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ABSTRACT Background: Color perception is vital in many aspects of human behavior. It is tremendously
engaged in the early stage of information processing to accelerate attention. Several studies focused
on different aspects of the psychological effect of colors, which showed that color designs induce
positive emotion, increased cognitive effort, and better learning outcomes compared to achromatic stimuli.
Considering the importance of our daily encounters with colored stimuli, especially the RGB, black and
white, studying the effect of these stimuli on brain activities is essential. Method: We investigated the
significant differences in spatiotemporal brain activity of black, white, and RGB information. We used a
task in which 12 participants were presented with random black-and-white and RGB-colored stimuli in a
dark room. Each stimulus was displayed on the whole screen of a CRT calibrated monitor for 10 seconds. A
64-channel EEG device was used to acquire the EEG data. Results: Our results show that for RGB-colored
stimuli, the beta power of the occipito-parietal region in early period (85 - 120 ms after stimulus onset) for
RGB is higher than that of black (p< 0.05), while in late period (800 - 855 ms after stimulus onset), for RGB
it is higher than that of both black and white (p < 0.05). Moreover, the alpha power of the centro-parietal
region in late period (930 - 1360 ms after stimulus onset) for RGB is higher than that of black (p < 0.01).
Finally, ITPC of alpha band in occipariatal region in the late period (840 - 920 ms after stimulus onset)
for white is higher than black (p < 0.05) and RGB (p < 0.01). Conclusion: The results regarding brain
responses to black/white and RGB stimuli, as well as beta and alpha-band differences in centro-pariatal
and occipito-parietal regions provide valuable insights that can be interpretted within perception, emotional
activities, and visual processes. Practical applications may span psychology, biofeedback, and BCI systems,
with implications for cognitive training, rehabilitation, and human-computer interaction.

INDEX TERMS Color perception, EEG, alpha phase consistency, alpha and beta power.

I. INTRODUCTION
Color as a visual feature plays a vital role in many aspects
of human behavior, and color perception is a fundamental
cognitive feature of our psychological experience. Thus,
human perception is considerably influenced psychologically
and physiologically by the colors of the surrounding environ-
ment. Moreover, color is tremendously engaged in the early
stage of information processing to accelerate attention [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Siddhartha Bhattacharyya .

Accordingly, compared to other visualization methods, color
discrimination happens automatically in the pre-attention
stage, which is relatively early [2], [3]. Furthermore, since
colors also express semantic information, the accordance
of color and the information it represents can boost easier
and more accurate comprehension during the later phase of
cognition [4], [5]. Visual information processing starts with
light absorption. It is implemented by the three types of cone
photoreceptors are short-, medium-, and long-wavelength.
The spectral absorption functions of these cone cells are the
base of human color vision [6].
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Visual information is then sent to the cortex from
retinal ganglion cells. The lateral geniculate nucleus (LGN),
which consists of three separate cone-opponent channels,
is the pathway by which the information transmits to the
visual cortex [7]. The V1 and V2 areas of the brain are
considered the first stage of cortical color processing, which
involves registering the presence and intensity of different
wavelengths. The V4 area, as the second stage, is preoccupied
with automatic color constancy operations [8]. The third stage
is more concerned with object colors and located on the
inferior temporal, and frontal cortex [9].

In recent decades, numerous empirical works focused on
different aspects of the psychological effect of colors [10],
[11], [12], for example, colored multimedia learning [13],
emotional effects [14], [15], [16], [17], [18], [19], [20], [21],
memory facilitation, and cognitive performances. The results
showed that compared to the neutral design (achromatic
colors: grayscale, black and white), the colored design
modulates a positive emotion, increased cognitive effort,
and better learning outcomes. Others also reported that
colored (red and blue)materials increased cognitive effort and
caused positive emotion relative to achromatic materials [22].
Additionally, there are reports that neutral colors such as
green boost calmness, in addition to the moderate, ordinary
feelings, and warm colors in the red color system arouse
warm, positive, active feelings. Subsequently, the cold,
passive, quiet feelings are produced by the cool colors in
the blue color system [23]. Saturated and bright colors were
reported to cause significantly stronger skin conductance
responses, indicating higher arousal levels [24]. Studies
reported that compared to colors with shorter wavelengths
(like blue), colors with longer wavelengths (like red) evoked
a higher level of arousal emotion [25], [26], [27], [28].
On the other hand, the effects of colors on the neural

activity of the brain are investigated with non-invasive
methods in humans, such as Magnetoencephalography
(MEG), functional-magnetic-resonance-imaging (fMRI),
and Electroencephalography (EEG). For instance, Tch-
eslavski et al. [29] measured the EEG signals in response
to continuously changing colors of the entire spectral range
and found no inter-hemispheric asymmetry due to different
intensities to specific hues. Moreover, the brain activity in
response to red, white, and blue visual stimuli is examined
with the fMRI technique [30]. Furthermore, it was found that
blue stimulus inhibited the beta wave activity in the occipital
areas, proposing the more relaxing effect of the blue [30].
Yoto et al. [23] used subjective emotional assessments and
EEG and showed that red produces higher average power
in theta and alpha rhythms in the frontal lobe. At the same
time, in the emotional assessment, red also received more
negative subjective scoring than blue and green. Therefore,
it suggested that a higher level of brain activity due to the
presentation of red is possibly elicited by an anxiety state for
the subject.

To provide a better color design for improving the
quality of our living environment, investigating the influence

of colors including Red-Green-Blue (RGB), black and
white on the human brain is necessary. Concerning the
growth in daily usage of monitors and our life experiences
and workspaces containing different colors, such study is
inevitable. Although, the R, G, and B stimuli have deferent
effects on brain response, finding similar effects of them is
rarely studied in the literature. More important than this, there
is no serious study to investigate the data-driven approach to
find the deference between response mechanism of RGB vs
black/white. In the present study, we investigated the brain
response to the black, white, and RGB stimuli with studying
the EEG signals. We used a task in which participants
were presented with random black/white and RGB-colored
stimuli. Here, we used data-driven approach to fill the gap
by identifying spatial, spectral, and temporal brain patterns
to discriminate between black/white and RGB colors. Our
study demonstrated substantial differences in the power of
beta and alpha-bands in the centro-parietal, and occipito-
parietal regions, in addition to a significant phase coherency
of alpha-band in the occipito-parietal area.

II. MATERIALS AND METHODS
The present study has been approved by the Iran University
of Science and Technology and its ethics committee (ID
number 95871) and was conducted in accordance with the
declaration of Helsinki [31]. Meanwhile, before each test,
subjects provided informed consent in accordance with the
local ethics committee. All the applied procedures conform
to the Declaration of Helsinki (1964) of the World Medical
Association concerning human experimentation.

A. PARTICIPANTS AND SETUP
Participants in this and all subsequent experiments were naive
to the experimental paradigm, had no previous neurological
and psychiatric disorders, and reported normal or corrected-
to-normal color vision. Participants were 3 female, 9 male in
the age range of 20-28 years.

B. APPARATUS AND STIMULI
A CRT monitor with a resolution of 1024 × 768 pixels
and a 60 Hz refresh rate was used in this experiment.
The monitor’s gamma and color calibration parameters
were extracted using an X-Rite ColorMunki Display
device (www.xrite.com) along with DisplayCAL software
(www.displaycal.net). In particular, gamma correction values
for RGB colors were cosidered to be γR = 2.77, γG = 2.79,
and γB = 2.76, respectively. Participants sat in a dark room,
isolated acoustically and electrically approximately 70 cm
from the monitor.

Visual stimuli for this and all subsequent experiments were
displayed on the whole screen. Black, white, and RGB colors
were presented to the subject in each block, one at a time for
10 seconds aligned with previous related studies [74], [75],
[76]. Moreover, RGB (here, red or green or blue) stimuli are
isolominance with L = 8.99 cd/m2. The subject was shown
a 3 seconds gray background as Inter-Trial interval (ITI) and
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a 500 ms fixation point before each stimulus. Each subject
completed the test five times.

C. EEG RECORDING AND PREPROCESSING
A 64-channel ANT neuro EEG signal acquisition device
(ANT Neuro, Hengelo, The Netherlands) was used with
a sampling rate of 512Hz. The electrodes used here were
monopolar Ag/AgCl electrodes placed on scalp with a cap
according to the standard 10-20 system. Figure 1 shows the
positions of the electrodes. Two electrodes (A1 and A2) were
connetcted to mastoide and their avereage was considered as
reference; the ground was connected to FCz. The electrodes
PO5 and PO6 were not used; finally, we employed the date
gathered from remaining 59 channels.

The EEG pre-processing and processing was performed
by custom-written Matlab scripts [32] and commands from
the EEGLAB toolbox [33]. First, raw data were imported
into MATLAB 2017b using ‘‘pop_loadset()’’. We applied a
highpass filter at 0.1 Hz on EEG raw data by using ‘‘eegfilt’’
in the EEGLAB toolbox. Then, to extract epochs, the EEG
signals were segmented from 1000 ms before to 2000 ms
after stimulus onset followed by re-referencing the data to
the average of the mastoids. It is worth noting that other
alternatives for referencing method could be applied here
such as the Reference Electrode Standardization Technique
(REST) [34]; however, due to consistency with our ongoing
studies and comparing to similar studies in the field utilizing
linked-ear reference, and some technical considerations,
we prefer using linked-ear reference method. To remove
artifacts from the data, we used the Fully Automated Sta-
tistical Thresholding for EEG Artifact Rejection (FASTER)
[35] algorithm, which uses a statistical threshold to reject
bad channels and epochs. This algorithm uses five distinct
statistical criteria to detect signals exhibiting anomalous
behavior. These criteria encompass variance, correlation, the
Hurst exponent, kurtosis, and susceptibility to line noise.
A part of a channel and epoch is deemed aberrant with respect
to a given criterion when its Z-score surpasses a threshold
of 3 in that specific criterion. bad channels are reconstructed
using the good channels with spherical spline interpolation
which is implemented in the EEGLAB toolbox. To eliminate
eye blinks and muscle activities, we first extracted the EEG
components of each subject with the ‘‘pop_runica’’ EEGLAB
command, then removed each of the noisy components with
a visual inspection of the spectrum and topoplot. The whole
procedure is depicted in Figure 2.
We combined all the RGB stimulus conditions and

averaged them for further analysis. Therefore our final
data was a 59 (electrodes) × 1792 (sample point) × 15
(3 conditions for black-white-RGB × 5 repetitions) matrix
for each of the 12 subjects.

D. ERP, ERO AND TIME-FREQUENCY ANALYSIS
The EEG signal was bandpass filtered to capture only
frequency-specific activity, with ‘‘eegfilt()’’ from EEGLAB

Toolbox, which uses an order of 3×fix(Fs/lowcutoff) zero-
phase Finite Impulse Response (FIR) bandpass filter. Next,
we applied a Hilbert Transform to obtain the bandpass data.
The Hilbert transform extracts a complex signal from a signal
that contains only a real part, and it can be represented using
Euler’s formula: M (t)ei2π ft . The M (t) is extracted as the
instantaneous amplitude, and the following syntax is used to
extract the complex analytic signal:

hilbert(eegfilt(data, Fs, lowcutoff, highcutoff)′)′ (1)

where Fs is the sampling frequency (512 Hz), and we
used delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta
(12-30 Hz), low gamma (30-50 Hz), and high gamma
(70-150 Hz) for the lower and upper bound. For
Event-Related Potential (ERP) analysis, we first applied a
band-pass filter defined by cutoffs at 0.1 Hz and 30 Hz,
exhibiting a roll-off rate of 12 dB/octave. For each trial,
we applied such filtering using a second-order Butterworth
filter implemented in MATLAB, and then used the mean()
of all trials for extraction the ERP data for each subject. For
grand-avaerage ERP, we take average of all subjects.

Event-Related Oscillations (ERO), like ERP analysis, pro-
vide insights into the temporal aspects of neural processing
associated with cognitive tasks or sensory stimuli. In fact,
ERO is the ERP that is applied in a specific frequency range
whose measures can reflect different neurophysiological
processes fromERP [36], [37], [38], [39]. For extracting ERO
of each subject, themean() of trials for each filtered frequency
band was computed.

Inter-Trial Phase Clustering (ITPC) was used for the
examination of cortical phase synchrony or for measuring
the phase coherency over trials. ITPC measures the extent to
which a distribution of phase angles at each time-frequency-
electrode point across trials is nonuniformly distributed in
polar space. The Mathematical representation of ITPC is as
follows:

ITPCtf = n−1
n∑

r=1

eiKtfr (2)

where n is the number of trials, eik is taken from Euler’s
formula and provides the complex polar representation of a
phase angle k on trial r at time-frequency point tf. The syntax
for computing the k is as follows:

angle(hilbert(eegfilt((data, Fs, lowcutoff, highcutoff)′)) (3)

ITPC is bounded by 0 and 1, with 0 indicating random
phases and 1 indicating perfect phase coherency. In addition,
because of the Gaussian shape of the frequency response
of Morlet wavelets, wavelet convolution tends to produce
smooth-looking and, therefore, easily visually interpretable
time-frequency plots [40]. We performed a fine-grained
complex Morlet wavelet convolution to the EEG epochs
to analyze the data in the time-frequency domain with
frequencies ranging from 2 to 80 Hz in 80 logarithmically
spaced steps.
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FIGURE 1. Stimulus characteristics, presentation, and electrode position A) Three types of color stimuli are
used, which include white, black, and RGB colors. The RGB consists of the combination of red, blue, and
green that all three are placed in the same category of RGB. B) The visual paradigm consists of 25 randomly
selected stimuli, starting with a 0.5 s fixation point, after which participants were presented with a colored
(black, white & RGB) screen for 10 s followed by a 3 s delay period. C) The location of the electrodes is
based on the 10-20 system, and the areas marked on the electrodes are the regions mentioned in this
article. The occipital area includes o1, oz, and o2 electrodes that are marked with a purple color. The
occipito-parietal region includes O1, Oz, O2, PO3, PO4, POz, PO7, PO8 (purple and blue circules), and
centro-parietal (P5, P3, P1, Pz, P2, P4, P6, CP3, Cp1, CPz, CP2, CP4, C3, C1, Cz, C2, C4) marked in orange.

E. TOPOGRAPHICAL MAPS
To illustrate the different ERO and time-frequency measures
of the scalp distributions in each time window of interest,
we created topographical maps using spline interpolation
of the power and ITPC value differences between the
orientations.

F. STATISTICAL ANALYSES
In order to compare the ERO for different pairs of colors,
we employed statistical tests that do not rely on assumptions
about the underlying distribution. Specifically, we utilized
the two-sided Wilcoxon test at each time point. This test
was chosen over the paired t-test because it is more
suitable for situations where data violate assumptions of
normality or involve small sample sizes. The Wilcoxon test
provides a robust and flexible approach for comparing paired
observations, particularly when parametric assumptions are
not met. To conduct the analysis, we implemented a
whole-subject permutation method, which offers a reliable
and flexible approach for analyzing ERP data. Permutation
tests accommodate the complex nature of ERP data, control
for multiple comparisons, enable investigation of temporal
effects, and are well-suited for small sample sizes. These
tests are particularly advantageous for ERP analysis where
distributional assumptionsmay not bemet, and the focus is on
capturing the temporal dynamics and characteristics of mea-
sured brain responses [41]. The whole-subject permutation
method, an optimized and faster version of the permutation
test, randomly inverted the sign of the ERO for each subject
in each iteration [42]. By obtaining a distribution for each
time point, we derived the P value of the null hypothesis.

To correct for multiple comparisons over time, we con-
sidered several alternatives such as False Discovery Rate
(FDR), Bonferroni, and cluster-basedmethods. Among these,
we opted for a cluster-based permutation analysis [43].
Cluster-based methods provide improved sensitivity, control
over type I error, flexibility, and interpretability, making them

the preferred choice for multiple comparison correction in
ERP analysis [41], [44]. In our study, we applied cluster-
based permutation analysis with 1,000 permutations with
significance level p < 0.05. We extended this method
to compare ERO activity for multiple colors using a
repeated-measures analysis of variance (rmANOVA). The
same procedure was employed for analyzing power and ITPC
values. To assess the statistical significance of the resulting
time-frequency analysis, we repeated the aforementioned
procedure for each time point and frequency.

Furthermore, to evaluate the statistical significance of
Topographical maps, we employed the whole-subject per-
mutation analysis with a two-sided Wilcoxon test. This
analysis involved 59 electrodes with 5,000 permutations and
a cluster-forming significance threshold of p < 0.01.

III. RESULTS
To demonstrate the response of the early visual sensory
area to the stimulus presentation, neuronal EEG responses
at occipital electrodes (O1, Oz, and O2) are shown in
Figure 3. All color signals for each participant are integrated
to extract the mean power, phase, and ERP of the data. The
average time-frequency power of 12 participants produced
by the Morlet Wavelets Convolution method, and based on
Z-scored baseline normalization (300 - 100 ms prestimulus),
is illustrated In Figure 3A. The plot shows a significant
power increase under 10 Hz immediately after stimulus onset
(permutation test with 1000 permutations, participant = 12,
cluster-forming threshold p < 0.01, corrected significance
level p < 0.05). Figure 3B demonstrated the average
time-frequency plots of Z-scored p-values for ITPC of
12 subjects with the Morlet Wavelets Convolution method.
To calculate the Z-scored values, first, the ITPC values from
the baseline periods (100 - 300 ms prestimulus) are sub-
tracted from each time-frequency point. The non-parametric
Wilcoxon test and within-subject analysis are performed to
extract Z-scored values. The highlighted cluster exhibits a
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FIGURE 2. Flowchart of the procedure taken in the current study
including pre-processing and analyses.

significant increase of under 10 Hz activity immediately after
the stimulus presentation (permutation test with 1000 permu-
tations, participant = 12, cluster-forming threshold p< 0.01,
corrected significance level p < 0.01). Figure 3C shows an
ERP below 30 Hz.

With data-driven approaches, we attempt to find the
significant differences in the black, white, and RGB color
information. To produce particular regions of interest, the
resulting data of 59 electrodes were averaged (e.g., the mean
value of O1, Oz, and O2 for the Occipital area). The ITPC
values of each area are extracted with the Hilbert transform
method in 6 band frequencies (delta, theta, alpha, beta,
low gamma, high gamma). Then we applied the Wilcoxon
signed-rank test to each time point for each pair of stimuli
and inspected different brain areas and band frequencies for
the meaningful significance for power and ITPC; see the
Figure 2. Therefore, we found strong and reliable effects in
the beta power of the occipito-parietal area and the alpha
power of centro-parietal regions. In addition, we observed a

significant difference in the alpha ITPC value in the occipito-
parietal electrodes. In Figure 4-6, we focused on these
three spatial-frequency regions and applied an rmANOVA
to compare the information in black/white vs. RGB
colors.

We presented the average time-frequency power plots of
12 participants in the occipital (O1, Oz, and O2) electrodes
for black (left), white (middle), and RGB (right) in Figure 4A.
The power is extracted with Morlet Wavelets Convolution
and based on Z-scored baseline normalization (300 - 100 ms
prestimulus). As depicted, there is a significant power
increase in late periods post-stimulus for RGB-colored stim-
uli (permutation test with 1000 permutations, participant =

12, cluster-forming threshold p< 0.05, corrected significance
level p < 0.05). Although it is visible that for all three
stimuli, the power increases immediately after the stimulus,
this increase was not significant in the statistical analysis.
Then, we focus on the beta band for comparison between
stimuli. However, wemust consider that in the power analysis
of beta-band activity, we do not expect consistent behavior for
a long period due to relatively high fluctuations.

Furthermore, Figure 4B-left shows the power average
for black, white, and RGB color in beta-band frequency
(12 - 30 Hz). It is evident that immediately after the
stimulus onset, the power of white and RGB increases
compared to the baseline, while black does not exhibit this
level of power increase. The statistical analysis revealed
a significant difference between colors in the early period
(85 - 120 ms), and late period of 800 - 855 ms (within-subject
rmANOVA, 1000 permutation, cluster-forming threshold
p < 0.05, corrected significance threshold p < 0.01).
Figure 4B-right depicts the bar plot of averaged power

values across the time window of significant periods in panel
B-left side. The top view shows each color’s averaged power
(85 - 120 ms): black mean value −0.06 ± 0.23, white mean
1.17±0.80, and RGBmean 0.96±0.16. An rmANOVA found
a significant difference between colors (F(2,10) = 9.51,
p < 0.005). Post-hoc two-sided Wilcoxon tests showed a
statistically significant difference between the RGB vs. black
(Z = 2.98, p< 0.003). Accordingly, There was no significant
effect on RGB vs. white or black vs. white. The bottom view
shows the average power in (800 - 855 ms) of each color:
black mean value −0.16±0.24, white mean 0.10±0.73, and
RGB mean 0.46 ± 0.14. An rmANOVA found a significant
difference between colors (F(2,10) = 6.55, p < 0.02). The
Post-hoc two-sided Wilcoxon tests showed a statistically
significant difference between the RGB vs. black (Z = 2.66,
p < 0.008) and RGB vs. white (Z = 2.03, p < 0.04). There
was no significant effect on black vs. white stimuli.

An important point that should be noted is the existence
of high variability between subjects in response to white
and black stimuli, which is less visible in response to RGB
stimulus of beta-band activity. This effect is addressed in
a separate article, which is under revision for publication.
Considering that we illustrated a significant difference
between the response of black vs. RGB color stimulus in
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FIGURE 3. EEG Responses to Visual Stimuli in Occipital Region(O1, Oz, and O2) | A) Time-frequency power plots, averaged across color conditions
(black, white, RGB), and Z-scored baseline normalization using the Morlet Wavelets Convolution method. Red indicates power exceeding baseline,
blue signifies the opposite. Solid black outlines highlight significant clusters (permutation test with 1000 permutations, n = 12, cluster-forming
threshold p < 0.01, corrected significance level p < 0.05). Dashed lines indicate stimulus onset (t = 0 ms). B) Z-scored p-values of ITPC values,
similar to (A). C) Event-related potentials averaged across all color conditions.

FIGURE 4. RGB power Information in Beta-band frequency of the occi-parietal (O1, Oz, O2, PO3, PO4, POz, PO7, PO8) electrodes | A) Time-frequency
power plots for black, white, and RGB stimuli, focusing on frequencies under 30 Hz. Solid black outlines indicate significant clusters (permutation test
with 1000 permutations, n = 12, cluster-forming threshold p < 0.05, corrected significance level p < 0.05) B) Left: Average power values in the beta band
(12 - 30 Hz) reveal significant differences at 85 - 120 ms and 800 - 855 ms (within-subject rmANOVA, 1000 permutations, n = 12, cluster-forming
threshold p < 0.05, corrected significance threshold p < 0.01). Right: Bar plots illustrate these power differences with error bars representing 95%
confidence intervals across 12 participants. Asterisks denote significance from zero (Wilcoxon rank sum test), and asterisks above horizontal lines
indicate significant differences between color pairs (Post-hoc two-sided Wilcoxon tests). n.s: p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001. C) Left: Average
power values for black and RGB colors, similar to (B-left), with horizontal lines indicating clusters of significant differences (two-sided Wilcoxon tests,
1000 permutations, cluster-forming threshold Z > 1.96, corrected significance threshold p < 0.05). Right: Topographies depict differences between black
and RGB colors in the beta band during the 70 - 140 ms and 800 - 900 ms time windows. Stars indicate significant sites (5000 permutations,
cluster-forming threshold Z > 2.35, corrected significance threshold p < 0.005).

panel B-right; therefore, in panel C, we focused on the
analysis between these two colors for scalp EEG distribution
(Figure 4C).

Figure 4C-left shows the power values of black and RGB
colors. There are meaningful differences in a time window
of 70 - 140 ms and 800 - 900 ms (two-sided Wilcoxon
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FIGURE 5. Color power information in alpha-band frequency of the centro-parietal (P5, P3, P1, Pz, P2, P4, P6, CP3, Cp1, CPz, CP2, CP4, C3, C1, Cz, C2, C4)
electrodes | A) Time-frequency power plots for black, white, and RGB stimuli, focusing on frequencies under 30 Hz. Solid black outlines indicate
significant clusters (permutation test with 1000 permutations, n = 12, cluster-forming threshold p < 0.05, corrected significance level p < 0.05). B) Left:
Average power values in the alpha band (8- 12Hz) show the clusters of significant differences in the time window of 1000 - 1180 ms (within-subject
rmANOVA, 1000 permutations, n = 12, cluster-forming threshold p < 0.05, corrected significance threshold p < 0.05). Right: Bar plots illustrate these
power differences with error bars representing 95% confidence intervals across participants. Asterisks denote significance from zero (Wilcoxon rank sum
test), and asterisks above horizontal lines indicate significant differences between color pairs (Post-hoc two-sided Wilcoxon tests). n.s: p > 0.05, *p <

0.05, **p < 0.01, ***p < 0.001. C) Left: Average power values for black and RGB colors, similar to (B-left), with horizontal lines indicating a cluster of
significant differences (two-sided Wilcoxon tests, 1000 permutations, cluster-forming threshold Z > 1.96, corrected significance threshold p < 0.05).
Right: Topographies depict differences between black and RGB colors in the alpha band during the 930- 1360 ms time windows. Stars indicate significant
sites (5000 permutations, cluster-forming threshold Z > 2.51, corrected significance threshold p < 0.005).

tests,1000 permutations, cluster-forming threshold Z > 1.96,
the corrected significance threshold p < 0.05). Figure 4C-
right demonstrates the topoplot of Z-valued for the two-sided
Wilcoxon test for black and RGB in theta-band power at
70 - 140 ms (top) and 800 - 900 ms (bottom) after the
stimulus onset. Subsequently, the statistical analysis indicates
significant sites in top: O1-Oz-POz-P2-Pz-P8-O2-PO4, and
bottom: Oz-O1-PO7-P5-P7-POz-PO3 (5000 permutations,
cluster-forming threshold Z > 2.35, corrected significance
threshold p < 0.005).

Figure 5A shows the time-frequency average of power
plots extracted with Morlet Wavelets and based on Z-scored
baseline normalization (300-100 ms time-window before
stimulus onset) for 12 participants in the centro-parietal (P5,
P3, P1, Pz, P2, P6, CP3, Cp1, CPz, CP2, CP4, C3, C1,
Cz, C2, C4) electrodes for black(left), white(middle) and
RGB(right). Although the plot for all three stimuli illustrated
an evident increase in the power of beta immediately after
the stimulus, in the statistical analysis, this increase is only
significant in late periods for RGB stimuli (permutation test
with 1000 permutations, participant = 12, cluster-forming
threshold p < 0.05, corrected significance level p < 0.05).

However, there was no significant difference between the
stimuli (RGB vs. black, RGB vs. white, and black vs. white)
for the beta band. On the other hand, it can be seen that in all
three stimuli, alpha has been suppressed after 200 ms post-
stimulus onset, and this suppression for black color happens
in late periods and continues for a longer duration, while
for white and RGB color it only lasts shorter. The statistical
analysis showed this suppression was insignificant in any
stimuli. However, a significant difference can be seen in the
comparison between the stimuli analyzed in panels B and C.

The average power of alpha-band frequency (8-12 Hz) for
black, white, and RGB color is shown in Figure 5B-left. The
power of the black color has decreased compared to baseline
activity in late periods. At the same time, an increase is
observed in the white and RGB color. There is a significant
difference between colors in the 1000 - 1180 ms (within-
subject rmANOVA, permutation test with 1000 permutations,
participant = 12, cluster-forming threshold p < 0.05,
corrected significance level p < 0.05). Figure 5B-right
depicts the bar plot of averaged power values across the time
window of significant periods in panel B-left. The averaged
power of each color: black mean value −0.25 ± 0.18, white
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mean 0.81±0.55, and RGBmean 0.93±0.43. An rmANOVA
showed a significant difference between colors (F(2,10) =

5.34, p< 0.03). Post-hoc two-sided Wilcoxon tests showed a
statistically significant difference between the black vs. RGB
(Z = 2.74, p < 0.007). There was no significant effect on
RGB vs. white or black vs. white. Considering that in the
right panel B, we showed a significant difference between
the response to the black and the RGB stimulus; therefore,
in panel C for the scalp EEG distribution, we focused on the
analysis between these two colors. (Figure 5C).

Figure 5C-left shows the power values of black and
RGB colors. There is a significant difference in a time
window of 930 - 1360 ms (two-sided Wilcoxon tests,1000
permutations, cluster-forming threshold Z > 1.96, the
corrected significance threshold p < 0.05). Figure 5C-right
shows the topoplot of the Z-valued of the two-sidedWilcoxon
test for black and RGB in alpha-band power at 930 - 1360 ms
post-stimulus onset. The statistical analysis indicates that
centro-parietal regions (P1-P3-Cp1-Cp3-C1) are significant
sites (5000 permutations, cluster-forming threshold Z > 2.51,
corrected significance threshold p < 0.005).
We performed an exploratory analysis of different areas

over 6 frequency bands to find the information difference in
phase consistency analysis.We reached a remarkable result in
the occipito-parietal (O1, Oz, O2, PO3, PO4, POz, PO7, PO8,
P7, P5, P3, P1, Pz, P2, P6, P8) region in the alpha frequency
band (Figure 6). Figure 6A demonstrates the average
time-frequency plots of within-subject Z-scored value for
ITPC values of 12 participants (blue(left), green(middle), and
red(right)). To extract time-frequency values similar to the
previous analysis, we used the Morlet Wavelets Convolution
method. Each time-frequency point was subtracted from
baseline periods (300 - 100 ms before stimulus onset).
As can be seen, the ITPC values increased for all three
stimuli immediately after the stimulus onset for frequencies
below 30 Hz and particularly below 15 Hz. However, this
increase was only significant in RGB stimuli (permutation
test with 1000 permutations, participant = 12, cluster-
forming threshold p < 0.05, corrected significance level
p < 0.05). Subsequently, this effect is not significant in the
comparison between stimuli. It is also evident that the ITPC
values in the alpha band in the late periods have decreased for
the RGB stimuli while it has increased for the white stimulus.
Yet, the black stimulus exhibits neither an increase nor a
decrease. Although this observation was not significant in the
statistical analysis for each stimulus, however, in comparison
between stimuli, the ITPC values for the alpha band differ
significantly, as discussed in panels B and C.

In Figure 6B-left, each line shows the ITPC average for
each color in alpha-band frequency (8-12 Hz). It is evident
that there is no substantial difference in the first 500 ms
post-stimulus onset. However, after 500 ms, the ITPC value
decreases for RGB and black stimuli, while it increases
for white. The within-subject rmANOVA statistical analysis
showed a considerable difference between colors in the time
window of 840 - 920 ms (permutation test with n = 1000,

cluster-forming threshold p < 0.005, corrected significance
threshold p < 0.05). Figure 6B-right indicates the bar plot of
averaged ITPC values across the time window of significant
periods in panel B-left (840 - 920 ms). The ITPCmean values
are as follows: black mean value −0.02 ± 0.05, white mean
value 0.15±0.05, and RGB’smean value−0.09±0.04. There
was a meaningful difference between colors (an rmANOVA,
F(2,10) = 17.97, p < 0.0004). Post-hoc two-sided Wilcoxon
tests showed a statistically significant difference between the
black vs. white (Z = 2.43, p < 0.02) and white vs. RGB
(Z = 2.98, p < 0.002). There was no significant effect on
RGB vs. black. As can be seen, the averages of white and
RGB are substantial compared to zero and also have a strong
significant difference from each other, therefore, in panel C,
we focused only on these two stimuli to check the Scalp
distribution for ITPC values.

Figure 6C-left shows the alpha ITPC values of white and
RGB colors. We observed a significant difference in a time
window of 800 - 970ms (two-sidedWilcoxon tests, 1000 per-
mutations, cluster-forming threshold Z > 2.2, the corrected
significance threshold p < 0.05). In Figure 6C-right, the
topoplots for the Z-value of two-sided Wilcoxon of white vs.
RGB in alpha ITPC are illustrated (at 800 - 970 ms after the
stimulus onset). The P6-P4-PO4-CP6-CP4-Oz-P2-PO8-Pz-
CPz-P8-POz-P1-O2-P3-CP2-CP1-PO3 electrodes are signif-
icant sites (5000 permutations, cluster-forming threshold
Z > 2.19, corrected significance threshold p < 0.01).

IV. DISCUSSION
Considering the importance of our daily encounters with
colored stimuli, especially the RGB, black and white,
studying the effect of these stimuli on brain activities is
essential. While previous studies have explored the effects
of color on brain responses, the majority of them have
primarily focused on comparing different color stimuli [77],
[78], [79], [80] or black vs white [81] without specifically
investigating the differences between black and white and
RGB stimuli. However, in our everyday experiences, when
individuals try to describe the color of an object, they often
use general categories such as a ‘‘white object’’, a ‘‘black
object’’, or a ‘‘colored object’’. While color is distinctly
different from black and white, it doesn’t imply that black
and white fall into the same category. By directly comparing
these three stimulus types (black, white, and RGB), our
study provides novel insights into the distinctive neural
mechanisms underlying color processing. The data-driven
approach we employed allowed us to identify discriminative
features that highlight the response patterns associated with
black/white and RGB stimuli. Our results showed significant
differences in color data information of black/white vs.
stimuli in the occipital, parietal, and centro-parietal regions
in the alpha and beta bands. Nevertheless, it is believed that
compared to achromatic colors, colored stimuli modulate
positive emotion and influence cognitive effort. Therefore,
these results can be interpreted in the form of emotionality
of color stimuli compared to black and white. These findings
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FIGURE 6. Color phase information in alpha-band frequency in occi-parietal (O1, Oz, O2, PO3, PO4, POz, PO7, PO8,P7, P5, P3, P1, Pz, P2, P6, P8)
electrodes | A) Time-frequency Z-scored p-values for ITPC for black, white, and RGB stimuli, focusing on frequencies under 30 Hz. Solid black outlines
indicate significant clusters (permutation test with 1000 permutations, n = 12, cluster-forming threshold p < 0.05, corrected significance level p < 0.05).
B) Left: Average ITPC values (Z-scored p-values) in the alpha band (8- 12Hz) show the clusters of significant differences in the time window of 840-
920 ms (within-subject rmANOVA, 1000 permutations, n = 12, cluster-forming threshold p < 0.005, corrected significance threshold p < 0.05). Right: Bar
plots illustrate these ITPC differences with error bars representing 95% confidence intervals across participants. Asterisks denote significance from zero
(Wilcoxon rank sum test), and asterisks above horizontal lines indicate significant differences between color pairs (Post-hoc two-sided Wilcoxon tests).
n.s: p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001. C) Left: Average ITPC values for white and RGB colors, similar to (B-left), with horizontal lines indicating
a cluster of significant differences (two-sided Wilcoxon tests, 1000 permutations, cluster-forming threshold Z > 2.2, corrected significance threshold p <

0.05). Right: Topographies depict differences between white and RGB colors in the alpha band during the 800 - 970 ms time windows. Stars indicate
significant sites (5000 permutations, cluster-forming threshold Z > 2.19, corrected significance threshold p < 0.01).

contribute to the existing literature by addressing a significant
research gap and offer a new perspective on the neural
processes involved in color perception.

The beta power of RGB colors relative to the baseline
activity is significantly higher than black colors. There
are different reports of beta oscillation related to the
brain’s emotional activity. Some authors reported that beta
oscillations reflect emotional processes and found that the
presentation of pleasant stimuli increased beta activity in
temporal and parietal areas [45]. In contrast, a study showed
that the pleasant stimuli compared to neutral stimuli, induced
higher beta responses only at the occipital recording sites
[46]. Furthermore, the beta oscillatory response was also
found to be high during anxiety [47] or in response to
anxious rumination [48]. However, the results of mentioned
studies indicate different effects on beta responses produced
by different types of stimuli and showed that emotionally
significant pictures could elicit a higher beta response in
the occipital region. Considering the literature reports that
compared the neutral design (achromatic colors: grayscale,
black andwhite), and colored design that modulates a positive
emotion, increased cognitive effort, and better learning

outcomes [22]. We concluded that the observed significant
difference in occipital electrodes in beta-band power is due
to the different emotional modulation of RGB and achromatic
colors on the brain.

Other important findings of the present study revealed a
significant effect in the alpha-band power analysis, which
brings us to the available evidence on the role of alpha activity
in various emotional and cognitive processes of the brain.
The occipital alpha band activity is seen predominantly at
the time of awakening, generally appearing primarily in a
state of relaxation [23]. Additionally, in the cognitive domain
(i.e., perception, attention, working memory), researchers
reported a decrease in alpha power in brain regions activated
during a cognitive task [49], [50], [51]. Evidence also shows
decreases in alpha power that may reflect cortical activation
induced by emotional stimulation [52], [53]. In the context
of emotional processes, however, findings are difficult to
integrate because they vary considerably due to variations in
the choice of stimulation, task instructions, time windows,
and topographies. Some authors reported an increase in alpha
power for emotionally significant stimuli [54], [55], [56].
Moreover, based on the cognitive literature, Event-Related
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Synchronization (ERS) of alpha might be involved in
emotional modulations of perception and attention. Thus,
it reported that the correlation of alpha power with emotional
arousal is due to increased neural inhibition induced by
affective attention [56]. In contrast, some studies reported
alpha-band desynchronized brain oscillations elicited by
emotional stimuli [57], [58], [59], [60], [61], [62], [63], [64].
However, the result of our study showed that in contrast to
white and RGB colors, black-colored stimulus produces a
negative alpha power value relative to baseline activity in the
certro-parietal regions. With an emphasis on the emotional
and psychological aspects of color perception, we suggest
that RGB colors and white stimuli probably produce more
emotional arousal than black, which may result in our
observed alpha behavior.

It has been proposed that phase coherence represents
a mechanism to optimize data processing by regulating
the brain’s response to the temporal configuration of task-
related information [65], [66], [67], [68]. The higher degree
of phase locking or consistency of the phase with the
timing of stimulus presentation across trials is reported to
be associated with attention [69], [70] and visual percep-
tion [71]. The present study found that the alpha-band ITPC
value of white-colored stimulus increased considerably at
800 - 1000 ms after stimulus onset. We suggest that this
increase in alpha-band phase coherence may be interpreted
as the result of extra attention or visual perception processes
that particular colors (e.g., white) modulate in the brain.
Furthermore, the color information could be transmitted
through phase synchronization of different areas associated
with these processes.

V. CONCLUSION: APPLICATIONS, LIMITATIONS, AND
FUTURE WORKS
The findings of this study regarding the differential brain
responses to black/white stimuli and RGB stimuli have
important implications for our understanding of visual
perception and the underlying neural mechanisms involved.
By employing a data-driven approach, we were able to
identify distinctive features that effectively discriminate
between these stimuli. This knowledge contributes to the
existing literature by addressing a significant research gap
in understanding how the brain processes and differentiates
between various types of visual stimuli. This resulted in
substantial differences in the power of beta and alpha-bands,
which are known to associate with emotional modulations
of perception, attention, and visual processes. Moreover, the
transmission of color information during the presentation
of black and white vs. RGB stimuli may correlate with
different degrees of alpha-band phase locking through
occipito-parietal regions of the brain.

The practical implications of these findings extend beyond
the realm of neuroscience, with potential applications in
fields such as psychology including psychological assess-
ments and diagnostic tools. By understanding the specific
neural mechanisms associated with these stimuli, it may be

possible to develop more sensitive and precise psychological
assessments that utilize color stimuli [13], [23], [82], [83],
[84], [85]. This could be particularly relevant in areas such
as visual psychophysics, where color perception plays a
critical role. In addition, the study’s findings have practical
implications for fields such as industrial and environmental
psychology [86], [87]. Understanding how different types of
stimuli impact brain responses can inform the design of visual
displays, user interfaces, and environmental settings to opti-
mize human perception, attention, and well-being. By con-
sidering the specific effects of black/white and RGB stimuli,
psychologists can provide evidence-based recommendations
for creating visually stimulating and engaging environments.
Another interesting relevant application is neuromarketing
which has been explored in recent studies [88].

Furthermore, it is important to highlight the potential prac-
tical implications of understanding the response mechanisms
of black, white, and RGB stimuli. By gaining a deeper under-
standing of how the brain processes these stimuli, we can
explore their applications in biofeedback or brain-computer
interface (BCI) systems. If we can discern the specific
response mechanisms associated with black, white, and RGB
stimuli, it opens up the possibility of utilizing them in these
systems to control the power and phase consistency of brain
activity. This knowledge could facilitate the development of
more effective and precise techniques for utilizing visual
stimuli in neurofeedback paradigms or BCI applications,
ultimately leading to advancements in cognitive training,
rehabilitation, and human-computer interaction. Therefore,
our study not only contributes to fundamental research
on color perception but also holds promising implications
for practical applications in the field of BCI systems. For
instance, in the context of BCI and Steady-State Visually
Evoked Potentials (SSVEP), numerous studies have explored
the impact of color stimulus selection on SSVEP accuracy,
response time, Information Transfer Rate (ITR), and other
performance metrics. These studies have highlighted the
significance of color choice in optimizing SSVEP-based
BCI systems [72], [73]. By investigating the effects of
different colors and frequencies on the Signal-to-Noise
Ratio (SNR) of SSVEP responses, our study contributes
valuable complementary insights to the existing research
in this field. Specifically, our findings shed light on the
suitability of various colors in SSVEP paradigms and can
inform the selection of optimal colors for achieving enhanced
performance and usability in SSVEP-based BCI applications.

The current study has several limitations that should be
acknowledged. Firstly, the use of a darkroom for EEG signal
acquisition may have influenced the participants’ visual
experience and could potentially impact the generalizability
of the results to real-world settings. Additionally, the study
employed a limited number of isoluminant colors, which may
not fully capture the complexity and variability of natural
color stimuli. Furthermore, the sample size of the study was
relatively small, consisting of 12 participants; increasing the
number of participants would enhance the statistical power
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and generalizability of the findings. Furthermore, the other
limitation of this study is the failure to record and evaluate
the rate of the emotional valence of the color stimuli by the
participants. Lastly, we acknowledge the gender imbalance in
our participant pool due to the number of female participants
(3 females) compared to the number of male participants
(9 males). This matter is still open to further investigation
in future works. It is important to consider these limitations
when interpreting the results. Future research should aim to
address these limitations by conducting similar studies in
more ecologically valid settings, using a broader range of
colors in RGB, CIELAB, and Derrington-Krauskopf-Lennie
(DKL) color spaces, increasing the sample size to enhance the
robustness and applicability of the findings, and quantifying
and finding the correlation between subjects’ emotional
valence responses and brain signals. By overcoming these
limitations, future works can provide a more comprehensive
understanding of the brain’s response to color stimuli and
further advance our knowledge in this field.
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