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ABSTRACT The Efficient Convolution Operators for Tracking (ECO) algorithm has garnered considerable
attention in both academic research and practical applications due to its remarkable tracking efficacy, yielding
exceptional accuracy and success rates in various challenging contexts. However, the ECO algorithm heavily
relies on the deep learning Visual Geometry Group (VGG) network model, which entails complexity and
substantial computational resources. Moreover, its performance tends to deteriorate in scenarios involving
target occlusion, background clutter, and similar challenges. To tackle these issues, this study introduces
a novel enhancement to the pedestrian tracking algorithm. Specifically, the VGG network is substituted
with a lightweight MobileNet v2 model, thereby reducing computational demands. Additionally, a Double
Attention Networks (A2-Net) module is incorporated to augment the extraction of crucial information, while
pre-training techniques are integrated to expedite model convergence. Experimental results demonstrate that
the C-ECO algorithm achieves comparable accuracy and success rates to the conventional ECO algorithm,
despite reducing the model size by 27.96% and increasing the tracking frame rate by 46.11%. Notably, when
compared to other prevalent tracking algorithms, the C-ECO algorithm exhibits an accuracy of 82.20% and
a success rate of 64.72%. These findings underscore the enhanced adaptability of the C-ECO algorithm in
complex environments, offering a more lightweight model while delivering superior tracking capabilities.

INDEX TERMS Machine vision, target tracking, deep learning, efficient convolution operator, pedestrian
tracking.

I. INTRODUCTION
Target tracking is an important branch of machine vision and
is the technical basis for intelligent visual surveillance, visual
behavior analysis, and human-computer interaction [1]. Tar-
get tracking refers to the technique of predicting the location
of a target in each frame of a subsequent video sequence based
on the given target location in the input video sequence [2].
Pedestrian detection and tracking is a research hotspot in
the field of computer vision, which can be applied to traffic
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monitoring, video surveillance, security, and other fields, and
has certain application value and challenges. There has been
a remarkable upsurge of interest in automated crowd moni-
toring within the computer vision community. Modern deep
learning techniques have enabled the development of fully
automated crowd monitoring applications based on visual
analysis. Even with the magnitude of the issue, the substantial
technological progress, and the unwavering interest from the
research community, there are still several challenges that
demand attention [3], [4].

2010 CVPR, Bolme et al. [5] first applied correlation
filtering to the field of tracking, and based on his idea,
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algorithms using correlation filtering for target tracking have
appeared one after another, and the tracking effect has
the tracking results are getting better and better. Morid-
vaisi et al. [6] surmount KCF’s limitations through the lens
of the Tracking-Learning-Detection (TLD) framework and
devised an algorithm that concurrently trains two classifiers,
employing a semi-supervised co-training learning algorithm.
Subsequently, they subject the proposed method to rigorous
scrutiny against TB-100 datasets, juxtaposed with its coun-
terparts. Yang et al. [7] used KCF-based SOT to learn dis-
criminative target appearance that relied on hand-crafted deep
features and used the prediction results to refine detection
errors in new ways and eliminated tracking errors caused by
uncorrelated algorithms. Sanagavarapu and Pullakandam [8]
proposed the method using the Kernelized Correlation Filter
(KCF) object tracking technique. The segmented region is
encoded by the complexity-efficient Scalable HEVC (SHVC)
to meet the resolution of an end-user device. The com-
plexity of SHVC is decreased by using the Convolutional
Neural Network (CNN) and Long- and Short-Term Memory
(LSTM) to predict the Coding Tree Unit (CTU) structure.
The results show that the proposed method decreases the
bitrate significantly for video sequences without degradation
in Peak Signal-to-Noise Ratio (PSNR). A tracking method
that integrates the objectness-bounding box regression (O-
BBR) model and a scheme based on kernelized correlation
filter (KCF) is proposed by Mbelwa et al. [9]. The scheme
based on KCF is used to improve the tracking performance
of FM and MB. For handling drift problems caused by
OCC and IV, we propose objectness proposals trained in
bounding box regression as prior knowledge to provide can-
didates and background suppression. Finally, scheme KCF
as a base tracker and O-BBR are fused to obtain the state
of a target object. Khan et al. [10] proposed a new criterion
based on the hybridization of multiple cues i.e., average
peak correlation energy (APCE) and confidence of squared
response map (CSRM), which is presented to enhance the
tracking efficiency. They updated the occlusion detection
module adaptive learning rate adjustment module, and drift
handling using an adaptive learning rate model based on
hybridized criterion, and integrated all these modules to
propose a new tracking scheme. Degli-Esposti et al. [11]
proposed a new algorithm for object tracking in SWIR imag-
ing, using a kernelized correlation filter (KCF) as a basic
tracker. To overcome occlusions, they proposed the use of
the Kalman filter as a predictor and a method to expand the
object search area. To cope with outliers, Huber’s M-robust
approach is applied, so this paper proposes robustification of
the Kalman filter by introducing a nonlinear Huber’s influ-
ence function in the Kalman filter estimation step. To make a
balance between desired estimator efficiency and resistance
to outliers, a new adaptive M-robustified Kalman filter is
proposed. This is achieved by adjusting the saturation thresh-
old of the influence function using the detection confidence
information from the basic KCF tracker. Liang et al. [12]

proposed Spatio-Temporal adaptive and Channel selective
Correlation Filters (STCCF) for robust tracking, selecting a
set of target-specific features from high dimensional features,
STCCF can not only alleviate the over-fitting problem and
reduce the computational cost, but also enhance the discrim-
inability and interpretability of the learned filters.

With the rapid development of deep learning in recent
years, many scholars use deep learning networks to extract
image features and fuse them with relevant filters to perform
target tracking.

Zdarsky et al. [13] introduced a deep learning-based
approach that uses the video frames of low-cost web cam-
eras. Using DeepLabCut (DLC), an open-source toolbox
for extracting points of interest from videos, they obtained
facial landmarks critical to gaze location and estimated the
point of gaze on a computer screen via a shallow neural
network. Tested for three extreme poses, this architecture
reached a median error of about one degree of visual
angle. Abdelali et al. [14] introduced a wholly automated
methodology for Multiple Hypothesis Detection and Track-
ing (MHDT) in the domain of video traffic surveillance.
The presented framework integrates the Kalman filter with
data association-based tracking techniques, employing the
YOLO detection method, to adeptly monitor vehicles in
intricate traffic surveillance scenarios. Empirical findings
substantiate that the proposed approach exhibits resilience
in discerning and tracing the trajectories of vehicles under
diverse circumstances, including scale variations, station-
ary vehicles, rotations, fluctuating lighting conditions, and
instances of occlusion. Zhang et al. [15] introduced a pioneer-
ing approach known as Harris Hawks Optimization with deep
learning-enhanced automated face detection and tracking
(HHODL-AFDT). The HHODL-AFDT model, as proposed,
incorporates a Faster Region-Based Convolutional Neural
Network (RCNN) for face detection and leverages the Harris
Hawks Optimization (HHO) for hyperparameter optimiza-
tion. The optimized Faster RCNN model presented in this
context impeccably discerns facial features and feeds this
information into the face-tracking model through a regres-
sion network (REGN). The face tracking, facilitated by the
REGN model, makes use of features extracted from adjacent
frames to anticipate the facial target’s location in subse-
quent frames. Almuqren et al. [16] presented an effective
method to track an object based on a combination of feature
hierarchies of CNNs, they combined several feature hier-
archies and compute the more discriminative map to track
the object, a novel method of feature hierarchies integra-
tion based on Kullback–Leibler (KL) divergence is adopted.
Ahmed et al. [17] unveiled an intricate multi-person tracking
framework, thoughtfully intertwined with 5G infrastructure.
Employing a top-view perspective, this framework yields an
expansive scope of the observed scene or field of vision.
The essence of person tracking is encapsulated within a deep
learning-driven tracking-by-detection framework, wherein
detection duties are seamlessly executed by the YOLOv3
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model, and the subsequent tracking operations are orches-
trated by the Deep SORT algorithm. To further elevate the
precision of the detection model, a transfer learning approach
is artfully employed. In this methodology, a detection model
capitalizes on a pre-trained foundation, enriched with an
additional layer meticulously fine-tuned using a top-view
dataset. Zhang et al. [18] proposed a robust adaptive learning
visual tracking algorithm, HOG features, CN features, and
deep convolution features are extracted from the template
frame and search region frame, respectively, and analyzed the
merits of each feature and perform feature adaptive fusion to
improve the validity of feature representation.

Although target tracking algorithms have been developed
over many years, the current algorithms still face challenges
in accurately tracking targets that experience occlusion, back-
ground clutter, or leave the field of view. Additionally, the
deep learning network models, while highly effective, are
complex and have a large number of parameters. Conse-
quently, they require substantial computational resources and
place higher demands on computer hardware.

To address the above problems, this study proposes
a lightweight convolutional neural network-based C-ECO
tracking algorithm [19] based on the ECO tracking algorithm
based on deep learning and correlation filtering. The ECO
algorithm has two implementation forms, ECO based on
convolutional features and ECO_HC based on artificial fea-
tures [20]. Combining the accuracy and speed considerations,
this experiment chooses the ECO algorithm based on convo-
lutional features for optimization and improvement. Themain
contributions of this study are as follows:

(1) In response to the complex deep learning VGG network
model in the ECO algorithm, which occupies large computa-
tional resources, a lightweight MobileNet v2 is used instead
to perform feature information extraction, which effectively
reduces resource consumption and improves tracking speed.

(2) In order to improve the target feature extraction ability
of the convolutional network, the A2-Net module is added
to MobileNet v2, which effectively improves the extraction
effect of the network on important information with a small
increase of computing parameters, and significantly improves
the training efficiency and tracking accuracy.

(3) Introducing the pre-training model in the training stage
effectively accelerates the model convergence speed, signifi-
cantly shortens the training time, and effectively improves the
accuracy and success rate of the tracking algorithm.

The remaining chapters of this paper are organized as
follows: in Section I, the basics are introduced, in Section II,
the construction of the C-ECO algorithm is introduced,
in Section III, the model is subjected to ablation experiments,
comparison tests, and in Section IV, the whole paper is sum-
marized and in Section V, an outlook on future work is given.

II. FOUNDATIONAL THEORIES AND PROPOSED METHOD
A. THE OBJECT TRACKING ECO ALGORITHM
The ECO target tracking algorithm is improved from the
continuous convolutional tracking algorithm C-COT [21].

The algorithm finally achieves target localization and filter
update by applying the convolutional features of the target
in the input image video, the directional gradient histogram
feature HOG (histogram of gradients) and the color channel
feature CN (color-names) [22], [23].

The ECO algorithm mainly includes the processes of
feature extraction, continuous convolution operation, con-
volution operation of factorization, generation of sample
space model and correlation filtering operation [24]. First,
the interpolation operation is performed for the features x
in the search region of the target to be detected as shown in
Equation (1) [25].
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function. The interpolation results for channels 1 to D are
denoted by J {x} (t) ∈ RD, abbreviated as J {x}. After that,
the filter is simplified using principal component analysis and
the response score SPf {x} obtained by convolving with J {x}
is shown in equation (2) [26].

SPf {x} = Pf ∗ J {x} = f ∗ PT J {x} (2)

where: f denotes the filter with channel number D, denotes
the convolution calculation, P is the projection matrix of D
rows andC columns, andPT denotes its transposematrix. The
position of the score maximum, i.e., the new position of the
target, is obtained by optimizing SPf {x} using the Gaussian
Newton algorithm. Finally, the data set is compressed using
a Gaussian mixture model, and the error of the convolutional
response score SPf {x} of the training sample and the current
filter f with the Gaussian label y0 of the training sample is
taken as L2 parametric, and the penalty term is added to obtain
the loss function as shown in equation (3).

E (f ) =

M∑
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πm
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∥∥2
L2 +

C∑
c=1

∥∥ωf c
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where: µm and πm are the mean and weight of the training
samples, respectively;M is the total number of training sam-
ples; ω is the penalty term of f . P is only calculated in the
first frame and is kept constant when f is updated using the
conjugate gradient algorithm to re-solve (3) every 6 frames
thereafter [27].

In summary, ECO takes three ways to improve by reducing
the filter, optimizing the training set and reducing the filter
update frequency, which effectively improves the tracking
speed.

B. LIGHTWEIGHT NETWORK MobileNet v2
The ECO algorithm uses convolutional networks of VGG19
and ResNet50, which have deeper networks, better feature
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TABLE 1. MobileNet v2 network structure.

extraction, and higher tracking accuracy, but the overly com-
plex networks and a huge number of parameters take up
a lot of computational resources and require higher hard-
ware, which leads to an increase in computational cost [28].
The target tracking task requires high speed, so it is neces-
sary to build a lightweight convolutional network model to
reduce the model size and improve the detection speed while
guaranteeing accuracy. MobileNet has a simple streamlined
structure with the advantages of a small number of parameters
and low latency. MobileNet network structure is shown in
Table 1, where tis the expansion factor, c is the number
of channels, n is the block number, and s is the step size
[29], [30].

1) DEPTHWISE SEPARABLE CONVOLUTION
MobileNet v2 is mainly composed of depth separable convo-
lution (DSC), the standard convolution operation is split into
a Depthwise convolution (DW) and a pointwise convolution
(PW) [31]. The comparison of the convolution is shown in
Figure 1. For the feature map obtained by Depthwise convo-
lution, a 1×1 convolution kernel is used in the point-by-point
convolution to perform the convolution operation, and the
final output feature layer after point-by-point convolution has
the same dimension as the standard convolution [32].

2) CONTRAST BETWEEN DEPTHWISE SEPARABLE
CONVOLUTION AND TRADITIONAL
CONVOLUTIONAL NETWORK
The number of parameters and the amount of computation
of Depthwise Separable convolution is compared with the
standard convolution to get the ratio of the number of param-
eters (4) and the ratio of the amount of computation (5).
Generally speaking, N is larger, 1/N is negligible, and DK
indicates the size of the convolution kernel. The number of
parameters and computation of Depthwise Separable convo-
lution is reduced to about 1/D2

K of the original one, and if the
common 3 × 3 convolution kernel is used, it can be reduced
to about 1/9 of the original one [33], [34]. It can be seen that

Depthwise Separable convolution significantly reduces the
number of operations and parameters, which can effectively
reduce the complexity of the network and improve the speed
of target tracking.

DK × DK ×M +M × N
DK × DK ×M × N

=
1
N

+
1

D2
K

(4)

DK × DK ×M × DF × DF +M × N × DF × DF
DK × DK ×M × N × DF × DF

=
1
N

+
1

D2
K

(5)

3) A2-NET ATTENTION MODULE
During the process of network training, as the volume of
information to be acquired grows, the complexity of the
model also tends to rise. Consequently, this heightened com-
plexity necessitates increased computational capacity from
the hardware on which the model is deployed. The attention
mechanism plays a pivotal role in this context by sieving
and selecting a small fraction of significant information from
a substantial volume of data. By concentrating predomi-
nantly on this essential information, the attention mechanism
effectively disregards the majority of relatively unimportant
data [35].

The fundamental concept of A2-Net revolves around gath-
ering the pivotal features of the entire space into a concise
set, followed by an adaptive distribution to each location.
This enables subsequent convolutional layers to sense the fea-
tures of the entire space even without an extensive receptive
field. The A2-Net module introduces a dual attention block
specifically designed to efficiently capture and distribute
long-distance features. This architectural design showcases
its potential for enhancing image and video recognition per-
formance, as it effectively models quadratic feature statistics
and adapts feature assignments.

The central premise of the A2-Net module involves two
primary steps. Initially, it gathers crucial features from the
complete space and condenses them into a concise set. Sub-
sequently, these pivotal features are adaptively distributed
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FIGURE 1. Comparison of standard convolution and Depthwise Separable Convolution. Figure 1(a) shows the standard convolution,
Figure 1(b) shows the Depthwise convolution and Figure 1(c) shows the pointwise convolution.

FIGURE 2. A2-Net module structure.

to each location, allowing subsequent convolutional lay-
ers to perceive the features of the overall space without
necessitating an extensive receptive field. The first-level
attention operation within the A2-Net selectively gathers
crucial features from the complete space, ensuring the inte-
gration of vital information. Meanwhile, the second-level
attention operation employs an additional attention mecha-
nism to dynamically allocate subsets of pivotal features to
complement each specific spatio-temporal locationwithin the
higher-level task [36]. For a visual representation of the A2-
Net module’s structure, refer to Figure 2, which depicts the
module’s components and architecture.

A2-Net shares some similarities with SENet, covariance
pooling, Non-local, and Transformer. However, it sets itself
apart through its first attention operation, which implic-
itly calculates second-order statistics of pooled features.
This unique approach allows A2-Net to capture intricate
appearance and motion correlations that elude global average
pooling, a technique employed in SENet. Additionally, the
second attention operation in A2-Net dynamically allocates
features from a concise collection, providing a more effi-
cient alternative to the exhaustive feature correlation utilized

TABLE 2. Performance comparison of A2-net on imagenet-1K dataset.

by Non-local and Transformer, which examines correlations
between features from all locations and specific positions.

Table 2 shows the performance comparison between
A2-Net and the famous attention network SENet using
ImageNet-1K as the dataset. The commonly used metrics
Top1-acc and Top5-acc are selected for performance com-
parison. Top-1 Accuracy refers to the Accuracy that the
top-ranked category matches the actual results, and Top-5
accuracy refers to the accuracy that the top-five categories
contain the actual results.

It can be seen from Table 1 that in terms of two indicators
Top1-acc and Top5-acc, the prediction effect of using A2-Net
is improved compared with that on SENet and ResNet.

4) CONSTRUCTION OF C-ECO TRACKING ALGORITHM
The C-ECO pedestrian tracking algorithm proposed in this
study is based on the ECO tracking algorithm. In order to
increase the ability of the network to extract feature infor-
mation and improve the accuracy of target detection, the
A2-Net module is introduced into MobileNet v2. By adding
A2-Net module after the second, fourth and sixth layer of
bottleneck, the final C-MobileNet is obtained by replacing
the bottleneck in the original network, and the improved
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FIGURE 3. C-MobileNet network structure.

C-MobileNet network structure is shown in Figure 3. The
addition of three A2-Net modules only adds fewer training
parameters and operations, but brings a great improvement
in the ability to extract important information in the feature
map.

The ECO algorithm is enhanced by incorporating
C-MobileNet, which replaces the VGG network utilized in
the original algorithm. This modification leads to the creation
of the C-ECO algorithm, which is based on a lightweight
convolutional neural network. In this paper, the C-ECO
algorithm is designed to improve upon the limitations of the
VGG19 network, characterized by its complex structure and
redundant parameters. Instead, the lightweight MobileNet v2
is employed for efficient feature extraction. Additionally, the
A2-Net attention module is introduced to enhance recogni-
tion performance. By balancing feature extraction capability
and network complexity, the C-ECO algorithm achieves a
lightweight architecture. Ultimately, the improved C-ECO
algorithm is utilized for precise target tracking. Figure 4
shows the flow of the improved C-ECO algorithm.

III. EXPERIMENT AND ANALYSIS
1) EXPERIMENTAL ENVIRONMENT AND DATASET
The GPU used in this experiment is NVIDIA
GeForceRTX3060 with 6G of memory; the CPU is Intel Core
i7-12700H with 2.70GHz and 32GB of RAM; the OS is
Windows 11, the programming environment is python3.9, the
programming software is PyCharm2021.3.1, and the CUDA
version is 11.6. In terms of experimental parameter setting,
the initial learning rate was set as 0.001, and the epoch was
set as 200.

In order to evaluate the tracking algorithm performance
and show the tracking effect, two data sets, OTB-50 andOTB-
100, containing 50 and 100 videos respectively, are selected
for testing.

2) ABLATION EXPERIMENTS
In order to verify the feasibility of applying the A2-Net
module in MobileNet, ablation experiments are conducted.
The ECO algorithmwas introduced for comparisonwith ECO
algorithm combined with MobileNet and C-ECO algorithm,

respectively, using the dataset OTB-100, and four metrics
were used to measure model strengths and weaknesses,
namely model size, accuracy, success rate, and FPS.

(1) Accuracy rate: the percentage of video frames in which
the distance between the center point of the target location
(bounding box) estimated by the tracking algorithm and the
center point of the manually labeled (ground-truth) target is
less than a given threshold.

(2) Success rate: define the overlap score (OS), the bound-
ing box obtained by the tracking algorithm (denoted as a), and
the box obtained by ground-truth (denoted as b), the overlap
rate is defined as OS = |a ∩ b| / |a ∪ b| , | · | indicates the
number of pixels in the region. When the OS of a frame
is greater than the set threshold, the frame is considered as
Success and the percentage of successful frames to all frames
is the Success rate.

(3) FPS: The number of frames per second that the tracking
algorithm processes the image.

The experimental results are shown in Table 3.
According to the data presented in Table 3, when

MobileNet v2 is used for feature extraction, the algorithm
model size is reduced by 30.29% compared to the VGG
network. Although there is a slight decrease in accuracy
and success rate, the FPS (frames per second) shows some
improvement. Furthermore, with the inclusion of the A2-Net
module, the model size increases slightly but remains 27.96%
smaller than the VGG network model. The accuracy and suc-
cess rates are also comparable to the VGG network, differing
by less than 1%. Notably, the FPS improves significantly,
increasing from 16.57 FPS to 24.21 FPS, representing a
remarkable 46.11%improvement. These results demonstrate
the superior performance of the C-ECO algorithm, which
incorporates the lightweight MobileNet network and the
A2-Net module.

Algorithms No. 2, No. 3 and No. 4 are used as the basic
feature extraction network to conduct target detection tests on
pedestrians in the video to verify their detection performance.
In order to more clearly display the differences between
algorithms, the detection results are displayed, as shown in
Figure 5.
Figure 5 shows the comparison diagram of target detection

for algorithms 2,3, and 4. The detection results of ResNet-
50 algorithm are shown in Figure 5(a1-a4). There is target
error detection in pedestrian detection, and the umbrella in
the upper part of the figure is wrongly detected as a passenger.
And the pedestrian detection effect on the road is not good.
The detection results of MobileNet v2 algorithm are shown
in Figure 5(b1-b4). The pedestrian detection is relatively
accurate, and there is almost no problem of error detection.
However, due to its simple network structure, the pedestrian
detection effect of small targets on the right edge of the image
in Figure 5(b4) is not good. In general, the pedestrian detec-
tion effect of algorithm 3 is significantly better than that of
algorithm 2. The detection effect after adding A2-Net atten-
tion module to MobileNet v2 is shown in Figure 5(c1-c4).
Due to the addition of the attention mechanism, the algorithm
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FIGURE 4. C-ECO algorithm flow.

TABLE 3. Ablation experiments.

TABLE 4. Comparison experiment with and without pre-training.

has a stronger ability to extract features and a better ability to
detect small targets than Algorithm 3 and Algorithm 2. It can
be concluded from Figure 5 and Table 3 that the introduc-
tion of MobileNet v2 and A2-Net module can significantly
improve the target detection ability, reduce the size of the
model, and improve the speed of the pedestrian tracking
algorithm.

3) MODEL PRE-TRAINING
Pre-training refers to the process of initially training a model
on a large-scale dataset and subsequently fine-tuning it on
specific downstream task data. This approach can accel-
erate model convergence and significantly reduce training
time. To investigate the impact of the C-MobileNet feature
extraction network in the proposed C-ECO algorithm on
target tracking performance with and without pre-training,
experiments were conducted on the OTB-100 dataset. Specif-
ically, C-MobileNet was tested with and without pre-training.
For pre-training, the MobileNet v2 model was selected,
pre-trained on the ImageNet dataset, and its parameters
were fine-tuned. The experimental results are summarized in
Table 4.
From Table 4, it can be seen that the accuracy rate of

the model with pre-training is 2.62% higher and the suc-
cess rate is 2.47% higher than that of the model without

pre-training (C-ECO without pre-training, C-ECO-N), from
which it can be concluded that the model with pre-training is
more effective in tracking the target, and therefore the model
with pre-training is used in all subsequent sections.

4) TRACKING ALGORITHM PERFORMANCE
COMPARISON EXPERIMENTS
In order to validate the effectiveness of the C-ECO algorithm,
it is compared against several mainstream correlation fil-
ter tracking algorithms. The comparison algorithms include
Kernel Correlation Filter (KCF), Discriminative Correlation
Filter (DCF), Discriminative Scale Space Tracker (DSST),
Spatially Regularized Correlation Filters (SRDCF), and
Background-Aware Correlation Filters (BACF). By conduct-
ing this comparison, the performance and advantages of the
C-ECO algorithm can be assessed in relation to these estab-
lished tracking algorithms.

The comparison experiment uses the dataset OTB-50,
which consists of 50 video sequences manually labeled with
the true position of the target, classified according to different
interference factors as occlusion (OCC), motion blur (MB),
background clutters (BC), illumination variation (IV), low
resolution (LR), scale variation (SV), deformation (DEF),
out of view (OV), in plane rotation (IPR), fast motion (FM),
out of The tracking (OPR), accuracy and tracking success rate
of C-ECO and other tracking algorithms for different types
of videos are shown in Tables 5 and 6, respectively, and the
bolded data are the optimal data.

Based on the data presented in Tables 5 and 6, it is evident
that the C-ECO algorithm proposed in this paper achieves a
high accuracy rate when evaluated on the OTB-50 dataset.
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FIGURE 5. Comparison of target detection effects before and after algorithm improvement. Figure 5(a1-a4) is the detection result of algorithm 2,
Figure 5(b1-b4) is the detection result of algorithm 3, and Figure 5(c1-c4) is the detection result of algorithm 4.

Furthermore, it outperforms mainstream correlation filtering
algorithms, exhibiting an average accuracy rate of 82.04%and
a success rate of 64.72%. In complex scenarios such as FM,
OCC, and MB, the C-ECO algorithm demonstrates a supe-
rior performance, surpassing the ECO algorithm by 0.51%
in terms of accuracy and 0.23% in terms of success rate.
These improvements highlight the enhanced accuracy and
success rate achieved by the C-ECO algorithm over the ECO
algorithm.

The accuracy and success rate curves of the C-ECO
algorithm and mainstream tracking algorithms are shown in
Figure 6.
From Figure 6(a), it can be seen that when the position

error threshold is less than 20, the accuracy value of the
C-ECO algorithm in this paper is slightly lower than the
ECO algorithm, and at the same time, it has a large lead
compared with other mainstream tracking algorithms, and
after the position error threshold is greater than 20, C-ECO
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TABLE 5. Accuracy of each tracking algorithm on OTB-50 (%).

TABLE 6. Success rate of each tracking algorithm on OTB-50 (%).

FIGURE 6. Accuracy and success curves of 7 tracking algorithms on the OTB-100 dataset.

algorithm overtakes ECO algorithm and continues to lead.
From Figure 6(b), it can be seen that when the IoU setting
is less than 0.5, the gap between ECO and C-ECO success
rate is not obvious, and when IoU is greater than 0.6 C-ECO
is in the leading position and significantly better than other
tracking algorithms.

The main challenges of the video in Figure 7(a1-a4)
are SV, OCC, and LR. from Figure 7(a1), it can be seen

that KCF, ECO, and C-ECO are able to track the target
more accurately when the target is moving without distur-
bance, where C-ECO successfully tracked the small target.
When a new target appeared as shown in Figure 7(a2), KCF
tracked the shadow of the target incorrectly, and ECO and
C-ECO were able to track it correctly. When the initial
transformation as shown in Figure 7(a3-a4) occurred and
the moving target was shaded and separated, both KCF and

VOLUME 12, 2024 24839



H. Wei et al.: Pedestrian Tracking Algorithm for Video Surveillance Based on Lightweight CNN

FIGURE 7. Comparison of tracking effects. For clarity of display, only KCF, ECO and the algorithm C-ECO are used in this paper. black boxes are KCF, yellow
boxes are ECO and blue boxes are C-ECO.

ECO lost the original target, and C-ECO was able to track
accurately.

The main challenges of the video in Figure 7(b1-b4) are
IV, DEF, MB. from Figure 7(b1-b2), it can be seen that KCF
shows tracking drift when the target is occluded, as shown
in Figure 7(b3-b4) when the video has motion blur and has a
large angle change and a complex background, KCF predic-
tion frame shows a large range of drift, ECO has a similarly
colored background for the C-ECO algorithm is still able to
track more accurately.

The principal challenges in the video sequence depicted
in Figure 7(c1)-(c4) encompass issues such as Scale Vari-
ation (SV), Object Occlusion (OCC), Deformation (DEF),
and Object Perspective Changes (OPR). From the analysis
of frame c2, it becomes apparent that as the complexity of
occlusion scenarios intensifies, featuring rapid movements of

pedestrians, interplay of street lamps, and mutual obstruction
among pedestrians engaged in typical walking, the tracking
efficacy of the KCF and ECO algorithms is notably compro-
mised. In contrast, the proposed C-ECO frameworkmaintains
a commendable level of tracking performance under these
demanding conditions.

Frame c3 highlights that, in the case of swiftly moving
pedestrians, the KCF algorithm has regrettably lost track of
the target entirely, and ECO, though valiant, still struggles to
maintain effective tracking. Remarkably, C-ECO manages to
uphold a higher degree of tracking accuracy even in the face
of such dynamic scenarios.

In frame c4, we observe that when confronted with the
challenge of tracking small targets within complex scenes rife
with occlusions, both KCF and ECO have forfeited the ability
to track the target. In contrast, C-ECO exhibits resilience and
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maintains the ability to accurately track the target, thus show-
casing its remarkable robustness in these intricate situations.

The primary challenges encountered in the video sequence
depicted in Figure 7(d1)-(d4) encompass Illumination Varia-
tion (IV), Scale Variation (SV), Object Occlusion (OCC), and
Deformation (DEF). Notably, from the scrutiny of frame d2,
it becomes evident that when the tracked target shares a color
proximity with the environmental background, both the KCF
and ECO algorithms are susceptible to tracking drift.

Further insights from frames d3 and d4 reveal that as
the tracked target progressively recedes from the camera,
diminishing in size and encountering occlusions, both KCF
and ECO manifest varying degrees of tracking drift. In con-
trast, owing to its augmented feature extraction capabilities,
C-ECO demonstrates a heightened resistance to tracking fail-
ures in these challenging scenarios.

The experimental results presented above emphasize the
superior performance of the C-ECO algorithm proposed in
this paper compared to other classical correlation filter track-
ing algorithms. The C-ECO algorithm not only achieves
higher accuracy and success rates in tracking, but it also
exhibits a significantly smaller feature extraction model size
compared to the ECO algorithm prior to optimization. Addi-
tionally, the algorithm effectively improves the frame rate for
video tracking. The comparison with other classical corre-
lation filter tracking algorithms highlights the strength and
competitiveness of the C-ECO algorithm. Its enhanced accu-
racy and success rates solidify its position as a reliable and
efficient tracking solution. Furthermore, the reduced model
size contributes to its practicality and resource efficiency,
while the improved frame rate enriches the user experience
during video tracking tasks. These findings demonstrate the
significance of the C-ECO algorithm in advancing correlation
filter tracking methods and establishing it as a promising
choice for various tracking applications.

IV. CONCLUSION AND EXPECTATIONS
In this study, we propose a novel C-ECO tracking algorithm
that leverages a lightweight convolutional neural network.
The algorithm employs MobileNet v2 for efficient feature
extraction, integrates the A2-Net module to enhance feature
representation, and incorporates a pre-trained model to expe-
dite training. The primary objective is to improve tracking
accuracy and success rates. Experimental results demonstrate
that the C-ECO algorithm outperforms the previous ECO
algorithm employing VGG Net, exhibiting a 27.96% reduc-
tion in model size and a 46.11% improvement in frame rate.
Importantly, these improvements are achieved without com-
promising the accuracy and success rate achieved before the
enhancements. When compared with six other mainstream
tracking algorithms, including ECO, the C-ECO algorithm
consistently ranks at the top, boasting an average accuracy
rate of 82.04% and a success rate of 64.72%. The lightweight
pedestrian tracking algorithm proposed in this paper show-
cases its ability to effectively detect and track pedestrians
in various complex scenarios. This research provides a new

perspective for intelligent monitoring applications, contribut-
ing to advancements in the field.

V. FUTURE WORK AND PROSPECTS
While the pedestrian tracking algorithm proposed in this
paper, based on a lightweight convolutional neural network,
has demonstrated favorable results in terms of tracking speed
and accuracy, it is important to acknowledge the existing
limitations and room for improvement.

Firstly, the experiments conducted in this study pri-
marily encompassed scenarios with good lighting condi-
tions, favorable weather conditions, and indoor monitoring
scenes. To provide a more comprehensive evaluation of
the algorithm’s performance, future research should include
pedestrian monitoring videos captured under poor lighting
conditions at night, as well as videos recorded in adverse
weather conditions such as rain, snow, and fog. By expanding
the dataset to encompass these challenging scenarios, the
algorithm’s robustness and generalizability can be further
scrutinized.

Despite efforts to simplify the algorithm’s architecture in
this study, the inference operation still requires a substantial
amount of computing resources due to the inherent com-
plexity of the model and its network. As part of our future
work, we aim to optimize and refine the model to minimize
computational demands, enabling it to be executed efficiently
on mobile devices while maintaining or even improving its
performance.

It is also essential to note that this algorithm has its
limitations and areas for further refinement. Additional exper-
iments can be conducted to address these deficiencies and
improve the overall effectiveness of the proposed pedestrian
tracking algorithm. By embracing these future endeavors,
we aspire to achieve superior results and make significant
advancements in the field of pedestrian monitoring and
tracking.
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