segmentation, text analysis,
speech recognition, and other related functionalities.
Google Cloud API: The Cloud-based NLP API developed

byGoogle provides support for a range of approaches, such as
sentiment analysis, text analysis, entity recognition, and other
text annotations [115]. The functionalities can be accessed by
developers through REST API calls utilizing either the client
libraries or their own custom libraries. Additionally, the API
offers moderation functionalities for the purpose of detecting
potentially sensitive content. Several API exists, and each
possesses distinct features and functions.
Microsoft Azure Language APIs:TheseAPIs support many

activities, including sentiment analysis, text summarization,
and other related tasks [116]. Developers use RESTful
endpoints to include Azure LLMs APIs. Microsoft provides
useful SDKs and code examples in other programming
languages, including Python, Java, etc. to facilitate the
utilization of these APIs.
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TABLE 12. Comparison of LLMs APIs.

IBM Watson Natural Language: The IBM Watson API
is a robust tool for investigating and extracting valuable
information from textual data. This API offers developers a
variety of functionalities, encompassing sentiment analysis,
emotion analysis, and additional features [117]. Due to its
provision of multilingual support and a user-friendly API,
this technology enables developers to effectively include
sophisticated text analytics into their programs.
Amazon Comprehend API: The Amazon Comprehend

API is a powerful NLP service provided by Amazon Web
Services [118]. This tool evaluates textual data, allowing the
researchers to acquire significant knowledge, such as entity
recognition, language detection, sentiment analysis, and topic
modeling. Due to its ability to accommodate many languages
and simple integration, the tool displays adaptability in
addressing a range of use cases, including customer feedback
analysis and others. The utilization of this API can prove to
be a significant resource for enterprises’ marketing to extract
practical insights from unstructured textual data.

Facebook AI’s Fairseq: The Fairseq framework developed
by Facebook AI is a comprehensive tool for performing
sequence-to-sequence modeling, specifically designed for
handling LLMs [121]. Fairseq is a well-suited API for
many applications related to analyzing and generating natural
language. The platform provides support for advanced
models such as BERT and RoBERTa, allowing researchers
to perform fine-tuning on these models according to specific
needs.

In this study, we have provided a comprehensive overview
of seven popular APIs in Table 12 that leverage the capabili-
ties of LLMs for the purpose of NLP-based functionalities.
However, the taxonomy revealed the presence of several
other APIs that are associated with text analysis but do
not utilize LLMs. These APIs are TextBlob, TextRazor,
Sapling AI, MonkeyLearn, and Aylien, etc., which utilize
traditional machine learning, statistical methods, and rule-
based natural NLP techniques instead of relying on extensive
pre-trained LLMs. Since, the primary focus of this study has
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been on describing the tools that particularly utilize LLMs
for the purpose of advanced text analysis, generation, and
comprehension, we have refrained from discussing these
APIs in depth.

VII. DOMAIN SPECIFIC APPLICATION
Since there are several pre-trained models in LLMs, all
of them are utilized by training or fine-tuned to perform
well-defined tasks maintained by their requirements in
different fields. Numerous research studies have consistently
employed LLMs from the diverse domains such as healthcare,
finance, education, forecasting, and natural language process-
ing. The extensive experiments of different LLMs contribute
to revolutionizing the use of AI across these domains. This
section demonstrates the potential contribution of LLMs
application in different domains. Table 13 illustrates the
major contribution of LLMs in the specific domain, as well
as outline their prospective limitations and future directions.
Bio-Medical and Healthcare: As previously stated, GPT

has several versions, ranging from GPT1 to GPT4. GPT3 is
extremely useful in the healthcare industry since it can be
trained to support customer service with no effort. GPT3 gets
all required information through a conversation rather than
an intake form, and many systems might be built to assist
numerous patients at the same time [126]. Besides, clinics
and hospitals are places to cure illness, but it is also true
that various contagious viruses are brought into these places.
Patients and healthcare providers can be better protected from
infection by replacing a human receptionist with a robot
which becomes increasingly important during the COVID-
19 epidemic [140]. Since clinics and hospitals often see a
high volume of patients on a daily basis, an optimum and
lightweight system may submit several queries for single
patients to create acceptable output.

Consequently, GPT models can also aid in cost reduction
in the medical industry. Furthermore, biomedical and clinical
text mining has always been an essential and major challenge
due to the complex nature of domain corpora and the
continually expanding number of documents. As a result,
BERT models can improve the performance of biomedical
and clinical text mining models [141]. Salam et al., [128]
and Korngiebel et al., [126] demonstrate the substantial
advantages of ChatGPT in the domains of healthcare, clinical
research, and practice, although simultaneously underscoring
the imperative necessity for proactive inspection and ethical
transparency. Several studies [125], [129], [131], [132]
explore the utilities and constraints of LLMs such as
ChatGPT in the context of clinical practice, research, and
public health. In their study, Kung et al., [130] conducted an
evaluation of ChatGPT’s performance on the United States
Medical Licensing Examination (USMLE), and the outcomes
indicate the potentiality of LLMs to support clinical decision-
making and medical education. Sorin et al., [124] evaluated
ChatGPT-3.5 as a decision support for breast tumor boards
where they compared the tumor board’s explanations, and
summaries with ChatGPT-3.5 and showed that ChatGPT-3.5

and the tumor board had a high degree of decision alignment.
Huang et al., [123] investigate the prospective applications
of LLMs with a specific emphasis on ChatGPT, in the field
of dentistry, mainly focusing on automated dental diagnosis
and highlighting the efficacy of LLMs in dental diagnosis.
Furthermore, the XLNet contributes to better clinical note
representation by adding temporal information and a realistic
prediction setup [142]. Furthermore, various LLMs models
also assist the medical industry by making the procedure
easier than previously.
Education: Educators have struggled for a long time

with an unequal educational resources to student demand
across disciplines. One of the significant challenges is a
shortage of accessible educational resources for pupils to
study outside of school. Although online instructional videos
are helping to alleviate the problem, society still hopes that
AI will deliver individualized teaching services to satisfy
the learning demands of each student and increase teaching
efficiency. In the light of above discussion, LLMs have the
potential to revolutionize many facets of learning, teaching,
and educational research in the education sector [140].
The GPT model aids the students in converting the math
word problems into representative equations [143]. Kasenci
et al., [19] highlighted substantial impact of LLMs in
education by facilitating personalized learning, automating
grading process, and accessibility of educational resources.
Hadi et al., [137] presents a thorough analysis of LLMs, cov-
ering their historical development, wide-ranging applications
in domains such as medicine, engineering, education, and
their potential impact on the trajectory of AI. Lo et al.,
[138] and Dwivedi et. al. [139] investigate the prospective
uses of ChatGpt within the realm of education and identify
the primary obstacles that have arisen during its initial
deployment. Besides, in terms of writing authentic texts in
distinct formats, including essays, summaries, and articles,
these models help to accomplish this without any error.
In contrast, the manual process may have human errors
in the documentation. In this case, the GPT model helps
to address this problem. In addition, the XLNet helps to
understand the texts and documents which can be utilized
in the academic sector [38]. Furthermore, other models may
impact the education system by making it more engaging,
accessible, and productive for both students and teachers.
Social Media: The LLMs have leveraged several aspects

of the social media industry regarding content production,
moderation, sentiment analysis, etc. There are some tasks
in the social media can be generated such as writing
content, classifying text, and even full blogs and articles for
social media. These models can also perform named entity
recognition (NER) and text classification [144], [145]. When
the GPT, XLNet, BERT, etc., models aid the writer and
content producers in generating a consistent flow of write
up. It also provides content suggestions, and to create a
safer online environment, these models are hired to assist
in discovering and filtering out different dangerous and
improper content. Abramski et al., [42] utilized network
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TABLE 13. Domain specific machine learning-based study comparison in LLMs.

VOLUME 12, 2024 26863



M. A. K. Raiaan et al.: Review on Large Language Models

TABLE 13. (Continued.) Domain specific machine learning-based study comparison in LLMs.

science and the principles of cognitive psychology to evaluate
biases present in LLMs. Sobieszek et al., [136] presents a
critical examination of the stated semantic capabilities of
GPT-3, aiming to challenge the current view of its dismissal.
Moreover, it assists in determining public opinion on certain
topics by analyzing public interest and demand.
Business: In business, LLMs helps companies improve

their decision-making processes, product manufacturing
processes, operations, and customer interactions. Communi-
cating with customers and providing 24/7 customer service
by answering their queries, assisting them in their work,
and providing advanced advice related to areas of interest to
customers is crucial for business progress. Moreover, it is also
important to analyze customer sentiment, market trends, risk
factors, and competitive intelligence [20]. In this case, LLMs
help to fulfill all their requirements within a short period.
The LLMs models, like GPT, XLNet, BERT, etc., play a
vital role in creating customer documents and product details

and efficiently maintaining the entire business by saving
time and reducing laborious tasks. Frederico et al., [135]
presents an initial investigation into the potential applications
and effects of ChatGPT in the domain of supply chain
management. Their study provides significant insights for
professionals engaged in this domain. Mich et. al. [133]
present an initial investigation of potential hazards associated
with the implementation of ChatGPT in bussiness domain.
Yu et al., [134] presented an analysis of the capabilities
of LLMs, specifically GPT-4, in the context of financial
forecasting for a time series. Besides, their findings reveal
that the performance of LLMs outperforms other traditional
models also.
Agriculture: In agriculture, variations of GPT models,

includingGPT3, BERT, andXLNetmodels, play a significant
role [146], [147], [148]. They are able to analyze large data
hubs of soil, crop, and weather data along with satellite
imagery. Thesemodels provide recommendations on planting
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FIGURE 8. Visual representation of impact on LLMs.

times, irrigation, fertilizer application, and optimizing fields
and resources. Farmers can obtain current updates andmarket
requirements, predict crop prices, anticipate natural disasters,
and document farmers’ and crop details. Manual agricultural
management can be time-consuming and laborious, but these
LLMs can support to accomplish these tasks to a greater
extent.

VIII. IMPACT OF LARGE LANGUAGE MODELS ON
SOCIETY
LLMs and similar AI technologies have had a profound
impact on society across various domains. The impact
of LLMs on society is multifaceted, and it is important
to consider both the positive and negative consequences.
As these technologies continue to evolve, stakeholders,
including governments, businesses, researchers, and the
general public, must work together to harness the benefits
of LLMs while addressing their challenges and ethical
implications. The visual representation of Figure 8 effectively
demonstrates the impact of LLMs, outlining their benefits on
the left and the adversarial impacts on the right side. The
positive impacts of LLMs are as follows:

• Advancements in Natural Language Processing
(NLP): LLMs have significantly advanced the field
of NLP, making it possible to automate and scale a
wide range of language-related tasks such as trans-
lation, summarization, sentiment analysis, and more.
In recent years, Natural Language Processing (NLP) has
witnessed significant advancements, primarily driven
by the emergence of Large Language Models (LLMs).
These advancements, exemplified by models such as
BERT [10], RoBERTa [67], and XLNet [107], have
transformed the NLP landscape. Notably, LLMs have
been fine-tuned for various specific NLP tasks, enabling
remarkable performance improvements. Multilingual
models like mBERT [149] and cross-lingual models like
XLM-R [150] have facilitated language understanding
across diverse linguistic contexts. Additionally, there
has been a focus on creating more efficient versions of
LLMs such as DistilBERT [151] and ALBERT [152].

These developments have not only expanded the
applicability of NLP but have also raised ethical consid-
erations, prompting research in biasmitigation [153] and
responsible AI. LLMs have enabled breakthroughs in
applications like conversational AI, few-shot and zero-
shot learning, and domain-specific NLP in fields like
healthcare and finance. These advancements underscore
the pivotal role of LLMs in advancing the capabilities
of NLP and continue to shape the future of language
understanding and generation.

• Automation and Efficiency:LLMs are used to automate
tasks that were previously time-consuming and labor-
intensive, leading to increased efficiency in industries
such as customer support, content generation, and data
analysis. The automation and efficiency of LLMs, driven
by models like BERT and GPT, have revolutionized
industries and applications. These models have auto-
mated intricate language-related tasks, from sentiment
analysis to language translation, making themmore effi-
cient and accessible. LLMs, such as DialoGPT [154] and
ChatGPT, have powered conversational AI, streamlining
customer support and interactions. Moreover, they excel
in few-shot and zero-shot learning, as demonstrated by
GPT-3 [155], automating tasks with minimal examples.
Multilingual LLMs like mBERT have automated lan-
guage tasks across various languages, enhancing global
accessibility. Efficiency has further advanced through
models like DistilBERT and ALBERT, which maintain
performance while reducing computational resources.
These models can be fine-tuned for specific domains,
such as healthcare [156], making them indispensable in
automating domain-specific tasks efficiently.

• Content Generation: LLMs are capable of generating
human-like text, which has implications for content
creation, including automated news articles, marketing
materials, and creative writing.

• Language Translation: LLMs have improved machine
translation systems, making communication across lan-
guages more accessible and accurate.

• Virtual Assistants and Chatbots: LLMs power virtual
assistants and chatbots, enhancing customer service and
providing round-the-clock support in various industries.

• Medical and Scientific Research: LLMs are used
to analyze and summarize vast amounts of medical
and scientific literature, aiding researchers in finding
relevant information quickly.

• Accessibility: LLMs have the potential to improve
accessibility by providing real-time translation and
transcription services for individuals with hearing
impairments or language barriers.

• Personalization: LLMs enable personalized recommen-
dations and content curation on platforms such as social
media, e-commerce, and news websites.

• Creative Tools: LLMs are used as creative tools in
various art forms, including generating poetry, music,
and visual art.
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• Education and Skill Development: The rise of LLMs
underscores the importance of education and skill devel-
opment in AI and data science, as these technologies
become increasingly integral to various industries.

In addition to numerous positive sides, LLMs also entail
some downsides. These downsides are outlined as follows:

• Ethical Concerns: Bias and fairness issues in LLMs
have raised ethical concerns. LLMs may perpetuate or
amplify biases present in training data, leading to unfair
or discriminatory outcomes.

• Misinformation and Disinformation: LLMs can gener-
ate realistic-sounding fake text, raising concerns about
the spread of misinformation and disinformation.

• Job Displacement: The automation capabilities of
LLMsmay lead to job displacement in certain industries,
particularly in routine data-entry and content-generation
roles.

• Data Privacy: The use of LLMs often involves pro-
cessing large amounts of user-generated text data,
which raises data privacy concerns, especially regarding
sensitive or personal information.

• Economic Impact: The adoption of LLMs can disrupt
traditional business models and create economic shifts
as industries adapt to automation and AI technologies.

• Regulation and Accountability: Policymakers and
regulators are grappling with the need to establish
guidelines and regulations for the responsible use of
LLMs, including addressing issues of bias, transparency,
and accountability.

IX. INDUSTRIAL SIGNIFICANCE OF LARGE LANGUAGE
MODELS
LLMs have gained substantial popularity in various indus-
tries, bringing about radical transformations. Influence of
LLMs in industries is visible which can be presented through
several key facets:
1. Enhancing NLP Applications: LLMs have ushered in

a revolution in NLP applications [157] across sectors like
customer service, chatbots, and sentiment analysis. They
contribute to more precise and efficient interactions with
users, leading to increased customer satisfaction and reduced
response times.
2. Enabling Data Analysis and Information Extraction:

LLMs play a pivotal role in extracting valuable insights
from unstructured text data [158]. This is particularly
critical in fields like finance, market research [159], and
healthcare, where deciphering market trends, sentiment in
news, or medical records hold paramount significance.
3. Facilitating Translation Services: Industries heavily

reliant on multilingual communication [160], such as e-
commerce, travel, and international business which may be
benefited from LLMs that streamline automated translation.
Translation service saves resources and ensuring high-quality
translations across multiple languages.
4. Empowering Content Generation: LLMs are harnessed

for content generation [161], which encompasses automated

article writing, social media posts [162], product descriptions,
and more. This automation simplifies content creation
processes and allows for scalable production of top-tier
content.
5. Revolutionizing Healthcare: LLMs find applications in

medical record analysis [129], diagnosis assistance, and drug
discovery. They empower healthcare professionals to access
and comprehend extensivemedical literature and patient data,
thereby enhancing healthcare decision-making.
6. Revamping Education: The education sector [163]

leverages LLMs for automated grading, ensuring prompt
feedback to students. These models also contribute to the
development of intelligent tutoring systems and personalized
learning platforms.
7. Aiding Legal Practices: Legal practitioners [164]

benefit from LLMs for contract analysis, legal research,
and document review. These models assist in efficiently
extracting pertinent information and identifying potential
legal concerns.
8. Assisting Human Resources: LLMs support HR

professionals [165] in tasks like candidate screening, resume
parsing, and identifying potential job candidates. They
streamline time-consuming processes within the recruitment
phase.
9. Empowering Financial Services: In the realm of

financial services [166], LLMs come into play for activities
like sentiment analysis of news articles, algorithmic trading,
risk assessment, and fraud detection. They are instrumental in
making informed investment choices and managing financial
risks.
10. Boosting E-commerce: LLMs enable personalized

product recommendations [167], chatbots for customer
support, and efficient inventorymanagement. These enhance-
ments result in enriched user experiences and heightened
sales.
11. Illuminating Customer Insights: LLMs analyze

customer reviews [168], feedback, and social media data, fur-
nishing businesses with insights into customer preferences,
opinions, and sentiments. This invaluable information aids
companies in customizing their products and services.

As LLMs continue to advance, their industrial impor-
tance is undeniable. LLMs streamline operations, enhance
decision-making, and bolster efficiency across diverse
domains, positioning them as a transformative technology in
the contemporary business landscape.

X. OPEN ISSUES AND CHALLENGES
This section discusses critical analysis of open issues and
challenges of LLMs.

A. OPEN ISSUES
In this section, we delve into the open issues related to LLMs.
These issues appeared recently as focal point in AI research
and development. We raise the necessity for ongoing research
and innovation to resolve issues that have emerged alongside
the rapid development of LLMs. Our discussionwill cast light
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on the significance of these unresolved issues, highlighting
their impact on various applications and the AI landscape as
a whole.

• Issue 1: Ethical and Responsible AI The question
regarding how to ensure the ethical use of large language
models remains unresolved. Filtering, moderation, and
accountability concerns regarding AI-generated content
remain problematic. Misinformation, hate speech, and
biased content generated by LLMs necessitate continu-
ous research and development [169].

• Issue 2: Multimodal Integration While LLMs are
predominantly concerned with text, there is a growing
demand for multimodal models that can comprehend
and generate content that includes text, images, and
other media types [170]. Integrating multiple modalities
into a single model poses difficulties in data acquisition,
training, and evaluation.

• Issue 3: Energy Efficiency The environmental impact
of training and deploying large language models is still
an urgent concern [171]. It is essential to develop more
energy-efficient training methods, model architectures,
and hardware solutions to reduce the carbon footprint of
LLMs.

• Issue 4: Security and Adversarial Attacks
LLMs are vulnerable to adversarial context, where
slight input modifications can lead to an unexpected
and potentially harmful outputs [172]. Improving model
robustness and security against such situation is a crucial
area of study, particularly for cybersecurity and content
moderation applications.

• Issue 5: Privacy and Data Protection As LLMs
become more competent, user privacy and data protec-
tion concerns increase. Finding methods for users to
interact with these models without compromising their
personal information is an ongoing challenge. There is a
need for research on privacy-preserving techniques and
regulatory compliance [173].

• Issue 6: Generalization and Few-Shot Learning
LLMs performs well when there is abundant data
but struggles with tasks requiring few examples or
domain-specific knowledge. Improving their capacity to
generalize and perform well with limited training data is
a crucial area of research [174].

• Issue 7: Cross-Lingual and Low-Resource Settings It
is an ongoing challenge to make LLMs more accessible
and effective in languages and regions with limited
resources and data [175]. Global applications require
developing techniques for cross-lingual transfer learning
and low-resource language support.

B. CHALLENGES
LLMs have rapidly evolved from being non-existent to
becoming a ubiquitous presence in the field of machine
learning within just a few years. Its extraordinary ability
to generate text that resembles that of a human which has

attracted significant attention and applications in numerous
fields. However, this sudden rise of these technological
dependencies with higher impact has also revealed many
challenges and concerns. In this discussion, we will examine
ten of the most significant challenges pertaining to LLMs.

• Challenge 1: Data Complexity and Scale In the era of
LLMs, the size and complexity of the datasets on which
they are trained is one of the most significant challenges.
These models are typically trained on enormous corpora
of Internet-sourced text data. These datasets are so
extensive that it is nearly impossible to understand or
investigate the totality of their information. This raises
concerns regarding the quality and biases of the training
data and the potential for the unintentional dissemination
of detrimental or inaccurate information [176].

• Challenge 2: Tokenization Sensitivity
For analysis, LLMs rely significantly on tokeniza-
tion, dividing text into smaller units (tokens) [177].
Tokenization is essential for language processing and
comprehension but can also present challenges. For
instance, the meaning of a sentence can alter signifi-
cantly based on the choice of tokens or the ordering
of words. This sensitivity to input phrasing can lead
to unintended outcomes when generating text, such
as adversarial assaults and output variations based on
minute input changes.

• Challenge 3: Computational Resource Demands
The training of LLMs is a computationally intensive
procedure that requires substantial hardware and energy
resources [178]. It is necessary to have access to
supercomputing clusters or specialized hardware in
order to train large models, and the environmental
impact of such resource-intensive training has raised
concerns. Significant energy consumption is associated
with training LLMs at scale, contributing to the AI
industry’s overall carbon footprint.

• Challenge 4: Fine-Tuning Complexity
While pre-training gives LLMs a broad comprehension
of language, fine-tuning is required to adapt these
models to specific tasks [179]. Fine-tuning entails
training the model on a smaller dataset, frequently
requiring human annotators to label examples. As it
involves the construction of task-specific datasets and
extensive human intervention, this process can be both
time-consuming and costly.

• Challenge 5: Real-Time Responsiveness The remark-
able training capabilities of LLMs come at the expense
of inference speed. Real-time response or prediction
generation with these models can be sluggish, limiting
their applicability in applications such as chatbots or
recommendation systems where low-latency responses
are crucial for user satisfaction.

• Challenge 6: Contextual Constraints
LLMs can only evaluate a limited number of preceding
tokens when generating text due to their limited context
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window [180]. This limitation presents difficulties when
working with lengthy documents or having lengthy
conversations. Maintaining coherence and relevance
over lengthy text sequences can be challenging because
the model may neglect or lose track of the relevant
information.

• Challenge 7: Bias and Undesirable Output
In the output, LLMs display biases or undesirable
characteristics. This is due to the inherent biases in
the training data, which are assimilated by the model
and reflected in its responses [181]. Such biases can
manifest as objectionable, discriminatory, or harmful
content, making it imperative to address and mitigate
these concerns to ensure the responsible deployment of
AI.

• Challenge 8: Knowledge Temporality
LLMs learn using historical data from the Internet, and
their knowledge is restricted to what is available as of
a particular date. Consequently, they may lack access
to the most recent information or events. This can be
problematic when users expect up-to-date responses or
when the conversation involves recent events.

• Challenge 9: Evaluation Complexity
Evaluation of LLMs presents significant difficulties.
Many extant evaluation metrics are insufficient to
capture the nuances of model performance, which
raises questions about their efficacy. Additionally, these
metrics can be susceptible to manipulation or gaming,
which may provide an inaccurate image of a model’s
capabilities. To assess LLMs’ actual performance and
limitations, robust and reliable evaluation methodolo-
gies are required.

• Challenge 10: Dynamic Evaluation Needs
Frequently, evaluating LLMs entails comparing their
outputs to static benchmarks or human-authored ground
truth. However, language is dynamic and evolves, and
preset evaluation data may not adequately reflect a
model’s adaptability to language and context change.
This difficulty underscores the need for evaluation
frameworks that are more dynamic and continually
updated.

XI. FUTURE RESEARCH PROSPECTS ON LLMS
Since LLMs are emerging research topic in recent times,
several key research focuses and directions are prominent
that may address and resolve the challenges and open issues
discussed earlier. Resolving these open issues and challenges
may harness the full potential of LLMs while ensuring its
responsible and ethical use in AI landscape.

A. ENHANCING BIAS MITIGATION
Researchers are dedicated to refining training data to
minimize bias, devising effective debiasing techniques, and
establishing guidelines for responsibleAI development [182].

They also need focus on integrating continuous monitoring
and auditing mechanisms into AI pipelines, thereby conform-
ing fairness and impartiality of the system. This commitment
to mitigating bias ensures that LLMs not only advance in
capability but LLMs also upholds ethical standards.

B. EFFICIENCY OPTIMIZATION
A core concern driving research is the quest of efficient
training techniques. Researchers are delving into innovative
methods like federated learning, which enables the distri-
bution of training across decentralized data sources [183].
They are also exploring knowledge distillation techniques
for model compression and finding ways to reduce the
substantial computational and environmental costs associated
with LLMs. This optimization paves the way for more
sustainable and resource-efficient AI models.

C. DYNAMIC CONTEXT HANDLING
LLMs are being endowed with enhanced context manage-
ment capabilities. This empowers them to comprehend longer
context windows and seamlessly handle extensive documents
or conversations. Such enhancements significantly expand
their utility in various applications and resolve previous
limitations.

D. CONTINUOUS LEARNING
To keep LLMs up-to-date, researchers are focusing on
developing techniques that enable these models to adapt
on evolving language and knowledge over time. This
ensures that LLMs remain valuable and accurate sources of
information and consistently overcoming challenges of being
outdated.

E. INTERPRETABLE AI
The research community is committed to making LLMs’
outputs more transparent and interpretable. Improving inter-
pretability fosters the confidence and comprehension in AI
decision-making processes which has been a major concern
for a long time after the advent of LLMs [184].

F. MULTIMODAL LLMS
Researchers are pioneering the development of LLMs that
incorporate text, vision, and other modalities [185]. These
models can understand and generate text from images, videos,
and audio, creating new avenues for AI applications and
effectively addressing the need for multi-sensory comprehen-
sion.

G. HUMAN-AI COLLABORATION
Research on how humans and LLMs can collaborate
effectively, with AI assisting and augmenting human tasks,
is a crucial focal point. This collaboration bridges the gap
between AI capabilities and human needs, thereby resolving
previous challenges and issues in deployment.
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H. DYNAMIC EVALUATION METRICS AND RELEVANT
BENCHMARKS
Researchers are working on dynamic evaluation metrics that
adapt to changing language and context, ensuring that LLMs
performance is accurately assessed [186]. Finding a suitable
metric along with the development of relevant and up-to-
date benchmarks which may address earlier shortcomings in
assessing AI capabilities.

I. PERSONALIZATION AND CUSTOMIZATION
Techniques to customize LLMs interactions to individual user
preferences and needs are gaining popularity nowadays. This
personalization boosts user satisfaction and resolves issues
related to one-size-fits-all AI interactions.

J. ETHICAL AND LEGAL FRAMEWORKS
In response to evolving AI regulation, researchers are
diligently developing ethical and legal regulatory frame-
works. These frameworks serve as guiding principles
for the responsible use of LLMs and ensure com-
pliance with data protection and privacy regulations,
effectively addressing previous concerns about ethical AI
deployment [187].

These future research directions may overcome longstand-
ing challenges and open issues raised in LLMs domain. These
avenues may lead to the maximization of LLMs potential by
the future researchers while upholding the highest standards
of accountability and ethics in AI landscape.

XII. LIMITATIONS
While conducting a thorough examination of LLMs, which
includes analyzing their taxonomies, comparing configura-
tions, and addressing concerns and obstacles, it is essential
to recognize the existence of limitations that should be
considered. A primary limitation of this study is the unavail-
ability of review papers that directly relate to the topic of
LLMs. Although we have made diligent attempts to address
the available research thoroughly, the limited quantity of
papers in this field restricts our potential to perform broad
comparisons and evaluations. While endeavoring to offer a
broad perspective on LLMs concepts, we recognize that this
analysis predominantly focuses on the ground-level concepts
of LLMs configurations and applications. Limited resources,
time, and page constraints affect the extensive exploration
of individual LLMs architectures. Although our goal is
not to offer the understanding of single LLMs but instead
provide the evolution of LLMs and its application around
various domains, however, readers looking for detailed
analysis of specific architectures and advanced topics are
not thoroughly covered. Furthermore, the impact of the
LLMs across various domains, including education, health,
and economy, is highlighted, but assessing the practical
impacts of LLMs in many domains can be complex and
subjective, especially when considering their impact on social
aspects.

XIII. CONCLUSION
The field of LLMs has witnessed a remarkable evolu-
tion and expansion, resulting in extraordinary capabilities
in NLP tasks and various applications in various areas.
Based on neural networks and the changing transformer
architecture, these LLMs have revolutionized our approach
to machine language comprehension and generation. The
thorough review of this research has provided an insightful
overview of LLMs, encompassing their historical develop-
ment, architectural foundations, training methods, and vast
advancement resources. The study has also examined the
various applications of LLMs in disciplines such as health-
care, education, social sciences, business, and agriculture,
demonstrating their potential to address real-world issues.
In addition, this review has delved into the societal effects
of LLMs, discussing how they shape the future of AI and
can be utilized to address complex problems. However, the
study has not addressed the pressing challenges and ethical
considerations associated with deploying LLMs, including
model biases, privacy concerns, and the need for enhanced
robustness and controllability. As the field of LLMs research
continues to evolve swiftly, this review could be a valuable
resource for practitioners, researchers, and experts seeking
a comprehensive understanding of LLMs’ past, present, and
future. The study emphasizes the significance of ongoing
efforts to improve the efficacy and dependability of LLMs,
as well as the need for ethical development and deployment
practices. LLMs represent a pivotal advancement in AI
and NLP, with the potential to revolutionize a variety of
domains and solve complex problems. This article provides a
comprehensive foundation for future researcher to understand
the dynamics of ever evolving Large Language Models
research.
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