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ABSTRACT This paper focuses on the long-overlooked phenomenon that individual travel patterns are
not always stable over the long term and may change due to seasonal changes, moving, and work schedule
changes. Unlike previous studies that identified sudden peak points, this paper treats travel pattern change as a
change point detection problem in a time series and defines change as ‘‘sudden, substantial, and continuous’’.
Considering the complexity of travel behavior, this paper measures changes in travel patterns in three
dimensions: time, space, and frequency, and establishes a Bayesian change point detection model. A nine-
month period of private car GPS data from Aichi, Japan, is used for an example analysis. The results show
that the Bayesian approach can effectively identify travel pattern changes. Compared with the traditional
GLR, the proposed method in this paper has higher recognition accuracy with lower model complexity.
Meanwhile, the experimental results show that individual travel patterns may change in only one dimension
or in multiple dimensions at the same time. Based on this, the correlation analysis of travel patterns in the
temporal and spatial dimensions is carried out, and it is verified that there is a certain positive correlation
between the two. The Bayesian change-point detection model proposed is robust and generally applicable
to other fields besides travel patterns.

INDEX TERMS Travel pattern, change point detection, Bayesian method, travel behavior analysis.

I. INTRODUCTION
The research of individual travel behavior is essential to
uncovering travel rules and guiding scientific decision-
making. Travel behavior refers to the incidence of individuals
who adopt a certain mode to travel from an origin to a
destination at a certain time, which can be directly observed.
There is a certain regularity of individual travel behavior that
can be characterized as a ‘‘pattern’’. The travel pattern is a
higher-level generalization of an individual’s travel behavior,
where each pattern refers to a collection of limitations and
preferences that specify a particular choice [1]. Travel pat-
terns are not directly available but can be expressed in terms
of the distribution of observed travel behavior.

The associate editor coordinating the review of this manuscript and
approving it for publication was P. K. Gupta.

Most of the previous studies assumed that individual travel
patterns were stable and did not change [2], [3]. This is indeed
true for short periods of time, but individual travel patterns are
likely to change in the long term. Since activity is endogenous
to travel, when an individual’s activity schedule changes for
a variety of reasons, his or her travel pattern will change
accordingly. For example, as work schedules change with the
seasons, their travel patterns for commuting will also change.
When people relocate their houses from the suburbs to a
downtown area closer to the office, they may reduce car use,
shorten travel distances, and adjust commute times. These
events in life have been called ‘‘windows of opportunity,’’
which can change a person’s daily routine [4]. Less research
has been done on when and how these changes occur.

Ignoring the instability of travel patterns over time can
lead to difficulties in adapting to changes in travel demand.
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Some scholars have also raised a similar question, namely
that the estimation of travel time may be impacted by daily
changes [5], [6]. These changes include some random daily
changes and some long-term, systematic changes in indi-
vidual travel patterns. Detecting long-term individual travel
pattern changes is the basis for modeling time-varying behav-
ior. It is necessary to distinguish frequent travel patterns from
occasional travel behaviors.

Survey data were frequently utilized in the literature to
estimate how people’s travel behaviors changed over time [7].
Whereas, Kitamura et al. [8] demonstrated that discretization
time data was an unreliable instrument for describing the
dynamic of travel behavior accurately, and continuous data
was required. With the rapid rise of information and commu-
nication technology (ICT) in recent decades, travel behaviors
can be continually recorded by massive data sources (cell
phone data, GPS data, smart card data, etc.) on a vast scale
and for a long time [9].
Change Point Detection (CPD) is the problem of identi-

fying the time point in a time series when a sudden change
in behavior patterns occurs. This study uses nine months of
continuous GPS data from private cars from Aichi, Japan,
to study how long human regular travel will last at the indi-
vidual level and when people’s regular travel will change
systematically. In this study, it is described as a CPD in
time series analysis. Since travel patterns are difficult to
observe directly, they need to be portrayed in multiple dimen-
sions. This studymeasures patterns in three dimensions: time,
space, and frequency. At the same time, in order to distinguish
from previous studies that only identified unexpected peaks,
the changes in pattern need to satisfy the three properties of
being sudden, substantial, and continuous.

The contributions of this study are threefold: (1) An online
Bayesian change-point detection model is proposed that
enables the estimation of the probability of a change in an
individual’s travel pattern at any given moment with lower
complexity and higher robustness. (2) Three dimensions of
time, space, and frequency are established to completely
characterize travel patterns, and the correlation of travel pat-
tern changes in the time and space dimensions is analyzed.
(3) It can contribute to the advancement of models of adap-
tive travel behavior that are able to recognize changes in
travel patterns automatically and adjust model parameters
accordingly.

The remaining part of this paper is structured as follows:
Section II reviews earlier relevant literature; Section III pro-
poses a Bayesian change point detection model; Section IV
presents the data used in this paper and part of the parameter
settings for the experiments; and Section V provides visual-
ization of the experimental results and analysis of the model
accuracy. Finally, the study concludes with conclusions and
future work.

II. LITERATURE REVIEW
Previous studies on the changes of travel patterns mainly
focused on the influence of social, policy, cultural,

and psychological factors [10], [11], [12], [13] and how to
use these factors to infer the changes in travel patterns [14],
[15], [16]. Haasa et al. adopted the mobility biographies
framework with the relatively recent latent class transition
analysis to detect various travel patterns and determine how
life events affect changes in travel behavior [17]. Goulias
used mixed Markov latent class (MMLC) models to analyze
the dynamic characteristics of daily changes in individual
activity participation and travel [7]. Zhao et al. built a prob-
ability distribution function (PDF) of the feature sequences
to further fit the priori probability model and analyze the
distribution of these changes over time [18].

A larger portion of recent studies have focused on changes
in travel patterns in cities during the COVID-19 [19],
[20], [21]. Based on the populationmovement data of Chinese
cities at the beginning of the epidemic outbreak, the changes
in travel patterns are analyzed at the aggregate level [19].
Wang et al. measured the changes in travel patterns in terms
of total trips, trip recovery, and trip distance [20]. Using
a statistical change-point approach to analyze the collected
mobility time series, the model is able to estimate if and when
a local mobility pattern changes significantly [21]. However,
the above studiesmainly focus on the state of inter-citymobil-
ity and do not examine the changes in urban travel patterns.

There were many studies that used deep learning meth-
ods for vehicle target detection. Ahmed [22]proposed an
algorithm based on the combination of Convolutional Neu-
ral Networks (CNN) and optical flow feature tracking for
vehicle detection and counting in complex traffic scenarios.
SHAKHBOZ [23] proposed a joint method for multi-class
target detection and semantic segmentation for the two
fundamental problems of target detection and semantic seg-
mentation in autonomous driving systems. An effective
real-time method [24] was adopted to combine the vehicle
detection and tracking process with periodic updating of
the feature points at regular intervals of a certain number
of frames, resulting in robust feature points. Ahmed [25]
proposed a real-time algorithm for detecting and counting
moving vehicles based on YOLOv2 and feature point motion
analysis. The application scenario of such studies is the
traffic characteristics of set counts for a specific roadway
cross-section at a given time period. This paper is based
on the individual level and uses the pattern change point
identification of private car travel in frequency, time, and
spatial dimensions over a long period of time.

As for the detection of changes in long-term travel patterns,
the existing literature is quite limited. McInerney et al. pro-
posed an information theorymeasure, namely ‘‘instantaneous
entropy’’, to detect occasional abnormal travel activities [26].
This method did not clearly identify the pattern changes;
however, it focused on finding the unexpected peaks of indi-
vidual travel activities. The purpose of his research was to
identify events or observations in the data that do not cohere
with the expected pattern, but he did not suppose that the
travel patterns would change over time. Zhao et al. proposed
a method to detect whether a pattern has changed [27].
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TABLE 1. Comparison of methods with related studies.

Unlike previous studies, this paper treats this problem as
a CPD in long time series, and the subject of the study is
travel patterns. The ‘‘change point’’ in this study refers to the
moment when the structure of the time series changes from
one state distribution to another, which is different from the
abrupt change of data caused by sudden noise or disturbance.

Depending on the detection delay, there are two types of
detection methods: methods based on real-time analysis and
methods based on retrospective analysis [28]. The detec-
tion methods based on real-time analysis are mostly derived
from the autoregressive model and its deformation. Gombay
analyzed the CPD mechanism when any parameter in the
autoregressive model changes [29]. According to Kengne, the
great likelihood technique can be used to estimate the parame-
ters before and after a change in a time series that follows the
Poisson distribution [30]. Lund modeling for periodic time
series [31]. However, owing to the unpredictability of some
time series, the autoregressive model may have difficulty
obtaining good prediction results.

The CPD method based on retrospective analysis requires
not only the observation data before the moment to be
measured but also the subsequent data of the moment. The
detection mechanism is generally based on the probability
distribution test of the time series, and the more typical
methods are: Bayesian test [32], [33], [34], likelihood ratio
test [35], [36], [37] and cumulative sum test [38], [39]. The
original Bayesian method was offline [33], [34]. Adams et
al. first proposed an online Bayesian approach under the
hypothesis that the time series data are independently and
identically distributed and gave a calculation method to pre-
dict the probability distribution of the data at the next moment
based on the data value at the current moment [32]. Koyama
et al., for time series with a Poisson distribution, give a new
strategy for calculating the likelihood ratio of the series, and a
change point decision is achieved by hypothesis testing [35].

Compared with the CPD method based on real-time analysis,
the method based on retrospective analysis has better robust-
ness and more accurate detection results.

In this paper, the Bayesian CPD method proposed by
Adam [32] is used. The main reasons are as follows: first,
Bayesian method is based on retrospective analysis, using
all the data seen so far, and the estimation results from a
semi-global perspective are robust and have higher accuracy.
Second, Bayesian methods can define the change frame-
work more accurately. It reflects pattern changes through
probabilities and can adjust change points by controlling the
probability threshold, which is more flexible.

III. METHDOLOGY
Travel behavior includes information about when, where,
in what way, the frequency of travel, etc. In order to portray
travel patterns more completely and accurately, this paper
describes travel in three dimensions: time, space, and fre-
quency. These three dimensions are correlated but to some
extent independent, and an individual’s travel pattern may
change in one dimension while remaining unchanged in the
other dimensions. For example, when a student’s school
schedule changes, the travel pattern changes in the temporal
dimension while remaining unchanged in the spatial and
frequency dimensions. It may also change in multiple dimen-
sions in the meantime. For instance, when moving to a place
closer to work, travel patterns change in both temporal and
spatial dimensions.

A. PROBLEM DESCRIPTION
Travel behavior can be represented by a series of chrono-
logically ordered observation sequences X = {x1, x2, · · ·},
where xt denotes travel behavior at time t . t is the time
step, usually expressed as 1 day or 1 week, both of which
are natural cycles of human activity [40]. When the data
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period is long, a week is chosen to be more representative,
because travel patterns on weekdays and weekends tend to
have greater variability. As the time periodQ increases, more
travel information is covered and the model is more robust,
but it may result in delayed detection or poor granularity of
detection. In order to balance robustness and accuracy, this
paper chooses a multiple of one week as the time period, i.e.,
Q = 7, 14, 21, . . . .

The model assumptions are as follows: (1) The correlation
of the three dimensions of time, space, and frequency and the
order dependence of travel sequences within each dimension
are not considered. (2) It is assumed that xt independently
obeys some potential distribution P(xt |θ ), θ is the distribu-
tion parameter. The definition of P(xt |θ ) is given based on
the xt sample space. (3) Only discrete measures of xt are
considered, which is consistent with the traditional behavior
hypothesis in travel behavior modeling and is more general.

When the travel pattern changes over time, it is hypoth-
esized that the form of the distribution P(xt |θ ) remains
unchanged while the parameter θ changes. According to
the pattern change properties we defined in Section I, this
study only focuses on ‘‘sudden, substantial, and continuous’’
changes in θ .
Being sudden indicates that the change of time unit relative

to t is instantaneous; if the previous pattern stops at moment t ,
then the following pattern begins at moment t+1. Suppose x
could be split up into some separated parts, and each part
corresponds to a certain pattern. The boundary dividing two
adjacent parts is the change point, that is, the start time of the
new pattern. In the period from i to j−1, the measured values
xi, . . . , xj−1 appear in some form of probability distribution
P(xt |θi:j−1)(i ≤ t ≤ j − 1) and P(xt |θi:j−1)(i ≤ t ≤ j − 1)
are independent identically distributed. In time step j, θi:j−1
becomes θj:k−1(j < k−1), where θj:k−1 basically differs from
θi:j−1 and lasts for a long period.
Actually, the real change points i, j and k are not known.

A model is needed to detect when substantial, continuous
changes in θ occur. We need to set thresholds to identify
substantial, continuous changes. In the subsequent model,
the interaction of the two is considered, i.e., the product
of the two attributes is used to identify the change point.
Smaller but long-term changes are likely to be assigned the
same probability as larger but short-term changes. In addition,
we adopt the binary variable yu to indicate if u has changed,
so that the probability distribution P(yu = 1|x1:t )(u ≤ t) of yu
can be calculated in the case of the data we have seen so far.

B. SPECIFICATION OF BEHAVIOR DISTRIBUTIONS
First, in the dimension of frequency, times of travel or total
number of days traveled in a period of time can be used to
denote xt . Assuming that xt indicates whether the private car
is used on the day of time t , then it follows the Bernoulli
distribution. The probability density function can be written
as:

p(x = b|θ (0), θ (1)) = θ (b) (1)

where b is 0 or 1, which is used to indicate whether residents
use private cars to travel on that day; θ (0), θ (1) is a parameter
representing the probability distribution when b is 0 or 1,
respectively, where θ (0)=1-θ (1). They change if a pattern is
changed in the frequency dimension. Identify whether the
travel pattern has changed in the frequency dimension by
detecting whether the parameter value has changed.

In terms of spatial dimension, the travel location choice
is considered as a categorical variable due to the poorly
defined location attribute. At each time step, each individual
can visit a location 0, 1, or multiple times. xt is the set of
samples taken from the categorical distribution, reflecting
individuals preferences for all feasible locations, and follows
a polynomial distribution for the case of multiple sampling
from multiple classifications. Assuming that there are M
locations to consider, x(M )

t is an M-length vector represent-
ing the number of visits to the Mth location during time
step t. θ (m) represents the probability of occurrence of the
M th location. For non-negative integer b(1), b(2), . . . , b(M ), its
probability density function is characterized by:

p(x(1)t

= b(1), x(2)t = b(2), . . . , x(M )
t

= b(M)
|θ (1), θ (2), . . . , θ (M )) =

n!∏M
m=1 b

(m)!

M∏
m=1

(θ (m))b
(m)

(2)

n =
∑M

m=1 b
(m) is the number of times a traveler visits all

locations in a time step. The categorization probability distri-
bution of all potential results is specified by the parameters
θ (1), θ (2), . . . , θ (M ). Whenever patterns change, they change.

In the temporal dimension, the definition similar to that in
the spatial dimension, assuming that xt obeys a polynomial
distribution. The 24-hour day is discretized into 8 segments
with 3-hour time intervals. Using the average of departure
and arrival times as the midpoint, each trip is assigned a
3-hour time period. Similarly, the polynomial distribution in
the temporal dimension is specified by Equation (2). The only
difference from the application in the spatial dimension is that
results for the temporal dimension correspond to time periods
rather than areas, and the totality of results is M = 8.
The model sets the travel behavior in the frequency dimen-

sion as a Bernoulli distribution because using an alternative
distribution with fewer parameters works better when the
number of possible values of the data is sparse. The main
reason for setting the travel behavior in the temporal dimen-
sion and spatial dimension as polynomial distributions is
their flexibility to capture any data structure. However, these
distribution forms are not limited and can be adjusted based
on data characteristics or the way they are defined.

C. BAYESIAN CHANGE DETECTION
Based on the online Bayesian approach proposed by
Adams [32], a slightly improved Bayesian CPD method is
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proposed. The majority of the formulation is also applicable
to other issues.

Every time point t corresponds to a segment of a travel
pattern. For the current segment, the end point is not known.
ct denotes the segment line length at t , i.e., the time from
the last change point to t , which may be any integer between
0 and t .When t is a change point, ct = 0; if not a change point,
ct = t . The posterior distribution of ct is computed based
on considering the results p(ct |x1:t ) observed so far, which
corresponds to inferring the last change point.

In this problem, we assume that p(xt |θt−ct :t ) obeys
Bernoulli distribution in frequency dimension, and obeys
polynomial distribution in temporal and spatial dimension.
Here we set a priori θ(0) for θt−ct :t . Note: θt−ct :t determine
the probability distribution xt−ct :t , but only from xt−ct :t−1
estimation.When ct = 0, there is no data available to estimate
the probability distribution, then θt−ct :t = θ(0). They both
belong to the exponential family. When there is a super
parameter β (0) , β (1) , . . . , β (Q) , the posterior distribution also
has an updated super parameter. Therefore, p(xt |ct,x1:t−1) is
transformed into:

p(x(0)t = b(0), x(1)t = b(1)|β ′(0), β ′(1))

=
0(n+ 1)0(β ′(0)

+ β ′(1))
0(n+ β ′(0) + β ′(1))

1∏
m=0

0(b(m) + β ′(m))
0(b(m) + 1)0(β ′(m))

(3)

where 0(·) is the gamma function. b(0) = 0, b(1) = 1, which is
used to indicate whether the residents use private cars to travel
on that day. m = 0 or 1 and the parameter m is updated using
the following formula, where β ′(m) = β(m) for the ∀m, ct = 0.

β ′(m)
= β(m) +

t−1∑
i=t−ct

x(m)i (4)

The polynomial distribution’s conjugate prior is Dirichlet
distribution β (1) , β (2) , . . . , β (M ) , and the posterior prediction
obeys a Dirichlet polynomial distribution with updated super
parameters β ′(1) , β ′(2) , . . . , β ′(M ) . Therefore, p(xt |ct,x1:t−1)
can be rewritten as:

p(x(1)t = b(1), x(2)t = b(2), . . . , x(M)
t

= b(M)
|β ′(1) , β ′(2) , . . . , β ′(M ) )

=
0(n+ 1)0(

∑M
m=1 β

′(m))

0(n+
∑M

m=1 β
′(m))

M∏
m=1

0(b(m) + β ′(m))
0(b(m) + 1)0(β ′(m))

(5)

where 0(·) is a gamma function, n =
∑M

m=1 b
(m) and the

updating of the parameter β ′(m) (m = 1,2,3,. . . ,M) is similar
to Equation (4), the only difference is that the value range of
x(m)i is wider. When β ′(m) = β(m), for ∀m, ct = 0:

β ′(m)
= β(m) +

t−1∑
i=t−ct

x(m)i (6)

The Bayesian CPD method proposed here is able to esti-
mate the probability distribution of the latest change point,
which is necessary in time-varying models. But for other
applications, in order to better understand the dynamics of
behavior in time series, we need to infer the whole process of
change or pattern before the last change point.

D. CHANGE POINT INFERENCE
Assume that a total of K changes occur before time step t and
yu,−k is used to represent whether the kth latest change point
(k = 1, 2, . . . ,K ) that occurs at time step u. For instance, the
2ndmost recent change point is the previous change of the 1st
most recent change. Based on the Bayesian method, it can be
deduced that:

P(yu,−1 = 1|x1:t ) = p(ct = t − u|x1:t ) (7)

P(yu,−1 = 1|x1:t ) indicates the probability of the most
recent change at u based on the data up to t . It is further
extended and used to determine the probability of changes
at u or P(yu = 1|x1:t ). To accomplish this, one can estimate
P(yu = 1|x1:t ) for any given k and marginalize across the kth
order as shown in the following example:

P(yu = 1|x1:t ) =

∑
k

P(yu,t = 1|x1:t ) (8)

FIGURE 1. Schematic diagram of successive changes in patterns.

Assuming that the last change point (that is, the latest
change point k = 1) can be calculated by Equation (7).
By providing an order dependency between yu,−k and
yv,−k+1(k > 1, u < v), this problem can be solved. As shown
in Fig.1, if a pattern changes at v, the probability of the last
change at u is the same as cv−1 = v−u−1 that of the previous
change. Therefore:

P(yu,−k = 1|x1:t )

=

t−k+1∑
v=u+1

P(yv,−(k−1)=1|x1:t )P(yu,−k =1|yv,−(k−1) = 1, x1:t )

(9)

Now the probability of pattern change at any particular
time can be estimated based on Equations (7), (8), and (9).
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IV. DATA AND MODELING
A. DESCRIPTIVE ANALYSIS OF DATA
As a result of the growing use of in-car navigation systems,
GPS data has recently grown in importance and been incorpo-
rated into numerous studies on travel behavior. But owing to
privacy concerns, many researchers had to use probe data that
came from commercial cars instead of private cars. Therefore,
many attributes of travelers could not be considered in their
research. This research makes use of GPS private car data to
study the travel behavior of individuals.

This study is based on GPS data from private cars in Aichi,
Japan, in 2017. More than 200 residents took part in the
survey. The private cars were equipped with vehicle-mounted
devices that captured their driving behavior (such as accel-
eration) and GPS trajectory data. Participants uploaded data
to the internet every week. These data were collected over
approximately nine months (2017/3 to 2017/12). The data
also had some missing values because not all participants
participated in the whole period.

TABLE 2. Traveler characteristics.

After data processing, we obtain the 109 individuals that
can be used in this study. Table 1 shows the detailed informa-
tion of drivers. Based on preliminary statistical analysis, the
properties of these residents are summarized as follows.

B. PROCESS OF MODELING
In order to test the pattern change detection method proposed
in this study, we used a data set of 109 private car trip records
of Aichi in the past year provided by Toyota. Aichi is a ‘‘city
on wheels’’, and its transportation system is mainly private

cars. Therefore, it is valid and reasonable to use private car
travel data for validation. In order to convert GPS records into
time-series data, the value of Q needs to be explored, where
Q is used to represent how many days are in each time step.
In the frequency dimension, we set Q = 1 day because

the data of usage frequency is relatively intensive, and the
frequency dimension of this study is to investigate whether
the residents use the car every day. Almost all residents in
this data set use it every week. Setting Q to a week will
result in covering up the original data, which is supposed to
show the change of individual travel patterns. However, in the
spatial and temporal dimension model, we set Q = 7 days,
and the travel records of each resident are summarized once
a week. On the one hand, in the temporal dimension, the
parameters updated in the later stage of our model are too
large to be calculated by some computer languages such
as Python. On the other hand, it is found that most of the
residents’ spatial position observations are relatively sparse
and discontinuous.

In order to prevent inconsecutive observations, we extract
the longest period of continuous activity from each resident
and summarize the time in weeks. The aggregation of time in
the unit of a week will not cover up the changes in individual
travel patterns in the spatial and temporal dimensions shown
by the data.

For each resident, weekly observations from the three
dimensions of frequency, time, and space can be derived.
In terms of frequency, the measure is whether to travel each
day. If the respondent travels, it is indicated by 1, and if
they don’t travel, it is indicated by 0. Note that the trip can
only be observed when residents travel with onboard GPS.
Therefore, the travel frequency captured by GPS long-term
trajectory data is likely to underestimate the real frequency.
However, in the spatial dimension, we can observe the real
travel location from the GPS long-term trajectory data, and
we use the map grid data in the original data to divide Aichi
County into 73 blocks. In this work, we regard the area
where people travel as the approximate location where people
visit.

In the temporal dimension, however, the cardinality of
travel behaviors is fixed as M = 8 (the number of time peri-
ods), while in the spatial dimension, M varies from individual
to individual. For a particular resident, only areas visited
throughout the observation period are taken into account in
the study. The average number of areas visited by residents
was 17.88, and the standard deviation was 6.02. As shown in
Fig.2, the distribution of the number of access locations per
resident varies significantly, which means different patterns
in the spatial dimension.

GPS long-term trajectory data records a consistent subset
of individual travel behaviors, that is, all the behaviors related
to the use of private cars. Any change in private car travel may
correspond to a change in a person’s overall travel pattern.
Although this paper only uses private car travel data for
empirical study, the change detection model is universal and
can be applied to various data sources for human mobility.
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FIGURE 2. Distribution of the number of visited areas per resident.

V. RESULTS
A. VISUALIZING INDIVIDUAL-LEVEL RESULTS
Due to the lack of a priori information on changes in private
car travel patterns, the model prior is set non-preferential for
all possible outcomes. Based on the experience of previous
scholars [27], λ = 30 weeks in the hazard function is set
to indicate the existence of a constant prior probability of a
change every 30weeks. Themodel sensitivity is subsequently
adjusted by adjusting this parameter. Similarly, the Dirichlet
prior parameter is set to β(m) = 0.1,∀m = 1, 2, . . ..
It is important to emphasize that this paper aims to detect

changes in travel patterns at the individual level, so targeting
a few individuals for validation is valid. There are significant
differences in the personal attributes of individuals in the
dataset, and random selection of some individuals can be
done without loss of generality.

Fig.3, 4, and 5 display the detection results of three innomi-
nate residents. In order to show the results of each dimension,
we present 9 subgraphs for each resident, and all 3 subgraphs
represent a dimension. All subgraphs share a common x-axis,
which represents the activity week sequence of residents.
Suppose there are t days in the sequence. The first row shows
the input data. The travel pattern in the frequency dimension
is a one-dimensional array of length T , represented by bars.
The travel patterns in the temporal and spatial dimensions are
anM∗T sparse matrix, where rowm and column t indicate the
frequency of the mth result in week t. The matrix is presented
in the form of a heat map, with the color shades of the cells
in proportion to the frequency values.

As shown in Fig.3, the travel pattern of resident 1 is similar
to a typical commuter, who makes most of her or his travels
in the morning and evening rush hours and frequently from
two locations.

The grid plot’s second row represents the individual dimen-
sions of p(ct−1|x1:t−1) estimated over time and is a T ∗ T
matrix visualized with a heat map. It can be seen that just half

of the grids have actually meaningful probability values, due
to the fact that ct cannot be greater than t . In most cases the
probability values tend to be small, so this paper uses the log-
arithm of the probabilities to describe them. Thus, the color
depth of the grid in the figure is proportional to the logarithm
of p(ct |x1:t ). It’s worthmentioning here that the order depends
on p(ct |x1:t ). As the pattern continues to expand, t and ct
both increase (as shown in Fig.3). In order to detect a pattern
intuitively in the thermal graph, we can find a black line
parallel to the diagonal connecting left-bottom corner and the
upper right corner. This example can be found in the temporal
dimension of resident 1 in Fig.3 and the spatial dimension of
resident 3 in Fig.5.

Detecting a change point from the heat maps is not an easy
task. To facilitate identification, the third line of the graph
shows the estimated probability of behavior occurrence, i.e.,
P(yu = 1|x1:t ), where u ≤ T . When P(yu = 1|x1:t ) is updated
with the arrival of new observations, only the estimated result
of the last time step is shown, that is, the result when t = T .
From these curves, we can accurately point out the exact time
when the private car travel pattern changes. From Fig.3(a)
and Fig.3(c), we find that for resident 1, the frequency and
spatial dimensions of travel patterns have not changed during
the 40 week observation period. On the contrary, resident 3 in
Fig.5 seems to change her or his private car travel pattern in
all dimensions.

The changes in temporal and spatial dimensions do not
always occur at the same time. As shown in Fig.5(b), the
pattern changes of resident 3 occur in the temporal dimen-
sion at 11, 21, and 33 weeks whereas they occur in the
spatial dimension at 30 weeks (Fig.5(c)). We also find that
residents 1 in Fig.3 and residents 2 in Fig.4 change their
private car travel patterns in only one dimension. In the spatial
dimension, the probability of all change points is less than 0.5,
and there is no obvious change. These examples demonstrate
the diversity of ways that individual travel patterns change
and highlight a phenomenon found by previous scholars in
public transport travel behavior: pattern changes may occur
in just one dimension.

B. MODEL PERFORMANCE EVALUATION
It is not enough to just use the model to do some empirical
research. Although the visualization results show that the
method has a good effect to some extent, we need a more
systematic model evaluation method to appraise it.

As before, the Bernoulli distribution is used in model-
ing the travel patterns in the frequency dimension, and the
polynomial distribution is used in the temporal and spatial
dimensions. Model evaluation requires setting a null model
as a control baseline, and the null model assumes travel
patterns have not changed. Since changes in travel patterns
are not directly observable, the model needs to be evaluated
by weighing its goodness-of-fit and complexity. In this paper,
the detection of more change points is used as a criterion for
a more complex model.
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FIGURE 3. Detected results of travel pattern change of resident 1.

FIGURE 4. Detected results of travel pattern change of resident 2.

FIGURE 5. Detected results of travel pattern change of resident 3.

Assuming that K change points are detected at the time
step u1, u2, . . . , uk , the observed individual travel pattern x1:T
is divided into k + 1 parts. When the model parameters are

permitted to change at different parts, an improved goodness
of fit is guaranteed, but at the same time, it leads to an increase
in model complexity. This relationship between the null and
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FIGURE 6. Model complexity of change detection methods.

alternative models is similar to that between the null and
alternative hypotheses in statistics, and a comparison of these
two models is shown in Fig.6.

Based on the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC), the overall perfor-
mance of the model can be evaluated. Both are evaluations
of the effect of statistical models for a certain dataset. The
lower the AIC or BIC, the better the model. The two indexes
both contain the penalty term of the number of parameters
in the model. The penalty in BIC is greater than that in AIC.
AIC and BIC are calculated as follows:

AIC = 2H − 2 ln(L)

= 2J (K + 1) − 2 ln(L) (10)

BIC = ln(T )H − 2 ln(L) (11)

Here H= J×(K+1), where J is the number of parameters
of each divided part.

L = L(ψ, β|X )P(X |ψ, β)

=

∏K

k=0
P(Xk |θk )P(θk |β)dθk

=

∏K

k=0

∏uk+1−1

t=uk

∫
P(xt |θk )P(θk |β)dθk (12)

In order to better evaluate the Bayesian approach, we con-
trast it with the the traditional GLR model. The GLR model
is based on the algorithm proposed by Appel and Brandt [31].
Likelihood ratio tests are performed on the twomodels at each
time step u. The data of length r before time step u is used
as the reference window, and the data of length s after u is
used as the test window to infer whether there are significant
differences between the data in the two windows. The results
indicate that when the travel pattern changes, the GLR model
identifies multiple consecutive change points with significant
before-and-after differences. To handle this problem, we set
an interval of at least 4 weeks between successive change
points. The critical value p is set to 0.05, and r = s = 8 is set
in the GLR test.

To demonstrate how the two approaches vary, we compare
the GLR of a specific resident (i.e., resident 3 in the last
section) in Fig.7 with the change points detected by the
Bayesian method. The vertical red dotted line represents a
definite change point.

Table 2 presents the results of CPD for all users in the
two models. Among the 109 residents, 119 changes in the

frequency dimension, 152 changes in the temporal dimen-
sion, and 60 changes in the spatial dimension were detected
by the Bayesian method. Generally speaking, the change
of travel pattern is a low-probability event. For each user,
the probability that the weekly travel pattern changes in the
dimensions of frequency, time and space are 2.73%, 3.49%,
and 1.38%, respectively.

However, such results are influenced by the probability
threshold selection. The default setting in this study is to
adopt P(yu = 1|x1:t ) > 0.5 to infer whether the time step u
changes. By adjusting the threshold, we can detect more or
fewer changes depending on the sensitivity required. As seen
in Fig.7, there is more but smaller variation in the frequency
dimension compared to the other dimensions, with only a
small fraction of the variation being significant. This may
be due to the fact that the observations in the frequency
dimension are more unstable and susceptible to interference,
making it difficult to infer patterns.

As shown in Table 2, in the frequency dimension and spa-
tial dimension, the GLR model detected more pattern change
points, almost five to seven times more than the Bayesian
model. In the temporal dimension, change points from fewer
residents but more were identified. The GLR model’s great
sensitivity could cause it to overreact to data noise. In the
quantitative assessment of AIC and BIC, the Bayesian model
is about as effective as the GLR model in the temporal
dimension, but significantly better than the GLR model in
the frequency and spatial dimensions. In addition, the differ-
ences between AIC and BIC in the temporal dimension are
relatively small, probably because they are the average of all
residents in the dataset and most residents do not have pattern
change. In conclusion, the results show that the Bayesian
method can effectively detect the change points of travel
patterns with robustness.

C. SPATIAL AND TEMPORAL CORRELATION ANALYSIS OF
TRAVEL BEHAVIOR
Through the visualization of individual travel patterns,
we confirm a phenomenon found by previous scholars in
public transport travel behavior, namely, that is possible
for individuals to change their travel patterns in only one
dimension. Based on the experimental results, it can be intu-
itively guessed that there is some correlation between pattern
changes in the time-space dimension, while there is no obvi-
ous correlation in the time-frequency and space-frequency
dimensions. Additionally, in the field of public transportation,
predecessors have also found that people’s travel behavior has
a strong correlation in the spatial and temporal dimensions.
That is, if people’s travel pattern changes in one dimension,
it may also change in another dimension. In this section,
we formally analyze the correlation between the spatial and
temporal dimensions of individual travel behavior to make up
for the blank of previous studies.

We summarize the change probabilities of all private car
travelers each time step in temporal and spatial dimensions
for all private car users. These two probabilities, namely
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FIGURE 7. Comparison of change point detection results between Bayesian method and GLR method.

TABLE 3. Model evaluation results between Bayesian method and GLR method.

p(time) and p(space), correspond to each other. Pearson corre-
lation coefficient is calculated for the temporal and spatial
dimensions to measure the correlation between the two
dimensions:

The Pearson correlation coefficient between p(time) and
p(space) is R = 0.259.

The Pearson coefficient needs to satisfy the condition that
two continuous variables are linearly correlated. Considering
the generalizability of the data, this paper further explores
the correlation of the temporal and spatial dimensions using
conditional expectation to calculate the expectation of the
probability of change in the other dimension under the
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FIGURE 8. Variation of the number of detected change points with probability thresholds.

FIGURE 9. Conditional expectation of spatial-temporal change probability.

condition of change in one dimension. First, the probabilities
of the temporal dimension p(time) are divided into 10 groups
between 0 and 1 that are distributed equally apart. Then,
the expectation of the probability of the spatial dimension
p(space) is calculated conditional on the probability of the
temporal dimension p(time) being in 10 groups. Every condi-
tional expectation is therefore a vector made up of ten group
averages. Here some groups have null values because there is
no probability of a change in individual travel pattern in just
that probability range. The results are shown in Fig.9.

If there is a significant positive correlation between two
dimensions, the conditional probability expectation of both
dimensions will increase with the increase of coordinates,
and the change direction should be the same. Through Fig.9,
it can be seen that there is a weak positive correlation between

p(time) and p(space). We can intuitively see that the conditional
expectations of the two dimensions increase with the increase
of x coordinate, and the change direction is consistent. More-
over, when p(space) is between 0.6 and 0.8, the expectation
p(time) is greater than 0.2; When p(time) is greater than 0.9,
p(space) is expected to be greater than 0.1. In general, there
is a positive correlation in the temporal-spatial dimension.
However, it might not be as significant as expected.

VI. CONCLUSION AND FUTURE WORK
This paper focuses on the long-neglected problem that
individual travel patterns change with job scheduling, sea-
sonal changes, and moving and establishes a travel pattern
change detection model using a Bayesian method. The model
can effectively estimate the probability of individual travel
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patterns changing at any point in time, providing a basis for
accurately grasping the travel patterns and demand changes
of urban residents.

Since travel patterns are long-term, regular generalization
of travel behavior that is not directly observable. This paper
portrays travel patterns in three dimensions: frequency, time,
and space, and detects change points in each dimension,
respectively. Unlike other studies that detect outliers, the
change points in this study need to meet the ‘‘sudden, sub-
stantial, and continuous’’ character, which is considered as a
CPD problem in time series.

The robustness and accuracy of the model in identifying
change points were verified by analyzing long-term GPS data
of private cars in Aichi, Japan, for a period of nine months.
Meanwhile, the results are comparedwith the traditional GLR
method and show that the Bayesian method can ensure high
accuracy and better noise immunity with lower model com-
plexity. The Bayesian change point detection model proposed
in this paper can optimize the problem that the traditional
GLR model is weak against interference and will identify
outliers as change points. Moreover, the model can detect
more or less significant changes by adjusting the probability
threshold to adapt to the requirements of different sensitivities
in complex application scenarios.

According to the experimental results, individual travel
patterns may change in only one dimension or in several
dimensions simultaneously. This proves that it is more accu-
rate and reasonable to recognize pattern changes in three
dimensions, and can adequately account for the possibility of
changes occurring in only a single dimension. The paper also
reveals that changes that occur simultaneously in both time
and space are more likely. Based on this, this paper further
analyzes the correlation of travel patterns in the temporal and
spatial dimensions and uses conditional expectation to verify
that there is a certain positive correlation between the two.
This can play an important role in revealing individual travel
mechanisms and exploring the reasons for changes in travel
patterns.

According to our limited knowledge, this study may be the
first one to use this approach to detect travel pattern changes
from private car GPS long-term trajectory data. This method
is universal and can be used to infer other fields of individual
travel behavior and the change of general human mobility.

It provides a new possibility for targeted travel demand
management. In addition, it will also provide some help
for customized travel under the Maas platform. If we use
this model for those residents who have recently changed
their family location or moved, it may be more efficient
when we formulate travel demand management strategies.
This methodology can be applied to track public opinion
in response to the adoption of particular urban development
projects as a tool for policy evaluation, like commercial
development squares or congestion pricing strategies.

This study provides a data-driven method to detect changes
in private car travel patterns. However, due to a lack of
ground-truth information, this change is not attributed to

specific reasons. The future research will focus on finding
out the reasons for the change in private car travel patterns.
GPS-assistance surveys can be used to collect information
about changes in travel patterns and their causes.
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