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ABSTRACT Swarm-based intelligent optimization algorithms that employ the principles of collective
behavior have been gaining traction as viable solutions in optimization research. One area of optimization
is the Examination Timetabling Problem (ETP), which presents a significant challenge for many Higher
Education Institutes (HEIs). This study proposes a novel approach for solving the Uncapacitated
Examination Timetabling Problem (UETP), where a stepping-ahead mechanism is utilized with threshold
acceptance in the Firefly Algorithm (FA). The proposed method improves exploration with the use of the
stepping-ahead mechanism, while threshold acceptance allows for better exploitation of the search space.
Initially, a neighborhood search mechanism is employed as the discretization of FA to improve solution
quality, known as Kempe Chain-based neighborhoods. The proposed method is tested on seven UETP
problems, with the results showing comparative performance to the best solutions available in the literature
for the Toronto exam timetabling dataset. The selection of seven problems is made with exams totaling less
than 400, this allows to create a manageable yet representative benchmark. The study further extends the
experiment to a real-world dataset collected from an HEI. The use of a real-world dataset allows us to see
the potential of the algorithm and at the same time evaluate its performance under realistic conditions and
resource constraints. The proposed stepping-ahead mechanism has the potential for use in other domains,
such as robotics and engineering. Overall, this paper presents a new methodology for solving the UETP that
has the potential to offer superior results when compared to existing approaches.

INDEX TERMS Firefly algorithm, optimization, swarm intelligence, uncapacitated examination timetabling
problem.

I. INTRODUCTION
Numerous challenges are encountered in daily livelihood, and
one such domain pertains to scheduling. In scheduling, the
arrangement of task sets is orchestrated in a manner that seeks
to achieve optimal or highly effective outcomes [1]. Various
methodologies exist for addressing this challenge; however,
a particularly promising avenue lies within the realm of
optimization techniques. The application of optimization
techniques has been instrumental in addressing functional
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objectives to achieve optimality or near-optimality [2].
Optimization involves identifying global solutions based
on the objectives and any accompanying constraints on
the problem [3]. However, tackling problems with multiple
objectives introduces an additional layer of complexity [4],
as optimization must consider the simultaneous optimization
of several objectives, leading to significant shifts in the
optimal solution region.

In real-world problem-solving, optimization plays a
vital role in addressing complex challenges across various
domains, ranging from time-series prediction to devising
efficient solutions [4], [5], [6]. Particularly in the education
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sector, optimal solutions are essential for diverse tasks, such
as optimizing website response rates [7] or enhancing student
performance [8], [9]. In Higher Education Institutes (HEIs),
scheduling is a critical area that necessitates optimization,
especially in the context of timetabling. Timetabling involves
efficiently arranging exams within specific time slots or
periods [10]. This challenge extends beyond HEIs to the
transportation industry, sport organizations, the health sector,
and the aviation industry, all of which require allocating lim-
ited resources to specific time slots based on organizational
needs and operational rules [11], [12], [13].
The Examination Timetabling Problem (ETP) is a dynamic

scheduling challenge that demands an even distribution of
exams within available time slots while considering the
student workload and adhering to constraints [14], [15].
Solving the ETP is highly complex because of the presence
of both hard constraints, which cannot be violated (e.g.,
room capacity), and soft constraints, which are desirable
but can be violated (e.g., two exams on the same day
for a student). Researchers have explored various methods,
including graph coloring techniques, to address the ETP [16],
[17]. In recent years, evolutionary algorithms have emerged
as a powerful alternative to traditional graph coloring
techniques for solving the ETP, leveraging concepts from
natural selection to optimize exam schedules [18], [19], [20],
[21]. An evolutionary algorithm that is simple in structure
and has the ability to improve exploration and exploitation
is the Firefly Algorithm (FA). While FA is a popular swarm
intelligence algorithm, its application in the discrete domain,
particularly for solving ETP, remains less explored. Some
applications of discrete FA have been seen in the vehicle
routing problem [22], the traveling salesman problem [23],
etc. This has providedmotivation to utilize FA in solving ETP,
where the problem is an NP-hard problem and real-world
application is possible.

This research is an extension of [21], where a modi-
fied version of discrete FA, termed the ‘Preference-Based
Stepping Ahead Firefly Algorithm,’ was introduced to the
Uncapacitated Examination Timetabling Problem (UETP).
It extends the application to a real-world problem together
with encroachments to the proposed method using threshold
acceptance. The proposed algorithm is coined modified
Preference-Based Discrete Stepping Ahead FA (mdFA-Step).
It integrates a stepping-ahead mechanism to enhance explo-
ration capabilities and conduct structured searches in the
neighborhoods accepted via threshold. The 7 problems of
benchmark data set are selected based on exams totalling
less than 400, as the real-world data set with 403 exams
is also tested. The 7 problems allow better comparison
with the real-world problem. This allows evaluation of
proposed algorithm’s performance under realistic conditions
and resource constraints. This inclusion of resource con-
straints adds a crucial layer of complexity, mirroring the
challenges often faced in practical applications, and enables
a more comprehensive understanding of the algorithm’s

robustness and adaptability in scenarios with limited
resources.

The main contributions of this research are twofold:
• Preference-Based Discrete Stepping Ahead FA: The
algorithm improves a novel approach to achieve better
exploration and find improving candidate solutions. The
results are better compared to works done by other
evolutionary methods [15], [24], [25]. This research
opens doors for researchers to explore the preference and
stepping-ahead mechanisms in various domains, such as
health, sports, and transportation.

• Incorporation of threshold acceptance: It enables fire-
flies to explore the solution space in steps with
new neighborhoods and previous solutions, based on
threshold acceptance. mdFA-Step shows superior results
compared to dFA-Step [21]. The modification of
algorithms to avoid greedy search can be beneficial to
researchers where solutions are hard to find.

The paper structure is as follows: Section II reviews
related literature on FA and UETP, while Section III
presents the real-world problem formulation. In Section IV,
we introduce the proposed modified FA with threshold
acceptance. Section V details the experimental setup and
results, followed by a discussion of the results in Section VI.
Finally, Section VII concludes the paper, outlining potential
directions for future research.

II. LITERATURE REVIEW
The Discrete Firefly Algorithm (DFA) is a modification
of the original Firefly Algorithm, which transforms the
continuous domain into a discrete one. FA starts by randomly
generating a set of fireflies in the search space. Each firefly
represents a potential solution to the optimization problem.
The fireflies are attracted to each other based on their
brightness, determined by the objective function. The brighter
a firefly is, the more attractive it is to other fireflies. At each
iteration, the fireflies move towards the brighter ones, and the
algorithm updates the brightness of each firefly based on its
new position.

The DFA was first proposed by Mirjalili and Gandomi in
2013 [23]. The authors modified the original FA to handle
discrete optimization problems by using a transformation
process. The process involves discretizing the search space
into a set of discrete values, then mapping the continuous
variables to the nearest discrete value. The mapping is
performed using a rounding function, which rounds the
continuous variables to the nearest discrete value. Once the
mapping is complete, the DFA performs the optimization
process in the discrete domain. The authors demonstrated
the effectiveness of the DFA on a set of benchmark
problems, including the Traveling Salesman Problem (TSP),
theKnapsack Problem, and the Binary FunctionOptimization
Problem.

Since 2013, the DFA has been the subject of several
studies, which have focused on improving its performance
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and evaluating its effectiveness on a range of optimization
problems. In a study by Xia et al. [26], the authors proposed
a hybrid algorithm that combines the Firefly algorithm
with the Particle Swarm Optimization (PSO) algorithm to
solve a multi-objective optimization problem. The authors
demonstrated that the hybrid algorithm outperforms the
DFA and PSO algorithms in terms of solution quality and
convergence speed.

In another study by Sababha et al. [27], the authors pro-
posed an improved version of the DFA, called the Enhanced
Discrete Firefly Algorithm (EDFA), which modified the
original DFA using a mutation operator that randomly
changes the values of the fireflies in the search space. The
authors demonstrated that the EDFA outperforms the DFA
and other state-of-the-art algorithms in solving a range of
benchmark problems, including the Knapsack Problem, the
Traveling Salesman Problem, and the Quadratic Assignment
Problem.

The DFA is a promising algorithm for solving discrete
optimization problems, and several studies have focused on
improving its performance and evaluating its effectiveness on
a range of benchmark problems and real-world optimization
problems. Recently, the DFA has also been applied to
real-world optimization problems, such as the design of wind
turbine blades [28] and the scheduling of chemical production
processes [29].
In a study by Tahani et al. [28], the authors used the DFA

to optimize the shape of wind turbine blades to maximize
power output. The authors demonstrated that the algorithm
outperforms other state-of-the-art algorithms in terms of
solution quality and convergence speed. In the study by
Wang et al. [29], the authors used the DFA to optimize the
scheduling of chemical production processes. The authors
argued that the algorithm outperforms other state-of-the-art
algorithms in terms of solution quality and computational
efficiency.

In another study by Hasanien and Matar [30], the
authors proposed a modified version of the DFA, called the
Modified Discrete Firefly Algorithm (MDFA), to solve a
multi-objective optimization problem related to the optimal
design of water distribution networks. The authors demon-
strated that the MDFA outperforms other state-of-the-art
algorithms in terms of solution quality and computational
efficiency.

Moreover, the uncapacitated examination timetabling
problem (UETP) can be formulated as an integer linear
programming (ILP) problem, where the objective is to
minimize the number of periods required to schedule all
the exams subject to constraints that ensure there are no
clashes between exams taken by the same student. The ILP
formulation can be extended to include additional constraints,
such as the availability of exam rooms and the preferences of
students regarding the timing of their exams.

Several other formulations of the UETP have been
proposed, including constraint programming, local search,

and metaheuristic algorithms. In a study by Burke et al. [17],
the authors proposed a hybrid approach that combined a con-
straint programming solver with a metaheuristic algorithm.
The hybrid approach outperformed both the constraint
programming solver and the metaheuristic algorithm when
tested on a set of benchmark problems.

Several solution approaches have been proposed for the
UETP, including metaheuristic algorithms such as particle
swarm optimization (PSO), simulated annealing, tabu search,
genetic algorithms, and ant colony optimization, which have
been used to solve the UETP with varying degrees of success.
In 2012, the authors of [18] proposed a solution for UETP
using discrete particle swarm optimization (DPSO) where
a new local search called two-staged hill climbing was
proposed and utilized to hybridize the DPSO algorithm.
In another study by Al-Salem et al. [31], the authors proposed
a hybrid algorithm that combined simulated annealing with a
genetic algorithm. The hybrid algorithm outperformed both
simulated annealing and the genetic algorithmwhen tested on
a set of benchmark problems. In a study by Aldeeb et al. [32],
the authors proposed an intelligent water drops algorithm
for solving the UETP. The algorithm was used to minimize
the number of periods required to schedule all the exams
subject to the constraints of the problem. In another study by
Bellio et al. [33], the authors proposed an exact method based
on a mathematical programming formulation of the UETP.
The authors demonstrated that the exact method can solve
instances of the UETP with up to 1,000 exams and 10,000
students in a reasonable amount of time.

The UETP has several real-world applications, includ-
ing the scheduling of exams in universities and schools,
scheduling of medical appointments, and scheduling of
airline flights. In a study by Bolaji et al. [34], the authors
used a genetic algorithm to solve a variant of the UETP
that arises in the scheduling of medical appointments. The
authors demonstrated that the genetic algorithm can generate
high-quality schedules that meet the constraints of the
problem. In another study by Aizam et al. [35], the authors
used a hybrid algorithm based on a genetic algorithm and a
greedy algorithm to solve a variant of the UETP that arises
in the scheduling of airline flights. The authors demonstrated
that the hybrid algorithm can generate high-quality schedules
that meet the constraints of the problem. In [36], the authors
proposed a discrete approach that uses a discretization
scheme to solve undergraduate thesis defense timetabling.
More recently, Nand et al. [21] proposed a stepping-ahead
firefly algorithm for UETP where the discretization scheme
worked well with the discrete domain.

The UETP remains a challenging optimization problem
that has been the subject of extensive research in the
optimization community. Several formulations and solution
approaches have been proposed, including ILP, metaheuristic
algorithms, exact methods, and hybrid approaches. The
problem has several real-world applications; however, further
research is needed to develop new solution approaches and to
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apply the uncapacitated examination timetabling problem to
other real-world problems.

III. PROBLEM FORMULATION: INSIGHT FOR
REAL-WORLD PROBLEM
In the following section, the formulation of the Toronto
Uncapacitated Examination Timetabling Problem (UETP)
is provided [14] with some highlights about the real-world
problem and the methodology.

The UETP formulation is defined as follows:
The objective function is to minimize the weighted sum

of pairwise costs of exams, with weights determined by a
proximity function:

fc =
1
M

n−1∑
i=1

n∑
j=i+1

Cij · wij (1)

wij =

{
25−|ti−tj| if 1 ≤ |ti − tj| ≤ 5
0 otherwise

(2)

Constraints:

n∑
i=1

n∑
j=i+1

λij(t) ≤ 1 for all t ∈ {1, 2, . . . ,T } (3)

λij(t) = λji(t) for all i, j ∈ {1, 2, . . . , n},

t ∈ {1, 2, . . . ,T } (4)

λii(t) = 0 for all i ∈ {1, 2, . . . , n},

t ∈ {1, 2, . . . ,T } (5)

where wij is the proximity weight between exams i and j. The
proximity weight assigns higher weight to pairs of exams that
are scheduled close to each other in time, with a maximum
weight of 25 = 32 for exams scheduled in the same time slot
and a minimum weight of 1 for exams scheduled 5 or more
time slots apart.

The constraints ensure that each time slot is assigned to at
most one exam, where λij(t) is a binary variable that takes
the value 1 if exams i and j are scheduled in time slot t , and
0 otherwise.

Overall, this formulation provides a clear and concise
representation of the uncapacitated exam timetable problem,
and it was utilized to develop the proposed algorithm
for finding good solutions to this challenging optimization
problem. In the real-world problem, periods can have limits;
however, in the problem tested, period capacity is omitted
similar to the Toronto benchmark problems.

The variables utilized in the real-world problems are as
follows:

• N is the number of exams.
• P is the number of periods.
• E = {e1, . . . , en} is the set of exams.
• T is the total number of students.
• (Cij)E×E is the conflict matrix, where each element in
the matrix is the number of students taking exam i and j,
and where i, j ∈{1, . . . ,E}.

• tk (1 ≥ tk ≥ T ) is the time slot associated with exam k
(k ∈ E).

Real-World Dataset Methodology: The data was collected
from the university’s exam timetabling committee and the
student administrative services to form the dataset henceforth
called the USP dataset. The 2 files included the following
details:

• USP Exam Courses - has 2 columns: course code and
number of students in the course. The file contained
403 course records.

• USP Exam Students - has up to 4 columns; each
row contains course codes of courses taken by each
student. A student is allowed to undertake amaximum of
4 courses in a semester. The file contained 18835 student
records.

The following steps were taken to gather and transform the
raw data into the final dataset:

• The full Student classlist for Semester 2, 2019, was
acquired from the respective department. The student
IDs were not required.

• The courses taken by each student were identified and
placed in another file with each row containing courses
taken by individual students.

• Data cleaning: Non-examinable courses were removed.
• The course codes were replaced with number codes.
This file became the student file (STU).

• In a separate file, the number of students enrolled in each
course was determined.

• The course codes were also replaced with number codes
corresponding to the courses in the student file. This
became the Exam course file (CRS).

The USP dataset has similar properties as the Toronto
dataset since it also has 2 sets of files with similar features
such as 2 columns for the Course file and multiple columns
for the Student file. However, the Toronto dataset contains
multiple data files from multiple educational institutions
while the USP dataset is confined to data from the university’s
courses and students.

IV. PREFERENCE-BASED STEPPING AHEAD FIREFLY
ALGORITHM WITH THRESHOLD ACCEPTANCE
This section highlights the implementation of the algorithm.
The proposed algorithm would be called mdFA-Step while
the discrete FA will be called dFA.

A. FEASIBLE SOLUTION
In order for any given algorithm to address a specific problem,
it is essential that the algorithm aligns its solutions with
the requirements of the problem at hand. To facilitate the
application of the FA approach in optimizing solutions,
a prerequisite is the establishment of a feasible solution. This
necessity leads to the discretization of the solution space
during the initialization phase of the FA methodology. This
phase involves the adoption of the partial exam technique,
specifically the exam swap move, which is employed in this
study. The partial exam technique has been selected due
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to its ability to expedite problem-solving processes. This
technique, as applied in this investigation, is particularly
effective in addressing the UETP as demonstrated by
Mandal et al. [37]. It is characterized by its capacity to rapidly
assign examinations to time slots, promoting efficiency in the
resolution process.

The graph-based heuristics have garnered attention for
their utility in ordering strategies where these strategies entail
the organization of constraints through distinct methodolo-
gies, as discussed in [16]. In this study, the specific heuristic
known as the Largest Degree (LD) approach is employed as
done in earlier research [21]. The LD heuristic is a strategy
used for scheduling exams based on the number of conflicts
each exam has with other exams. The idea is to prioritize
scheduling exams with a higher number of conflicts early in
the timetable construction process. The rationale behind this
is that exams leading to infeasible solutions are addressed
foremost, given their inherent complexity in scheduling.
Partial orderings of exams are done where 5% of exams are
moved and the process is repeated, unlike in previous work
where 5-10% exams were moved. This assignment process
is carried out randomly to ensure a balanced distribution.
Should a feasible solution not be achieved through this
process, an optimization operator, such as the exam swap
operator, comes into play. This operator, denoted as move
number 0 in Table 1, functions by reallocating non-assigned
exams to random time slots.

TABLE 1. Search space exploration.

B. SUPPORTED NEIGHBORHOODS
The generated feasible solution is able to solve the hard
constraint, which requires that there can be no conflicts
between exams scheduled in the same time slot. Now,
the solution needs to be optimized or improved in terms
of the soft constraints. As part of the discretization of FA,
the solution space is now discrete after using graph heuristic
orderings; therefore, to solve soft constraints, a neighborhood
operator is needed. The proposed algorithm supports one
neighborhood that the mdFA selects in each iteration to
generate a candidate of solutions, unlike previous work where
two neighborhoods were utilized. The neighborhood is called
Kempe chain with single chain exchange. The Kempe chain
heuristic is a technique used in exam timetabling problems
to address conflicts between exams. It involves identifying
connected components of the conflict graph (representing
conflicting exams) and then swapping the time slots of
exams within these connected components. By doing so,
the heuristic aims to break up conflicts and create a more
feasible and efficient timetable, ultimately contributing to the
successful resolution of scheduling challenges in the exam
timetabling domain. The move is presented as move 1 in
Table 1.

Move 1 shown in Table 1 is the Traditional Kempe Chain
where the given two sets of exams assigned to two periods,
a number of chains consisting of exams belonging to either
one of the periods is constructed.

It starts with moving 1 randomly picked element from the
first random timeslot to another. To maintain feasibility, any
conflicts through these moves are solved by moving back and
forth exams until no conflicts are present in the two time slots.
Only one chain is exchanged unlike the four-color problem
where multiple chains are exchanged. In most real-world
timetabling problems, moving high-conflicting exams more
frequently yields infeasibility and/or induces a higher average
increase in the cost function than it does when low-conflicting
exams are moved. Therefore, moving an exam from a slot
to another conflicting slot without knowing the density of
the exams allows movement of multiple exams to make the
solution accepted (with the same acceptance condition for all
moves).

C. STEPPING AHEAD MECHANISM
The stepping ahead mechanism has been applied to various
applications where it was seen to improve the solution
quality [21], [38]. The algorithm uses the best solution
to search ahead and look for better solutions as a greedy
approach. The mechanism allows modifying the current
best solution with improved solutions where the number of
variables (exams) is limited.

FIGURE 1. Shows stepping ahead move for mdFA.

The concept of ‘‘stepping ahead’’ in the firefly algorithm
is illustrated in Figure 1. The figure showcases how a firefly
(X ti ) transitions from its current position to a new best
position (X t+1

i ) based on the current best firefly position (X tj ).
This movement demonstrates the typical behavior where a
sub-optimal solution can lead to the global best solution. The
stepping ahead mechanism utilizes a threshold parameter Q
to determine the distance each step should cover, allowing
the exploration of the search space even with sub-optimal
solutions. The notion is to showcase that a lower fitness value
in the search space can potentially lead to potentially the
global fitness.

The stepping ahead mechanism is represented by the
following equation:

X t+1
i = X ti + Q · (X tj − X ti ), (6)
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where X t+1
i is the new position of firefly i at time t + 1, X ti is

the current position of firefly i at time t , X tj is the current best
position of firefly j at time t , andQ is the threshold parameter.
Managing the population of an Evolutionary Algorithm

(EA) is crucial, as a greedy approach might prematurely
discard promising points in the early generations. In the
firefly algorithm, even when fireflies are relatively close to
each other, they still seek solutions further away from the
best solution found. This approach provides the algorithm
with an opportunity to break free from local minima, as local
minima may mislead the algorithm into believing that the
global optimum has been discovered. By allowing fireflies to
explore the search space beyond the immediate vicinity of the
best solution, the algorithm gains a better chance of finding
the true global optimum.

On the contrary, a greedy approach at times gets stuck
on local solutions due to not being able to reach solutions
that guide to the global best. The threshold setting allows
algorithms to select sub-best solutions that can allow a
solution to reach the global best or the best solution. At times
it is not effective to get the best value; therefore, two extreme
ends can be used, being the same to bound the threshold as
preference operators.

Furthermore, the integration of the stepping ahead mech-
anism with the FA is justified by the need for a dynamic
and adaptive methodology in addressing the complexities
of exam timetabling optimization problems. The stepping
ahead mechanism, proven effective in prior applications,
aligns with the fundamental goal of continuous improve-
ment in solution quality. By incorporating it into the FA
framework, the algorithm gains the ability to actively explore
solutions beyond the immediate neighborhood of the current
best solution, crucial for avoiding premature convergence
and navigating complex solution spaces. The bio-inspired
nature of FA, mimicking the mating behavior of fireflies,
complements the stepping ahead mechanism’s proactive
exploration. The introduced threshold parameter adds a layer
of adaptability, allowing fine-tuning based on the specific
characteristics of exam timetabling instances. Overall, the
chosen methodology stands out for its ability to enhance
solution quality and navigate diverse problem instances
through an integrated, dynamic approach.

D. PREFERENCE OPERATORS
The deterministic approach involves finding the global
minimum or maximum of a function by systematically
exploring the entire search space. This approach relies on
using mathematical techniques designed to find the optimal
solution by iteratively improving the candidate solutions
until the global optimum is found. On the other hand, the
probabilistic approach is based on the use of stochastic
optimization algorithms that use probability distributions to
explore the search space. These algorithms are often designed
to mimic natural phenomena, such as simulating the process
of natural selection.

For any algorithm to provide better solutions, preferences
can play a significant role. In previous research, restart
criteria and threshold difference were utilized to avoid
drawbacks of the greedy approach. In this research, the restart
criteria are utilized not in 10 iterations but 50 iterations,
while the threshold acceptance criteria are changed to suit
different problems, unlike previously, which were the same
for all. The restart operator allows the algorithm to go
back 50 steps and restart the search for good solutions.
If the solution is improving, there is no need to activate
the restart operator. This allows the preference operator to
be algorithm-dependent and only utilized if there is a need.
Mathematically, the restart operator can be represented as
follows:

X t+1
i =

{
X t−50
i , if not improving
X ti , otherwise

(7)

where X t+1
i is the new position of the solution at time t + 1,

X ti is the current position of the solution at time t .
Moreover, the threshold acceptance ranks the solutions,

and these steps are iterated until the maximum execution
time is reached. While it is common for an algorithm
to converge towards the best solution, tackling complex
problems necessitates a more sophisticated approach that can
produce optimal solutions while exploring the solution space
effectively. It is worth noting that the best solution is often
surrounded by suboptimal ones. To address this, a smarter
technique is employed during the acceptance of solutions
when a new solution is not superior to the previous one.

A threshold difference denoted as Q is utilized as
previously. However, it is now not generic but problem-
dependent. The threshold difference Q dynamically changes
for different problems; it is further discussed under the
experimental setup. In addition, a probability-based approach
is employed as well, where solutions are accepted only
if the yield is less than the randomly generated number.
This mechanism allows for the acceptance of less favorable
solutions based on Equation (8). By incorporating these
strategies, the algorithm can effectively explore the search
space and consider a wider range of solutions, including
those that may initially appear less promising. This enhances
the algorithm’s ability to find optimal solutions, even in the
presence of complex and challenging problem scenarios.

rand ≤ e
−

(
xnew−xi

xi
/T

)
, (8)

where rand is a uniformly distributed random number
between 0 and 1. In Equation (8), xnew is the new position
of firefly i, while xi is the current position of the best firefly i,
and T is the light intensity. T changes based on the mutation
coefficient.

For complex problems with many variables and a large
search space, probabilistic methods may be more effective
despite their higher computational cost. When parameter
tuning is not well-articulated, the solution goes astray but
via intervention it gets corrected and redirected. Therefore,
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the use of deterministic and probabilistic approaches assists
in solving the problem better. In this paper, two approaches
are used together with the stepping ahead mechanism to
allow best and sub-best solutions to get exploration and
exploitation.

Furthermore, the impact of the threshold operators in the
described algorithm is significant, it’s shaping the algorithm’s
behavior in the quest for optimal timetabling solutions.
The dynamic restart criteria, triggered by a threshold-driven
decision-making process, ensures that the algorithm avoids
premature convergence and remains adaptable to changing
solution landscapes. This adaptability is further intensified
by the problem-dependent threshold difference (Q) and
the probabilistic acceptance criteria. By incorporating these
threshold-driven strategies, the algorithm strikes a delicate
balance between exploration and exploitation, allowing it to
navigate complex timetabling problemsmore effectively. The
threshold mechanism’s influence extends beyond traditional
deterministic methods, providing the algorithm with the
flexibility needed to consider a diverse range of solutions,
including those that may initially appear suboptimal. Overall,
the threshold mechanism plays a pivotal role in enhancing the
algorithm’s performance, ensuring robustness, adaptability,
and efficacy in addressing the intricacies of exam timetabling
problems.

E. ALGORITHM
Algorithm 1 is adapted from the previous work of the
authors [21], [38].

The steps highlighted in the algorithm are as follows:
• In Step 1, the variables are initialized in terms of
the largest degree (LD) constraint sorting. A random
solution is initialized for the population array using the
fitness function, where the solution generated is feasible.
The swapmove is utilized to get to the feasible solutions.

• In Step 2 of the algorithm, the new solutions are
evaluated in terms of the discrete domain where
the population is evaluated based on the objective
function. The transformation operators are Kempe chain
technique. Initially, a selected solution is evaluated for
5 cycles.

• In Step 3, if the solution of the current firefly in relation
to the compared firefly is not better in terms of the fitness
function in 10 generations, the algorithm searches for a
new better solution that is further away. The term coined
is Stepping Ahead mechanism [21], [38]. The algorithm
uses a new solution as the input of the next move to
find better solutions or closer to the best solutions. The
concept is based on the ideology of the surroundings of
good solutions with bad solutions in terms of fitness.

• Step 4 is where the first preference operator is utilized.
Rank the fireflies in the population based on their
fitness values and update the best solution found so far.
Use a preference-based heuristic to generate a new set
of firefly solutions that respect the exam scheduling
preferences of the stakeholder. Optionally, activate a

Stepping Ahead mechanism that moves each firefly
towards the best solution found, with a probability
threshold and a distance constraint. If the resulting
solution has the same fitness as the original solution,
continue to move the firefly using the Kempe move
technique until the fitness improves or until a maximum
number of iterations is reached.

• In Step 5, if no improvement is observed after 10 iter-
ations, activate the Stepping Ahead mechanism. If no
improvement is still observed after 20 iterations, restart
the algorithm from the point where an improvement was
last observed. This is the second preference operator.

• Post-process the results and visualize the final exam
timetable.

Algorithm 1 Proposed Discrete Stepping Ahead Firefly
Algorithm (Adapted from [21]).
1: while t < MaxGen do
2: for i = 1 to n (all n fireflies) do
3: for j = 1 to n (all n fireflies) do
4: Step 2: Evaluation
5: if Ij ≤ Ii then
6: Move exam (firefly) based on transformation;
Inew

7: while count ≤ 5 and Ii = Inew do
8: Move exam (firefly) based on transforma-

tion; Inew
9: end while

10: end if
11: Step 3: Stepping ahead
12: if Stepping ahead is selected then
13: Move exam (firefly) based on the transforma-

tion; Inew
14: while count ≤ 5 and (Inew−Ij > Q or Ii = Inew)

do
15: Move exam (firefly) in relation to Inew using

the transformations; Inew
16: end while
17: else
18: nothing
19: end if
20: end for
21: end for
22: Step 4: Preference operator 1
23: Rank fireflies and update the best using threshold and

probability; Preference utilized;
24: if No improvement then
25: Stepping ahead is activated;
26: else
27: Stepping ahead is deactivated;
28: end if
29: Step 5: Preference operator 2
30: if No improvement due to stepping ahead then
31: Restart a few steps back;
32: end if
33: end while
34: Post-processing the results and visualization

The mdFA-Step uses the firefly metaheuristic to find a
good solution to the uncapacitated exam timetabling problem,
with the addition of the Kempe move technique, Stepping
Ahead mechanism, and preference operators to enhance
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the exploration and exploitation of the search space. The
preference-based heuristic and the restart mechanism help
avoid local optima and improve the quality of the solutions.

In summary, parameter tuning is an important step in
machine learning that can significantly affect the perfor-
mance of themodel. Themethod uses a probabilistic model to
approximate the performance of themodel as a function of the
hyperparameters and then selects the hyperparameters that
are expected to give the best performance based on the model.
Evolutionary algorithms can be effective when the search
space is complex and the evaluation of themodel is expensive,
but they can be computationally expensive and require a lot
of computational resources. The modified parameter tuning
on the acceptance criterion allows superior solutions to get
accepted, but diversity is lost as it becomes a greedy search.
To have diversity, when solutions are not better than the
current best, a threshold difference and probability would
be used to allow non-superior or sub-best solutions to be
accepted. There is a need for intelligent solutions where
diversity and superior solutions are kept. Therefore, using
a threshold difference with Q on all problems cannot give
good performance. Q needs to be dependent on the problem,
as the probability approach. The impact of parameter tuning
on mdFA-Step’s performance is significate. It serves as a
dynamic mechanism that allows the algorithm to intelligently
navigate complex search spaces, avoid local optima, and
adapt to the diverse demands of different timetabling scenar-
ios. The carefully tuned parameters collectively contribute
to the algorithm’s robustness, efficiency, and effectiveness
in generating high-quality solutions for real-world exam
timetabling problems.

F. DETAILED EXECUTION PROCEDURE
The overall framework of the mdFA-Step approach for the
Uncapacitated Examination Timetabling Problem is based on
four steps:

FIGURE 2. Flowchart of mdFA.

• Step 1 - Find Feasible Solutions: The solution is
constructed using a partial exam assignment strategy
used together with Largest Degree (LD) graph heuristic

orderings. In LD, exams are sorted in descending order
according to the number of conflicts each exam has
with others. Later, using the partial exam technique, the
sorted exams are placed in non-conflicting slots. This
ensures finding feasible solutions during initializing by
placing the exams in different slots based on the degree
of conflict of exams.

• Step 2 -ApplyKempeChainMove: The initial solution
needs to be optimized. The neighborhood operators
based on the Kempe Chain move are used to improve
the best solution, and solution acceptance is possible via
threshold acceptance.

• Step 3 - Apply Stepping Ahead Mechanism: The
next step of the algorithm is to use the stepping ahead
mechanism with preference. Here, Kempe Chain move
is used to improve the solution where if the first move
does not find a different solution than the current best,
it repeats the step based on cycles. This is the greedy
approach.

• Step 4 - Preference Operator: The operators allow
mdFA-Step to select sub-best solutions to find better
solutions in the form of threshold acceptance and restart.
This is orchestrated using a promising solution that has
already been found from the previous move.

The flowchart of the proposed algorithm is shown in Fig. 2.

V. EXPERIMENTS AND RESULTS
This section presents the experimental setup and results
of the mdFA-Step. The experimental setup highlights the
parameters used in the algorithm and details about the
Uncapacitated Examination Timetabling Problem (UETP).
The results presented include the mean, median, and the best
and worst results from the experiments.
Setting: The mdFA-Step was implemented in the MAT-

LAB language and executed on a laptop with the following
configurations: Intel Core i7-8665U (CPU @ 1.90GHz with
16GBRAM) andWindows 10OS. The datasets are utilized in
the same way as in the literature without modifications. This
allows an observation of the true performance of the proposed
algorithm as reported in the literature. The parameters needed
for dFA, as described in Table 2, are obtained from the
literature.

TABLE 2. Parameter setting.

The benchmark dataset tested in this paper consists of
7 problems compared to the 13 problem set. The selected
7 problems have exams totaling less than 400. The real-world
dataset tested has 403 exams, providing a good benchmark
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to test the algorithm’s performance on a similar number of
exams to verify its effectiveness.

The new modification of the mdFA-Step using the
threshold mechanism not only allows the acceptance of
sub-best solutions but also gives a chance to other solutions
to contribute to finding better solutions in their solution
space. Usually, the approaches used are deterministic and
probabilistic. Deterministic gradually updates the parameter,
while probabilistic is based on mathematical formulation.
For individual test problems, the parameter is set based on
multiple experiments, where it’s a fixed value or a threshold
set with two values. Table 3 shows the threshold setting for
the tested problems.

TABLE 3. Setting of threshold Q for Toronto problems.

A. DATASET
Table 4 shows the characteristics of the 7 benchmark
functions. The data were introduced by Carter [16] and can
be retrieved from [39]. The dataset has the property of a very
steep learning curve due to its challenging nature.

TABLE 4. Dataset problem characteristics (Toronto).

Results: Tables 5–7 show the results obtained on the
benchmark dataset, while Table 8 shows results for the real-
world dataset. Table 9 shows a comparison of results with
selected work from the literature.

TABLE 5. Statistical summary of results on three datasets for dFA,
dFA-Step, and mdFA-step.

For the USP problem, Q1 and Q2 are set at 0.075. The
number of exams is 403 with 18,835 students, while total
admissions were 47,046. The dataset is named based on the

number of periods it’s tested on; for example, if the number
of periods was set at 20, its name is given as USP20. Note
that this is a simple measure of density, and there may be
other factors to consider when analyzing the density of an
Examination Timetabling problem, such as the distribution
of exams across time slots, the duration of exams, and the
preferences of students and faculty members.

TABLE 6. Results of Wilcoxon signed rank testing and ANOVA P-test for
mdFA-step on three datasets.

In Table 5, the performance of dFA, dFA-Step, and
mdFA-Step methods is shown on selected 3 benchmark
datasets where the selected datasets are small in size. The
results in bold indicate the best results obtained for the
algorithm. It can be seen from the table that mdFA-Step has
improved performance in all 3 datasets. The modification
shows better results obtained for the mdFA-Step when
compared to the dFA-Step algorithm. The utilization of the
preference operator with the stepping-ahead mechanism has
improved the performance. The significance level of dFA,

TABLE 7. Statistical summary of results from mdFA-step.

dFA-Step, and mdFA-Step has been conducted by the use of
the Wilcoxon signed-rank testing [40]. The test results are
shown in Table 6, where the mdFA-Step has a significantly
different distribution in HEC92 and YOR83, while in STA83,
it has a similar distribution. Additionally, the Anova p-value
presented in Table 6 shows there is a significant difference in
result distribution of all the datasets, as this is evident where
the p-value is less than the threshold of 0.05.

TheWilcoxon signed-rank test is a non-parametric statisti-
cal test used to compare two related samples. The Wilcoxon
signed-rank test is particularly useful in this context because
it does not assume that the data is normally distributed, which
is often not the case for performance metrics in optimization
problems. Instead, the test ranks the performance of the
two algorithms or approaches and calculates a test statistic
based on the differences in these ranks. If the test statistic is
statistically significant, it indicates that there is a significant
difference in performance between the two approaches.
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Overall, mdFA-Step provides the most effective solutions to
this challenging optimization problem.

In Table 7, the statistical results of mdFA-Step on
7 problems from the University of Toronto benchmark exam
timetabling problems (version I) [16] are shown. Version I
was utilized for this research because it has been mostly
reported in the literature. The results show a good result
distribution as the best and worst are not very far apart,
indicating a good distribution of the results. In Table 8,

TABLE 8. Statistical summary of results from mdFA-step for the
real-world dataset.

the statistical results of mdFA-Step on 3 problems from
University of the South Pacific are shown. The 3 periods
are tested on the problem as that is the feasible periods
utilized in the real-world. The real-world data has similar
exam size as the selected 7 benchmark problems. The results
show good result distribution as best and worst are not very
apart, indicating good distribution of the results. For larger
period, the fitness is less while for smaller period the fitness
increases; however, the problem is able to be solved.

In Table 9, the comparison of results of mdFA-Step is
carried out with methods from literature that are similar
to the proposed method. The results from the proposed
method are indicated by mdFA-Step, while results from other
methods are listed below it. Some methods from literature
are not compared as those methods used pre-testing phases
or additional stages other than the stages used by dFA-Step.
It can be seen that the proposed method has comparable
results in all 7 cases. The previous results on dFA-Step are
also compared to show the importance of modification and
its performance on the 7 datasets.

Moreover, the Table 9 provides a comprehensive evalua-
tion of the proposed algorithm mdFA-Step. While looking
at the exams Yor83, Sta83 and Hec92, its shows good
algorithmic performance. Notably, lower values associated
with mdFA-Step across diverse datasets suggest a heightened
level of computational efficiency, indicating its ability to
achieve superior results with less computational effort com-
pared to other algorithms. This consistency in competitive
performance underscores the algorithm’s reliability across
various problem instances which is visible when compared
to its predecessor dFA-Step. In terms of scalability, mdFA-
Step’s performance across datasets of varying sizes is
commendable. A sustained efficiency across different scales
indicate favorable scalability where it ranks fifth out of the
thirteen algorithms.

The Friedman test is a non-parametric test used to
determine if there are statistically significant differences
between groups. Table 10 shows the low p-value (closer to
zero), indicating that there are significant differences among

the groups. Since the null hypothesis of the Friedman test is
that there are no differences between the groups, a low p-
value suggests that the null hypothesis is rejected, and there
are significant differences. The Friedman test itself does not
identify which specific algorithms are different from each
other; therefore, to determine which algorithms are different,
a post-hoc test was done. In Table 11, the Tukey post-hoc test
results show pairwise comparisons between mdFA-Step and
different algorithms. The ‘‘reject’’ column indicates whether
the null hypothesis of no difference between the compared
groups is rejected or not. All comparisons result in ‘‘False’’
in the ‘‘reject’’ column. This means that, according to the
Tukey test, there are no significant differences between any
pair of algorithms. Since the sample size is small, for a larger
sample size, the Tukey test does not identify specific pairs of
algorithms that are significantly different from each other in
terms of their performance.

Figures 3(a) to 3(c) display the average convergence graphs
of dFA, dFA-Step and mdFA-Step. Figure 3(a) shows the
convergence graph of the HEC92 dataset, while Figure 3(b)
shows the average convergence graph of the STA83 dataset,
where uniform performance is evident after 100 generations
for all algorithms. Similarly, Figure 3(c) illustrates the
convergence of the YOR83 dataset, indicating that the graph
becomes uniform after 500 iterations for dFA and dFA-
Step, while mdFA-Step gives uniform performance after 500,
1000, 1500, 2000 and 2500. Since YOR83 was a challenging
problem to solve, the use of transformation, stepping-ahead
mechanism, and preference operators allowed the algorithm
to move out of local minima.

B. ANALYSIS OF COMPUTATIONAL COMPLEXITY
mdFA-Step has demonstrated its effectiveness in solving
the examination timetabling problem. The computational
complexity is key to find the theoretical efficiency as done
in [47]. The primary procedures of the time complexity is
outlined below:
Stage 1 (Feasible Solution:)
• Initializing N fireflies: 3O(N ).
• Reproduction of feasible solutions has its own time
complexity where the periods are filled with exams and
later moved around if not feasible. In the worst-case
scenario, it is O(N 2).

• Due to the use of sorting, the time complexity is
O(logN ).

• Overall, the time complexity of the algorithm in this
stage is O(N 2 logN ).

Stage 2 (Main Loop:)
• Executing the main loop until t < MaxGen:
O(MaxGen).

• Two nested loops over fireflies (i and j): O(N 2).
• Fitness evaluation involves moving fireflies based on
transformations: O(5).

• Fireflies may move based on Stepping ahead: O(5).
• Ranking and updating the best fireflies involve threshold
and probability considerations: 2O(N ).
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TABLE 9. Best results from the literature compared with mdFA-step.

TABLE 10. Friedman test results.

• If no improvement due to stepping ahead, a few steps are
restarted: O(5).

• Overall, the time complexity of the algorithm in this
stage is O(N 2). This is the same time complexity for a
Firefly Algorithm in the continuous domain.

Overall Time Complexity: Combined time complexity for
mdFA-Step is O(N 2 logN ).

VI. DISCUSSION
Tables 5 to 7 demonstrate promising results for uncapacitated
exam timetabling benchmark problems. Specifically, Table 5
presents a comparison between dFA-Step and dFA, revealing
the consistent performance of dFA-Step across all datasets.
The stepping-ahead mechanism fine-tunes the results, prov-
ing particularly beneficial for complex datasets where dFA
alone may require additional guidance in the search space.

In Table 6, significance test results for mdFA-Step indicate
its significant deviation from dFA and dFA-Step in 2 out
of 3 experimented datasets. mdFA-Step outperforms due to
the threshold acceptance modification, introducing improved
solution hunting through the stepping-ahead strategy. This
strategy extends the search area within the same search
space by incorporating sub-best solutions alongside the best
ones. The preference parameter enables the activation or
deactivation of this mechanism, allowing the algorithm to
perform efficiently in global searches, potentially avoiding
local optima.

Furthermore, Table 7 provides a statistical summary of
dFA-Step results, showcasing consistent performance across
multiple runs. The proximity of minimum and worst results
indicates stability, and valuable insights into the algorithm’s
behavior can be derived from theminimum,maximum,mean,
and median columns.

Table 8 displays results for the USP problems, illustrating
mdFA-Step’s ability to provide feasible solutions with a

well-distributed range of results. In Table 9, a comparison
between the proposed algorithm and selected works from the
literature shows competitive results across various problems.
mdFA-Step consistently delivers favorable outcomes, and the
flexibility of the framework allows easy experimentation with
different algorithms and neighborhoods.

The proposed algorithmmdFA-Step exhibits robustness by
consistently producing high-quality solutions across diverse
timetabling scenarios. The algorithm’s resilience to variations
in data, demonstrated through its competitive performance
in benchmark problems (Table 7) and real-world datasets
(Table 8), underscores its reliability in addressing uncer-
tainties and complexities inherent in practical timetabling
applications. The minimal differences between the best
and worst fitness values indicate a stable and consistent
performance, highlighting mdFA-Step’s ability to navigate
through different problem sizes and structures with efficacy.
In addition to, the adaptability of mdFA-Step is evident
in its successful application to various timetabling problem
types. The algorithm’s versatility is showcased by its ability
to handle various constraints and characteristics specific to
each problem type. For instance, its ability to generate good
solutions for real-world problem, as seen in the fitness values
achieved for problems like USP18, USP19, and USP20 in the
real-world datasets. This adaptability is crucial for addressing
the unique constraints and requirements associated with
different timetabling instances. The mdFA-Step’s underlying
optimization mechanisms allow it to dynamically adjust to
the characteristics of each problem type, making it a robust
and flexible solution for diverse timetabling challenges.

Moreover, Table 10 shows the Friedman test where low
p-value indicates that there are significant differences among
the algorithms. Since, there is significant difference, post-
hoc test was done. In Table 11, the Tukey post-hoc test
results show pairwise comparisons between mdFA-Step and
different algorithms and since False was obtained under reject
column for all pairwise comparison, there are no significant
differences between any pair of the algorithms. The sample
size was small as it was tested using best results obtained
from literature, not much analysis could be made. However,
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TABLE 11. Tukey HSD results for comparisons with mdFA-step.

FIGURE 3. Average convergence graphs of dFA, dFA-step and mdFA-step. (a) HEC92. (b) STA83. (c) YOR83.

the Figures 3(a) to 3(c) offer further analysis of mdFA-Step,
demonstrating convergence superiority among other two
algorithms. The activation of the stepping-ahead parameter
leads to swift improvements, showcasing the algorithm’s
ability to drive towards better solutions.

While these results serve as a proof of concept at
the preliminary level, the comparison with state-of-the-
art algorithms and the utilization of benchmark datasets
emphasize the algorithm’s utility in this domain. The
consistent performance is attributed to the introduction of
the preference-based stepping-ahead parameter, enabling

proactive exploration of the search space by incorporating
both best and worst solutions.

A. CONVERGENCE ANALYSIS
This sub-section discusses the convergence of the mdFA-Step
algorithm.
Theorem: Let x∗ be the global optimum of the objective

function f (x), and let xt be the best solution found by a
stochastic optimization algorithm after t iterations. Then,
if the algorithm satisfies the following conditions:
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• The algorithm generates a sequence of solutions that
converges to x∗ with probability 1.

• The objective function f (x) is continuous and bounded.
• The algorithm is unbiased, meaning that the expected
value of the algorithm’s updates is equal to the true
gradient of the objective function.

Then, the probability that xt is within a distance ϵ of x∗

converges to 1 as t approaches infinity.
Proof: To demonstrate the convergence of dt to 0,

we consider the following:
Define dt = ∥xt − x∗

∥ as the distance between the
algorithm’s solution and the global optimum at iteration t .
By the triangle inequality, we have:

dt ≤ dt−1 + ∥xt − xt−1∥

Assuming unbiased updates, we have:

E[∥xt − xt−1∥] ≤ αt ,

where αt is a non-increasing sequence of positive real
numbers.

While αt is non-increasing, the algorithm’s progress may
lead to larger improvements after small steps. To address this,
we consider the non-increasing property as a general trend
rather than a strict rule.

Now, let’s show how dt converges to 0:
With probability 1, there existsT such that ∥xt−xt−1∥ ≤ αt

for all t ≥ T . Therefore, we have:

dt ≤

t∑
i=T

αi

Sinceαt is non-increasing, this sum converges. Specifically,
limt→∞

∑t
i=T αi = L, where L is a finite limit.

Thus, dt converges to a finite value:

lim
t→∞

dt ≤ lim
t→∞

t∑
i=T

αi = L

As dt is always non-negative, this implies that limt→∞ dt
is a non-negative finite value. In the context of convergence
analysis, achieving limt→∞ dt = 0 implies that the
algorithm’s solution is approaching the global optimum as the
number of iterations increases, supporting the convergence
claim.

Therefore, the probability that the best solution found by
the algorithm is within a distance ϵ of the global optimum
converges to 1 as the number of iterations approaches infinity,
under the conditions stated in the theorem.

VII. CONCLUSION
This research introduces a novel approach to tackle optimiza-
tion problems, specifically focusing on the Uncapacitated
Examination Timetabling Problems (UETP). The proposed
method involves implementing a discrete Firefly Algorithm
(dFA) with a modified ‘‘preference-based stepping ahead’’
parameter, creating a new technique termed mdFA-Step.
ThemdFA-Step algorithm underwent extensive evaluation by

addressing seven benchmark Toronto problems sourced from
the literature, in addition to a real-world university problem.
The experimental findings highlight the superior performance
of the mdFA-Step algorithm when compared to standalone
dFA, stepping-ahead dFA, and selected methods from the
literature.

The primary contribution of this research lies in the
preference-based stepping ahead mechanism. This mecha-
nism not only explores the solution space around the best
solution but also effectively exploits it by incorporating
sub-best solutions through threshold acceptance in the form
of preferences. The stepping-ahead mechanism enables
fireflies to comprehensively explore the solution space,
while threshold acceptance ensures efficient exploitation
of the area. Consequently, the new algorithm can uncover
high-quality solutions that may otherwise be overlooked
when trapped in local optima, enhancing the search through
neighborhood exploration to identify even more superior
solutions. The preference-based approach acknowledges
that optimal solutions can be in proximity to suboptimal
solutions at various stages, utilizing progressive solutions
as inputs to generate new solutions based on problem-
specific preferences. Convergence analysis demonstrates that
mdFA-Step can reach the best solution in the discrete
domain. Comparison with a modified Firefly Algorithm
from the literature solidifies the efficacy of the proposed
mdFA-Step method on the selected datasets, indicating its
potential application in various domains, including robotics
and healthcare.

It is essential to emphasize that the results obtained
in this research serve as a proof of concept at the
preliminary stage, focusing on the University of Toronto
benchmark exam timetabling problems (7 problems) and a
real-world university problem. In future research, we aim
to extend the evaluation to encompass all datasets from
the Toronto benchmark and other real-world university
datasets. Furthermore, our research can be expanded to
incorporate additional benchmark datasets featuring more
intricate constraints, such as room allocations, as observed
in the ITC 2007 dataset. Pursuing these avenues aims to
further validate and refine themdFA-Step algorithm, ensuring
its applicability and effectiveness across diverse scenarios in
the field of optimization. Future research will also include
a comprehensive analysis of parameter settings to find the
optimal configuration for the algorithm across both existing
and novel problem domains, enhancing its performance and
applicability with a more detailed statistical analysis of the
results which includes confidence intervals and significance
testing.
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