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ABSTRACT Point cloud generation and representation is important in industry areas. Generating and editing
high quality 3D shapes is challenging work in deep learning. Inspired by StyleGAN, a style based generative
adversarial networks is proposed to generate high quality 3D point cloud. An improved non-linear mapping
network learn distribution of points and is used to generate well distributed point cloud point cloud. We also
provide a coarse to fine representation for point cloud. According to the experimental results on the ShapeNet
Part data set(including aircraft, chair single category and overall 16 categories), our method can generate
more uniform point cloud than other GAN methods with less training epoches. The latent code for point
cloud has better linear separation,and is more easy to edit.

INDEX TERMS Point cloud, StyleGAN, TreeGAN, mapping network.

I. INTRODUCTION
The generation method of 3D point cloud is one of the
hot issues in the field of computer vision. 3D datasets are
being widely used in robot navigation [1] and autonomous
vehicles [2], [3], augmented reality [4] health care [5].
Among various datasets, point clouds are becoming popular
as an original representation [6], [7] which can capture
complex details of objects. 3D point cloud can be considered
as a disordered set of irregular points collected from
the surface of an object. Each point is represented by
cartesian coordinate and other additional information such as
curvature, surface normal and RGB color.

Point cloud generation models based on generative adver-
sarial networks are proposed in recent years. Generative
adversarial network (GAN) is a generativemodel proposed by
Goodfellow et al. [8]in 2014, and has become a hot research
topic in the field of artificial intelligence [9], [10]. It is widely
used in image generation and point cloud generation in the
image generation model, the pixels generated in the image
are arranged in regular grids, while point cloud is represented
by discrete points, which are not aligned by regular grids.
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Traditional GANs always generate non-uniform point clouds
without grid structure. The generated points are concentrated
in some special regions, such as geometric center of the
object and junction of different semantic parts, while other
regions are sparse. It leads to inhomogeneous points in point
cloud. To get high quality point cloud, there always need large
number of iterations in training.

Our work is inspired by styleGAN. In styleGAN, latent
code is used to represent the probability density of data and
make it editable. In this paper, a style tree generative adver-
sarial network is proposed to improve training efficiency
and make generated point clouds well distributed. Mapping
network in our method is designed as pyramid structure,
which give a coarse to fine representation for point cloud,
so it can learn the distribution of point cloudsmore accurately.
In each layer of generation network, the distribution of the
point cloud is aligned with the style code though AdaIN
module, which changes the generated nodes and makes the
shape of the generated point cloud more accurate. Our work
not only solves the problem of uneven distribution, but also
improves the training efficiency.

Style tree GAN also provides latent space which can used
in point cloud editing. Output in each level of mapping
network make up of Wk space. Like that in image editing,
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we can perform style mixing operations to mix two different
point clouds, and use the latent code to change the attribute
of point cloud. Compared with space Z , Wk space of point
cloud shows better linear separability in semantic editing.
Experiments prove the effectiveness of the method.

The main contributions of this paper are as follows:
(1) We analyze uniform problem in point cloud generation,

and show that it highly influences the quality of generated
point cloud and training efficiency.

(2) Style based Tree GAN is proposed to improve the
uniform of point cloud. An improved mapping network is
proposed to improve the expressiveness of latent code. The
method is more efficient in training, and experiments show
that it can generate more uniform point cloud that other
methods.

(3) We give a coarse to fine representation for style editing
in point cloud. Experiments show that Wk space has better
linear separation and more easy to edit.

II. RELATED WORK
Recently, the issue of point cloud generation based on deep
neural networks has attracted wide research interest,such as
image-to-point cloud [11], image-to-voxel [12], image-to-
grid [13], point-to-voxel [14] and point-to-point cloud [15].
It has been widely used in computer vision applications (such
as segmentation [16], [17], classification [18], [19], target
detection [20], [21], feature extraction [22], etc.) and has
achieved remarkable results.

GAN [23], [24] for image generation has been widely
studied for many years. Achlioptas et al. [25] proposed
r-GAN for 3D point cloud generation. The generator is made
up of many fully connected layers. Since the fully connected
layer cannot maintain local structure in point cloud, r-GAN is
hard to generate realistic 3D shapes. Valsesia et al. [26] used
graph convolution instead of fully connected network in GAN
generator. During training of graph convolution in each layer,
an adjacency matrix is dynamically constructed using feature
vectors from each vertex.The space complexity of training is
O(V 2), where V represents the number of vertices, so this
method needs large number of memory to train. Unlike the
method in Valsesia, Tree-GAN [27] generate point cloud like
building tree. It firstly generate the primary point as ancestral
nodes, and uses the ancestral nodes to generate child nodes.
Tree-GAN only requires a list of tree structures. It is more
efficient because it does not construct adjacency matrices.
In ShapeInversion [28], a uniform loss is proposed to solve
the problem of generating point cloud inhomogeneity. The
farthest point sampling (FPS) is used to randomly sample
the n seed positions on the surface of the object, and then
the K nearest neighbors of each seed are used to form a
cell block. The average distance between each seeds and
its K nearest neighbors is calculated, and the variance of
the average distance of all blocks is penalized. However,
due to the lack of appropriate regularization, the points of
upon methods tend to form a Gaussian-like distribution. For
example, the points gather at the geometric center of the

object or the junction of different semantic parts. The nodes
generated in the current layers are dependent on the nodes in
previous layers, resulting in uneven shape of the generated
point cloud.

One of the most important improvement of GAN is
StyleGAN [29],which propose a novel style-based generator.
Different from traditional GAN, styleGAN use nonlinear
mapping network to control the style of each convolutional
layer. Different from the three-dimensional point cloud, the
pixels of the two-dimensional image are arranged regularly,
and the latent code in StyleGAN controls the gray color
feature of the image. Inspired by StyleGAN, the paper
improves the mapping network and applies it to point cloud
generation. Different fromShapeInversion [28], which solved
the inhomogeneity problem of by loss function, we solve the
problem by learning uniform latent code in Style TreeGAN.
Latent code is mapped to point cloud by the AdaIN module
and make the points well distributed. Our method need not
any additional loss function. Training efficiency is much
higher than that of traditional Tree GAN.

In recent years, diffused based methods [30], [31], [32]
achieved good results in image generation. Wang et al. [33]
proposed roll-out diffusion network to generate 3D avatars.
Different from GAN and FLOW methods, latent code
in diffused based methods could not reflect semantic
information. To solve this problem, Preechakul et al. [34]
proposed a diffusion autoencoders for images, the key
idea is to use a two-part latent code, the first part use
semantically meaningful latent code from VAE, the second
part captures stochastic details. In point cloud editing,
linear and meaningful representation are also important in
point cloud editing. In the paper, we give a coarse to fine
representation for style editing in point cloud, it has better
linear separation and more easy to edit.

Shen et al. [35] proposed interface GAN to edit the image.
Similarly with interface GAN, we use the latent code in point
style GAN to perform semantic editing. Experiments show
that our method is effective in point cloud editing.

III. LIMITATION OF TRADITIONAL GAN FOR POINT
CLOUD GENERATION
The GAN applications for point cloud are similar. In each
layers of generator, new nodes are generated from parent
nodes in network. Here, we take TreeGAN as example.
TreeGAN is a typical tree structure generation network.
Points are obtained from the Gaussian distribution as
input. At each layer of the generator, branching and graph
convolution operations are performed to generate the next
layer of points. All nodes generated by the previous layers
are stored and attached to the tree of the current layer.
The tree starts from the root node, splits into child nodes
through branch operations, and modifies the value of the
nodes through graph convolution operations. In the generator,
different branching degrees are used for each layer, the
Branching module is used to increase the total number of
nodes in the process of generating point clouds, which is
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similar to the upsampling in two-dimensional convolution.
2048 points are obtained after the last layer of branching
operation. Different from the traditional graph convolution,
which updates its value through the value of the adjacent
points, the tree graph convolution (TreeGCN) proposed by
TreeGAN updates its nodes through ancestors. The formula
is as follows:

pl+1
i = σ (F lK (p

l
i) +

∑
qj∈N (pli )

U l
j qj + bl) (1)

where σ is the activation unit. F lK is a fully connected layer
containing K nodes in lth layer, pli is the ith node at.

Because TreeGAN updates the value of the current node
through ancestor nodes, it uses the ancestor information to
improve the representation ability of current node. On the
other hand, the newly generated points in each layer of
the tree structure is affected by the ancestor nodes. If the
distribution of the ancestor nodes is not uniform, the child
nodes generated by parent nodes could not construct the
shape of point cloud as well as possible, and the final points
are easy to concentrate on the semantic center part of the
object or the different semantic connections (as shown in
Figure 1), and the training efficiency is low.

FIGURE 1. Chair point cloud generated by TreeGAN.

A. LOSS FUNCTION
In this GAN, the loss function [36] of the generator is always
defined as follows:

Lgen = −Ez∈Z [D(G(z))] (2)

D is the discriminator, G is the generator, Z is the potential
distribution, and the normal distribution N (0, I ) is used.
In TreeGAN, the loss function of discriminator is defined as
follows:

Ldisc = Ez∈Z [D(G(z))] − Ez∈Z [D(x)]

+ λgpEx̂[(∥∇x̂D(x̂)∥2 − 1)2] (3)

where G(z) is the generated point cloud, x is the real point
cloud, x̂ is sampled from the true and false point cloud, λgp is
a constant coefficient of the gradient penalty term.

The loss function of the discriminator will make the
generated points focus on the discriminative features of the
point cloud, such as the edges, which will also lead to uneven
distribution of the generated point cloud.

Upon analysis show that both training efficiency and
accuracy of point cloud have strong relationship with
distribution of point cloud. Since distribution of parent
nodes affect the distribution of child nodes, coarse to fine
representation is helpful to generate accurate point cloud.
In this paper, we align the distribution of point cloud to the
latent code though mapping network, so as to generate more
uniform point cloud.

IV. STYLE BASED TREE GAN
In this section, style based TreeGAN [27] is proposed.
Inspired by StyleGAN [29] which generates image by style
transfering, we propose style based TreeGAN to generate
point cloud. The method use an improved mapping network
to learn the probability distribution of the point cloud, and
use the style transfer to control the generation of point cloud,
so the generated point clouds are well distributed.

A. STYLE BASED GENERATOR
In order to solve the problem of non-uniformity caused by
tree network and discriminator loss function, we introduce
the method in style transfer [37] into the generator and use
the improved mapping network to transfer the latent code to
style code, and use style code to control the distribution of the
generated point cloud.

Our generator is composed of mapping network and tree
structure generation network. The mapping network has
11 fully connected layers to learn the probability distribution
of point clouds. The tree structure network consists of seven
PT-Block modules (ProbabilityTree-Block). Each module
has three parts: adaptive instance normalization (AdaIN),
branching, and graph convolution (GraphConv). The latent
code is trained through the fully connected layer, and then
mapped to each PT-Blockmodule through theAdaINmodule.
The network structure is shown in Figure 2.

FIGURE 2. Style TreeGAN network structure.
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B. AdaIN MODULE
Adaptive Instance Normalization (AdaIN) [37] in style
transfer aligns the style of latent code to that of image
features. In point cloud generation, the AdaINmodule is used
to transfer the mean and variance of latent code to the nodes
of point cloud. The formula is as follows:

AdaIN (x, y) = σ (y)(
x − µ(x)

σ (x)
) + µ(y) (4)

where σ (x) and σ (y) are the variance of vectors and the latent
code respectively, andµ(x) andµ(y) are the mean of the basis
vector and the latent code respectively.

In point generation network, AdaIN modules transfer the
latent code to distribution of nodes in different resolutions,
so it aligns point cloud with different resolution, and make
the generated points well distributed.

C. IMPROVED MAPPING NETWORK
Inspired by the idea that the latent code of mapping network
in StyleGAN is used to control the generation of image,
this paper apply it to point cloud generation. Different from
images which represent color in fixed grid, point cloud are
made up of 3D points distributed in irregular positions. Here
we use a coarse to fine mapping network to represent the
distribution of 3D points. It is different from that of styleGAN
for image.

Figure 3 (a) shows the mapping network in StyleGAN
for image. The latent code is mapped to first layer after
8 fully connected layers, and is upsampled to other levels. Our
mapping network is shown in Figure 3 (b), the first two layers
of the mapping network is used to learn the coarse-grained
features of the point cloud (such as shape, size, etc.), then
it is expand to high resolution in next layers by upsampling
operation. After upsampling, two full connection layers are
used to learn a better distribution for high resolution in
latent code space. With growing of the depth of network, the

FIGURE 3. The mapping network structure before and after improvement.

mapping network can give a coarse to fine representation for
point cloud.

Our improved mapping network seems very simple,
however, it is very effective. The advantage of mapping
network are reflected in three aspects. Firstly, it provides
coarse to fine representation for point cloud generation, many
experiments show that it has better linear separations in
semantic editing. Secondly, this mapping network greatly
increase training efficiency, to achieve same JSD value,
we only need one fifth time of original tree GAN, and the
training procedure is more stable. Finally, the generated point
cloud is more uniform compared with origin tree GAN.

The key technique is that we use style code to control
the generation of point cloud. Since the upsample operations
generate the latent code uniformly in new layers, so the new
latent code also aligns the new generated nodes uniformly by
AdaIN module, and can generate more uniform point cloud.
Because the generated nodes are aligned in each layers of
network, the training is stable and efficient.

V. SEMANTIC EDITING IN STYLE TREEGAN
The coarse to fine representation can not only learn more
accurate distribution of point cloud, but also provide better
linear separations. Similar with method in [35], the generator
can be viewed as a deterministic function g: Z → X .
Where Z ∈ Rd represents the d-dimensional latent space; X
represents the semantic space, such as the shape and size of
the point cloud.

Suppose there is a semantic scoring function fS : X → S,
where S represents a semantic space with m semantics.
We can bridge latent space Z and semantic space S by s =

fS (g(z)), where s and z denote the semantic score and sampled
latent code, respectively.

Given a hyperplane with a normal vector n ∈ Rd , define
the distance of a sample z from this hyperplane as:

d(n, z) = nT z (5)

The scoring function f for semantics is defined as:

f (g(z)) = λd(n, z) (6)

where λ > 0 is a scalar measuring how quickly semantics
change with distance. The corresponding semantics can be
expressed by the normal vector n. To change the semantics
of a generated point cloud, we edit the original latent z using
Equation 7.

zedit = z+ αn (7)

where α controls the direction of latent code, and the edited
semantic score becomes as shown in Equation 8.

f (g(zedit )) = f (g(z)) + λα (8)

Taking α > 0 will make the generated point cloud tend
to have positive semantics, and similarly α < 0 will make
the generated point cloud tend to have negative semantics.
Semantic editing in formula 8 requires different attributes
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can be linearly separated from the space Z . The output of
mapping network in Style TreeGAN make up of Wk space.
Different from space Z , mapping network provides a better
disentanglement in latent space, so spaceWk has better linear
separation.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
A. IMPLEMENTATION DETAILS
Our experimental platform is the LINUX server with
GeForce RTX 3090 GPU, configured in Python 3.8 and
Tensorflow2.4-gpu. Adam optimizer was used for both
the generator and discriminator networks, learning rate of
α = 10−4, β1 = 0, β2 = 0.99. LeakyReLU(α = 0.2) is
used as a nonlinearity function without batch normalization.
To make the training more stable, while generator is updated
for one iteration, the discriminator is updated for five
iterations.The gradient penalty coefficient in the loss function
is set to 10. K value in formula 1 is set to 10.

1) PARAMETER SETTING
For generator, the latent vector z ∈ R96 is sampled from
the normal distribution N (0, I ) as input. The total number of
points in the last layer is set to n = 2048.
For generation network, the network structure and param-

eters are shown in following table. In table 1, the generation
network ismade up of 7 PT-blocks, which upsample the nodes
to 2048 3D points. Table 1 shows the parameters of mapping
network, in first 4 full convolution layers, mapping network
learns the coarse distribution of point cloud, with following
7 full convolution layers, mapping network learns the details
of point cloud.

TABLE 1. The parameters of generation network.

TABLE 2. The parameters of mapping network.

As shown in Table3, our discriminator network is 10 layers
convolution network, which include 6 point convolution
layers, the number of channels increases from 3 to 1024. The
network gives the output after the max pooling and three full
convolution layers.

TABLE 3. The parameters of discriminator network.

B. EVALUATING DATASETS
We use two dataset to evaluate our point generation method,
one is Shapenet, the other is ModelNet. ShapeNet Part
has 16 categories, 12137 training samples, 1870 validation
samples, 2874 test samples, a total of 16881 samples.
ModelNet10 has 10 categories,including 4899 samples.

C. EVALUATING INDICATOR
In this paper, JS divergence (Jensen-Shannon Divergence)
is used to evaluate the quality of point cloud generated by
GAN.JS divergence is defined as the edge distribution of
Euclidean three-dimensional space. The assumption is that
the axis-aligned point cloud data can measure the degree
to which point cloud A and point cloud B occupy similar
positions. By counting the number of points in each voxel
in point cloud A and point cloud B respectively, the JSD
between empirical distributions (PA,PB) is obtained:

JSD(PA∥PB) =
1
2
KL(PA∥M ) +

1
2
KL(PB∥M ) (9)

where M = (PA + PB)/2, D(·∥·) is the Kullback-Leibler
divergence between two distributions. The KL divergence is a
metric used tomeasure the similarity between two probability
distributions. The formula is as follows:

KL(P∥Q) =

∑
x∈X

[P(x)log(
P(x)
Q(x)

)] (10)

D. COMPARISON OF TRAINING
In order to prove the effectiveness of Style treeGAN in
training, we compare it with original TreeGAN. The aircraft
category was trained for 2000 cycles. From figure 4, it can
be seen that the JSD of original TreeGAN fluctuates greatly,
while the JSD of style TreeGAN is smooth. This is because
that latent code make the generated point cloud more regular
and stable. Compared with rGAN [25], our method can
get better JSD. It proves that our mapping network can
learn a good representation for the point cloud probability
distribution.

E. COMPARATIVE EXPERIMENTS OF ACCURACY
We compare our model with other GAN models for point
cloud generation. 5000 epoches were trained on the ShapeNet
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FIGURE 4. Comparison between Style TreeGAN and original TreeGAN and rGAN.

TABLE 4. Quantitative comparison in JSD(Shapenet).

Part dataset and Modelnet dataset. On Shapenet Part dataset,
the JSD of our model reaches 0.093, 0.074 and 0.091 on
chairs, airplanes and 16 classes respectively. It is better
than other GAN models for point cloud generation. The
results based on aircraft and chairs are compared and all
16 categories are evaluated in table 4. OnModelnet10 dataset,
the JSD of our model also achieves best results in all
important classes, which is shown in table 5.

F. COMPARISON OF UNIFORMITY
We compare the uniformity of point cloud with original
tree GAN. Two models (2048 points) were trained for
2000 epoches for comparison. The results are shown in
figure 5.

Figure 5 shows the results generated by TreeGAN and
Style TreeGAN. In the first row, points of seat are gathered
in the joint area. In second and third row, the points of plane
and desk are distributed in the center of object, while points in
other parts are sparse. For Style TreeGAN, points are uniform

TABLE 5. Quantitative comparison in JSD(Modelnet10).

and well distributed in whole object.The experimental results
show that the point clouds generated by our model are more
uniform.

G. COMPARISON OF TRAINING EFFICIENCY
To prove the training efficiency and convergence speed of our
model, the change of the JSD in first 150 epoches are drawn
by the line chart, as shown in Figure 6.
It can be seen from the line chart that Style TreeGAN is

faster than TreeGAN in JSD convergence speed. In order to
see the quality of the point cloud generated during model
training, the point cloud generated during each cycle of two
models are compared in figure 7.

From figure 7, when training 100 epoches, the chair
generated by our model has begun to take shape, while the
chairs generated by TreeGAN and rGAN are still clustered
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FIGURE 5. Uniformity comparison of point cloud generation.

FIGURE 6. Model training efficiency comparison by line chart.

together. After training 500 epoches, the chair generated
by TreeGAN and rGAN form the contour, while the chair
generated by the model in this paper has concrete shapes.
From the visualization results, the Style-TreeGAN is better
than TreeGAN. In additional, for a more intuitive comparison
of training speed, we counted the training cycles required to
different JSD, as shown in table 6.
As can be seen from table 6, to achieve the same JSD,

the training epoches of the proposed model is much less
than TreeGAN and rGAN. When JSD reaches 0.3, rGAN
need 680 epoches, TreeGAN needs 600 epoches, while Style
TreeGAN only needs 100 epoches, which is 6 times faster

TABLE 6. The epoches required for the specified JSD.

than TreeGAN. When JSD reaches 0.15, Style TreeGAN
requires 1000 epoches less training than TreeGAN. The
above experiments prove the efficiency of the proposed
model in training efficiency.
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FIGURE 7. Comparison of the point clouds in different epoches.

FIGURE 8. Generate point cloud renderings under different features.

H. CHANGE THE LOCAL CHARACTERISTICS OF THE
GENERATED POINT CLOUD
The trained model can change the local features of the
generated point cloud by changing the initial latent code in
the mapping network. Six different latent codes were taken
to change the local features of the generated point cloud. The
results are shown in figure 8.

I. STYLE MIXING
Similar with styleGAN for image, we perform style mixing
on point cloud. In the experiment, two vector z1, z2 ∈ R96

is randomly sampled from Gauss distribution, and the
corresponding latent code w1,w2 are generated in Wk by
different z. Then the style mixing is realized by applying w1
before crossover point and w2 after it. Some experimental
results are shown in Figure 9.

J. SEMANTIC EDITING
In order to edit the binary semantic attributes of the generated
point cloud, we use the method in InterfaceGAN to find
a hyperplane in Wk space as the separation boundary, and
change the semantics of the point cloud by editing the latent
code near the boundary. Taking the table as an example,
a round table and a square table are selected as the binary
semantics of the point cloud.

Firstly, we use this model to train 2000 epoches to
generate point cloud data of round table and square table,
select 500 point clouds from the generated results as data
samples for training SVM, save and generate the latent code
corresponding to each point cloud, and calculate the attribute
value. The selected latent code and the corresponding
attribute score are input into the SVM for training, and a
decision boundary with a normal vector n is obtained. In order
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FIGURE 9. Partial style mixing experimental results.

to verify the ability of semantic edit in the latent space, the
latent code z is taken on the boundary, and its corresponding
hyperplane normal vector n is obtained through the SVM
classifier. Operate zedit = z + αn on the latent code z, and
change the semantics of the point cloud by changing the value
of α. Input the edited latent code into this model to generate a
point cloud.We select latent codes in different spaces (Wk , Z )
to edit the attributes, and the results are shown in Figure 10.

In Figure 10, the five point clouds from left to right are the
results with different α values (−1, −0.5, 0, 0.5, 1), and the
generated point clouds gradually change from a square table
to a round table. The first 2 lines are the effect of semantic
editing in Z space, and the last 2 lines are the renderings
of semantic editing in Wk space. Comparing the first line of
Figure 10, the quality of point cloud editing in Z space is
lower than that in Wk space. When α changes from −1 to 1,
the point cloud in Z space changes from a square table to a
round table, and turned into a square table again. Experiments
indicate that the latent code on the Z space cannot solve
the linear entanglement problem very well, while the linear

semantic editing Aon the Wk space work well, and the quality
of the generated point cloud is higher.

K. LINEAR CLASSIFICATION
In order to verify that the latent codes in the Wk space have
better linear separability, SVM classification experiments are
carried out on the latent codes. Taking the table and chair
point cloud as an example, the latent codes in the Z spaceW
space Wk space are classified by SVM.

Firstly, 2000 epoches are trained for the latent codes in the
Z ,W , andWk spaces respectively. 600 samples are taken from
each of the three spaces. We used 6-fold cross-validation,
divided 600 data into 6 parts, and used 5 parts for training
and 1 part for verification in turn. The average of the results
was used as an evaluation of the classification accuracy. The
classification accuracy and average accuracy of 6-fold cross-
validation are shown in Table 7.

According to the data in Table 7, the average precision
of the latent code in the Wk space reaches 73.67%, which
is higher than 67.17% and 70.83% in the Z and W space,

VOLUME 12, 2024 27025



Y. Shen et al.: Style-Based Tree GAN for Point Cloud Generator

FIGURE 10. Semantic point cloud editing.

TABLE 7. SVM classification accuracy.

indicating that the latent code in theWk space has better linear
separability than the Z and W space.

VII. CONCLUSION
This paper proposes a style based tree generation adversarial
network. The mapping network is added to the generator
to train and learn the probability distribution of the point
cloud. In the point cloud generation, the distribution of the
point cloud is aligned with that of the latent code, and the
shape of the generated point cloud is more structural. Our
method not only improve the training efficiency, but also
make the generated point cloud distribution more uniform.
The point cloud generated by our model is better than other
GAN models in the evaluation of JSD indicators. The latent
code of the model has better linear representation.

Ourmethod shows the advantage of style mapping network
in point cloud generation. In fact, it does more than that in
image generation. In images, the pixels are distributed in
fixed cell, but each cell has different color, so in styleGAN,
mapping network is used to learn the distribution of color
information. In point cloud, all points are distributed in 3D
space. The shape of point cloud is decided by the positions
of points, points are not distributed in fixed cells, so the
function of mapping network in style TreeGAN can learn
the distribution of points and control the shape of point
cloud. By learning the distribution of points, compared with
traditional Tree GAN, ourmethod can generatemore accurate
point cloud.

Our method also show the importance of coarse to fine
representation. Coarse to fine representation can not only
provide better ability for semantic editing, but also raise
training efficiency. Coarse to fine representations help to
generate regular nodes in different layers. Compared with
irregular nodes, the regular nodes are more easy to form
shape.

However, our methods also need some improvements,
though ourWk space is disentangle representation of the point
cloud, it could not implement the complicate semantic editing
in point cloud. GAN model is not reversible, for given point
cloud, we need special methods to get the latent code. Futher
improvement like styleflow [38]are consider to be apply to
our applications.
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