
Received 24 December 2023, accepted 31 January 2024, date of publication 13 February 2024, date of current version 22 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3365674

A Cloud Monitor to Reduce Energy Consumption
With Constrained Optimization of Server Loads
ERGUN BIÇICI
Huawei Turkey Research and Development Center, 34768 Istanbul, Turkey

e-mail: ergun.bicici@huawei.com

ABSTRACT As the energy consumption of cloud computing increases, resource optimization becomes
more important in this dynamically changing computation environment. Cloud monitor is an effort for
better job distribution models and cloud load optimization on cloud computing platforms to reduce energy
consumption, decrease computation and waiting time in the queue, and improve the overall utilization of
resources. We use linear programming to optimize the distribution of jobs whose arrival and duration times
are Poisson distributed to the servers. Our simulations show 1) improvements in job distributions with better
correlation with the energy consumption of servers, 2) possible increased utilization of resources in some
settings, and 3) significant reductions in energy consumption that reach 42%. We present the mathematical
formulation of our model as well as how to represent it as a linear programming problem. The constraints
introduced allow the mathematical definition of the optimal distribution, optimal redistribution, and optimal
elasticity for cloud computing. Cloud monitor has potential to contribute to more sustainable and efficient
cloud computing systems.

INDEX TERMS Cloud computing, cloud load optimization, energy reduction.

I. INTRODUCTION
Cloud computing is now consuming 1.5% of the global
electricity [1] and it is estimated that in 2030, data centers
will use around 3% to 13% [2]. Cloud computing load
optimization is gaining interest with a shift towards serverless
infrastructures [3]. Optimizing and scheduling container
loads on the cloud can be solved using integer linear
programming [4], in which a scheduling model based on
the allocation of virtual machines (VMs) to available nodes
and their redistribution under certain conditions is defined.
In [4], integer linear programming was used to satisfy the
relevant constraints that determine the capacity of the data
center, nodes, and task requests of the VMs. In a simulation
of energy savings for different scheduling methods where
VMs start with tb inter-arrival times and last for tµ duration,
using migration can decrease the energy consumption by up
to 42% for tb = 25 seconds and tµ = 30 seconds [4], which
does not satisfy the stability condition of the queueing theory
(Section II). Simulations were run with 100 heterogeneous

The associate editor coordinating the review of this manuscript and

approving it for publication was Oussama Habachi .

physical nodes, each with one CPU with 1000, 2000,
or 3000 Million Instructions Per Second (MIPS) processing
power, 8 GB RAM, and 1 TB disk. For utilization, two
threshold settings can be used where the lower is for deciding
the evacuation of all VMs from the node and switching it off
if the utilization is lower to decrease energy consumption and
the higher threshold is for redistributing someVMs to prevent
delays in the service [5].

Dynamic load-balancing is a technique for the distribution
of computing resources and workloads between systems, net-
works, and servers, and current nature-inspired approaches
were reviewed in [6]. A linear programming approach for
distributing the workload among a minimum number of
servers was developed to reduce the costs of a usage-based
pricing model for cloud computing [7]. A mixed integer
linear programming model to optimize the selection of
cloudlets, clouds that are well-connected and distributed, and
computing resource allocation was proposed [8]. A cloudlet
is a computer or a cluster of computers with an internet
connection [9].

A machine learning-based approach for workload fore-
casting and energy state estimation in cloud data centers is

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 25265

https://orcid.org/0000-0002-2293-2031
https://orcid.org/0000-0001-7121-5760

E. Biçici: Cloud Monitor to Reduce Energy Consumption With Constrained Optimization

proposed in [10] to aid resource management decisions. For
workload prediction, they found that Gated Recurrent Unit
(GRU) achieve the best results where they choose regression-
based methods to estimate numerical output variables like
CPU utilization. For energy state estimation, they use semi-
supervised affinity propagation based on transfer learning
(TSSAP) for classification when identifying the VM energy
state classes such as low, high, and critical. In [10], they
model workload forecasting and energy state estimation
as separate tasks and they do not show performance
improvements in an overall cloud architecture where their
predictionmodels are used.Whereas, we show improvements
in a cloud computing environment when our scheduling
algorithm is used.

The non-intrusive power disaggregation (NIPD) tech-
nique [11] uses power mapping functions between the states
of servers and their power consumption to disaggregate
power consumption data into individual components such as
servers, storage, and networking equipment. They use dstat
tool [12] to collect 6 metrics: total CPU utilization, total
memory utilization, disk reading/writing, and network traffic
receiving/sending statistics. The technique enables more
efficient energy management in data centers and is found to
have an error rate of 2% at server level. However, NIPD is
only an estimation technique for data centers that uses real-
time usage data, which need not be available for prediction
purposes and does not provide a solution to dynamic load
balancing.

Another approach for maximizing revenue andminimizing
power consumption on the cloud uses Lyapunov optimization
for VM scheduling [13]. They optimize for increasing the
revenue and subtracting the cost from power usage efficiency.
Their VM scheduling algorithm prioritizes VMs according to
their queue backlogs. A reliability-aware server consolidation
strategy is proposed to perform energy-efficient server con-
solidation while considering reliability and profitability [14].

An algorithm that prioritizes the tasks regarding their
execution deadline is proposed in [15] and the Dynamic
Voltage and Frequency Scaling (DVFS) method is used to
reduce the consumed energy of the machines for processing
low-priority tasks. DVFS is a power management technique
that adjusts the voltage and frequency of a processor or
system to match the current workload. This technique is used
to reduce power consumption and improve energy efficiency.
Their simulations show that energy consumption is optimized
by 12%. However, their approach is heuristic in nature
using fixed thresholds and workflow based, which hinders
its applicability. Another DVFS based method using a multi-
criteria scheduling algorithm to manage energy consumption
on the cloud system through energy scaling decisions is
proposed [16].
In [17], an Adaptive Multi-Objective Teaching-Learning

Based Optimization (AMO-TLBO) algorithm for dynamic
resource allocation in cloud computing is presented. They
try to decrease the makespan or the overall completion
time of workflow tasks and the total monetary costs from

TABLE 1. Related work categories.

computation and communication and increase resource
utilization. In all of these metrics, they obtain improvements
compared with the other three methods they compared with
over simulations with 100 tasks. However, this approach is
also heuristic in nature and workflow based, which again
hinders its applicability.

The components of applications can be served with
microservice components on the cloud which communicate
over well-defined APIs. An integer linear programming
model for CPU optimization of microservices is provided
in [18] where 50% reductions in CPU reservations is
achieved.

Another approach optimize cloud computing resources
according to actual demand to reduce themonetary costs [19].
They predict the usage of the resource for the next 7 days
and using a combination of multiple predictions from models
including decision trees and neural networks, they calculate
a cost-optimal cloud resource configuration every hour using
a particle swarm optimization algorithm. Over the 10 month
period covered by the tests, the costs are reduced by 85%with
savings of 6128 Euros.

In Table 1, we present the related work in tabular format.
The demand for a resource can increase, decrease,

or remain constant. Even if demand does not increase,
we would like to optimize the distribution of consumers to
resources and adapt the cloud accordingly. These trends also
help determine the most likely scenarios to be prepared for.

The cloud monitor uses results from queueing theory
(Section II) during statistical simulation experiments that
provide possible contexts for distribution and redistribution
where server and job specifications are obtained with
normally distributed statistics. Jobs are started and moved
according to the energy efficiency of the cloud computing
environment optimized according to relevant variables and
constraints (Section III). Section V discusses the simulation
design and metrics. Statistical variations provide us with
the complexity we are interested in modeling, while we
monitor the performance and its improvement using various
evaluation metrics and present the results of our experiments
(Section VI). Section VII concludes.

II. QUEUEING THEORY IN CLOUD MONITOR
According to queueing theory, the utilization factor is ρ =
λ
nµ where λ is the arrival rate and nµ is the transmission rate
in packets per second with n channels. Therefore, λ = 1/tb
for tb represents the time between jobs and µ = 1/tµ for tµ
represents the average duration of the jobs. A queueingmodel

25266 VOLUME 12, 2024

E. Biçici: Cloud Monitor to Reduce Energy Consumption With Constrained Optimization

with n servers, Poisson arrivals, and exponential service times
is referred to as M/M/m and the relevant equations are [20]:

ρ =
λ

nµ
utilization

ρ < 1stability condition [21]

πk =


π0

k−1∏
i=0

λ

(i+ 1)µ
k ≤ n

π0

n−1∏
i=0

λ

(i+ 1)µ

k−1∏
i=n

λ

nµ
k > n

steady-state prob.

πk =


π0

(
λ

µ

)k 1
k!
for k ≤ n

π0

(
λ

µ

)k 1
n! nk−n

for k > n
steady-state prob.

1 = π0

[
n−1∑
k=0

(
λ

µ

)k 1
k!

+

(
λ

µ

)n 1
n!(1 − ρ)

]
steady-state prob.

pQ =

∞∑
k=n

πk =
π0(nρ)n

n!(1 − ρ)
prob. of waiting in the queue

(1)

Poisson distribution is used to model the probability of
independent events within an interval with a known average
arrival rate, λ1:

P(k jobs in 1 minute) =
λke−λ

k!
(2)

We used a job postponement model that postpones non-
allocated jobs by 3

√
i

λ
for 0 ≤ i ≤ n2 postponements:∫ i

i−1

√
xdx ≤

√
k ≤

∫ i+1

i

√
xdx

∫ n2−1

0

√
xdx ≤

n2∑
i=1

√
i ≤

∫ n2

1

√
xdx

2(n2 − 1)3/2

3
≤

n2∑
i=1

√
i ≤

2n3

3

twait ≃
1
λ

4n3

n2 + 1
average waiting time

T ≃
1
µ

+
1
λ

4n3

n2 + 1
average task time

T =
k
λ

Little’s theorem

k ≃
λ

µ
+

4n3

n2 + 1
jobs in the system

kQ ≃
4n3

n2 + 1
jobs in the queue (3)

For each task, the number of feasible servers changes based
on the capacities of the servers and requirements of the tasks.

1https://en.wikipedia.org/wiki/Poisson_distribution

Owing to this dynamism, the theoretical results can both over-
and under-estimate T and k. We also recorded the expected
experimental queueing statistics based on the averages of the
random variable values and actual queueing statistics based
on the throughput of the system. For instance, when ni stores
the number of feasible servers for task i, the expected cloud
queue utilization and waiting time are determined as follows:

E[ρ] =

(
m∑
i=1

λi

niµi

)
/m (4)

twait,i ≃
2
λi

(n2i − 1)3/2 + n3i
n2i + 1

(5)

E[twait,i] ≃

(
m∑
i=1

twait,i

)
/m (6)

III. OPTIMIZING CLOUD COMPUTING LOADS
Optimization of the job load on the cloud and related
scheduling decisions regarding where to allocate jobs and
which server to empty to improve efficiency can be
solved with integer linear programming [4]. Motivated
by similar goals, we define and identify relevant vari-
ables and a set of constraints for our cloud computing
environment for energy efficiency [22]. We maintain the
number of threads (p), memory (m), disk size (d), and
watts (w) of jobs and servers. The relevant variables are as
follows:

n number of servers
xu[j] = 1 server j is used
xa[i, j] = 1 job i is in server j (distribution, allocation)
xm[i, j, k] = 1 job i leaves server j to go to server k

(redistribution, moves)
pji , mji , dji , wji consumption of job ji
pj, mj, dj, wj, cj servings of server j
p̂j, m̂j, d̂j, ŵj currently consumed resources of server j
fw(i, j, k) watt estimate of moving job i from j to k
ft (i, j, k) time estimate of moving job i from j to k

in seconds
ft (i) estimated remaining runtime of job i

in seconds

A. SCHEDULING JOBS
Table 2 lists the constraints used for the optimal distribution
and optimal redistribution of jobs to the computing nodes.
A computation center with heterogeneous computers might
prefer minimizing the total energy consumption, which can
incentivize distribution and redistribution towards nodes
that are more energy efficient and a more homogeneous
computational center might prefer maximizing idle energy
consumption so that more nodes will be running empty.
Linear programming was used for optimization. We are
interested in learning the performance gains from the
redistribution. Figere 1 present examples of redistributions
and the distribution of the jobs to servers before and
after.

VOLUME 12, 2024 25267

E. Biçici: Cloud Monitor to Reduce Energy Consumption With Constrained Optimization

TABLE 2. Constraints used during optimization.

B. OPTIMIZATION COST FUNCTIONS
We consider the power consumption for both the distribution
and redistribution cost functions. If we use only the power
consumption of servers when selecting which server to
allocate to, our linear programming solution fails when the
available server has the highest power consumption for two
reasons:

• server processing and memory capacities enter into the
optimization only as constraints to satisfy

• the result from linear programming can contain partial
distributions to satisfy the constraints.

We would like to obtain a cost function that considers these
constraints. The variables used are:

pv pv = [pv1 , pv2 , . . . , pvm]
T for VM threads

p p = [p1 − p̂1, p2 − p̂2, . . . , pn − p̂n]T

for server threads
mv mv = [mv1 ,mv2 , . . . ,mvm]

T

for VM memories
m m = [m1 − m̂1,m2 − m̂2, . . . ,mn − m̂n]T

for server memories
cpw(c,w) =

c
w performance per watt is the computation

performance per watt
wpc(c,w) =

w
c inverse of cpw(c,w)

c cj = wpc(ĉj, ŵj)

The cost we optimize considers the watts per computation,
the processors used, and the memory used by the tasks.

Equation (7) attempts to fit to the server that has the most
space while also considering the energy used.

c′ = c
(
max

(
sign(pv − p),sign(mv − m)

)
| pv − p | | mv − m |

)
(7)

Equation (8) attempts to fit to the servers that have the best
fit while also considering the energy used.

c′ = c
(
max

(
sign(pv − p),sign(mv − m)

)
| f (pv − p)f (mv − m) |

)
(8)

With Equation (8), we consider ϵ-sensitive sigmoid loss,
which is in [−1, 1]:

f (x) =


2σ (x) + 1 + ϵ for x ≥ ϵ

1 for |x| ≤ ϵ

1 + ϵ/2 otherwise

(9)

where ϵ > 0. A graphical representation is shown in Figure 2.
We want the loss to be greater than ϵ outside the ϵ-insensitive
region for continuity:

2
(

1
1 + e−x

− 0.5
)

≥ ϵ (10)

x ≥ log(1 + ϵ) − log(1 − ϵ) (11)

Since x ≥ ϵ ≥ log(1 + ϵ) − log(1 − ϵ), our loss
function is always greater than ϵ outside the ϵ-insensitive
region.

IV. LINEAR PROGRAMMING FORMULATION
Linear programming is a convex programming model
that is in O(n2m) for m parameters for the constraints
of vector dimensions of size n with the following
optimization [23]:

minimizecT x

s.t.aTi x ≤ bi, i = 1, . . . ,m

25268 VOLUME 12, 2024

E. Biçici: Cloud Monitor to Reduce Energy Consumption With Constrained Optimization

FIGURE 1. Examples of redistribution and distribution before and after.
x-axis is the number of CPUs used for each task and y-axis represents the
servers.

where c, a1, . . . , am ∈ Rn and b1, . . . , bm ∈ R are program
parameters.

The variables used are in Table 3.
xmn is initialized as xmn = 111n ⊗ 000m. vec(.) produces

vectorization of the argument by stacking its columns. ⊗ is
the Kronecker product where A⊗B ∈ Rmp×nq for A ∈ Rm×n

and B ∈ Rp×p.

A. OPTIMAL DISTRIBUTION
Optimal distribution is found with the linear program:

minimize cTmnxmn
s.t. (Dn,n ⊗ 111m)xmn = 111n

(Dn,n ⊗ pTv)xmn ≤ p

(Dn,n ⊗ mTv)xmn ≤ m

− (Dn,n ⊗ 111m)xmn ≤ −

⌈∑m
i=1 p̂j

maxj pj

⌉
(12)

The total computational cost is in (mn)24n. Linear pro-
gramming does not necessarily provide integer distributions.
Therefore, we run the optimization once to identify the
possible servers to allocate to and then test positive entries
for feasibility according to the distribution constraints to pick
the minimum cost solution.

B. OPTIMAL REDISTRIBUTION
• The optimal redistribution finds xr where xr [n i + j]
indicates that job i is redistributed to server j where the
relevant equations are presented in Table 4.
Optimal redistribution variables are listed below:

[
⧹a⧹
]

= diag(a)[
⧹
111Tmx

T
0 ⧹

]−1
→ inverse of the current job distribution

to servers

1110n → currently unused servers[
⧹
1110n⧹

]
→ diagonal

−→v (.) → function that vectorizes the argument

x0 =

[
⧹
111Tmx

T
0 ⧹

]−1
x0 → normalized initial distribution

tnmax =
(
x0
[
⧹tm⧹

])
max−

→ set as the maximum of servers (row, max−)

tmmax =
([⧹

111Tmx
T
0 ⧹

]−1[
⧹tnmax⧹

]
x0
)
max|

→ set as the maximum at the allocated server

(column,
|

max)

x0,tmmax
=

[
⧹
111Tmx

T
0 ⧹

]−1[
⧹tnmax⧹

]
x0

→ set as the allocation with maximums

(Dm ⊗ 111Tn) xr → jobs that migrate

(111Tm ⊗ Dn) xr → servers that are redistributed to

x0 (Dm ⊗ 111Tn) xr
→ number of redistributing jobs at servers where

jobs migrate

x0 (111Tm ⊗ Dn) xr
→ jobs at those servers that are redistributed to

TS = x0,tmmax
(Dm ⊗ 111Tn)

→ time at emptied servers, S for source

TT = tTmmax
⊗

[
⧹
1110n⧹

]
→ time at empty moved to servers, T for target

The relevant constraints (e.g. if a job is redistributed, the
target server cannot be emptied) are presented in Table 5.
Explanations:
– The constraint in Equation (15) is for redistribution

from a single server.
– The constraint in Equation (16) is more restrictive

than that in Equation (17) because a single server

VOLUME 12, 2024 25269

E. Biçici: Cloud Monitor to Reduce Energy Consumption With Constrained Optimization

FIGURE 2. ϵ-sensitive sigmoid loss for spacey-fit (top) and best-fit cost function distribution. y-axis is f (x) and x-axis is x . The last plot zooms.

FIGURE 3. Indicator matrices: (top left) IV
n×mn ∈ Rn×mn = Dn,n ⊗ 111m, (top right) IS

n×mn2 ∈ Rn×mn2
= Dn,n ⊗ (111n ⊗ 111m), (bottom left)

IS
n×mn2,m

∈ Rn×mn2
= Dn,n ⊗ (b1

n ⊗ 111m), (bottom right) IS
n×mn2,m1

∈ Rn×mn2
= 111n ⊗ (b1

n ⊗ Dm,m).

TABLE 3. Linear programming variables.

j can affect up to pj jobs. However, when we
want k > 1 redistribution sources, we use also
Equation (16).

– Partial cost computation can also be considered
to model the cost of moving a job to a running
server.

25270 VOLUME 12, 2024

E. Biçici: Cloud Monitor to Reduce Energy Consumption With Constrained Optimization

TABLE 4. Optimal redistribution equations.

TABLE 5. Optimal redistribution constraints.

– The total computational cost is in (mn)2(5n + m +

mn).
– Computational complexity ofA⊗BwhereA ∈ Rm,n

and B ∈ Rp,r is in O(mnpr) therefore, we attempt
to decrease ⊗ operations.

– Redistribution times are summed and finish times
are maximized within all jobs of a server that is
being redistributed.

– Minimization does not consider the energy cost of
jobs moving to servers already running. This can be
added in proportion.

– The normalization in TT = tTmmax
⊗

[
⧹
1110n⧹

]
works

because redistributions are restricted to source from

a single server. TT = tTm ⊗

[
⧹
1110n⧹

]
sums the

finish times of the moving jobs at T . We are

interested in their maximum because of their
parallelism.

• The optimal redistribution of servers finds xr where
xr [n i+ j] indicates that server i is redistributed to server
j where the relevant equations are presented in Table 4.
The variables for the optimal redistribution of servers are
as follows:

x ′

0 → current allocation with only used n1 servers[⧹n1 → n⧹
]

→ maps n1 S servers to T servers

TS =
[⧹n1 → n⧹

]([⧹
tnmaxT⧹

]
⊗ 111Tn

)
→ time at emptied servers, S for source

TT = tnmax
T

⊗

[
⧹
1110n⧹

]
→ time at empty moved to servers, T for target

VOLUME 12, 2024 25271

E. Biçici: Cloud Monitor to Reduce Energy Consumption With Constrained Optimization

TABLE 6. Optimal redistribution of servers.

C. OPTIMAL ELASTICITY
The optimal elasticity of jobs finds xr where xr [n i + j]
indicates that job i is redistributed to server j where the
relevant equations are given in Table 7.

Variables about optimal elasticity are:

TS = x0,tmmax
(Dm ⊗ 111Tn) time at emptied servers

S for source

TT = tTmmax
⊗

[
⧹
1110n⧹

]
time at empty moved to servers

T for target

Explanations:

• Only the jobs at those servers whose utilization values
are above the service-level agreement (SLA) determined
maximum are considered candidates for redistribution
and only some of those jobs need to be redistributed.

• We do not have watts or time as constraints in the
optimization however we minimize them.

• a is a scaling factor for each server, where ai = α(2 −

ui) > 1 for source servers is inversely proportional to
their remaining utilization and 1 for others.

• As long as we redistribute from a single server,
normalization of TT works.

• S ̸= T since the candidate pools for them are different.

V. SIMULATION DESIGN AND METRICS
We kept statistics and logs about the cloud’s performance.

Load utilization:processor and memory load proportion vs.
processor and memory load in the queue. We also
compared the difference with the load when using a
uniform distribution.

Energy reduction:compared with uniform distribution, how
much energy can we save with optimal distribution
according to energy consumption for different SNR,
signal to noise ratio, SNR =

µ
σ
, scenarios for watt

distribution of servers.

The SNR of the energy distribution and constraints affects
whether redistribution is possible. Optimizing for watts per
processing power also makes sense. For instance, this is
higher for GPUs, which have recently been used more
frequently for computing.

When the servers are full or ρ > 1, we see a meteor
shower pattern (. . .−+) where a ’.’ represents no change, ’-’
represents job removal, and ’+’ represents job addition:

. − + ..

. . . − + − + .. − +

. . . . − + − +

. − + − + − +

− + − + − + − +..

. − − + + .. − +

. − + − +

. − + − +

. − + . . . − +..

VI. RESULTS AND EVALUATION
We stored the kilowatt energy used, average queue wait time,
parallel computation and memory utilization, correlation
of server watts with server load, queueing theory related
utilization, and total time spent in four experimental settings:

• random distribution,

25272 VOLUME 12, 2024

E. Biçici: Cloud Monitor to Reduce Energy Consumption With Constrained Optimization

TABLE 7. Optimal elasticity equations.

FIGURE 4. The number of jobs that end decrease with increasing multiplier ρ when jobs are dropped after postponement limit.

• optimal distribution,
• optimal distribution and redistribution after jobs end,
• optimal distribution and redistribution after jobs end and
before jobs are allocated.

The number of servers used can be 5, 10, 20, or 50.
We selected queueing theoretical utilization, ρ, from
[0.05, 0.15, 0.25, 0.5, 0.99, 1.5, 2, 3, 5, 10] as a multiplier to
set tb =

tµ
nρ , which for ρ > 1, owing to low tb, increase

the drop rate when we drop jobs after the postponement limit
of n2. The number of jobs that survived or ended during the
simulation is shown in Figure 4. In the following results,
we disabled dropping jobs to compare their performance with
an equal number of jobs processed.

Our findings in simulations of 500 jobs are:
• Queueing theory actual utilization improves with
increased number of servers and when the number

VOLUME 12, 2024 25273

E. Biçici: Cloud Monitor to Reduce Energy Consumption With Constrained Optimization

FIGURE 5. Queueing theory actual utilization improve with increasing number of servers.

FIGURE 6. Average queue length decrease with increasing number of servers.

of servers is 50, the theoretical utilization is passed
(Figure 5).

• The average queue length decreases with increas-
ing number of servers and improves over random

25274 VOLUME 12, 2024

E. Biçici: Cloud Monitor to Reduce Energy Consumption With Constrained Optimization

FIGURE 7. Correlation of the job distribution with watt of servers improve with increasing number of servers.

FIGURE 8. Utilization of parallel computation decrease with increasing number of servers.

distribution when the number of servers is 50
(Figure 6).

• The correlation of the job distribution with
the watts of servers improves with increasing

VOLUME 12, 2024 25275

E. Biçici: Cloud Monitor to Reduce Energy Consumption With Constrained Optimization

FIGURE 9. Utilization of memory stay around 0.5 with increasing number of servers.

FIGURE 10. Energy used in kW is significantly reduced (up to 42% with 20 servers) compared with random
distribution.

number of servers (Figure 7). This correlation is
an important indicator of reduction in the
energy.

• Utilization of parallel computation decreases and of
memory stays around 0.5 with increasing number of
servers (Figure 8 and 9).

25276 VOLUME 12, 2024

E. Biçici: Cloud Monitor to Reduce Energy Consumption With Constrained Optimization

• The energy used in kW was significantly reduced (up
to 42% with 20 servers) compared with the random
distribution (Figure 10).

• The average waiting time in the queue during the
simulation exhibited a trend similar to that of the kW
used.

• Total simulation time show similar trend with the kW
used.

These findings demonstrate the effectiveness of the cloud
monitor in optimizing job distribution, reducing energy
consumption, and improving resource utilization in cloud
computing environments. Overall, the results of the simu-
lations provide evidence of the cloud monitor’s ability to
achieve significant reductions in energy consumption and
improvements in resource utilization.

VII. CONCLUSION
Cloud monitor is an effort for better job distribution models
on cloud computing platforms to reduce energy consumption,
decrease computation and waiting time in the queue, and
improve the overall utilization of resources. We present our
linear programming formulation and the relevant equations.
Our simulations show (i) improvements in job distributions
with better correlation with the energy consumption of
servers, (ii) possible increased utilization of resources in
some settings, and (iii) significant reductions in energy
consumption that reach 42%. We provide important results
for the optimization of cloud computing platforms for
energy efficiency and resource utilization, which contribute
to the development of more sustainable and efficient cloud
computing systems.

ACKNOWLEDGMENT
The author did not use any AI generated text. The work was
conducted while the author was employed by TÜBİTAK.

REFERENCES
[1] G. Kamiya. (2022). Data Centres and Data Transmission Networks,

IEA. [Online]. Available: https://www.iea.org/reports/data-centres-and-
data-transmission-networks

[2] A. Andrae and T. Edler, ‘‘On global electricity usage of communication
technology: Trends to 2030,’’ Challenges, vol. 6, no. 1, pp. 117–157,
Apr. 2015.

[3] M. Maximilien, D. Hadas, A. Danducci II, and S. Moser. (Oct. 2022).
The Future is Serverless. [Online]. Available: https://developer.
ibm.com/blogs/the-future-is-serverless/

[4] C. Ghribi, ‘‘Energy efficient resource allocation in cloud computing
environments,’’ Ph.D. thesis, Inst. Nat. des Telecommun., Paris, France,
2014.

[5] A. Beloglazov and R. Buyya, ‘‘Energy efficient resource management in
virtualized cloud data centers,’’ in Proc. 10th IEEE/ACM Int. Conf. Clust.,
Cloud Grid Comput., 2010, pp. 826–831.

[6] S. Rani, D. Kumar, and S. Dhingra, ‘‘A review on dynamic load balancing
algorithms,’’ in Proc. Int. Conf. Comput., Commun., Intell. Syst. (ICCCIS),
Nov. 2022, pp. 515–520.

[7] V. Borovskiy, J. Wust, C. Schwarz, W. Koch, and P. D. A. Zeier, ‘‘A linear
programming approach for optimizing workload distribution in a cloud,’’
in Proc. 2nd Int. Conf. Cloud Comput., GRIDs, Sep. 2011, pp. 127–132.

[8] L. Liu and Q. Fan, ‘‘Resource allocation optimization based on mixed
integer linear programming in the multi-cloudlet environment,’’ IEEE
Access, vol. 6, pp. 24533–24542, 2018.

[9] Y. Jararweh, L. Tawalbeh, F. Ababneh, A. Khreishah, and F. Dosari,
‘‘Scalable cloudlet-based mobile computing model,’’ Proc. Comput. Sci.,
vol. 34, pp. 434–441, Jan. 2014.

[10] T. Khan, W. Tian, S. Ilager, and R. Buyya, ‘‘Workload forecasting and
energy state estimation in cloud data centres: ML-centric approach,’’
Future Gener. Comput. Syst., vol. 128, pp. 320–332, Mar. 2022.

[11] G. Tang, W. Jiang, Z. Xu, F. Liu, and K. Wu, ‘‘NIPD: Non-intrusive power
disaggregation in legacy datacenters,’’ IEEE Trans. Comput., vol. 66, no. 2,
pp. 312–325, Feb. 2017.

[12] Die.net. (2023). Linux Man Page: Dstat. [Online]. Available:
http://linux.die.net/man/1/dstat

[13] F. Liu, Z. Zhou, H. Jin, B. Li, B. Li, and H. Jiang, ‘‘On arbitrating the
power-performance tradeoff in SaaS clouds,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 10, pp. 2648–2658, Oct. 2014.

[14] W. Deng, F. Liu, H. Jin, X. Liao, and H. Liu, ‘‘Reliability-aware server
consolidation for balancing energy-lifetime tradeoff in virtualized cloud
datacenters,’’ Int. J. Commun. Syst., vol. 27, no. 4, pp. 623–642, Apr. 2014.

[15] A. Javadpour, A. K. Sangaiah, P. Pinto, F. Ja’fari, W. Zhang,
A. M. H. Abadi, and H. Ahmadi, ‘‘An energy-optimized embedded load
balancing using DVFS computing in cloud data centers,’’ Comput.
Commun., vol. 197, pp. 255–266, Jan. 2023.

[16] M. Nazeri and R. Khorsand, ‘‘Energy aware resource provisioning for
multi-criteria scheduling in cloud computing,’’ Cybern. Syst., pp. 1–30,
May 2022.

[17] A. Moazeni, R. Khorsand, and M. Ramezanpour, ‘‘Dynamic resource allo-
cation using an adaptive multi-objective teaching-learning based optimiza-
tion algorithm in cloud,’’ IEEE Access, vol. 11, pp. 23407–23419, 2023.

[18] R. Erdei and L. Toka, ‘‘Minimizing resource allocation for cloud-native
microservices,’’ J. Netw. Syst. Manag., vol. 31, no. 2, p. 35, Feb. 2023.

[19] P. Osypanka and P. Nawrocki, ‘‘Resource usage cost optimization in cloud
computing using machine learning,’’ IEEE Trans. Cloud Comput., vol. 10,
no. 3, pp. 2079–2089, Jul. 2022.

[20] D. P. Bertsekas and R. G. Gallager, Data Networks, 2nd ed. Upper Saddle
River, NJ, USA: Prentice-Hall, 1992.

[21] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing
Networks and Markov Chains: Modeling and Performance Evaluation
With Computer Science Applications, 2nd ed. Hoboken, NJ, USA: Wiley,
2006.

[22] E. Biçici, ‘‘Enerji harcamalarýný azaltmak için bulut monitorü (‘a cloud
monitor for reducing energy consumption),’’’ in Proc. 1st Symp. Cloud
Comput. Big Data, Antalya, Turkey, Oct. 2017, pp. 117–122.

[23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

ERGUN BIÇICI received the B.S. degree from
Bilkent University, in 2000, the M.S. degree
from North Carolina State University, in 2002,
and the Ph.D. degree in computer sciences and
engineering fromKoçUniversity, Istanbul, Turkey,
in 2011.

From 2012 to 2015, he was a Postdoctoral
Researcher with the ADAPT Research Cen-
ter, Dublin City University, Dublin, Ireland.
From 2015 to 2016, he was a Research Scientist

with DFKI, Germany. From 2017 to 2018, he was a Researcher with
TÜBİTAK. From 2018 to 2021, he was a Research Scientist with Boğaziçi
University, Istanbul, Turkey. Since 2022, he has been a Senior AI Research
Engineer with the Huawei Turkey Research and Development Center. He is
the author of more than 60 publications. His research interests include
machine translation, machine learning, natural language processing, cloud
computing, recommendation systems, and artificial intelligence.

VOLUME 12, 2024 25277

