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ABSTRACT In this paper, a prescribed-time adaptive H∞ cooperative strategy with novel prescribed
performance and input quantization based on a leader state observer is proposed for uncertain multiple robot
manipulators. First, a novel prescribed performance function is introduced into the asymmetric log-type
barrier Lyapunov function, which can limit angle errors and reduce the loss of communication resources
among multiple robot manipulators. Second, a new prescribed-time leader state estimation observer is
proposed to estimate the leader’s state information and pass it to the other followers without acceleration
information. Third, a prescribed-time adaptive command filter is designed to solve the ‘‘explosion of the
complexity’’ problem and improves the convergence performance of the control system. Fourth, an adaptive
prescribed-time H∞ cooperative controller with novel prescribed performance and input quantization is
designed. Finally, simulation examples are presented to evaluate the stability of the proposed control system.

INDEX TERMS Prescribed-time H∞ control, novel prescribed performance, asymmetric log-type barrier
Lyapunov function, prescribed-time leader state estimation observer, prescribed-time adaptive command
filter, multiple robot manipulators.

I. INTRODUCTION
In recent decades, many methods and techniques have been
proposed for consensus tracking control of multiple robot
manipulators (RMs). Some of these methods are based on
traditional control theories, such as PID control [1] and
adaptive control [2], while others utilize modern control the-
ories, such as fuzzy control [3], neural network control [4]
and model predictive control [5]. The goal of consensus
tracking control is to maintain consistent trajectories and
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attitudes of multiple RMs while performing tasks. This con-
trol method aims to ensure motion coordination between
individual manipulators through effective algorithm design
and control strategies to achieve efficient and accurate collab-
orative tasks. In addition, the backstepping technique based
on the asymmetric barrier Lyapunov function is also an
accessible controller design tool that can cleverly integrate
many other advanced algorithms. For example, backstep-
ping has been utilized to address the tracking problem of
uncertain RM systems [6] and has also been applied to the
consensus tracking control of multiple RMs [7] with the
help of adaptive control techniques. Alternatively, a new
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performance function is introduced in the asymmetric obsta-
cle Lyapunov function, which limits the trajectory tracking
error of multiple RMs to a predefined boundary such that
the dynamic response of multiple RMs satisfies the desired
control performance. A finite time error tolerance strategy
was introduced in [8] for complete state-constrained RMs
with a new performance function and time-varying time
delay. Fixed-time error tolerance coordinated tracking con-
trol based on a novel predefined performance metric was
proposed in [9] for dealing with actuator failures, parame-
ter uncertainties and time-varying disturbances in multi-RM
systems. In designing a neural network-based prescribed
performance control process, the transient performance of
an input-saturated robot is improved, and possible boundary
spanning problems are mitigated [10]. Although the above
studies have successfully addressed the problem of tracking
control for multiple RMs, the relationship between the initial
design conditions and the actual convergence rate was deter-
mined to require additional overshooting constraints. As a
result, they are not able to directly determine the time at which
the system reaches convergence, and there is still a degree of
overshooting. To solve the above problems, the performance
function needs to be redesigned, and a new error transfor-
mation is introduced to further constrain the boundaries.
Based on novel performance functions and error transforma-
tions, a predefined-time underwater vehicle control method
was presented in [11]. In [12], a novel error transforma-
tion method was designed for the design of distributed
formation coordinated tracking controllers based on an event-
triggered mechanism; this method is capable of maintaining
network connectivity and avoiding collisions in purely feed-
back nonlinear multiagent systems with directional network
connectivity.

Most prescribed time consensus control strategies in the
past have relied heavily on states such as the angular accel-
eration information of the leader [13]. However, accurate
angular velocity information is obtained relatively easier
than accurate angular acceleration states are obtained in
some cases, and the angular acceleration information may
be disturbed by external perturbations in practice. There is
no doubt that inaccurate leader angular acceleration mea-
surements can lead to deterioration of formation control
performance [14]. To solve the above problem, a slidingmode
controller based on event triggering mechanism and observer
was proposed in [15] for delayed systems with unknown
disturbances.

Currently, many novel control methods are being designed
in the presence of model nonlinear terms and external
time-varying disturbances in multi-RM systems with the
increasing requirement of control performance. Dynamic sur-
face control is an important controller design tool applied
to nonlinear systems with high-order uncertainty and has
gained popularity since its widespread application. However,
existing backstepping methods are designed to compute the
virtual control law differentially, which greatly increases the

difficulty of solving the ‘‘complexity explosion’’ problem,
and the problem becomes increasingly complex to the point
of being intractable as the system hierarchy increases. In [16],
the problem of singularity and complex explosion is solved by
introducing command filters to further compute the deriva-
tives of virtual control functions and reduce the difficulty of
derivative computation.

To achieve high-performance multi-RM system tracking
control, we cannot ignore nonlinear terms or external envi-
ronmental disturbances. Therefore, some studies have used
neural networks such as self-constructed neural networks and
fuzzy neural networks to solve these problems. However,
doing so will increase the computational burden. In [17],
finite-time H∞ control techniques were utilized instead of
neural networks to address unknown nonlinear terms in the
system. However, the initial conditions of the system under
the finite time stability theory directly affect the conver-
gence time. To solve this problem, fixed-time H∞ control
methods were introduced in the study so that the given ini-
tial conditions no longer determine the convergence time
of the system [18]. Nevertheless, the convergence time for
fixed-time theory is usually not precise or stable enough.
Subsequently, a predefined-time H∞ control strategy was
proposed in [19] to improve the system immunity to unknown
disturbances and to reduce the difficulty of system conver-
gence. However, the convergence time for the predefined
time theory still suffers from some ambiguity, so we design a
prescribed-time H∞ control method based on the time-scale
change strategy. This method aims to achieve a stable state of
the system within a prescribed time without being affected by
initial conditions.

Inspired by the above research work, an observer-based
prescribed-time adaptive H∞ cooperative controller for the
control of multiple RMs is designed in this paper. The
controller features novel prescribed performance and input
quantization, which can ensure global prescribed time sta-
bilization of multi-RM systems and effectively avoid the
‘‘complexity explosion’’. The controller makes important
contributions in the following several areas:

(1) A novel prescribed performance metric based on
an asymmetric log-type BLF is used to ensure that the
steady-state tracking performance of multi-RM systems
meets the requirements within a prescribed time. Unlike
previous BLFs [20], [21], the prescribed performance is
characterized by a fast response speed and good overshoot
suppression of the system.

(2) A novel leader state observer design strategy is pro-
posed to approximate and convey leader state information
without angular acceleration measurements in the switching
communication topology. Unlike the existing research [22],
[23], our observer is able to achieve convergence within a
prescribed time, which improves the robustness of the con-
trol system and speeds up the convergence. The challenge
of this problem lies in the complexity of prescribed time
convergence.
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(3) A prescribed-time adaptive command filter is designed
to address the ‘‘complexity explosion’’ problem. Unlike other
filters [24], [25], the proposed filter ensures that the filter
error converges quickly during the prescribed time. The intro-
duction of the adaptive rate solves the issue of the unknown
upper bound ambiguity of the virtual control law derivatives.

(4) Aiming at the problem of aggregate disturbances such
as model nonlinear terms and unknown time-varying dis-
turbances, unlike the approximation estimation using radial
basis neural networks [26] and fuzzy neural networks [27]
in previous studies, a prescribed-time H∞ formation control
strategy is proposed in this paper, which ensures that the
initial conditions set by the system are not affecting the con-
vergence speed within the prescribed time. In addition, the
system has fast response performance and good robustness
when the gain L2 is also not greater than the given γ .
The remainder of the article is organized as follows.

In section II, the model description, graph theory, notations,
assumptions and lemmas are presented. In section III, the
prescribed-time adaptive cooperative controller is designed.
In Section IV and Section V, simulations and conclusions are
presented, respectively.

II. PRELIMINARIES
A. MODEL DESCRIPTION
Consideringmulti-RM systems consisting of a leader RMand
N follower RMs, the Euler-Lagrange equation for the ithRMs
under disturbance is expressed as:

Mi
(
qi,k

)
q̈i,k + Ci

(
qi,k , q̇i,k

)
q̇i,k + Gi

(
qi,k

)
= ui,k + τdi

(1)

where qi,k , q̇i,k , q̈i,k ∈ Rn denote the joint angle, angular
velocity, and angular acceleration of the ith follower RMs,
respectively. Ci

(
qi,k , q̇i,k

)
∈ Rn denotes the Coriolis and

centrifugal forces. The symmetric positive definite inertia
matrix is denoted asMi

(
qi,k

)
∈ Rn×n. Gi

(
qi,k

)
∈ Rn denotes

the force of gravity. ui,k ∈ Rn is the quantized control input of
the ith follower RMs, and τdi ∈ Rn represents the uncertainty
interference torque.

Each RM has the following three characteristics, as shown
below:
Characteristic 1: The following parameters ϕi,1 > 0 and

ϕi,2 > 0 exist such that 0 < ϕi,13i,k < Mi(qi,k ) < ϕi,23i,k .
Characteristic 2: As shown in Mi(qi,k )ϖ̇i,k + Ciϖi,k +

Gi(qi,k ) = 8i(qi,k , q̇i,k ,ϖi,k , ϖ̇i,k )2i,k , where ϖi,k denotes
the differential vector, 8i(qi,k , q̇i,k , ϖi,k , ϖ̇i,k ) is the kinetic
matrix of regression, and 2i,k is the vector of uncertainties.
Characteristic 3: Ṁi(qi,k ) − 2Ci(qi,k , q̇i,k ) is a skew-

symmetric matrix.
To satisfy the time-varying effects under the prescribed

time control, the time scale change function is as follows:

µ(t) =


T h

(T + t0 − t)h
, t ∈ [t0, t0 + T ),

1, t ∈ [t0 + T , ∞),
(2)

where the above two parameters satisfy the designed pre-
scribed time condition: h > 2, T > 0.

The derivative ofµ(t) in the interval t = t0+T is expressed
as µ̇(t0 + T ); then,

µ̇(t) =


h
T

µ1+ 1
h , t ∈ [t0, t0 + T ),

0, t ∈ [t0 + T , ∞).
(3)

The dynamical equations of the ith follower RM are
expressed as an uncertain nonlinear second-order system,
which is obtained from the differential equation:{

ξ̇i,k = ξn,k

ξ̇n,k = f∂i,k (ξi,k ) + vQ(ui,k ) + τdi, i = 1, . . . ,N
(4)

where ξi,k ∈ R2 is the state vector for ith RMs, f∂i,k (ξi,k ) ∈ R
denotes the uncertainty of the unknown model, τdi ∈ R is
the external disturbance that varies over time, and v ∈ R is
a known parameter. In addition, the system state variables
are not measurable. Q(ui,k ) must satisfy a quantized input
inequality consisting of the design parameters λi,k and εi,k :∣∣Q(ui,k ) − ui,k

∣∣ ≤ λi,k
∣∣ui,k ∣∣+ (1 − λi,k )εi,k (5)

The quantizers with boundary constraints include uniform
quantizers, logarithmic quantizers, and hysteretic quantizers.
The proposed lag quantizer is denoted as follows:

Q(ui,k )

=



uni,ksgn(uni,k ),
uni,k

1 + λi,k
<
∣∣ui,k ∣∣ ⩽ uni,k , u̇i,k < 0,

oruni,k <
∣∣ui,k ∣∣ ⩽

uni,k
1 − λi,k

, u̇i,k > 0.

uni,k (1 + λi,k )sgn(uni,k ),

uni,k <
∣∣ui,k ∣∣ ⩽

uni,k
1 − λi,k

, u̇i,k < 0,

or
uni,k

1 − λi,k
<
∣∣ui,k ∣∣ ⩽

uni,k (1 + λi,k )
1 − λi,k

, u̇i,k > 0.

0, 0 <
∣∣ui,k ∣∣ ⩽

εi,k

1 + λi,k
, u̇i,k < 0,

or
εi,k

1 + λi,k
<
∣∣ui,k ∣∣ ⩽ εi,k , u̇i,k > 0.

Q(ui,k (t−)), u̇i,k = 0.

(6)

where uni,k = 1
1−ρi,k
i,k εi,k satisfies the conditions

n = 1, . . . , 12, i = 1, . . . , 4, k = 1, 2, λi,k =(
1 − 1i,k

)
/
(
1 + 1i,k

)
, and 0 < 1i,k < 1; then, Q(ui,k )

exists in the set H = {0,±uni,k , ±uni,k (1 + λi,k )}, with
εi,k ∈ R+ standing for the dead zone. A map of Q(ui,k ) is
shown in Fig. 1.
The kinetics of the leader RM are characterized as follows:{

ξ̇10 = ξ20

ξ̇20 = u0(ξ0, t)
(7)

where ξ0 =
[
ξ01 ξ02

]T
∈ Rm is the state vector and

u0(ξ0, t) ∈ Rr is the bounded control input for the leader RM.
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FIGURE 1. The image of the quantized input.

B. GRAPH THEORY DESCRIPTION
Information transfer in the field of multi-RM systems is usu-
ally achieved through the use of graph theory with directed
and undirected graphs, which are expressed as impor-
tant theoretical characterizations of unilateral and bilateral
information flow between multi-RM systems, respectively.
In Graph G(P, ϑ), P = [p1, . . . , pN ] denotes the set of
vertices, ϑ ∈ P × P denotes the set of sides (pi, pj), and N
denotes the number of RMs. The associated adjacency matrix
is defined as G for the directed graph A = [aij] ∈ RN×N ,
where aij = 1. aij = 1, j ̸= i indicates that the ith follower can
receive messages from the jth follower; otherwise, aij = 0.
The indegree correlation matrix is defined as E = diag(ei) ∈

RN×N , where ei =
∑

j∈Ni aij denotes node i. L
′
= E − A

is defined as the Laplacian matrix. The adjacency matrix
of the leader is defined as A = diag(aij) ∈ RN×N , where
aij = 1 indicates that the leader can connect to the nth RM;
otherwise, it is defined as aij = 0. Define bi = 1 if the
follower can obtain information from the leader; otherwise,
it is defined as bi = 0.

C. NOTATIONS
|∗| denotes the absolute value. argmin {∗} denotes the mini-
mum value {∗}. ⌈∗⌋

q represents |∗|
q sign (∗). ∥∗∥ represents

the Euclidean norm; ∗̂ and ∗̃ denote the approximation of
∗ and the approximation error, respectively. The sets of real
numbers labeled R, RN and RN×N represent Euclidean spaces
of N increasing dimensions.

D. ASSUMPTIONS AND LEMMAS
Assumption 1: In multi-RM systems with leader and fol-

lower roles, there is usually a communication topology graph
G that includes one or more leader nodes as well as other
nodes as followers. The leader node plays a dominant role
in the system and usually has a higher level of intelligence,
greater computational power and richer information. On the

other hand, the follower nodes act according to the instruc-
tions or strategies of the leader nodes.
Assumption 2: The filter input signal βi is continuous and

conductible, and there exists an unknown positive constant θi
such that the absolute value of the input signal derivative

∣∣β̇i∣∣
satisfies the condition that does not exceed θi.
Lemma 1 [28]: If condition 0 ≤ |γ | − γ tanh

( γ
δ

)
≤ wδ

is satisfied, then there must exist constants δ > 0 and γ ∈ R,
where w = 0.2785.
Lemma 2 [29]: There exists a Lyapunov function V (t)

satisfying

V̇ ⩽ −κ1V − κ2
µ̇(t)
µ(t)

V , (8)

where both constants satisfy κ1 ≥ 0, κ2 > 0 and µ(t)
represented as (2); then, the origin of the system can be
globally stabilized within a prescribed time [t0, t0 + T ). The
program is shown as follows:

V (t) ⩽ µ−κ2 (t)e−κ1(t−t0)V (t0), (9)

and for the interval t ∈ [t0 + T , +∞), the argument is that
V (t) ≡ 0.
Lemma 3 [30]: For constant d > 1 and (s− q)d ≤

sd − qd and for constant d > 0 and qd (s− q) ≤
1

1+d

(
s1+d − q1+d

)
, the following conditions must be satis-

fied: q > 0, s ≤ q.
Lemma 4 [31]: For any performance boundary parameter

η(t) > 0, if there exists a steady-state error E in the compact
set {� : −η(t) < E(t) < η(t)}, then

ln
η2eE

2

η2 − E2 ≤

(
1 +

1
η2 − E2

)
E2 (10)

Remark 1: The finite-time stabilization settling time is not
uniform or predefined. This is because the initial values
and other parameters determine the convergence time of the
system. However, the predefined time theory allows the initial
conditions of the system to no longer affect the stabilization
time. In addition, the predefined time stabilization theory [32]
allows for fast convergence, and the stabilization time is
distributed uniformly and preferentially.
Remark 2: According to the theory of fixed-time stability,

the settling time may not be predefined, even if the initial
values are the same, because its upper limit is usually limited
in someway. Even if the parameters in the fixed-time stability
theory can be adjusted so that the system converges in a
prescribed time, the parameters may be too large due to an
overly conservative estimate of the settling time.
Remark 3: Although the stability of the predefined time

stability theory is completely independent of the initial values
and other parameters, and the settling time can be predefined,
the exact time of convergence is still somewhat unclear.
Therefore, a prescribed time control method is designed to
solve the above problem and its convergence time is defined
in the time scale transformation function, which ensures the
stability and predictability of the system.
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III. MATH
In this section, a prescribed-time adaptive H∞ cooperative
strategy is introduced for multi-RM systems (MRMSs). First,
a novel prescribed performance metric based on an asym-
metric log-type BLF is developed, which efficiently adjusts
the state convergence performance, improves the stability
of the system, and enables the system to achieve optimal
performance. Second, a prescribed time state observer is
introduced to enable the estimation of the leader angle and
angular velocity information without requiring leader angu-
lar acceleration. Third, a prescribed-time adaptive command
filter is designed to improve the convergence speed while
considering the ‘‘complexity explosion’’. Fourth, a prescribed
time control strategy is introduced to address nonlinear
model terms and external disturbances, while a lag quan-
tizer is introduced to avoid the jitter phenomenon. Finally,
an observer-based prescribed-time adaptive H∞ cooperative
controller with novel prescribed performance and input quan-
tization is designed, which ensures the overall stability of the
system at the prescribed time and improves the robustness of
the system.

A. PRESCRIBED-TIME LEADER STATE OBSERVER
In this section, we design a prescribed time cascaded leader
state estimation observer that redesigns a new leader for each
follower with no corresponding acceleration measurements.



˙̂xi,k = v̂i,k+κx

⌈∑
vj∈Ni

aij
(
x̂j,k−x̂i,k

)
+bi

(
x0,k−x̂i,k

)⌋
+ ρx

µ̇

µ

⌈∑
vj∈Ni

aij
(
x̂j,k−x̂i,k

)
+bi

(
x0,k−x̂i,k

)⌋
˙̂vi,k = âi,k+κv

⌈∑
vj∈Ni

aij
(
v̂j,k−v̂i,k

)
+bi

(
v0,k−v̂i,k

)⌋
+ ρv

µ̇

µ

⌈∑
vj∈Ni

aij
(
v̂j,k−v̂i,k

)
+bi

(
v0,k−v̂i,k

)⌋
˙̂ai,k = κa

⌈∑
vj∈Ni

aij
(
âj,k−âi,k

)
+bi

(
za,k−âi,k

)⌋
+ ρa

µ̇

µ

⌈∑
vj∈Ni

aij
(
âj,k−âi,k

)
+bi

(
za,k−âi,k

)⌋
(11)

where x0 = [x0,1, . . . , x0,k ]T , v0 = [v0,1, . . . , v0,k ]T , a0 =

[a0,1, . . . , a0,k ]T and i, j = 1, . . . , 4, k = 1, 2. za,k is
considered an estimate a0,k with direct communication links
to the leader when the gain satisfies κx , κv, κa, ρx , ρv, ρa >

uM and the prescribed time observer is shown as follows:
żx,k = zv,k − δ1

⌈(
zx,k − x0,k

)⌋
− δ2

µ̇

µ

⌈(
zx,k − x0,k

)⌋
żv,k = za,k − δ3

⌈(
zx,k − x0,k

)⌋
− δ4

µ̇

µ

⌈(
zx,k − x0,k

)⌋
ża,k = −∂ sign

(
zx,k − x0,k

)
, za,k (t0) = a0,k (t0) ,

(12)

where δ1, δ2, δ3, δ4 are all positive constants and form a

matrix such that B1 =

[
−δ1 1
−δ2 0

]
and B2 =

[
−δ3 1
−δ4 0

]
satisfy

the Hurwitz theorem.
Remark 4: For the ith follower that satisfies the require-

ment bi = 0, the prescribed time observers (11) and (12) must
be used because it is not reasonable to set the transfer func-
tions zx,k , zv,k and za,k among the followers. If the transfer
functions za,k are used directly, it is not reasonable for the jth
follower to satisfy the condition bj = 1, so the state estimation
of the leader needs to be reconstructed by the observer (11).
The prescribed time observer (12) is used for the ith follower
that satisfies the condition bi = 1.
Remark 5: Unlike previous fixed-time and finite-time dis-

tributed observers in previous work, the PTCLSO consisting
of (11) and (12) requires only angular and angular velocity
measurements to obtain estimates of the leader states and
does not require angular acceleration measurements. Further-
more, it should be noted that the outputs zx,k , zv,k and za,k of
observer (12) can be obtained only by a follower that has a
direct link with the leader. A direct link with the leader is
not available to other followers when bi > 0. Furthermore,
if the outputs of observer (12) can be shared between any two
followers, the problem of communication link failures would
obviously discourage such a communication scheme. There-
fore, PTCLSO is practical and robust for reconstructing the
state of the leader online without accelerating measurements
in many applications.

B. A NOVEL PRESCRIBED PERFORMANCE BASED
ON THE BLF
In this section, a new prescribed performance metric based
on a log-type BLF is developed, which can be parameter-
ized to constrain the initial overshooting phenomenon of the
error, the performance requirements needed for the overall
control scheme can be achieved while limiting the angular
steady-state error well, and the control system has an overall
good robustness and stability.

The angle error of the ith follower RM is expressed as
follows:

exi,k (t) =

N∑
j=1

aij(xi,k (t)−xj,k (t))+bi(xi,k (t)−x0,k (t)) (13)

The differentiation of (13) is expressed as follows:

evi,k (t) =

N∑
j=1

aij(vi,k (t)−vj,k (t))+bi(vi,k (t)−v0,k (t)) (14)

To achieve the prescribed performance requirements of the
system, we designed the following inequality to approximate
the angle error exi,k (t):

−η
i,k
(t) < exi,k (t) < η̄i,k (t) (15)

To ensure that the control system is well constrained
by the performance function, the performance function is
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represented as follows:

η(t) =


ϒ

η
0
− η

∞

π

1
tf
sin
(

π

2
−

π

2
t
tf

)
t ∈

[
0, tf

)
−ϒ(η

0
− η

∞
)
(
t − tf

)
+ ρ∞,

η
∞

, t ∈
[
tf , ∞

)
(16)

η̄(t) =


ϒ

η̄0 − η̄∞

π

1
tf
sin
(

π

2
−

π

2
t
tf

)
t ∈

[
0, tf

)
−ϒ(η̄0 − η̄∞)

(
t − tf

)
+ η̄∞,

η̄∞, t ∈
[
tf , ∞

)
(17)

The derivative of the performance function is:

η̇(t) =


ϒ(η

0
− η

∞
)cos

(
π

2
−

π

2
t
tf

)
t ∈

[
0, tf

)
−ϒ(η

0
− η

∞
),

0, t ∈
[
tf , ∞

)
(18)

˙̄η(t) =


ϒ(η̄0 − η̄∞)cos

(
π

2
−

π

2
t
tf

)
t ∈

[
0, tf

)
−ϒ(η̄0 − η̄∞),
0, t ∈

[
tf , ∞

)
(19)

To realize the asymmetric performance constraints formul-
tiple RMs, a log-type BLF is constructed as follows [33]:

V1 =
(
1 − q

(
exi,k

))
ln(

η2
i,k
ee

2
xi,k

η2
i,k

− e2xi,k
)

+ q
(
exi,k

)
ln(

η̄2i,ke
e2xi,k

η̄2i,k − e2xi,k
) (20)

where q(exi,k ) is defined as follows:

q(exi,k ) =

{
1, exi,k > 0
0, exi,k ≤ 0

(21)

Remark 6: Unlike in previous research [34], [35], the
improved performance function is designed to ensure the
angular steady-state error converges within the prescribed
time t0 + T . Unlike the conventional prescribed perfor-
mance [36], the system overshoots while reaching the
boundary of the performance envelope, the convergence time
of the proposed performance function in this paper is shorter,
and the error converges faster when the maximum upper
bound is reached while satisfying the same performance
requirements.

C. A PRESCRIBED-TIME ADAPTIVE COMMAND FILTER
In this section, a prescribed-time adaptive command filter is
designed to alleviate the phenomenon of complex explosions
in virtual control rates within a prescribed time.

We design a new error variable βei,k and express the filter-
ing error as follows:

βei,k = βi,k − βdi,k (22)

where βi,k is defined as the signal before filtering and βdi,k
is defined as the signal after filtering. In addition, the initial
value satisfies the condition βi,k (0) = βdi,k (0).
Based on assumption 2, we introduce a new state θ̂i,k ,

which is the estimated value of θi,k . Let us define the esti-
mated error as follows:

θ̃i,k = θi,k − θ̂i,k (23)

A prescribed-time adaptive command filter is designed as
follows:

β̇di,k = (κ2 + c2
µ̇

µ
)βei,k + θ̂i,k tanh

(
θ̂i,kβei,k

σ

)
˙̂
θi,k = −(κ3 + c3

µ̇

µ
)θ̂i,k +

∣∣βei,k ∣∣ (24)

where σ is a positive constant.
Theorem 1: From assumption 2, it can be observed that

there is a boundary constraint limiting the filtering error of the
prescribed time adaptive command filter (24) for a prescribed
time.
Remark 7: The first-order filter in [37] speeds up con-

vergence, but the convergence rate is related to the gain
coefficients. In [38], the command filter achieved system
convergence in a fixed time, but it could not approach the
unknown upper bound of the virtual control input derivatives.
In contrast, the design of the prescribed-time adaptive com-
mand filter in this paper is independent of the choice of gain
coefficients and ensures that the filtering error is boundary
limited and stabilized near zero in the prescribed time. The
stability of the system can be improved by designing an adap-
tive rate method to approximate the uncertain upper bound on
the derivative of the virtual control rate.

D. PRESCRIBED-TIME H∞ CONTROL
The flow of the prescribed time H∞ controller design is
shown below:

For the multi-RM systems:{
ẋ = f (x) + g(x)q(u)
z = h(x)

(25)

where x ∈ Rn is the state estimation vector, q(u) ∈ Rm is the
quantized control input vector, f (x) ∈ Rr is an uncertain per-
turbation vector, and z ∈ Rr is a performance characterization
vector.

The dynamic compensator is expressed as follows:

u = φ(x, t) (26)

This controller is prescribed time stable if it satisfies the
following conditions:
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FIGURE 2. Diagram of the multiple robot manipulator formation control strategy.

(1) If the multi-RM systems in (25) and (26) are globally
prescribed time stable, then they must satisfy the condition
f (x) = 0.
(2) Given condition γ > 0, the system gain L2 in (25)

and (26) does not exceed γ if the output z is generated by
f (x) and the initial value x (t0) = 0 satisfies:∫ t1

t0
∥z (t)∥2 dt ≤ γ 2

∫ t1

t0
∥f (t)∥2 dt (27)

for all t1 > t0 and for all uncertain disturbances f (t).
Remark 8: The composite H∞ controller (26) proposed in

this paper is guaranteed to be globally prescribed-time con-
vergent when the gain L2 satisfies the condition that does not
exceed γ , and the prescribed-time controller in (27) should be
highly robust. The multi-RM systems are not only prescribed
time stable, but also have good immunity to interference.
Remark 9: Unlike the fixed-time or predefined-time H∞

control strategies mentioned in the past, the prescribed time
H∞ control method is designed to estimate the convergence
time more accurately by utilizing novel performance func-
tion, quantitative technique and state observer in this paper.
Theorem 2: If there exists a Lyapunov function V (x) in

the nonlinear system (25) in a neighborhood Y ⊂ Rn that
satisfies the conditions B > 0, κ1 > 0 and κ2 > 0, then it
follows that

(1) V (x) is positive in region Y ;
(2) V̇ (x) + κ1V (x) + κ2

µ̇
µ
V (x) −B ≤

1
2 (γ

2 ∥f ∥2 − ∥z∥2)
If the gain L2 of the system (25) satisfies the condition that

no more than γ or Y = Rn and V (x) are radially unbounded
and satisfy the conditions V (x) → +∞ in case ∥x∥ → +∞,
the system can subsequently be considered to be partially
prescribed time stable at the origin.

Proof:
If the above conditions f (x) = 0 are satisfied, inequality

2 in the Theorem 2 can be expressed as follows:

V̇ (x) + κ1V (x) + κ2
µ̇

µ
V (x)

− B ≤
1
2
(γ 2

∥f ∥2 − ∥z∥2) = −
1
2

∥z∥2 ≤ 0 (28)

According to Lemma 1, the multi-RM systems are prescribed
time stable.

If the conditions f (x) ̸= 0,V (x) > 0 are satisfied,
inequality 2 in the Theorem 2 can be expressed as follows:

V̇ (x) ≤ V̇ (x) + κ1V (x)

+ κ2
µ̇

µ
V (x) − B ≤

1
2
(γ 2

∥f ∥2 − ∥z∥2) (29)

In summary, the system gain L2 satisfies the condition no
more than γ .
The proof is performed.

E. PRESCRIBED-TIME ADAPTIVE COMMAND FILTERED
H∞ CONTROLLER BASED ON A NOVEL PRESCRIBED
PERFORMANCE
The derivative of V1 yields

V̇1 =
(
1 − q

(
exi,k

))[
η̇
i,k

η
i,k

−

η
i,k

η̇
i,k

η2
i,k

− e2xi,k
+ (1 +

1

η2
i,k

− e2xi,k
)exi,k ėxi,k

]
+ q

(
exi,k

)[
˙̄ηi,k

η̄i,k
−

η̄i,k ˙̄ηi,k

η̄2i,k − e2xi,k
+ (1 +

1

η̄2i,k − e2xi,k
)exi,k ėxi,k

]
(30)

The following error variables are introduced in the virtual
controller:

zi,k = evi,k − βi,k (31)

Substituting zi into (13) and (14), we obtain the following
equation:

ėxi,k = zi,k + βi,k

żi,k = M−1
i,k ui,k

∑
j∈F

aij + bi

+ fi,k

− (
∑
j∈F

aijv̇j,k + biv̇0,k ) − β̇i,k (32)

Then, by substituting (32) into (30), further development
can yield

V̇1 =
(
1 − q

(
exi,k

))
(
η̇
i,k

η
i,k

−

η
i,k

η̇
i,k

η2
i,k

− e2xi,k
)
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+ q
(
exi,k

)
(
˙̄ηi,k

η̄i,k
−

η̄i,k ˙̄ηi,k

η̄2i,k − e2xi,k
)

+

[(
1 − q

(
exi,k

))
(1 +

1

η2
i,k

− e2xi,k
)

+ q
(
exi,k

)
(1 +

1

η̄2i,k − e2xi,k
)

]
exi,k (zi,k + βi,k ) (33)

Therefore, the design process of the virtual controller βi,k
is designed to ensure that the angle error exi,k converges to
the zero-value attachment within the prescribed time:

βi,k =
(
1 − q

(
exi,k

)) (
−p03

−1
li,kexi,k − (κ1 + c1

µ̇

µ
) exi,k

− e−1
xi,k3

−1
li,k (

η̇
i,k

η
i,k

−

η
i,k

η̇
i,k

η2
i,k

− e2xi,k
)

)

+ q
(
exi,k

) (
−p03

−1
ui,kexi,k − (κ1 + c1

µ̇

µ
)exi,k

− e−1
xi,k3

−1
ui,k (

˙̄ηi,k

η̄i,k
−

η̄i,k ˙̄ηi,k

η̄2i,k − e2xi,k
)

)
(34)

where 0 < r < 1, 3li,k = 1+
1

η2
i,k

−e2xi,k
, 3ui,k = 1+

1
η̄2i,k−e

2
xi,k

and Tc is a positive constant.
Therefore, (32) can be rewritten as follows:

ėxi,k = zi,k + βdi,k

żi,k = M−1
i,k ui,k

∑
j∈F

aij + bi

+ fi,k

− (
∑
j∈F

aijv̇j,k + biv̇0,k ) − β̇di,k (35)

Considering the following nonlinear dynamic system (35),
we introduce a novel performance vector

zi,k =

[
∂1exi,k
∂2exi,k

]
(36)

To achieve error convergence within the prescribed time,
the actual controller ui,k is designed as follows:

ui,k = Mi

∑
j∈F

aij+bi

−1∑
j∈F

aijv̇j,k+biv̇0,k

+ β̇di,k

−
((
1 − q

(
exi,k

))
3li,k + q

(
exi,k

)
3ui,k

)
exi,k

−

(
1

2γ 2 +
∂22

2

)
zi,k − (κ4 + c4

µ̇

µ
)zi,k

)
(37)

where 0 < r < 1,Tc > 0.
Theorem 3: For a particular case of multi-RM systems (4)

and (7), the system control rates are as shown in (7) and (37),

and conditions p0 >
∂21
2 are satisfied to realize the cooperative

control problem taking into account the model nonlinear
items and external disturbances to ensure that the whole
multi-RM system is stabilized at a prescribed time.

Proof:
Substituting (34) into (33), one has

V̇1=−p0e2xi,k+
((
1−q

(
exi,k

))
3li,k+q

(
exi,k

)
3ui,k

)
zi,kexi,k

−
((
1−q

(
exi,k

))
3li,k+q

(
exi,k

)
3ui,k

)
(κ1+c1

µ̇

µ
)e2xi,k

(38)

The following Lyapunov function is selected:

V2 = V1 +
1
2
β2
ei,k +

1
2
θ̃2i,k (39)

Taking the derivative with respect to V2, one has

V̇2 = V̇1 + βei,k β̇ei,k − θ̃i,k
˙̂
θi,k (40)

From Lemma 1, by substituting (24) into (40), one has

V̇2 ≤ −p0e2xi,k+
((
1−q

(
exi,k

))
3li,k+q

(
exi,k

)
3ui,k

)
zi,kexi,k

−
((
1−q

(
exi,k

))
3li,k+q

(
exi,k

)
3ui,k

)
(κ1+c1

µ̇

µ
)e2xi,k

− (κ2+c2
µ̇

µ
)βei,k+wσi,k−θ̃i,k (κ3+c3

µ̇

µ
)θ̂i,k (41)

where w = 0.2785.
Based on Lemma 3, one has θ̃i,k θ̂i,k ≤ (1/2)

(
2θ2i,k − θ̃2i,k

)
:

V̇2≤−p0e2xi,k+
((
1−q

(
exi,k

))
3li,k+q

(
exi,k

)
3ui,k

)
zi,kexi,k

−
((
1−q

(
exi,k

))
3li,k+q

(
exi,k

)
3ui,k

)
(κ1+c1

µ̇

µ
)e2xi,k

− (κ2+c2
µ̇

µ
)β2
ei,k+wσi,k+

1
2
(κ3+c3

µ̇

µ
)(2θ2i,k−θ̃2i,k )

(42)

Choose a Lyapunov function candidate as

V3 = V2 +
1
2
z2i,k (43)

Taking the time derivative of V3

V̇3 = V̇2 + zi,k żi,k ≤ −p0e2xi,k
+
((
1 − q

(
exi,k

))
3li,k + q

(
exi,k

)
3ui,k

)
zi,kexi,k

−
((
1−q

(
exi,k

))
3li,k+q

(
exi,k

)
3ui,k

)
(κ1+c1

µ̇

µ
)e2xi,k

− (κ2 + c2
µ̇

µ
)β2
ei,k + wσi,k −

1
2
(κ3 + c3

µ̇

µ
)θ̃2i,k

+ (κ3 + c3
µ̇

µ
)θ2i,k + zi,k

M−1
i,k ui,k

∑
j∈F

aij + bi


+ fi,k −

∑
j∈F

aijv̇j,k + biv̇0,k

− β̇di,k

 (44)

Substituting (37) into (44), one has

V̇3 ≤ −
((
1 − q

(
exi,k

))
3li,k + q

(
exi,k

)
3ui,k

)
(κ1 + c1

µ̇

µ
)e2xi,k − (κ2 + c2

µ̇

µ
)β2
ei,k
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− (κ3 + c3
µ̇

µ
)θ̃2i,k − (κ4 + c4

µ̇

µ
)z2i,k

+ wσi,k + (κ3 + c3
µ̇

µ
)θ2i,k − p0e2xi,k

−

(
1

2γ 2 +
∂22

2

)
z2i,k + zi,k fi,k (45)

According to Lemma 4, we obtain

ln
η2
i,k
ee

2
xi,k

η2
i,k

− e2xi,k

 ≤

(
1 +

1

η
i,k

− e2xi,k

)
e2xi,kln

η̄2i,ke
e2xi,k

η̄2i,k − e2xi,k

 ≤

(
1 +

1

η̄i,k − e2xi,k

)
e2xi,k

(46)

Based on the observation of (46), (45) is further developed
as:

V̇3 ≤ −(κ1 + c1
µ̇

µ
)

(1 − q
(
exi,k

))
ln(

η2
i,k
ee

2
xi,k

η2
i,k

− e2xi,k
)

+q
(
exi,k

)
ln(

η̄2i,ke
e2xi,k

η̄2i,k − e2xi,k
)

− (κ2 + c2
µ̇

µ
)β2
ei,k

− (κ3 + c3
µ̇

µ
)θ̃2i,k − (κ4 + c4

µ̇

µ
)z2i,k + wσi,k − p0e2xi,k

+ (κ3 + c3
µ̇

µ
)θ2i,k −

(
1

2γ 2 +
∂22

2

)
z2i,k + zi,k fi,k (47)

To prove that the L2 gain of the system satisfies the condi-
tion that does not exceed γ , define the function

H = V̇3 +
1
2

(∥∥zi,k∥∥2 − γ 2 ∥∥fi,k∥∥2)
≤ −(κ1 + c1

µ̇

µ
)

(1 − q
(
exi,k

))
ln(

η2
i,k
ee

2
xi,k

η2
i,k

− e2xi,k
)

+q
(
exi,k

)
ln(

η̄2i,ke
e2xi,k

η̄2i,k − e2xi,k
)

− (κ2 + c2
µ̇

µ
)β2
ei,k

− (κ3 + c3
µ̇

µ
)θ̃2i,k − (κ4 + c4

µ̇

µ
)z2i,k + wσi,k

− p0e2xi,k + (κ3 + c3
µ̇

µ
)θ2i,k + zi,k fi,k

−

(
1

2γ 2 +
∂22

2

)
z2i,k +

1
2

(∥∥zi,k∥∥2 − γ 2 ∥∥fi,k∥∥2) (48)

According to the theory of prescribed-time H∞ stability
and the analytical results of the above equations, (49) can be
further derived:

H ≤ −(κ1 + c1
µ̇

µ
)

(1 − q
(
exi,k

))
ln(

η2
i,k
ee

2
xi,k

η2
i,k

− e2xi,k
)

+ q
(
exi,k

)
ln(

η̄2i,ke
e2xi,k

η̄2i,k − e2xi,k
)

− (κ2 + c2
µ̇

µ
)β2
ei,k

− (κ3 + c3
µ̇

µ
)θ̃2i,k − (κ4 + c4

µ̇

µ
)z2i,k + wσi,k

− p0e2xi,k + (κ3 + c3
µ̇

µ
)θ2i,k +

∥∥zi,k∥∥ ∥∥fi,k∥∥
−

(
1

2γ 2 +
∂22

2

)
z2i,k +

∂21

2

∥∥λi,k
∥∥2

+
∂22

2
z2i,k −

γ 2

2

∥∥fi,k∥∥2 (49)

With further consideration of (49) and combining it with
the previous derivations, the third step leads to (50) as
follows:

H ≤ −(κ1 + c1
µ̇

µ
)

(1 − q
(
exi,k

))
ln(

η2
i,k
ee

2
xi,k

η2
i,k

− e2xi,k
)

+q (exi) ln(
η̄2i,ke

e2xi,k

η̄2i,k − e2xi,k
)

− (κ2 + c2
µ̇

µ
)β2
ei,k

− (κ3 + c3
µ̇

µ
)θ̃2i,k − (κ4 + c4

µ̇

µ
)z2i,k + wσi,k

− p0e2xi,k + (κ3 + c3
µ̇

µ
)θ2i,k +

∥∥zi,k∥∥ ∥∥fi,k∥∥
−

1
2γ 2 z

2
i,k +

∂21

2

∥∥λi,k
∥∥2 −

γ 2

2

∥∥fi,k∥∥2 (50)

Immediately following the derivation of (50) can be
equated to

H = −(κ1 + c1
µ̇

µ
)

(1 − q
(
exi,k

))
ln(

η2
i,k
ee

2
xi,k

η2
i,k

− e2xi,k
)

+ q
(
exi,k

)
ln(

η̄2i,ke
e2xi,k

η̄2i,k − e2xi,k
)

− (κ2 + c2
µ̇

µ
)β2
ei,k

− (κ3 + c3
µ̇

µ
)θ̃2i,k − (κ4 + c4

µ̇

µ
)z2i,k + wσi,k

− p0e2xi,k + (κ3 + c3
µ̇

µ
)θ2i,k +

∂21

2

∥∥exi,k∥∥2
−

(
1

√
2γ

zi,k −
γ

√
2
fi,k

)T ( 1
√
2γ

zi,k −
γ

√
2
fi,k

)
(51)

According to Lemma 2, one obtains

H ≤ −(κ1 + c1
µ̇

µ
)

(1 − q
(
exi,k

))
ln(

η2
i,k
ee

2
xi,k

η2
i,k

− e2xi,k
)

+q
(
exi,k

)
ln(

η̄2i,ke
e2xi,k

η̄2i,k − e2xi,k
)

− (κ2 + c2
µ̇

µ
)β2
ei,k

− (κ3 + c3
µ̇

µ
)θ̃2i,k − (κ4 + c4

µ̇

µ
)z2i,k

+ Bi,k −

(
p0 −

∂21

2

)∥∥exi,k∥∥2
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FIGURE 3. Angle tracking effect graph within the prescribed time t = t0 + T = 0.5 s.

FIGURE 4. The switching-directed topology.

≤ −(κ5 + c5
µ̇

µ
)V3 + Bi,k (52)

where Bi,k = wσi,k + (κ3 + c3
µ̇
µ
)θ2i,k −

(
p0 −

∂21
2

)∥∥exi,k∥∥2.
The proof is performed.
Remark 10: According to Lemmas 1-4 and Assumptions

1-2, the derivations of this paper can be written as (52), where
the designed controller is shown in Fig. 2.

IV. SIMULATION
To prove the stability of the controller designed in this paper,
five dual-joint robots are designed for verification, which
consists of one leader RM and four follower RMs. The
communication topology is switched every 10s, as shown in
Fig. 4.

For this purpose, the two-jointed robot manipulator is
shown in Fig. 5 and the dynamical equation is represented
by (1), where[

Mi,11 Mi,12
Mi,21 Mi,22

] [
q̈i,1
q̈i,2

]
+

[
Ci,11 Ci,12
Ci,21 Ci,22

] [
q̇i,1
q̇i,2

]
+

[
Gi,11
Gi,21

]
=

[
Q(ui,1)
Q(ui,2)

]
+

[
τd1
τd2

]
(53)

where Mi,11 = Ji,1 + mi,2l2i,1 + Ji,2 + 0.25mi,2l2i,2 +

mi,2li,1li,2 cos qi,2, Mi,12 = Mi,21 = Ji,2 + 0.25mi,2l2i,2 +

0.5mi,2li,1li,2 cos qi,2,Mi,22 = Ji,2 + 0.25mi,2l2i,2,Ci,11 =

−0.5mi,2li,1li,2q̇i,2 sin qi,2,Ci,12 = −0.5mi,2li,1li,2
(
q̇i,1+q̇i,2

)
sin qi,2,Ci,21 = 0.5mi,2li,1li,2q̇i,1 sin qi,2,Ci,22 = 0,Gi,11 =

(0.5mi,1+mi,2)g cos qi,1+0.5mi,2li,2g cos(qi,1+qi,2),Gi,21 =

0.5mi,2li,2g cos(qi,1+qi,2).qi,1 and qi,2 define the joint angle,
and Ji,1 and Ji,2 represent the joint torque. li,1 and li,2 repre-
sent the length of the link bar.mi,1 andmi,2 denote the weights
of the link bars.

FIGURE 5. A two-joint robot manipulator platform.

TABLE 1. Physical parameters of the robot manipulators.

The leader preset trajectories are represented as follows:{
sd1 = sin(0.5t)
sd2 = 2 cos(0.5t)

(54)

with x0 = [sd1, sd2]T , v0 = [ṡd1, ṡd2]T and a0 = [s̈d1, s̈d2]T .
The disturbances are set as follows:{

τd1 = 1 + 0.5 sin(0.5t)
τd2 = 0.5 + 0.5 cos(0.5t)

(55)

VOLUME 12, 2024 25829



W. Li et al.: Observer-Based Adaptive Prescribed-Time H∞ Coordinated Control

FIGURE 6. Angular velocity tracking effect graph within the prescribed time t = t0 + T = 0.5 s.

FIGURE 7. Angle tracking error graph within the prescribed time t = t0 + T = 0.5 s.

FIGURE 8. Angular velocity tracking error graph within the prescribed time t = t0 + T = 0.5 s.

FIGURE 9. Filtering error within the prescribed time t = t0 + T = 0.5 s.

The initial states of the follower robots are xd1(0) =

[0.13, 1.7, 0.2, 2, −0.13, −1.7, −0.2, −2]T , xd2 = [0, 0, 0,
0, 0, 0, 0, 0]T . The ith follower robot manipulator controller
ui is set as follows: κ1 = 10, κ2 = κ3 = 3, κ4 = 10, ∂2 = 1,
γ = 1, and c1 = c2 = c3 = c4 = 2. The settling time is given

as t0 = 0s,T = 0.5s, and h = 0.3. The performance function
values are shown as follows: η0 = 3, η̄0 = 3, η

∞
= 1.5,

η̄∞ = 1.5, ϒ = 0.8, and tf = 1.5s. To verify the superiority
of the proposed prescribed time H∞ (PSTH) controller, the
parameter settings for the fixed-time H∞(FXTH) controller
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FIGURE 10. The filter adaptive laws.

FIGURE 11. Control input graph.

FIGURE 12. Angle errors of the observer within the prescribed time t = t0 + T = 0.5 s.

FIGURE 13. Angular velocity errors of the observer within the prescribed time t = t0 + T = 0.5 s.

comparison experiment [18] are: α = 0.8, β = 1.2, ∂2 =

1, p1 = p2 = p3 = p4 = 1, and γ = 1.
The main use cases for these multiple RMs are weld-

ing [39] and painting [40] in industrial production. To sim-
plify the simulation process, the two-degree-of-freedom

robotic arm is used. Considering that the problem of lim-
ited communication bandwidth for multiple RMs may occur
during industrial production, which directly leads to the dete-
rioration of the overall control performance, the input quan-
tization techniques is introduced to improve the situation,
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FIGURE 14. Angular acceleration errors of the observer within the prescribed time t = t0 + T = 0.5 s.

FIGURE 15. Angle tracking effect comparison graph.

FIGURE 16. Angular velocity tracking effect comparison graph.

while avoiding the unnecessary jitter vibration phenomenon
of the controller. The performance function constrains the
angle error of the RMs to achieve the desired performance
requirements. Filter is introduced to select signals at specific
frequencies to improve the reliability of signal transmis-
sion. The proposed leader observer simulates the real-time
monitoring of a given reference trajectory in an industrial
environment to ensure the normal operation of multiple RMs
under real working conditions. Finally, virtual simulations
are performed by simulating sinusoidal function inputs to
verify the effectiveness of the control strategy proposed in
this paper.

The angle and angular velocity tracking of the multi-RMs
are shown in Figs. 3 and 6, respectively. The tracking errors of
the angle and angular velocity of the multiple RMs are shown
in Figs. 7 and 8, in which the angular and angular velocity
tracking errors can converge within a certain range under

TABLE 2. Multi-RMs for the angle error of joint 1.

TABLE 3. Multi-RMs for the angle error of joint 2.

the action of the designed novel prescribed performance, the
performance function is universal, and there is no obvious
jitter in the errors. The filtering error and adaptive rate of
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TABLE 4. Multi-RMs for angular velocity error of joint 1.

TABLE 5. Multi-RMs for angular velocity error of joint 2.

the prescribed time adaptive command filter are shown in
Figs. 9 and 10, from which it is easy to see that the filtering
error significantly overshoots in the initial stage and finally
converges to the zero-value region quickly within the pre-
scribed time. The quantized control input of the system and
its partial enlargement are shown in Fig. 11. The angular and
angular velocity and angular acceleration tracking errors of
the prescribed time state observer are shown in Figs. 12-14.
In addition, the multi-RMs angular and angular velocity fol-
lowing based on two different asymmetric Lyapunov barrier
function cases are also given in Figs. 15-16. The comparative
experiments of themulti-RMs of angular and angular velocity
errors at t = 0.5 s under different controllers are given in
Table 2-5, which show that the errors are smaller and the
controller is clearly superior under the proposed prescribed
time H∞ controller.

V. CONCLUSION
In this paper, a prescribed time-adaptive H∞ cooperative
controller based on the log-type barrier Lyapunov function
is proposed for multi-RM systems. The proposed novel pre-
scribed performance ensures that the system achieves max-
imized performance while allowing the angle steady-state
error to converge to a certain range in prescribed time. The
‘‘complexity explosion’’ problem is addressed by designing a
prescribed time adaptive command filter. The prescribed time
observer allows obtaining leader state information without
acceleration measurements. In addition, an input quantiza-
tion technique is introduced, which solves the problem of
limited channel bandwidth of multi-RM systems in practical
applications by converting continuous signals into segmented
constant signals to reduce the communication rate. The pro-
posed controller ensures that the multi-RM systems have
prescribed time stability in the sense of bounded signals
while avoiding the jitter problem. To prove the validity of
these results, several examples of MRMS simulations are
presented.

REFERENCES
[1] M. A. Chowdhury, S. S. S. Al-Wahaibi, and Q. Lu, ‘‘Entropy-maximizing

TD3-based reinforcement learning for adaptive PID control of dynamical
systems,’’ Comput. Chem. Eng., vol. 178, Oct. 2023, Art. no. 108393.

[2] S. Niu, J. Wang, J. Zhao, and W. Shen, ‘‘Neural network-based finite-
time command-filtered adaptive backstepping control of electro-hydraulic
servo system with a three-stage valve,’’ ISA Trans., vol. 144, pp. 419–435,
Jan. 2024.

[3] Y. Hu, W. Liu, and B. Ma, ‘‘Event-trigger-based composite adaptive fuzzy
control for nonlinear time-varying state constraint systems with asymmet-
ric input saturation,’’ Eur. J. Control, vol. 75, Jan. 2024, Art. no. 100892.

[4] J. Fei, Y. Chen, L. Liu, and Y. Fang, ‘‘Fuzzymultiple hidden layer recurrent
neural control of nonlinear system using terminal sliding-mode controller,’’
IEEE Trans. Cybern., vol. 52, no. 9, pp. 9519–9534, Sep. 2022.

[5] S. Li, Y. Zhu, J. Bai, and G. Guo, ‘‘Dynamic obstacle avoidance of
unmanned ship based on event-triggered adaptive nonlinear model predic-
tive control,’’ Ocean Eng., vol. 286, Oct. 2023, Art. no. 115626.

[6] H. Jahanshahi, Q. Yao, M. I. Khan, and I. Moroz, ‘‘Unified neural output-
constrained control for space manipulator using tan-type barrier Lyapunov
function,’’ Adv. Space Res., vol. 71, no. 9, pp. 3712–3722, May 2023.

[7] Z. Xu and L. Zhao, ‘‘Distributed adaptive gain-varying finite-time event-
triggered control for multiple robot manipulators with disturbances,’’ IEEE
Trans. Ind. Informat., vol. 19, no. 9, pp. 9302–9313, Sep. 2023.

[8] M. Li, J. Zhang, S. Li, and F. Wu, ‘‘Adaptive finite-time fault-tolerant con-
trol for the full-state-constrained robotic manipulator with novel given per-
formance,’’ Eng. Appl. Artif. Intell., vol. 125, Oct. 2023, Art. no. 106650.

[9] P. Yang, Y. Su, and L. Zhang, ‘‘Proximate fixed-time fault-tolerant tracking
control for robot manipulators with prescribed performance,’’ Automatica,
vol. 157, Nov. 2023, Art. no. 111262.

[10] D.-D. Zheng, X. Li, X. Ren, and J. Na, ‘‘Intelligent control for robotic
manipulator with adaptive learning rate and variable prescribed perfor-
mance boundaries,’’ J. Franklin Inst., vol. 360, no. 11, pp. 7037–7062,
Jul. 2023.

[11] Y. Sun, Y. Zhang, H. Qin, L. Ouyang, and R. Jing, ‘‘Predefined-time
prescribed performance control for AUV with improved performance
function and error transformation,’’ Ocean Eng., vol. 281, Aug. 2023,
Art. no. 114817.

[12] S. J. Yoo and B. S. Park, ‘‘A universal error transformation strategy for
distributed event-triggered formation tracking of pure-feedback nonlinear
multiagent systems with communication and avoidance ranges,’’ Appl.
Math. Comput., vol. 433, Nov. 2022, Art. no. 127412.

[13] A.-M. Zou, Y. Liu, Z.-G. Hou, and Z. Hu, ‘‘Practical predefined-time
output-feedback consensus tracking control for multiagent systems,’’ IEEE
Trans. Cybern., vol. 53, no. 8, pp. 5311–5322, Oct. 2023.

[14] X. Liang, H. Wang, Y.-H. Liu, W. Chen, and T. Liu, ‘‘Formation control
of nonholonomic mobile robots without position and velocity measure-
ments,’’ IEEE Trans. Robot., vol. 34, no. 2, pp. 434–446, Apr. 2018.

[15] Y. Zhao and X. Li, ‘‘Observer-based event-triggered sliding mode con-
trol for delayed systems with unknown disturbances,’’ J. Franklin Inst.,
vol. 360, no. 13, pp. 10064–10079, Sep. 2023.

[16] R. Hao, H.Wang,M. Zhou, andW. Zheng, ‘‘Distributed adaptive command
filtered resilient event-triggered secure consensus control for multia-
gent systems under double DoS attacks,’’ Expert Syst. Appl., vol. 224,
Aug. 2023, Art. no. 120016.

[17] H. Liu, X. Tian, G. Wang, and T. Zhang, ‘‘Finite-time H∞ control
for high-precision tracking in robotic manipulators using backstepping
control,’’ IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5501–5513,
Sep. 2016.

[18] Z. Wang, X. Tian, Q. Mai, and H. Liu, ‘‘Fixed-time composite robust H∞

tracking control of marine surface vessels based on the barrier Lyapunov
function and an event-triggered strategy,’’Ocean Eng., vol. 261, Oct. 2022,
Art. no. 112113.

[19] H. Liu, Y. Li, X. Tian, and Q. Mai, ‘‘Event-triggered predefined-time H∞

formation control for multiple underactuated surface vessels with error
constraints and input quantization,’’ Ocean Eng., vol. 277, Jun. 2023,
Art. no. 114294.

[20] P. N. N. Thanh and H. P. H. Anh, ‘‘Advanced neural control technique for
autonomous underwater vehicles using modified integral barrier Lyapunov
function,’’ Ocean Eng., vol. 266, Dec. 2022, Art. no. 112842.

[21] J. Liu, M. Zhao, and L. Qiao, ‘‘Adaptive barrier Lyapunov function-based
obstacle avoidance control for an autonomous underwater vehicle with
multiple static and moving obstacles,’’ Ocean Eng., vol. 243, Jan. 2022,
Art. no. 110303.

[22] S. Chen, Q. An, H. Zhou, and H. Su, ‘‘Observer-based consensus for
fractional-order multi-agent systems with positive constraint,’’ Neurocom-
puting, vol. 501, pp. 489–498, Aug. 2022.

VOLUME 12, 2024 25833



W. Li et al.: Observer-Based Adaptive Prescribed-Time H∞ Coordinated Control

[23] J. A. V. Trejo, J.-C. Ponsart, M. Adam-Medina, G. Valencia-Palomo,
J. A. V. Trejo, and D. Theilliol, ‘‘Distributed observer-based fault-tolerant
leader-following control of multi-agent systems,’’ IFAC-PapersOnLine,
vol. 55, no. 6, pp. 691–697, 2022.

[24] S.-Y. Wei and Y.-X. Li, ‘‘Finite-time adaptive neural network command
filtered controller design for nonlinear system with time-varying full-
state constraints and input quantization,’’ Inf. Sci., vol. 613, pp. 871–887,
Oct. 2022.

[25] R. Hao, H. Wang, and W. Zheng, ‘‘Dynamic event-triggered adaptive
command filtered control for nonlinear multi-agent systems with input sat-
uration and disturbances,’’ ISA Trans., vol. 130, pp. 104–120, Nov. 2022.

[26] S. Naha and D. K. Das, ‘‘Radial basis function neural network controller
for power control of molten salt breeder reactor of nuclear power plant,’’
Ann. Nucl. Energy, vol. 195, Jan. 2024, Art. no. 110160.

[27] K. Zhang, W. Hao, X. Yu, and T. Shao, ‘‘An interpretable image clas-
sification model combining a fuzzy neural network with a variational
autoencoder inspired by the human brain,’’ Inf. Sci., vol. 661, Mar. 2024,
Art. no. 119885.

[28] L. Wang and C. L. P. Chen, ‘‘Reduced-order observer-based dynamic
event-triggered adaptive NN control for stochastic nonlinear systems sub-
ject to unknown input saturation,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 4, pp. 1678–1690, Apr. 2021.

[29] L. Dai, X. Chen, L. Guo, J. Zhang, and J. Chen, ‘‘Prescribed-time
group consensus for multiagent system based on a distributed observer
approach,’’ Int. J. Control, Autom. Syst., vol. 20, no. 10, pp. 3129–3137,
Oct. 2022.

[30] H. Yang and D. Ye, ‘‘Adaptive fixed-time bipartite tracking consensus
control for unknown nonlinear multi-agent systems: An information clas-
sification mechanism,’’ Inf. Sci., vol. 459, pp. 238–254, Aug. 2018.

[31] Z. Chen, Q. Chen, X. He, and M. Sun, ‘‘Adaptive backstepping control
design for uncertain rigid spacecraft with both input and output con-
straints,’’ IEEE Access, vol. 6, pp. 60776–60789, 2018.

[32] W. Guo, L. Wang, L. Shi, W. Sun, and H. Jahanshahi, ‘‘Predefined-
time stability for a class of dynamical systems and its application on the
consensus control for nonlinear multi-agent systems,’’ Inf. Sci., vol. 626,
pp. 180–203, May 2023.

[33] C. Wang, Y. Wu, F. Wang, and Y. Zhao, ‘‘TABLF-based adaptive control
for uncertain nonlinear systems with time-varying asymmetric full-state
constraints,’’ Int. J. Control, vol. 94, no. 5, pp. 1238–1246, May 2021.

[34] X. Zhang, Z. H. Zhu, S. Xie, H. Gao, and G. Li, ‘‘Barrier function-based
prescribed-performance adaptive attitude tracking control for spacecraft
with uncertainties,’’ J. Franklin Inst., vol. 360, no. 12, pp. 8075–8095,
Aug. 2023.

[35] Z. Xu, Q. Liu, and J. Yao, ‘‘Funnel function-based adaptive prescribed per-
formance output feedback control of hydraulic systems with disturbance
observers,’’ ISA Trans., vol. 136, pp. 701–714, May 2023.

[36] Y. Zhang, G. Wu, X. Yang, and S. Song, ‘‘Appointed-time prescribed
performance control for 6-DOF spacecraft rendezvous and docking oper-
ations under input saturation,’’ Aerosp. Sci. Technol., vol. 128, Sep. 2022,
Art. no. 107744.

[37] H. Liu, B. Meng, and X. Tian, ‘‘Finite-time prescribed performance trajec-
tory tracking control for underactuated autonomous underwater vehicles
based on a tan-type barrier Lyapunov function,’’ IEEE Access, vol. 10,
pp. 53664–53675, 2022.

[38] B. Xu, Y. Liang, Y.-X. Li, and Z. Hou, ‘‘Adaptive command filtered fixed-
time control of nonlinear systems with input quantization,’’ Appl. Math.
Comput., vol. 427, Aug. 2022, Art. no. 127186.

[39] X. Liu, C. Qiu, Q. Zeng, A. Li, and N. Xie, ‘‘Time-energy optimal trajec-
tory planning for collaborative welding robot with multiple manipulators,’’
Proc. Manuf., vol. 43, pp. 527–534, Jan. 2020.

[40] Q. Yu, G. Wang, X. Hua, S. Zhang, L. Song, J. Zhang, and K. Chen,
‘‘Base position optimization for mobile painting robot manipulators with
multiple constraints,’’ Robot. Comput.-Integr. Manuf., vol. 54, pp. 56–64,
Dec. 2018.

WEICHEN LI received the B.E. degree from
Linyi University, China, in 2022. He is currently
pursuing the master’s degree with the School
of Mechanical Engineering, Guangdong Ocean
University, China. His research interests include
multiagent systems and robust adaptive control.

HAITAO LIU (Member, IEEE) received the
Ph.D. degree from the School of Mechanical and
Automotive Engineering, South China University
of Technology, Guangzhou, China, in 2012. He is
currently a Professor with the School of Mechan-
ical Engineering, Guangdong Ocean University,
Zhanjiang, China. His research interests include
the theory and applications of nonlinear control
and robotics.

XUEHONG TIAN received the M.S. degree in
mechanical engineering from Guangdong Ocean
University, Zhanjiang, China, in 2018. She is cur-
rently an Associate Professor with the School
of Mechanical Engineering, Guangdong Ocean
University. Her research interests include robot
control, multiagent systems, and nonlinear system
design.

25834 VOLUME 12, 2024


